The role of cell adhesion molecules and neurotrophic factors in reconstruction of nociceptive pathways in spinal cord and brainstem after peripheralaxotomy

メタデータ	言語: jpn
	出版者:
	公開日: 2021-09-10
	キーワード (Ja):
	キーワード (En):
	作成者: Hasegawa, Mitsuhiro
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00063966
	This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 International License.

2000 Fiscal Year Final Research Report Summary

The role of cell adhesion molecules and neurotrophic factors in reconstruction of nociceptive pathways in spinal cord and brainstem after peripheralaxotomy

Research Project

Project/Area Number
11671360
Research Category
Grant-in-Aid for Scientific Research (C)
Allocation Type
Single-year Grants
Section
一般
Research Field
Cerebral neurosurgery
Research Institution
Kanazawa University
Principal Investigator
HASEGAWA Mitsuhiro Kanazawa University Hospital, Department of Neurosurgery, Assistant Professor, 医学部・附属病院, 講師 (70218460)
Project Period (FY)
1999 – 2000
Keywords
nerve regeneration / allodynia / Rexed II / spinalcord / E-cadherin / qalectin-1 / substance-P / catenins

Research Abstract

The ultimate aim of this study is to know the plasticity of primary sensory pathways, especially pain sensation in the spinal cord, resulting in allodynia, hyperalgesia, and persistent pain to the patients. To examine this, the effects of peripheral axotomy to the alteration of the expression of E-cadherin which is exclusively expressed inlamina II of Rexed in the spinal cord dorsal horn was firstly analysed. This expression tem porarily disappeared by day 7 after axotomy and reappeared following partial axonal regeneration on day 63. In contrast, it remained undetectable following complete nerve degeneration. Cadherin-associated protein, catenins are also examined. Administration of NGF rescued the immunoreactivity of substance P, which is known to disappear after peripheral axotomy, but not influence that of both E-cadherin and alpha N-catenin. Secondly, to investigate the detailed cellular effects of oxidized galectin-1, which effect to nerve regeneration has been recently identified, acellular auto-and allograft model were utilized. Our results indicated that local application of exogenous rhGal-1/Ox promotes the migration of Schwann cells followed by axonal regeneration from both motor and sensory neurons, and that Gal-1/Ox is a key factor of initial stage of neuronal regeneration. These models would be utilized for further investigation of the plasticity of primary sensory pathways.

URL: https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-11671360/116713602000kenkyu_seika_hokoku_

Published: 2002-03-25