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Abstract Peccei–Quinn (PQ) mechanism based on a chi-
ral global U (1) symmetry is considered to be a simple and
elegant solution for strong CP problem. The fact that the
mechanism could be experimentally examined through the
axion search makes it much more interesting and recently
it causes a lot of attention again. However, it is also known
that the mechanism is annoyed by two serious problems, that
is, a domain wall problem and goodness of global symme-
try. Any global symmetry is considered not to be exact due
to the quantum effect of gravity. In this paper, we consider
a solution to these problems, in which quark mass hierar-
chy and mixing, neutrino mass generation and existence of
dark matter are closely related. In our solution, PQ symme-
try is assumed to be induced through symmetry breaking at
an intermediate scale of a local U(1) symmetry, and a global
U(1) symmetry which plays a role of Froggatt–Nielsen sym-
metry . In the lepton sector, a remnant of the PQ symmetry
controls neutrino mass generation and dark matter existence.

1 Introduction

Strong CP problem is one of serious problems in the stan-
dard model (SM), which is suggested by an experimental
bound of the electric dipole moment of a neutron [1–3]. The
bound requires fine tuning of O(10−10) for a parameter θ in
QCD. Invisible axion scenario based on a chiral global sym-
metry, which is called Peccei–Quinn (PQ) symmetry [4–7],
is known to give a simple and elegant solution to it [8–11].
Since it predicts the existence of a light and very weakly inter-
acting pseudoscalar, this solution could be examined experi-
mentally. Moreover, it is known to present a good candidate
for cold dark matter (DM) under a suitable condition [12–14].
Its experimental search is proceeding now.

On the other hand, the scenario has two fatal problems
generally. The first one is known as a domain wall problem

a e-mail: suematsu@hep.s.kanazawa-u.ac.jp

[15]. Although PQ symmetry is explicitly broken to its dis-
crete subgroup ZN through the QCD instanton effect, this
ZN is also spontaneously broken to its subgroup when the
PQ symmetry is spontaneously broken by a vacuum expec-
tation value (VEV) of scalar fields and quark condensates.
This brings about N degenerate vacua due to the sponta-
neous breaking of the ZN symmetry, where each vacuum is
separated by topological defects called domain wall and N
is called the domain wall number. Since the energy density
of the domain walls dominates cosmological energy density
of the Universe inevitably, the Universe is over-closed con-
tradicting to the observations. It is known that the domain
wall problem could be escaped for a non-degenerate vacuum
which has N = 1 [16–19], even if the cosmological inflation
occurs before the PQ symmetry breaking. The KSVZ model
is known to be such a representative example [8,9].

The second one is related to the goodness of the PQ sym-
metry. The PQ symmetry is global symmetry, which is used
to be considered to be broken by the gravitational effect
[20,21].1 If this breaking effect due to the gravity is larger
than the QCD instanton effect, the PQ mechanism cannot
solve the strong CP problem. In order to escape this danger-
ous situation, such symmetry breaking operators caused by
the gravity should be forbidden up to dimension ten [25–28].
There, the PQ symmetry is considered to be realized as the
accidental symmetry induced by some gauge symmetry or
discrete symmetry, which satisfies such a constraint on its
goodness. In such a direction, several works have been done
by now [29–37].

In this paper, we propose a model which can escape these
two problems in axion models. Although the SM has been
confirmed by the discovery of the Higgs scalar [38,39], it
cannot explain several experimental and observational data

1 Although the breaking caused by wormholes is known to be strongly
suppressed [22], it has been also shown that this suppression becomes
weak if a radial mode of the complex scalar is taken into account in the
analysis [23,24].
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such as quark mass hierarchy and CKM mixing, neutrino
masses and their large mixing [40], and also the existence
of DM [41,42]. In the present model construction, we take
account of these problems also.2 For this purpose, we impose
U (1)g × U (1)FN on the model, where U (1)g is the gauge
symmetry but U (1)FN is the global symmetry whose charge
is flavor dependent. Then, the latter could play a role of
Froggatt–Nielsen symmetry [56]. This symmetry is assumed
to be spontaneously broken to the PQ symmetry U (1)PQ

at some intermediate scale. We require that U (1)g guaran-
tees the goodness of U (1)PQ to be kept up to a consistent
level required by the strong CP problem. After the spon-
taneous breaking of U (1)PQ , both a non-degenerate QCD
vacuum and Yukawa couplings with desirable flavor struc-
ture are induced in a quark sector [55]. In a leptonic sector,
the scotogenic model [57] which connects the neutrino mass
generation and the existence of DM is brought about as a low
energy effective model. Since the model has a DM candidate
other than the axion, a condition on the decay constant of the
axion can be weakened.

The remaining parts are organized as follows. In the
next section, we present our model by fixing the symmetry
U (1)g×U (1)FN and the field contents in the model. We dis-
cuss features of the model such as the symmetry breaking, the
domain wall number, the goodness of the PQ symmetry and
so on. In Sect. 3, phenomenological features of this model
are discussed, such as quark mass hierarchy and CKM mix-
ing, neutrino mass generation, leptogenesis, DM abundance
and so on. We summarize the paper in Sect. 4.

2 A model with U(1)g × U(1)FN

We start presenting a brief review of the QCD vacuum degen-
eracy in the PQ mechanism [1–3]. If the U (1)PQ[SU (3)c]2

anomaly takes a value N for the PQ charge assignment of
colored contents in the model, the U (1)PQ transformation
of the colored fermions shifts a parameter θ̄ as [4,5]

θ̄ → θ̄ + 2πN , (1)

where θ̄ is a coefficient of an effective term θ̄
32π2 F

a
μν F̃

aμν

induced by instantons and it is defined as θ̄ = θ+arg(det M)

where M stands for a quark mass matrix. If the PQ sym-
metry is spontaneously broken by a VEV of a scalar field
S, θ̄ behaves as a dynamical variable corresponding to a

2 Model construction to explain some of these problems including the
strong CP problem has been done in various articles [43–55]. In our
model, a simultaneous explanation of these problems in the SM is pre-
sented in a consistent way in addition to giving a solution for the domain
wall problem and the goodness problem of the PQ symmetry discussed
above.

pseudo Nambu-Goldstone boson associated with this break-
ing, which is called axion a [6–11]. Since a period of θ̄ is 2π

and potential for θ̄ can be represented by using a QCD scale
�QCD as

V (θ̄) = �4
QCD(1 − cos θ̄ ), (2)

this potential for θ̄ has |N |-fold degenerate minima. The
axion a is fixed as a ≡ |〈S〉| θ̄

|N | which is defined at a region
[0, 2π). This requires that the axion decay constant fa should
be defined as fa |N | = |〈S〉|.

