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Abstract

The existence of the inflationary era in the early Universe seems to be strongly supported

by recent CMB observations. However, only a few realistic inflation scenarios which have

close relation to particle physics seem to have been known unfortunately. The radiative

neutrino mass model with inert doublet dark matter is a promising model for the present

experimental issues which cannot be explained within the standard model. In order to

make the model include inflation, we extend it by a complex scalar field with a specific

potential. This scalar could be closely related to the neutrino mass generation at a TeV

scale as well as inflation. We show that the inflation favored by the CMB observations

could be realized even if inflaton takes sub-Planck values during inflation.
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1 Introduction

Recent discovery of a Higgs-like particle [1] suggests that the framework of the standard

model (SM) can describe Nature well up to the weak scale. On the other hand, we have

experimental results which cannot be explained within it, that is, the existence of small

neutrino masses [2, 3], the existence of dark matter [4], and baryon number asymmetry

in the Universe [5]. They require some extension of the SM.

As such an example, we have a model which is the simple extension of the SM with

a second doublet scalar (which has no vacuum expectation value and is called by several

names such as inert [6], scotogenic [7], or doumant [8]) and also three right-handed neu-

trinos. The model shows promising features in physics at TeV regions for the explanation

of both the neutrino oscillation data and the observed abundance of dark matter (DM).

In fact, if these new fields are assigned odd parity of an assumed Z2 symmetry, small

neutrino masses are generated at one-loop level and the lightest Z2 odd field can be stable

as a DM candidate [9]. The quantitative conditions required for their explanation in both

this model and several extended models have been clarified through various studies by

now [10, 11, 12, 13, 14]. They show that the simultaneous explanation of these is possible

without causing a strong tension with other phenomena like lepton flavor violating pro-

cesses if DM is identified with the lightest neutral component of the inert doublet scalar

[11, 14]. In such a case, moreover, the baryon number asymmetry in the Universe is also

successfully explained if the resonant leptogenesis could occur due to the mass degeneracy

among right-handed neutrinos which have masses of a TeV scale [15]. An interesting point

is that the required mass degeneracy could be rather mild compared with the ordinary

cases [14].

The CMB observations suggest that the exponential expansion of the Universe occurs

in the very early Universe. These results can constrain severely the allowed inflation

models now [16, 17]. For example, BICEP2 recently suggests that the tensor to scalar

perturbation ratio should be r ∼ 0.2 and the Hubble parameter during inflation should

take a value of O(1014) GeV. Although we know that a quadratic chaotic inflation model

could be such a candidate, the inflaton should take trans-Planckian values during inflation

in that model. Since higher order terms which are suppressed by the Planck mass are

generally expected to give larger contributions to the potential there, the flatness of

potential cannot be guaranteed without any symmetry.

2



On the other hand, we do not have a lot of examples of inflaton that plays any role in

particle physics. Inflaton is introduced just to bring about the inflation in many models.

As an exceptional example, one may suppose sneutrino inflation [18].a If we consider

the neutrino mass generation based on the seesaw mechanism in supersymmetric models,

right-handed sneutrinos are introduced inevitably. One of them could work as inflaton

causing the quadratic chaotic inflation. However, the model could be annoyed by the

above mentioned trans-Planckian problem.

In this paper, we propose an inflation scenario in the framework related to the radiative

seesaw model. Although several inflation scenarios have been considered in the radiative

seesaw model, they have still problems, for example, the above mentioned trans-Planckian

problem [13] or the unitarity problem caused by a large non-minimal coupling [21]. Our

scenario is based on an extension of the radiative seesaw model with a complex scalar,

whose component is identified with the inflaton. We show that sufficient e-foldings could

be realized even if the inflaton takes sub-Planckian values during inflation. In this scenario,

the scalar spectral index and the tensor-to-scalar ratio could have values in the region

favorable from the recent precise CMB observations. In particular, the tensor-to-scalar

ratio could take rather wide range values consistent with the CMB results depending on

the parameters in the inflaton potential. Moreover, this inflaton could play a crucial role

for the neutrino mass generation other than the inflation, which is similar to the sneutrino

inflation scenario.

