Relationship of function and higher order structure of abnormal hemoglobin.

メタデータ	言語: jpn
	出版者:
	公開日: 2021-09-03
	キーワード (Ja):
	キーワード (En):
	作成者: Nagai, Masako
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00063872

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Search Research Projects How to Use

2001 Fiscal Year Final Research Report Summary

Relationship of function and higher order structure of abnormal hemoglobin.

Project/Area Number 10670115 **Research Category** Grant-in-Aid for Scientific Research (C) **Allocation Type** Single-year Grants Section 一般 Research Field General medical chemistry **Research Institution** Kanazawa University **Principal Investigator NAGAI** Masako Kanazawa University, Faculty of Medicine, School of Health Sciences, Professor, 医学部, 教授 (60019578) Co-Investigator(Kenkyū-buntansha) SAKURAI Hiroshi Kanazawa University, Faculty of Medicine, School of Health Sciences, Associate Professor, 医学部, 助教授 (00225848)

1998 – 2001

Research Project

Keywords

Hemoglobin / UVCD / UV resonance Raman / Allostery / Ouaternary structure transition / Aromatic amino acids / T-state marker / Oxygen equilibrium

Research Abstract

Project Period (FY)

In order to address the relationship between oxygen binding function (allostery) and quaternary structure changes of hemoglobin A (Hb A), we have studied on structure and function of abnormal hemoglobin by ultraviolet (UV) circular dichroism (CD) and UV resonance Raman (UVRR) spectroscopy. The results were summarized as follows: (1) A study of quaternary structure change of Hb by UVCD: We examined UVCD spectra of abnormal hemoglobin with amino acid substitution at $\alpha 1-\beta 2$ subunit interface (References, 1, 2).

- (1) Heme and protein structure of Hb M Iwate and Hb M Boston characterized by UV and visible resonance Raman study (References, 3, 4).
- (2) Structural and functional relationship of hemoglobin by UVRR: Tyr and Trp RR bands excited with 235nm changed upon deoxy->oxy(or CO) structure transition. We

clarified which Tyr or Trp residue contributed to these changes using abnormal hemoglobin, NO and metal-hybrid Hb (References, 5-7). From these results, we have elucidated that Tyr and/or Trp residues at $\alpha 1-\beta 2$ subunit interface are critically important for hemoglobin allostery. These aromatic residues contribute not independently but cooperatively to higher order protein structure transition of hemoglobin.

Research Products (14 results)

All Other

	All Publications
[Publications] R.Li, Y.Nagai, M.Nagai: "Contribution of a14OTyr and β37Trp to the near-UVCD spectra on quaternary structure transition of Hb A"Chirality. 1 (2000)	.2. 216-220
[Publications] R.Li, Y.Nagai, M.Nagai: "Changes of Tyr and-Trp residues in human hemoglobin by oxygen binding: near-and farUVCD of hemoglobin"Journal Biochemistry. 82. 93-101 (2000)	l of Inorganic
[Publications] M.Nagai, M.Aki, R.Li, Y.Jin, T.Kitagawa: "Heme structure of Hb M Iwate: A UV and visible resonance Raman study"Biochemistry. 43. 13093-	13105 (2000)
[Publications] S.Nagatomo, Y.Jin, H.Hori, M.Nagai, T.Kitagawa: "Changes in the abnormal α-subunit upon CO-binding to the normal β-subunit of Hb M Bost Chemistry. (in press). (2002)	on"Biophysical
[Publications] M.Nagai, H.Wajicman, S.Nagatomo, T.Kitagawa: "Quaternary structure sensitive tyrosine residues in human hemoglobin: UV resonance Ranstudy"Biochemistry. 38. 1243-1251 (1999)	nan 🗸
[Publications] S.Nagatomo, N.Nagai, T.Yonetani, T.Kitagawa: "UV resonance Raman studies of a-NO hemoglobin derivatives"Biochemistry. 38. 9659-9666 (1999)
[Publications] S.Nagatomo, M.Nagai, N.Shibayama.T.Kitagawa: "Differences in changes of the α1-β2 subunit interface: UV resonance Raman of Ni-Fe hybramoglobin"Biochemistry. (in press). (2002)	id 🗸
[Publications] R. Li, Y. Nagai, and M. Nagai: "Contribution of α140Tyr and β37Trp to the near-UV CD spectra on quaternary structure transition of human half-chirality. 12. 216-220 (2000)	emoglobin
[Publications] R. Li, Y. Nagai, and M. Nagai: "Changes oftyrosine and tryptophan residues in human hemoglobin by oxygen binding: near- and far-UV circu isolated chains and recombined hemoglobin"J. Inorh, Biochem.,. 82. 93-101 (2000)	lar dichroism of
[Publications] M. Nagai, M. Aki, R. Li, Y. Jin, H. Sakai: "Henie structure of Hemoglobin M Iwate [a87 (F8)His->Tyr]: A UV and visible resonance Raman stu 43. 13093-13105 (2000)	dy"Biochemistry.
[Publications] S. Nagatomo, Y. Jin, M. Nagai, H. Hori, and T. Kitagawa: "Changes in tne aonormai α-suounit upon Co-binding to the normal β-subunit of Hb Resonance Raman, EPR, and CD study"Biophys. Chem (in press).	M Boston :
[Publications] M. Nagai, H. Wajcman, A. Lahary, T. Nakatsukasa, S.Nagatomo, and T. Kitagawa: "Quaternary structure sensitive tyrosine residues in human UV resonance Raman studies of mutants at α40, β335, and β145 tyrosine"Biochemistry. 38. 1243-1251 (1999)	hemoglobin :
[Publications] S. Nagatomo, M. Nagai, A. Tsuneshige, T. Yonetani, and T. Kitagawa: "UV resonance Raman studies of α-nitrosyl hemoglobin derivatives: Re the α1-β2. Subunit interface interactions and the Fe-histidine bonding of α heme"Biochemistry. 30. 9659-9666 (1999)	lation between
[Publications] S. Nagatomo, M. Nagai, N. Shibayama, and T. Kitagawa: "Differences in changes of the α1-β2 subunit contacts between ligand binding to the subunits of hemo-globin A: UV resonance Raman analysis using Ni-Fe hybrid hemoglobin Biochemistry. (accepted for publication)(3/15/02).	e a and β

URL: https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-10670115/106701152001kenkyu_seika_hokoku_

Published: 2003-09-16