Each degenerate vacuum is separated by potential bar-
riers called the domain wall [15]. It can be identified with
a topological defect which is produced through the sponta-
neous breaking of Z|N |. As addressed in the introduction, |N |
is called the domain wall number and it is written as NDW

for the definiteness in the following part. In the NDW = 1
case, the walls are produced although the vacuum is unique.
They have a string at its boundary which is generated due
to the breaking of U (1)PQ . This type of domain walls can
quickly disappear as studied in [58]. On the other hand, in the
NDW ≥ 2 case, each string has NDW domain walls and they
generate complex networks of strings and walls. Since these
networks are stable, they dominate the energy density of the
Universe to over-close it. Thus, if inflation does not occur
after the U (1)PQ breaking, the present Universe cannot be
realized unless NDW = 1 is satisfied. Inflation could make
the present Universe to be covered with a unique vacuum if
inflation occurs after the PQ symmetry breaking. Thus, low
scale inflation could give a solution in the NDW ≥ 2 case.
However, we focus on the NDW = 1 case in the present
study.

Here two points on the domain wall problem should be
remarked. First, the non-degenerate vacuum can be realized
even for the case with N �= ±1. As an interesting example,
we may consider a case with N = ±2 where the VEV of
the scalar does not break Z2 spontaneously. Since two vacua
could be identified each other by this unbroken Z2 symmetry,
NDW = 1 is realized just as in the N = ±1 case. Second,
we should notice that there are two estimations for the axion
relic density by taking account of the decay of domain walls
in the NDW = 1 case [59–62], which give different conclu-
sions. One of them suggests that the domain wall problem
might not be solved even in the NDW = 1 case unless the
axion decay constant is less than a certain limit. Another
one claims that the axion produced through the domain wall
decay is subdominant in comparison with the one due to
axion misalignment. In the following discussion, we assume
that the axion energy density coming from the domain wall
decay is subdominant and NDW = 1 could be a solution for
the strong CP problem.

Now, we try to construct a model so as to escape the
domain wall problem by NDW = 1 [54,55] and to guar-
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Table 1 The U (1)g × U (1)FN charge of the color triplet fermions

Q(i)
L ,R and the SM singlet complex scalars σ and S. The charge XPQ of

U (1)PQ is defined as XPQ = Xg + XFN where Xg and XFN are the
charges ofU (1)g andU (1)FN , respectively. Parity of Z2 which remains
after the U (1)PQ breaking by 〈S〉 is also listed

Q(1)
L Q(2)

L Q(3)
L Q(1)

R Q(2)
R Q(3)

R σ S

Xg 5 −5 3 −4 4 3 9 2

XFN −5 5 3 4 −4 −1 −9 −4

XPQ 0 0 6 0 0 2 0 −2

Z2 + + + + + + + +

antee the goodness of global symmetry at the required level
by gauge symmetry. A framework to keep the goodness of
the PQ symmetry has been proposed in [25–28]. We would
like to follow a similar scenario to it.

We imposeU (1)g ×U (1)FN on the model above an inter-
mediate scale and introduce new fields with the charge of this
symmetry. They are two SM singlet complex scalars σ, S,
and also six types of color triplet fermions Q(i)

L ,R (i = 1 ∼ 3),
which are assumed to have no charge of SU (2)L × U (1)Y
and their subscripts L and R represent their chirality. The
U (1)g ×U (1)FN charges of these fields are given in Table 1.
In this charge assignment, each VEV of σ and S induces the
symmetry breaking

U (1)g ×U (1)FN
〈σ 〉−→ U (1)PQ

〈S〉−→ Z2, (3)

where we assume 〈σ 〉 > 〈S〉. The U (1)PQ charge XPQ is
defined as a linear combination XPQ = Xg + XFN where
Xg and XFN are the charges of U (1)g and U (1)FN , respec-
tively. As we find it later, this Z2 is not broken through quark
condensate either.

We have to address various anomalies associated to the
introduction of new fields, first of all. All of the gauge
anomaly for [SU (3)c]3, U (1)g[SU (3)c]2 and [U (1)g]3 are
easily found to cancel within these field contents. On the other
hand, the QCD anomalyU (1)FN [SU (3)c]2 forU (1)FN does
not cancel but it is calculated as N = −2 in this extra
fermion sector. Since U (1)PQ plays its role as the global
symmetry after the first step of the symmetry breaking in
Eq. (3) andU (1)PQ[SU (3)c]2 anomaly takes the same value
as U (1)FN [SU (3)c]2, the strong CP problem is expected to
be solved by the PQ mechanism based on an axion caused
in the spontaneous symmetry breaking of U (1)PQ due to
a VEV of S. In order to escape the domain wall problem,
the total anomaly including the contribution from the quark
sector should be N = ±1 or ±2.3 This suggests that the cor-

3 If 〈S〉 and the quark condensates do not break a subgroup Z2 of
U (1)PQ , two vacua can be identified by this Z2 symmetry and then the
model with |N | = 2 can be considered to have NDW = 1.

responding anomaly of the quark sector should take a value
among 0, 1, 3 and 4. As we will see it later, this value is
closely related to the quark mass hierarchy and the CKM
mixing. Three examples (i) ∼ (iii) of the charge assignment
for the quark sector is presented in Table 2. In these cases,
NDW = 1 can be realized.