The paper is organized as follows. In the next section we address our extended model

briefly. In particular, the role of a new singlet scalar in the neutrino mass generation is

explained. In section 3, we study the inflation in this model. Important quantities relevant

to the inflation such as e-foldings, slow-roll parameters and spectral index are estimated

numerically. Reheating temperature is also discussed. In section 4 we summarize the

paper.

aHiggs inflation [19] and axionic inflation [20] are also motivated by particle physics.
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2 An extended model

The original radiative seesaw model is defined by the following Z2 invariant terms [9]:

− LO = −hαiN̄iη
†ℓα − h∗

αiℓ̄αηNi +
Mi

2
N̄iN

c
i +

M∗
i

2
N̄ c

i Ni

+ m2
φφ

†φ+m2
ηη

†η + λ1(φ
†φ)2 + λ2(η

†η)2 + λ3(φ
†φ)(η†η) + λ4(η

†φ)(φ†η)

+
1

2

[

λ5(η
†φ)2 + λ∗

5(φ
†η)2

]

, (1)

where ℓi is a left-handed lepton doublet and η is an inert doublet scalar. Since η and right-

handed neutrinos Ni are assigned odd parity of Z2 symmetry and all the SM contents

including the ordinary Higgs doublet scalar φ are assigned even parity, neutrino Dirac

mass terms are forbidden at tree-level. Neutrino masses are generated through one-loop

diagram which has Ni and η in the internal lines as shown in the left diagram of Fig. 1.

As found from this figure, neutrino mass generation in this model is characterized by a

scalar quartic coupling λ5(η
†φ)2 between the ordinary doublet Higgs scalar φ and an inert

doublet scalar η. In this mass generation at TeV scales, the smallness of the coupling λ5

plays a crucial role to explain the smallness of neutrino masses. It is considered to be a

key feature of this scenario. To explain its smallness, we may consider a scenario that

this coupling is an effective coupling appearing at low energy regions after integrating out

a heavy complex singlet scalar S. Such a scenario could be realized by introducing a Z2

odd singlet complex scalar. Additional terms in the new Lagrangian are given as

−LS = m̃2
SS

†S +
1

2
m2

SS
2 +

1

2
m2

SS
†2 + κ1(S

†S)2 + κ2(S
†S)(φ†φ) + κ3(S

†S)(η†η)

− µSη†φ− µ∗S†φ†η, (2)

where these are most general terms which are Z2 invariant and renormalizable.b

If the new singlet S is much heavier than η and Ni, favorable features of the original

model could be kept in this extended version. Neutrino mass is generated through the

one-loop diagram shown in the right one of Fig. 1. In this diagram, ϕa represents the

component fields of S which are defined as S = 1√
2
(ϕ1 + iϕ2). Their masses are easily

found to be m̄2
1 = m̃2

S + m2
S and m̄2

2 = m̃2
S − m2

S. Since Z2 is considered as an exact

symmetry, m̃2
S > m2

S should be satisfied. The similar diagram is know to contribute

bIn this extension, λ5 = 0 is supposed in eq. (1). Since the β-function of λ5 is proportional to λ5 itself,

this assumption is justified after taking into account the radiative correction.
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Fig. 1 One-loop diagrams which contribute neutrino mass generation. Left one is the diagram in the

original model. The right diagram generates neutrino masses in the present model. The dimensionful

coupling µa is defined as µ1 = µ√
2
and µ2 = iµ√

2
by using µ in eq. (2).

to the neutrino mass generation in the supersymmetrized radiative seesaw model [12].

Neutrino mass induced through this diagram can be estimated as

(Mν)αβ =
3
∑

i=1

∑

a=1,2

hαihβiMiµ
2
a〈φ〉2

8π2
I(Mη,Mi, m̄a), (3)

where M2
η = m2

η + (λ3 + λ4)〈φ〉2 and µa is defined as µ1 =
µ√
2
and µ2 =

iµ√
2
, respectively.

The function I(ma, mb, mc) is defined as

I(ma, mb, mc) =
(m4

a −m2
bm

2
c) lnm2

a

(m2
b −m2

a)
2(m2

c −m2
a)

2
+

m2
b lnm2

b

(m2
c −m2

b)(m
2
a −m2

b)
2

+
m2

c lnm2
c

(m2
b −m2

c)(m
2
a −m2

c)
2
− 1

(m2
b −m2

a)(m
2
c −m2

a)
. (4)

If we assume that the conditions m̃S ≫ mS, mη,Mi are satisfied, this formula can be

approximated as

(Mν)αβ =

3
∑

i=1

hαihβi〈φ〉2
8π2

m2
Sµ

2

m̃4
S

Mi

M2
η −M2

i

[

M2
i

M2
η −M2

i

ln
M2

i

M2
η

+ 1

]

. (5)

It is equivalent to the neutrino mass formula in the original model if
m2

S
µ2

m̃4
S

is identified

with the coupling constant λ5 for the (η†φ)2 term.

This correspondence might be found in an effective theory obtained at energy regions

smaller than m̃S by integrating out S. In fact, if we use the equation of motion for S

which could be approximated as S ≃ µ∗φ†η/m̃2
S, the required terms are derived as

1

2

[

m2
Sµ

2

m̃4
S

(η†φ)2 +
m2

Sµ
∗2

m̃4
S

(φ†η)2
]

. (6)

The origin of small λ5 which is the key nature to explain the smallness of the neutrino

masses is now translated to the hierarchy problem between µ,mS and m̃S in this extension.
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If we leave the origin of this hierarchy to a complete theory at high energy regions, all the

neutrino masses, the DM abundance and the baryon number asymmetry could be also

explained in this extended model at TeV regions just as in the same way discussed in the

previous articles [14]. Following the results obtained in these studies, the value of
m2

S
µ2

m̃2
S

could be constrained by the simultaneous explanation of these.

3 Inflation due to the complex scalar S

3.1 e-foldings and the spectral index

If the singlet scalar S does not play any other role, this modification might not be so

interesting. However, we find that the introduction of S could add an interesting feature

to the radiative seesaw model as an inflation model.c As such simple scenarios for a real

singlet scalar S, one may consider m2
SS

2 type chaotic inflation [13] or S-inflation [22].

In the former example, the inflation could be related with the neutrino mass generation

like sneutrino inflaton model. However, the scenario requires trans-Planckian values for

S during inflation and it could induce the above mentioned problem.

In this section, we consider an inflation scenario which could work even for sub-

Planckian values of S, following the proposal in [23]. We show that it is possible as

long as the existence of specific nonrenormalizable terms is assumed in the potential for

S. As such potential, we suppose that the complex scalar S has Z2 invariant additional

potential terms such as

V = c1
(S†S)n

M2n−4
pl

[

1 + c2

{

(

S

Mpl

)2m

exp

(

i
S†S

Λ2

)

+

(

S†

Mpl

)2m

exp

(

−i
S†S

Λ2

)

}]

= c1
ϕ2n

2nM2n−4
pl

[

1 + 2c2

(

ϕ√
2Mpl

)2m

cos

(

ϕ2

2Λ2
+ 2mθ

)

]