Next, we move to the problem on the goodness of
this U (1)PQ and the mass generation of the extra colored
fermions. It is easy to see that a lowest order term in the
potential of σ and S, which is U (1)g invariant but U (1)FN

violating, is

g

M7
pl

σ ∗2S9 + h.c., (4)

where g is a constant and U (1)FN violation is considered to
be induced by the gravitational effect so that the operator is
suppressed by the Planck mass Mpl. If the PQ mechanism
works well in this model, the contribution to the axion mass
from Eq. (4) should be less than the one coming from the
potential (2) due to the QCD instanton effect [25–28]. Since

the latter is given as m2
a = m2

π f 2
π

f 2
a

[6,7], this condition gives

a constraint on 〈σ 〉 such as

〈σ 〉 <∼ 6 × 1012
(

1011 GeV

〈S〉
) 9

2

GeV. (5)

It should be consistent with our assumption for the symme-
try breaking pattern (3) within the astrophysical and cos-
mological constraint on the axion decay constant which is
109 GeV < fa < 1012 GeV [1–3]. It requires that the VEV
of S should satisfy

109 GeV <∼ 〈S〉 <∼ 2 × 1011 GeV, (6)

for the NDW = 1 case. It suggests that the axion seems to be
difficult to be a dominant component of the DM since fa has
to be rather small in this scenario. From these discussions, we
find that the axion in this model is characterized by a lower
mass bound such as ma

>∼ 6 × 10−5 eV and a coupling with
photon such as gaγ γ = ma

eV
2.0

1010GeV
( E
N − 1.92) [63] where

E
N = − 58

3 for (i), 34
3 for (ii), and 6 for (iii).

The extra colored fields can get their mass only through
the VEVs of σ and S. It is crucial for the consistency of
the model what scale of mass they can have. The following
operators are invariant under U (1)g ×U (1)FN ,

σ Q̄(1)
L Q(1)

R , σ Q̄(2)
L Q(2)

R . (7)

On the other hand, S∗2

M∗ Q̄
(3)
L Q(3)

R could be generated as a
U (1)PQ invariant operator after theU (1)g ×U (1)FN break-
ing at 〈σ 〉 = M∗. These operators give masses to these
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Table 2 Examples of the U (1)FN charge assignment for quarks which
have no domain wall problem. Quarks are assumed to have no U (1)g
charge. N represents a value of the QCD anomaly in each case, which

realizes NDW = 1 by combining with the one from the extra colored
fermions given in Table 1

qL1 qL2 qL3 uR1 uR2 uR3 dR1 dR2 dR3

(i) N = 1 XFN −4 −2 0 4 2 0 −10 −8 2

(ii) N = 4 XFN −8 −2 0 −16 −4 0 4 2 2

(iii) N = 3 XFN −8 −2 0 −16 −4 0 2 2 2

Z2 + + + + + + + + +

extra colored fermions through 〈σ 〉 and 〈S〉. However, since
they have no hypercharge, they cannot couple with ordinary
quarks and then they have no decay modes so as to be stable.4

If they are in thermal equilibrium during the history of the
Universe, we have to note that several contradictions such as
the existence of fractionally charged hadrons and their over-
abundant contribution to the energy density could appear
[63]. The strongest constraint on their abundance comes from
the search of fractionally charged particles, which requires
nQ(3)

nb
<∼ 10−20 for the abundance of the lightest extra col-

ored fermion nQ(3) and the abundance of the ordinary nucle-
ons nb [64]. This constraint could be satisfied even if Q(3)

is in the thermal equilibrium as long as reheating temper-
ature is assumed to be much lower than the mass of Q(3).
Since U (1)g × U (1)FN is assumed not to be restored after
the reheating, these extra colored fermions are not produced
in the thermal bath through the reheating process and the
model can escape this problem. In fact, we can confirm that

the Q(3) mass of O
( 〈S〉
M∗

)2
M∗ derived by an O(1) coupling

could satisfy the above constraint for the parameters used
in the following study and the reheating temperature such
as TR = 108 GeV. Such a low reheating temperature could
cause a problem if we consider thermal leptogenesis due to
the decay of thermal right-handed neutrinos. We will come
back this point later.

Now, we couple this model with the SM including the
lepton sector. Since the axion could not be a dominant com-
ponent of DM in this scenario as discussed above, we need
to prepare a candidate for the DM. For this purpose, the lep-
tonic sector is extended by an additional doublet scalar η and
three right-handed neutrinos Ni so as to realize the scoto-
genic model [57,65–72]. An example of theU (1)g×U (1)FN

charge assignment for the leptonic sector is shown in Table 3.
After the symmetry breaking due to 〈σ 〉, U (1)PQ invariant
operators are considered to be generated in both Yukawa cou-
plings and scalar potential of an effective theory at energy
regions below 〈σ 〉. An interesting point is that nonrenor-

4 It may be possible to assume that these fermions have hypercharge
and couple with ordinary quarks to have decay modes. However, in that
case, we have to introduce a lot of fields to cancel the gauge anomaly.
We do not consider such a possibility here.

Table 3 TheU (1)FN charge assignment for leptons, right-handed neu-
trinos, the Higgs doublet φ and an additional doublet scalar η. These
are assumed to have no U (1)g charge


L1 
L2 
L3 eR1 eR2 eR3 NR1 NR2 NR3 φ η

XFN −6 −2 −2 4 2 2 3 1 −1 0 −1

Z2 + + + + + + − − − + −

malizable Yukawa couplings are controlled by the U (1)PQ

charge of each quark and lepton [51–53,55]. In fact, if we
define

nui j = 1

2
(XuR j

− XqLi
), ndi j = 1

2
(XdR j

− XqLi
),

nNi j = 1

2
(XNRi

+ XNR j
),

nν
i j = 1

2
(XNR j

− X
Li
− 1), nei j = 1

2
(XeR j

− X
Li
), (8)

quark Yukawa couplings are written as

− Lq
y =

3∑
i=1, j

[
yui j

(
S

M∗

)|nui j |
q̄Li φuR j

+ydi j

(
S

M∗

)|ndi j |
q̄Li φ̃dR j

]
, (9)

where φ̃ = iτ2φ
∗ and M∗ = 〈σ 〉. On the other hand, Yukawa

couplings relevant to the neutrino mass generation are written
as

− L

y =

3∑
i, j=1

[
hν
i j

(
S

M∗

)|nν
i j |


̄Li ηNRj

+hei j

(
S

M∗

)|nei j |

̄Li φ̃eR j

+ hN
i j

(
S

M∗

)|nNi j |
M∗ N̄ c

Ri NR j + h.c.

]
. (10)

The third term related to the mass of right-handed neutrinos
should satisfy |nNi j | ≥ 2, since the renormalizable one is
forbidden by U (1)g × U (1)FN . In these formulas (9) and
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(10), S should be replaced by S∗ for n f
i j < 0. The scalar

potential at energy regions lower than 〈σ 〉 is written as

V1 = m2
S S

†S + κ1(S
†S)2 + κ2(S

†S)(φ†φ) + κ3(S
†S)(η†η)

+m2
ηη

†η + m2
φφ†φ + λ1(φ

†φ)2 + λ2(η
†η)2

+ λ3(φ
†φ)(η†η) + λ4(φ

†η)(η†φ)

+ λ5

2

[
S

M∗
(η†φ)2 + h.c.

]
, (11)

where λ5 is taken to be real. On the other hand, the scalar
potential for the light scalars φ and η after S gets the VEV
can be expressed as

V2 = m̃2
ηη

†η + m̃2
φφ†φ + λ̃1(φ

†φ)2 + λ̃2(η
†η)2

+ λ̃3(φ
†φ)(η†η) + λ4(φ

†η)(η†φ)

+ λ̃5

2

[
(η†φ)2 + h.c.

]
, (12)

which is found to coincide with the scalar potential of the
scotogenic model.

In Eqs. (11) and (12), scalar masses and couplings are
shifted from the ones at higher energy regions because of the
symmetry breaking effect by σ and S, respectively [54]. The
shift of the parameters in (11) can be summarized as

κ1 = κ̄1 − ξ2
S

4ξσ

, κ2 = κ̄2 − ξSξφ

2ξσ

, κ3 = κ̄3 − ξSξη

2ξσ

,

λ1 = λ̄1 − ξ2
φ

4ξσ

, λ2 = λ̄2 − ξ2
η

4ξσ

, λ3 = λ̄3 − ξφξη

2ξσ

,

m2
S = m̄2

S + ξS〈σ 〉2, m2
φ = m̄2

φ + ξφ〈σ 〉2,

m2
η = m̄2

η + ξη〈σ 〉2, (13)

where the over-lined parameters correspond to the ones
before the symmetry breaking and ξρ (ρ = σ, S, φ, η) rep-
resents a coupling constant for an operator (ρ†ρ)(σ †σ) in
the potential at energy scales larger than 〈σ 〉. The shift of
parameters in (12) can be given as

λ̃1 = λ1 − κ2
2

4κ1
, λ̃2 = λ2 − κ2

3

4κ1
, λ̃3 = λ3 − κ2κ3

2κ1
,

λ̃5 = λ5
〈S〉
M∗

, m̃2
φ = m2

φ + κ2〈S〉2,

m̃2
η = m2

η + κ3〈S〉2. (14)

The parameters in Eq. (14) should satisfy the conditions for
which a vacuum defined in V2 is stable. They are written as

λ̃1,2 > 0, λ̃3 > −2
√

λ̃1λ̃2, λ̃3 + λ4 − |λ̃5| > −2
√

λ̃1λ̃2.

(15)

In Eqs. (9), (10) and (11), the lowest dimension operators
invariant under U (1)PQ are listed. There could be U (1)FN

violating contributions to them which are induced by the

gravity effect. However, since they are suppressed by a factor
σσ ∗
M2

pl
at least, their effect can be safely neglected under the

condition (5). These formulas show that Yukawa couplings
for the quarks and the leptons have a suppression by powers
of |〈S〉|

M∗ after the PQ symmetry breaking due to 〈S〉. Neutrino
Yukawa couplings in the leptonic sector are also found to be
reduced to the ones in the scotogenic model. Moreover, the
coupling λ̃5 in Eq. (12) could be small so as to cause a small
mass difference between the neutral components of the extra
doublet scalar η. One should note that it is a crucial element
of the neutrino mass generation in the original scotogenic
model.

3 Phenomenological features of the model

3.1 Quark mass hierarchy and CKM mixing

After the PQ symmetry breaking due to 〈S〉, Eq. (9) induces

Yukawa couplings for quarks with a suppression factor ε
|n f

i j |
where ε = |〈S〉|

M∗ and n f
i j is determined by the PQ charge

of quarks just like the Froggatt–Nielsen mechanism [51–53,
55].5 Elements of quark mass matrices derived from these
are represented as

m f
i j = y f

i jε
|n f

i j |〈φ〉, (16)

where a superscript f stands for up and down sector and
then f = u, d. If we define the quark mass eigenstates as
f̃L = U f fL and f̃ R = V f fR by using the unitary matrices
U f and V f , they satisfy the condition

(
U f †

)
αi

y f
i jε

|n f
i j |V f

jβ = m f
α

〈φ〉 δαβ, (17)

where m f
α represents a mass eigenvalue in the f -sector. The

CKM matrix is expressed as UCKM = Uu†Ud . If we use
the PQ charge of quarks given in Table 2, the quark mass
matrices defined by ūLMuuR and d̄LMddR can be written
for each example as

(i)Mu =

⎛
⎜⎜⎝

yu11 ε4 yu12 ε3 yu13 ε2

yu21 ε3 yu22 ε2 yu23 ε

yu31 ε2 yu32 ε yu33

⎞
⎟⎟⎠ 〈φ〉,

Md =

⎛
⎜⎜⎝

yd11 ε3 yd12 ε2 yd13 ε3

yd21 ε4 yd22 ε3 yd23 ε2

yd31 ε5 yd32 ε4 yd33 ε

⎞
⎟⎟⎠ 〈φ̃〉,

5 In the different context, flavor structure of quarks and leptons has
been extensively studied using flavons resulting from various types of
flavor symmetry [73–84].
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(ii)Mu =

⎛
⎜⎜⎝

yu11 ε4 yu12 ε2 yu13 ε4

yu21 ε7 yu22 ε yu23 ε

yu31 ε8 yu32 ε2 yu33

⎞
⎟⎟⎠ 〈φ〉,

Md =

⎛
⎜⎜⎝

yd11 ε6 yd12 ε5 yd13 ε5

yd21 ε3 yd22 ε2 yd23 ε2

yd31 ε2 yd32 ε yd33 ε

⎞
⎟⎟⎠ 〈φ̃〉,

(iii)Mu =

⎛
⎜⎜⎝

yu11 ε4 yu12 ε2 yu13 ε4

yu21 ε7 yu22 ε yu23 ε

yu31 ε8 yu32 ε2 yu33

⎞
⎟⎟⎠ 〈φ〉,

Md =

⎛
⎜⎜⎝

yd11 ε5 yd12 ε5 yd13 ε5

yd21 ε2 yd22 ε2 yd23 ε2

yd31 ε yd32 ε yd33 ε

⎞
⎟⎟⎠ 〈φ̃〉. (18)