, (7)

where both n and m are positive integers and Mpl is the reduced Planck mass. We use

the polar coordinate expression S = ϕ√
2
eiθ in the second equality of eq. (7). Although the

exponential part of this potential is crucial for the present scenario, we cannot describe its

origin concretely at the present stages. We only expect that it might be effectively induced

through the nonperturbative dynamics in the UV completion of the model. However, since

cHiggs inflation has been applied to the radiative seesaw model in [21].
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Fig. 2 The left panel shows the potential V defined by n = 3 and m = 1. Other parameters in V are

fixed as c1 = 1.65 × 10−6, c2 = 0.7 and Λ/Mpl = 0.04. In the right panel, the time evolution of the

field a in the ( ϕ1√
2Mpl

, ϕ2√
2Mpl

) plane for the potential V shown in the left panel. ϕ is related to ϕ1,2 by

ϕ2 = ϕ2
1 + ϕ2

2.

the model has interesting features for the inflation as shown below, we expect that the

potential form might give us some useful hints to find the UV completion and its dynamics.

In the left panel of Fig. 2, we show a typical shape of the potential as a function of ϕ

for a fixed θ. As easily found, the potential V has local minimums for a fixed θ under the

condition Λ ≪ ϕ ≪ Mpl at

ϕ2

2Λ2
+ 2mθ = (2j + 1)π + α ≃ (2j + 1)π, (8)

where j is an integer and α = tan−1
(

2Λ2

M2
pl

)

.

Now we assume that inflation proceeds along this local minimum. In that case, the

field a along this direction is considered to play a role of inflaton. It might be represented

as da2 = dϕ2 + ϕ2dθ2. Since ϕ is supposed to evolve as a function of θ following eq. (8),

we find that the field a should satisfy the relation such as

da =

[

ϕ2 +

(

dϕ

dθ

)2
]1/2

dθ =

[

1 + 4m2

(

Λ

ϕ

)4
]1/2

ϕdθ. (9)

This shows that the field a can be expressed as da ≃ ϕdθ as long as ϕ ≫ Λ is satisfied.

Thus, the field a associated to the almost flat direction can be treated as a canonically

normalized inflaton field orthogonal to ϕ. In order to estimate the mass of ϕ during the

period when the field evolve along the a direction, we expand the potential V given in

eq. (7) around its local minimum at a fixed θ. As this result, we find that the mass of ϕ
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satisfies

mϕ
>
∼

[ c1
2n−1

n(2n− 1)
]1/2

(

ϕ

Mpl

)n−2

ϕ. (10)

On the other hand, the Hubble parameter during this period could be roughly estimated

as

H =

(

V

3M2
pl

)1/2

≃
( c1
3 · 2n

)1/2
(

ϕ

Mpl

)n−1

ϕ. (11)

As long as we suppose a situation such as ϕ ≪ Mpl, we find that the mass of ϕ is much

larger than the Hubble parameter there. This shows that ϕ cannot contribute to the

inflation and then the single inflaton scenario due to the field a could be realized.

We can check that this actually occurs through numerical calculation. We solve the

field equations for the component fields ϕ1,2 of S = 1√
2
(ϕ1+ iϕ2) numerically. They evolve

following the field equations,

ϕ̈i + 3Hϕ̇i = − ∂V

∂ϕi

(i = 1, 2) (12)

where H2 = 1
3M2

pl

(
∑

i
1
2
ϕ̇2
i + V ). For example, the explicit expression for ∂V

∂ϕi
in the case of

n = 3 and m = 1 is given as

∂V

∂ϕ1
=

c1(ϕ
2
1 + ϕ2

2)
3

8M2
pl

[

6ϕ1

ϕ2
1 + ϕ2

2

+
c2ϕ1

M2
pl

{

6(ϕ2
1 − ϕ2

2)

ϕ2
1 + ϕ2

2

+ 2− 2
ϕ1ϕ2

Λ2

}

cos

(

ϕ2
1 + ϕ2

2

2Λ2

)

− c2
ϕ1

M2
pl

{

12ϕ1ϕ2

ϕ2
1 + ϕ2

2

+ 2
ϕ2

ϕ1
+

ϕ2
1 − ϕ2

2

Λ2

}

sin

(

ϕ2
1 + ϕ2

2

2Λ2

)