While flavor dependent PQ charge of quarks brings about
these mass matrices, it can also cause flavor changing neu-
tral processes with the axion emission [51–53,73], which
are severely constrained through experiments. The strongest
constraint on fa due to such processes is known to come
from K± → π±a, whose experimental bound is given as
Br(K± → π±a) < 7.3 × 10−11 [85]. Since the axion a is
introduced in the effective theory through the replacement

S = 〈S〉ei a
fa , Eq. (9) gives the axion-quark interaction terms

inui jm
u
i j

a

fa
ūLi uR j + indi jm

d
i j

a

fa
d̄Li dR j + h.c., (19)

where m f
i j is given in Eq. (16). If we focus our attention to

the down-sector and use the quark mass eigenstates defined
above, the corresponding terms in Eq. (19) can be rewritten
as

i
〈φ〉
fa

[(
Ud†

)
αi
nui j y

d
i jε

nui j V d
jβ

−
(
V d†

)
αi
nui j y

∗d
ji ε

nui j Ud
iβ

]
a d̄αdβ

+i
〈φ〉
fa

[(
Ud†

)
αi
nui j y

d
i jε

nui j V d
jβ

+
(
V d†

)
αi
nui j y

∗d
ji ε

nui j Ud
iβ

]
a d̄αγ5dβ

≡ i Sαβ a d̄αdβ + i Aαβ a d̄αγ5dβ. (20)

If we apply Eqs. (8) and (17) to Eq. (20), the coupling con-
stants Sαβ and Aαβ are found to be expressed as

Sαβ = mα − mβ

2 fa
X+

αβ, Aαβ = mα + mβ

2 fa
X−

αβ,

where X±
αβ is defined by

X±
αβ =

(
V d†

)
αi

X (dRi )
(
V d

)
iβ

±
(
Ud†

)
αi

X (dLi )
(
Ud

)
iβ

. (21)

Since the decay width of K+ → π+a can be estimated by
using this X±

αβ as [51–53,86]

� = |X+
ds |2

128π

m3
K

f 2
a

(
1 − m2

π

m2
K

)3

, (22)

we obtain the strong constraint on fa by applying the exper-
imental bound to this formula as

fa > 2.4 × 1011 |X+
ds | GeV. (23)

Since the condition (6) should be satisfied, Eq. (23) requires
|X+

ds | < 1. The PQ charge of quarks is required not only to
reproduce the quark mass eigenvalues and the CKM mixing
but also to satisfy this constraint.

We examine these issues in the examples shown in Table 2.
Since these realize NDM = 1, the axion decay constant fa
satisfies fa = |〈S〉|. In order to study the features of the exam-
ples quantitatively, we need to fix a value of ε and coupling
constants y f

i j . Needless to say, the validity of the scenario is
determined through how good predictions can be derived for
less number of independent coupling constants y f

i j without
serious fine tuning. The results obtained in each example are
ordered for a typical parameter set. In this analysis, the CP
phase of y f

i j is not taken into account, for simplicity.
In the example (i), we assume ε = 0.08 and the coupling

constants y f
i j are fixed as

yu11 = yu23 = yu32 = yu33 = 1, yu13 = yu22 = yu31 = 0.1,

yu12 = yu21 = 0.7,

yd21 = yd22 = yd31 = yd32 = 1, yd11 = yd13 = yd23 = 0.1,

yd12 = 0.022, yd33 = 0.3,

where the number of independent parameters can be identi-
fied as six. For this parameter set, the quark mass eigenvalues
and the CKM matrix are obtained as

mu 
 2.6 MeV, mc 
 1.1 GeV, mt 
 174 GeV,

md 
 6.7 MeV, ms 
 92 MeV, mb 
 4.2 GeV,

VCKM 

⎛
⎝ 0.97 −0.23 −0.0052

0.23 0.97 −0.018
0.0092 0.017 1.0

⎞
⎠ .

In this case, Eq. (23) requires fa > 1.7 × 1011 GeV.
In the example (ii), ε = 0.07 is assumed and y f

i j are fixed
as

yu11 = yu13 = yu21 = yu31 = yu32 = yu33 = 1,

yu22 = yu23 = 0.1, yu12 = 0.32,

yd11 = yd21 = yd31 = 1, yd22 = 0.1, yd23 = −0.03,

yd32 = yd33 = 0.26. yd12 = yd13 = 60,
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where the number of independent parameters can be identi-
fied as seven. For this parameter set, we obtain

mu 
 4.0 MeV, mc 
 1.3 GeV, mt 
 174 GeV,

md 
 3.9 MeV, ms 
 93 MeV, mb 
 4.6 GeV,

VCKM 

⎛
⎝ 0.97 0.24 0.0042

−0.24 0.97 −0.0056
−0.0054 0.0043 1.0

⎞
⎠ .

Eq. (23) requires fa > 2.2 × 1011 GeV.
In the example (iii), we assume the same values for ε and

yui j as the ones in the example (ii), and the coupling constants

ydi j are taken as

yd11 = yd21 = yd31 = ε, yd22 = 0.1, yd23 = −0.03,

yd32 = yd33 = 0.26. yd12 = yd13 = 60.

Since Mu and Md take the same form as the ones of
the example (ii), both the quark mass eigenvalues and the
CKM matrix take the same values as the ones in the exam-
ple (ii). The number of independent parameters used here
can be identified as eight. The bound on fa is estimated as
fa > 1.3 × 1010 GeV, which is one order of magnitude
smaller than the previous two examples.

These examples show that the constraint on fa coming
from the flavor dependent PQ charge assignment is much
stronger than the astrophysical constraint as suggested in
[51–53]. However, it can be consistent with the cosmolog-
ical upper bound of fa even if the realization of realistic
values for the quark mass eigenvalues and the CKM mixing
is imposed. On the other hand, the consistency of this con-
straint with the upper bound of fa imposed by the goodness
of the PQ symmetry could depend largely on the PQ charge
assignment. In fact, although the consistency is complete in
the example (iii), the situation is marginal in the examples (i)
and (ii). In the example (iii), the scenario is found to work
well even if serious fine tuning of the coupling constants y f

i j
is not adopted. The obtained results seem to reproduce the
data listed in [40] rather well although the number of inde-
pendent parameters are smaller than the number of physical
observables in the quark sector.

3.2 Leptonic sector

In this model, the neutrino mass generation is forbidden at
a tree-level by U (1)PQ even after the breaking of U (1)g ×
U (1)FN , since η is assumed to have no VEV, However, since
both the right-handed neutrino masses and the mass differ-
ence between the neutral components of η are induced after
the breaking of U (1)PQ as found form Eqs. (10) and (12),
small neutrino masses are generated radiatively in the same
way as the original scotogenic model through a one-loop dia-
gram which is shown in Fig. 1. If we apply the PQ charge
given in Table 3 to Eq. (10), the Dirac mass matrix for charged

Fig. 1 The one-loop diagram for the neutrino mass generation, in
which ηR and ηI are a real and an imaginary part of the neutral com-
ponent of η, respectively

leptons which is defined by ēLMeeR and the Majorana mass
matrix MN for right-handed neutrinos NRi are expressed as

Me =

⎛
⎜⎜⎝
he11 ε5 he12 ε4 he13 ε4

he21 ε3 he22 ε2 he23 ε2

he31 ε3 he32 ε2 he33 ε2

⎞
⎟⎟⎠ 〈φ̃〉,

MN =
⎛
⎜⎝
hN

11 ε3 hN
12ε

2 hN
13 ε3

hN
12ε

2 hN
22 ε3 hN

23 ε2

hN
13 ε3 hN

23 ε2 hN
33ε

3

⎞
⎟⎠ M∗. (24)

In the mass matrixMN , we take into account that the allowed
operators start from nonrenormalizable ones.

This right-handed neutrino mass matrixMN suggests that
three mass eigenvalues tend to take the same order values.
If we assume the values of the Yukawa coupling constants
hN
i j appropriately, the eigenvalues of MN can be fixed, for

example, as6

M1 
 1.0 × 108 GeV, M2 
 4.2 × 108 GeV,

M3 
 1.9 × 109 GeV, (25)

where we assume M∗ = 1012 GeV. The neutrino mass gener-
ated through a one-loop diagram can be approximately writ-
ten as

(Mν)i j =
3∑

k=1

h̃ν
ik h̃

ν
jk�k, �k 
 λ̃5〈φ〉2

8π2Mk
ln

M2
k

M̄2
η

, (26)

where we use M2
ηR,I

� |M2
ηR

− M2
ηI

|, which is noted in the
previous part. Mk is a mass eigenvalue of the right-handed

neutrino and M̄2
η = m̃2

η+
(
λ̃3 + λ4

)
〈φ〉2. In this formula, h̃ν

i j

and λ̃5 are defined by using ε as h̃ν
i j = hν

i jε
|nν

i j | and λ̃5 = λ5ε.
Here, it may be useful to note that the present Mν has

the interesting flavor structure consistent with tri-bimaximal
mixing if MN is diagonal. In fact, if the effective neutrino
Yukawa coupling constants defined above satisfy the relation

6 In this choice, we refer to the previous work [54].
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h̃ν
1 j = 0, h̃ν

2 j = h̃ν
3 j ≡ h j ( j = 1, 2);

h̃ν
13 = h̃ν

23 = −h̃ν
33 ≡ h3, (27)

Mν is found to be diagonalized by a tri-bimaximal MNS
matrix [70,87]. The mass eigenvalues are derived as

mν1 = 0, mν2 = 3|h3|2�3,

mν3 = 2
[
|h1|4�2

1 + |h2|4�2
2

+2|h1|2|h2|2�1�2 cos 2(θ1 − θ2)
]1/2

, (28)

where θ j = arg(h j ). On the other hand, if we note that the
neutrino Yukawa interactions in Eq. (10) take the form

η0 (ν̄L1, ν̄L2, ν̄L3)

⎛
⎜⎜⎝
hν

11 ε4 hν
12 ε3 hν

13 ε2

hν
21 ε2 hν

22 ε hν
23

hν
31 ε2 hν

32 ε hν
33

⎞
⎟⎟⎠

⎛
⎝ NR1

NR2

NR3

⎞
⎠ ,

(29)

the above relation (27) among the effective coupling con-
stants h̃ν

i j is found to be realized just by assuming the same
relation for hν

i j without changing the suppression structure
due to ε. This means that the present PQ charge assignment
is consistent with the tri-bimaximal flavor structure approx-
imately. However, unfortunately, the present right-handed
neutrino mass matrix MN is not diagonal. Although this
flavor structure is lost after MN is diagonalized, this knowl-
edge can be useful to find suitable neutrino Yukawa couplings
hν
i j referring to the previous study in [71,72].

In order to see the resulting flavor structure in the leptonic
sector, we take ε = 0.07, m̃η = 1 TeV, and λ̃5 = 5.4 ×
10−3 which corresponds to λ5 
 0.08. The charged lepton
coupling constants hei j and the neutrino Yukawa coupling
constants hν

i j are fixed as

he11 = he21 = he31 = 1, he32 = he33 = 1.47,

he12 = 0.82, he22 = 0.17,

he13 = 0.4, he23 = 0.02,

hν
11 = hν

12 = 1, hν
13 = 0.6,

hν
21 = hν

31 = 6.5 × 10−3, hν
22 = 0.23,

hν
32 = 0.184, hν

23 = 0, hν
33 = 7.0 × 10−3. (30)

For this parameter set, we can obtain

mν1 
0 MeV, mν2 
8.5×10−3 eV, mν3 
5.2×10−2 eV,

me = 0.51 MeV, mμ = 106 MeV, mτ = 1.78 GeV,

VMNS 

⎛
⎝ 0.87 −0.46 −0.14

−0.29 0.74 0.60
0.38 −0.48 0.78

⎞
⎠ .

The squared mass differences required by the neutrino oscil-
lation data could be explained by these values. The MNS
matrix is shifted from the tri-bimaximal mixing and Ve3 takes
a favorable value. Although the Yukawa coupling constants

have to be tuned within the similar order, the required tuning
is not serious one. The suppression due to the PQ symmetry
can be considered to work rather well in the leptonic sector
also.