]

,

∂V

∂ϕ2
=

c1(ϕ
2
1 + ϕ2

2)
3

8M2
pl

[

6ϕ2

ϕ2
1 + ϕ2

2

+
c2ϕ2

M2
pl

{

6(ϕ2
1 − ϕ2

2)

ϕ2
1 + ϕ2

2

− 2− 2
ϕ1ϕ2

Λ2

}

cos

(

ϕ2
1 + ϕ2

2

2Λ2

)

− c2
ϕ2

M2
pl

{

12ϕ1ϕ2

ϕ2
1 + ϕ2

2

+ 2
ϕ1

ϕ2
+

ϕ2
1 − ϕ2

2

Λ2

}

sin

(

ϕ2
1 + ϕ2

2

2Λ2

)

]

. (13)

In the right panel of Fig. 2, we show an example for the evolution of the inflaton in the

( ϕ1√
2Mpl

, ϕ2√
2Mpl

) plane. In this calculation, we assume that ϕ1,2 initially stay at the local

minimum. The figure shows that the field a evolves aperiodic circle. Along this trajectory,

the value of a changes by an amount larger than the Lyth bound [24] during the small

change of ϕ in the sub-Planckian range. ¿From this figure, we find that the single inflaton

scenario could be realized in this model as long as the conditions mentioned above are

satisfied and the fields ϕ1,2 start to evolve from a local minimum.
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Next, in order to see the feature of the inflation induced by this field a, we calculate

the quantities which characterize inflation, that is, the e-foldings N , the spectral index

ns, the tensor-to-scalar ratio r and so on. The change of the inflaton a from some period

to the end of inflation can be expressed by using ϕ as

ae − a = −
∫ ϕe

ϕ

ϕ̃2

2mΛ2
dϕ̃ =

1

6mΛ2
(ϕ3 − ϕ3

e), (14)

where we use eq. (9) under the assumption ϕ ≫ Λ. A value of ϕ at the end of inflation

is expressed by ϕe. For the convenience, we may redefine the canonically normalized new

inflaton as

χ ≡ ae +
ϕ3
e

6mΛ2
− a =

ϕ3

6mΛ2
. (15)

This expression explicitly shows that Sub-Planckian values of ϕ could be enhanced by

ϕ2

6mΛ2 to result in trans-Planckian values of the inflaton χ. The e-foldings induced by the

inflaton change from χ to χe is estimated as

N = − 1

M2
pl

∫ χe

χ

dχ
V

V ′ ≡ N(χ)−N(χe),

N(χ) =
1

6m2n

(

Mpl

Λ

)4(
ϕ√
2Mpl

)6
[

1 +
6c2m

n(3 +m)

(

ϕ√
2Mpl

)2m

×F

(

1,
3

m
+ 1,

3

m
+ 2, 2c2

(

1 +
m

n

)

(

ϕ√
2Mpl

)2m
)]

, (16)

where V ′ = dV
dχ

and F is the hypergeometric function. χe is fixed as a value at the end

of inflation. In the expression of N(χ), it might be approximated by the first term since

the second term is negligibly small compared with it. However, it should be noted that

N(χ) ≫ N(χe) is not satisfied in this scenario.

Slow-roll parameters [25] are easily calculated by using eqs.(7) and (9). We find that

they are given by using the model parameters as

ε ≡
M2

pl

2

(

V ′

V

)2

= m2

(√
2Mpl

ϕ

)6
(

Λ

Mpl

)4







n− 2c2(m+ n)
(

ϕ√
2Mpl

)2m

1− 2c2

(

ϕ√
2Mpl

)2m







2

,

η ≡ M2
pl

(

V ′′

V

)

= m2

(√
2Mpl

ϕ

)6
(

Λ

Mpl

)4 n(2n− 3)− 2c2(m+ n)(2m+ 2n− 3)
(

ϕ√
2Mpl

)2m

1− 2c2

(

ϕ√
2Mpl

)2m .

(17)
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If c2 terms are neglected in these formulas, we find that these slow-roll parameters at the

period characterized by the inflaton value χ can be represented in the very simple forms

such as ε ≃ n
6(N+N(χe))

and η ≃ 2n−3
6(N+N(χe))

by using the e-foldings N given in eq. (16). We

note that the explicit m dependence in these quantities remains only in the expression of

the e-foldings N . The end of inflation could occur much before the time when ε = 1 is

realized. It is crucial to guarantee the field evolution along the local potential minimum

and the c2 term plays a key role there.

We clarify this feature through a simple observation. When the kinetic energy is equal

to the local potential barrier Vb which is given by the cos term of eq. (7), the inflaton could

go over the potential barrier to the global minimum. The condition could be expressed

as 1
2
χ̇2 ∼ V ′. If we use the slow-roll approximation 3Hχ̇ = −V ′ here, this condition can

be written as ε ∼ 3Vb

V
. Since V > Vb is supposed in the model, the end of inflation occurs

at the time when ε < 1 is satisfied. By solving this condition, we can estimate the value

of ϕe as

ϕe√
2Mpl

≃
(

m2n

6c2

)
1

2m+6
(

Λ

Mpl

)
2

m+3

, (18)

where we neglect the contribution from the c2 terms. In that case, N(χe) has a substantial

contribution to determine the e-foldings N . To confirm this behavior and estimate the

value of χe, we use the numerical solutions of the field equations (12) which contain the

effect of the c2 term. The numerical results given in the latter part show a good agreement

with the values of χe derived by using eq. (18). It supports our picture for the end of

inflation.

The spectrum of scalar perturbation predicted by the inflation is expressed as [25]

PR(k) = ∆2
R

(

k

k∗

)ns−1

, ∆2
R =

V

24π2M4
plε

∣

∣

∣

k∗
. (19)

The CMB observations give the normalization such that ∆2
R ≃ 2.43 × 10−9 at k∗ =

0.002 Mpc−1. This constrains the value of V/ε at the time when the scale characterized

by the wave number k∗ exits the horizon. On the other hand, the remaining e-foldings

N∗ of the inflation after the scale k∗ exits the horizon is dependent on the reheating

phenomena and others as [25]

N∗ ≃ 61.4− ln
k∗

a0H0
− ln

1016 GeV

V
1/4
k∗

+ ln
V

1/4
k∗

V
1/4
end

− 1

3
ln

V
1/4
end

ρ
1/4
reh

. (20)
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Taking account of this uncertainty, N∗ is usually considered to take a value in the range

50 - 60. Here we also use the values in this range and we represent a value of ϕ which

gives the e-foldings N∗ as ϕ∗. If we use these notations, the above normalization ∆2
R is

found to have a suitable value for

c1 = 9.5× 10−8 n

N∗

(√
2Mpl

ϕ∗

)2n

, (21)

as long as the c2 term in the potential is neglected.d As examples, if we suppose n = 3 and

N∗ = 60, c1 ≃ 3× 10−7 and 0.3 are required for ϕ∗√
2
= 0.5Mpl and 0.05Mpl, respectively.

The scalar spectrum index ns and the ratio of the tensor perturbation to the scalar

perturbation r can be represented by using the slow-roll parameters ε and η as follows

[25],

ns = 1− 6ε+ 2η, r = 16ε. (22)

If we use the formulas (17), we can estimate ns and r at k∗ in this model. In particular,

when c2 terms are negligibly small, these are summarized by using the e-foldings N in the

very simple forms such as

ns = 1− n+ 3

3(N∗ +N(χe))
, r =

8n

3(N∗ +N(χe))
. (23)

It is very interesting that both expressions of ns and r given in eq. (23) reduce to the

same forms which are obtained in the chaotic inflation with the quadratic potential in the

case n = 3 as suggested in [23]. They are known to be favored for reasonable N∗ values

such as N∗ = 50 - 60 by BICEP2 results. However, N(χe) ≃ 0 is not guaranteed in the

present model as mentioned before. As a result, the values of ns and r obtained only for

N∗ > 60 in the quadratic chaotic inflation model could be realized even for N∗ = 50 - 60.