Here, we should comment on a reason why h̃ν
i1 is fixed at

the small values of O(10−4). It is not for the neutrino mass
generation but for the thermal leptogenesis [88]. As is known
generally and found also from the present neutrino mass for-
mula (28), the neutrino masses required by the neutrino oscil-
lation data could be derived by two right-handed neutrinos
only. It means that the mass and the neutrino Yukawa cou-
plings of a remaining right-handed neutrino could be free
from the neutrino oscillation data as long as its contribution
to the neutrino mass is negligible. As found from Eq. (28),
such a situation can be realized for |h1|2�1 � |h2|2�2 in the
present parameter setting. This is good for the thermal lepto-
genesis since an appropriately small neutrino Yukawa cou-
pling constant h̃ν

i1 makes both effective out-of-equilibrium
decay of NR1 and sufficient thermal production of the right-
handed neutrino NR1 possible.

3.3 Leptogenesis and DM abundance

In this part, we proceed to the study of other phenomenolog-
ical subjects such as leptogenesis and DM abundance. Our
main interest is what kind of results are obtained for these
problems if we use the parameters assumed in the previous
discussion. Since the present model is defined even at larger
scales than the PQ symmetry breaking scale, we can also
examine the consistency of the used value for ε with the
assumed symmetry breaking pattern in (3).

First, we discuss the leptogenesis in this model. If we
use the parameters assumed in the leptonic sector, we can
estimate baryon number asymmetry expected from the out-
of-equilibrium decay of the thermal N1 by solving the Boltz-
mann equation as done in [71,72]. The previous analysis in
the similar model [54,55] shows that the required baryon
number asymmetry could be generated for M1

>∼ 108 GeV.
Since this value of M1 is somewhat smaller than the
Davidson-Ibarra bound [89] in the ordinary thermal leptoge-
nesis [90], the reheating temperature could take a lower value
than the usually assumed one to yield the thermal NR1 . This is
crucial in the present model to forbid the thermal production
of the extra colored fields Q(i)

L ,R which cause dangerous relics
as discussed in the previous part. If we assume the reheat-
ing temperature as TR 
 M1, we find YB ∼ 5 × 10−10 for
the parameters given in (25) and (30), where YB is defined
as YB ≡ nB

s by using the baryon number density nB and
the entropy density s. In this calculation, we assume a max-
imal CP phase in the CP violation parameter ε1 for the
NR1 decay [90] and an initial condition YN1(TR) = 0 at
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Fig. 2 Left panel: example points in the (λ̃3, λ4) plane are plotted
by the crosses, at which the ηR relics can explain the DM abundance
�h2 = 0.12. m̃2

η = 1 TeV and λ̃5 = 5.4 × 10−3 are assumed. The

region above each line fixed by a listed value of λ̃2 satisfies the last

condition for the vacuum stability in (15). Right panel: a cut-off scale
� as a function of λ̃2, which is fixed as a value at MZ . Each line is
plotted for four points marked by the crosses in the left panel where
�h2 = 0.12 is satisfied

the reheating temperature TR .7 Upper bound of the number
density of the extra colored fermions Q(i)

L ,R might be esti-
mated at TR by assuming that they are in the thermal equilib-
rium. We find that the previously mentioned bound for

nQ(i)

nB
imposed by the search for the fractionally charged particles
could be satisfied for Q(3), which has the smallest mass of
O(ε2M∗) among the extra colored fermions. Thus, the lep-
togenesis could be evaded from the dangerous relic problem
consistently.

Next, we address the DM abundance in this model. As
mentioned before, the axion cannot be a dominant component
of the DM in this scenario since the upper bound of the decay
constant required by the goodness of the PQ symmetry is
too small. However, the model has another DM candidate,
that is, the lightest neutral component of η which is stable
because of Z2 odd parity. Its relic abundance is known to be
controlled by the parameters λ̃3 and λ4 in Eq. (12) since the
coannihilation among the components of η is effective in case
of m̃η = O(1) TeV [71,72]. In the left panel of Fig. 2, we plot
typical points in the (λ̃3, λ4) plane, where the required DM
abundance �DMh2 = 0.12 is realized by the relics of ηR . In
this calculation, we use m̃η = 1 TeV and λ̃5 = 5.4 × 10−3

which are assumed in the previous part. In this panel, we take
into account the condition λ4 < 0 which is necessary for a
neutral component of η is lighter than the charged ones. If
we use the tree level Higgs mass formula m2

h0 = 4λ̃1〈φ〉2,

we find λ̃1 
 0.13 for mh0 = 125 GeV. This allows us to plot
the last one in the stability condition (15) as a straight line
in the same plane for a fixed λ̃2. The points contained in the

7 We do not consider any additional NR1 production process other than
the one caused by the neutrino Yukawa couplings. This is different
from the analysis in [91]. As a result, we cannot make the mass of N1
smaller than 108 GeV for successful leptogenesis unless the degenerate
right-handed neutrino masses are assumed.

region above a straight line satisfy this condition for a fixed
λ̃2. Although the required DM abundance can be obtained for
negative values of λ̃3, such cases contradict with the condition
for λ̃3 given in Eq. (15). The figure shows that λ̃3 and/or
|λ4| should take rather large values to realize the required
DM abundance. Since they are used as the initial values at
the weak scale, RG evolution of the scalar quartic couplings
λ̃i could be largely affected. In that case, vacuum stability
and perturbativity of the model could give constraints on
the assumed symmetry breaking scale M∗, which should be
smaller than a violation scale of the vacuum stability and the
perturbativity. We focus our study on this point in the next
part.

3.4 Symmetry breaking pattern and a cut-off scale

We assume ε = 0.07 and M∗ = 1012 GeV in the previous
part, which means 〈S〉 = 7 × 1010 GeV. It is crucial for
the consistency of the scenario whether M∗ is smaller than a
scale where either the vacuum stability or the perturbativity
is violated.8 We examine this problem by using the values
of λ̃3 and λ4 for which the required DM abundance is real-
ized. Since the violation of the perturbativity is considered to
suggest a scale for the applicability of the model defined by
Eq. (11), it should be larger than M∗. This allows us to judge
whether the ε value assumed in the above phenomenologi-
cal study is consistent with the assumed symmetry breaking
pattern.

8 The constraint due to the vacuum stability and the perturbativity is
taken into account in the DM study of the inert doublet model from
a different viewpoint in [92–95]. The consistency between fermionic
DM and the vacuum stability is also studied in the scotogenic model
[96,97].
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One-loop β-functions for the scalar quartic coupling con-
stants in the effective model at energy regions below MS(≡
〈S〉) are given as follows [98,99],

βλ̃1
= 24λ̃2

1 + λ̃2
3 + (λ̃3 + λ4)

2 + λ̃2
5

+3

8

(
3g4 + g′4 + 2g2g′2)

−3λ̃1

(
3g2 + g′2 − 4h2

t

)
− 6h4

t ,

βλ̃2
= 24λ̃2

2 + λ̃2
3 + (λ̃3 + λ4)

2 + λ̃2
5

+3

8

(
3g4 + g′4 + 2g2g′2) − 3λ̃2

(
3g2 + g′2) ,

βλ̃3
= 2(λ̃1 + λ̃2)(6λ̃3 + 2λ4) + 4λ̃2

3 + 2λ2
4 + 2λ̃2

5

+3

4

(
3g4+g′4 − 2g2g′2) − 3λ̃3

(
3g2+g′2 − 2h2

t

)
,

βλ4 = 4(λ̃1 + λ̃2)λ4 + 8λ̃3λ4 + 4λ2
4 + 8λ̃2

5

+3g2g′2 − 3λ4

(
3g2 + g′2 − 2h2

t

)
,

βλ̃5
= 4(λ̃1 + λ̃2)λ̃5 + 8λ̃3λ̃5 + 12λ4λ̃5

−3λ̃5

(
3g2 + g′2 − 2h2

t

)
, (31)

where βλ is defined as βλ = 16π2μ dλ
dμ

and the top Yukawa
coupling is only taken into account among the Yukawa inter-
actions. In these equations, the positive contributions of λ̃3

and λ4 to the β-functions of λ̃1,2 are found to tend to save
the model from violating the first condition in Eq. (15). On
the other hand, the same contributions of λ̃3 and λ4 could
induce the violation of the perturbativity of the model at a
rather low energy scale since they give large positive con-
tributions to βλ̃1

, βλ̃2
and βλ̃3

. If we identify an applicable
scale of the model defined by Eq. (11) with a scale � where
any of the perturbativity conditions λi < 4π and κi < 4π

is violated, M∗ < � should be satisfied. If M∗ is larger than
�, the consistency of the scenario is lost.

We analyze this issue by solving the above one-loop RGEs
at μ < MS and also the ones which are given in [54] at μ >

MS . The quartic couplings λ̃i in the tree-level potential at the
energy scale μ < MS are connected with the ones λi at μ >

MS through Eq. (14). Since the masses of the right-handed
neutrinos NRi are considered to be of O(108−9) GeV, they
decouple at the scale μ < Mi

<∼ O(MS) to be irrelevant to the
RGEs there. On the other hand, the mass of the colored fields
Q(i)

L ,R are required to be much heavier than NRi as discussed
before, they can contribute mainly to the β-functions of the
SU (3)c gauge coupling at the scales larger than their masses.

The free parameters in the scalar potential of the low
energy effective model (12) are λ̃1, λ̃2, λ̃3, λ4 and λ̃5 at
MZ .9 λ̃1 is fixed at λ̃1 
 0.13 from the Higgs mass. Both
λ̃3 and λ4 are fixed at the values determined through the DM

9 Quartic couplings κi for S are fixed as κ1 = M2
S

4〈S〉2 and κ2,3 = 0.1 at
MS in this study. Larger values of κ2,3 make � smaller.

relic abundance which are shown in the left panel of Fig. 2.
λ̃5 is fixed at λ̃5 = 5.4×10−3 which is used in the discussion
of the neutrino mass and the leptogenesis. Thus, an only free
parameter is λ̃2. If we solve the RGEs varying the value of
λ̃2, we can search � checking the vacuum stability and the
perturbativity for each λ̃2.

In the right panel of Fig. 2, we plot � as a function of
λ̃2 for four sets of (λ̃3, λ4) which are shown by the crosses
in the left panel of Fig. 2. An end point found in a line for
(0.5,−0.875) represents a value of λ̃2 for which the vacuum
stability is violated before reaching a scale of the pertur-
bativity violation. This figure shows that � could be high
enough to be consistent with an assumed value of ε as long
as λ̃2 takes a suitable value. The present scenario for the
symmetry braking could be consistent with the explanation
presented here for various phenomenological subjects. The
simultaneous explanation of the neutrino masses and the DM
abundance could be preserved in this extended model in the
same way as in the original scotogenic model with the heavy
right-handed neutrinos.

4 Summary

We have proposed a model which could solve the strong
CP problem based on the PQ mechanism. The model is
constructed to escape the domain wall problem and to keep
the goodness of the PQ symmetry against the breaking due
to the gravity effect. For this purpose, we introduce a local
U (1)g symmetry and also a flavor dependent globalU (1)FN

symmetry. The PQ symmetry is induced from these as their
linear combination through their spontaneous breaking. The
resulting PQ symmetry becomes flavor dependent to real-
ize NDW = 1. Its flavor dependence causes the hierarchical
masses and the flavor mixing for quarks and leptons after
the PQ symmetry breaking. The observed masses and fla-
vor mixing seem to be obtained in this framework without
serious fine tuning for the coupling constants of the nonrenor-
malizable operators. Moreover, after the U (1)PQ symmetry
breaking, its subgroup Z2 remains as a remnant exact sym-
metry at least in the leptonic sector. So, the leptonic part of
the model is reduced to the well-known scotogenic model
for the neutrino masses and the DM, in which the neutrino
masses are generated through one-loop radiative effects and
the DM abundance can be explained as the thermal relics of
a neutral component of the extra doublet scalar.

The model can explain the cosmological baryon number
asymmetry through the out-of-equilibrium decay of a right-
handed neutrino in the same way as the ordinary thermal
leptogenesis in the tree-level seesaw model. However, since
the lower bound for the right-handed neutrino mass is relaxed
in this model, the required reheating temperature could be
low enough not to restore the PQ symmetry and also not to
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yield the heavy colored particles in a dangerous amount in
the thermal plasma. We also show that these features could
be consistently realized for suitable parameter sets. Although
we do not address inflation of the Universe in this study, it
might be introduced into the model in a similar way to the one
discussed in [100–104]. Since the simple extension discussed
here can relate the strong CP problem to the flavor structure
of quarks and leptons, and the origin of neutrino masses and
DM, it may be promising to consider an extended SM in this
direction further.
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