This clarifies a typical feature of the inflation induced in the model. It is induced by the

c2 term in the potential. As commented above, the trajectory cannot follow the potential

minimum and the field suddenly rolls down towards the global minimum as long as the

c2 term is neglected. Thus, in order to estimate these parameters including the value of

N(χe), we need the analysis keeping the effect of c2 terms as an indispensable one.e

dOne might find that this condition could be easily satisfied even for a large value of c1 near O(1). In

fact, if we scale c1, c2 and Λ such as x2nc1, x
2mc2 and x−1Λ with x, the potential keeps its form for the

scaled x−1ϕ. Although the numerical detail in the field evolution has subtle behavior, the basic feature

is understood in this way as found in the solution given in Table 1.
eHere we confine our analysis to the case defined by n = 3 and m = 1, although other values of n

could give interesting results. Those detailed results will be presented elsewhere.
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c1 c2
Λ

Mpl

ϕ∗√
2Mpl

H∗ (GeV) N∗ ns r

A 1.66× 10−6 0.7 0.04 0.378 0.871× 1014 59.0 0.971 0.107

2.04× 10−6 0.7 0.04 0.371 0.921× 1014 54.2 0.968 0.119

2.42× 10−6 0.7 0.04 0.366 0.965× 1014 49.1 0.965 0.131

B 0.257 6.0 0.002 0.0512 0.945× 1014 60.4 0.969 0.124

0.305 6.0 0.002 0.0505 0.986× 1014 55.0 0.966 0.136

0.364 6.0 0.002 0.0498 1.03× 1014 50.0 0.962 0.149

Table. 1 Hubble parameter, spectral index and the tensor-to-scalar ratio for typical examples of four

parameters of the model defined by n = 3 and m = 1. These model parameters are fixed to realize the

observed value for the scalar perturbation amplitude ∆2
R.

In Table 1 we show typical examples which are calculated numerically for different

values for the model parameters c1, c2 and Λ. These examples suggest that sufficiently

large e-foldings such as N∗ = 50 - 60 could be realized as long as Λ ≪ ϕ∗ is satisfied

even for the sub-Planckian inflaton value ϕ∗ < Mpl.
f The Hubble parameter during the

inflation takes values around 1014 GeV as shown in this table. The predicted values of ns

and r are also listed in each case. In this calculation, we again use the solutions obtained

from the field equations (12).

In Fig. 3, we plot the predicted points in the (ns, r) plane for N∗ = 50 - 60 in the

cases A and B given in Table 1. Although the model parameters c2 and Λ are required

to take values in suitable regions to realize the observational data, the serious fine tuning

of parameters seems not to be necessary. As a reference, we plot the prediction of the φ2

chaotic inflation as a dotted line in the same figure. Two crosses on it show the predicted

points for N∗ = 50 and 60. The figure shows that this model could realize the (ns, r)

points in the wider ranges which cannot be reached for N∗ = 50 - 60 in the φ2 chaotic

inflation scenario. It should be noted that that such points are realized even for the values

of N∗ such as 50 - 60 by changing the model parameters suitably. We find that the points

of the case B somewhat shift from the line for the quadratic chaotic model. This can

fThe values of N∗ in Table 1 are obtained through the direct numerical integration of Hubble param-

eters. If we use the formula given in eq. (16), the similar value can be obtained within a few percent

difference from those. Both ns and r are found to be not sensitive for such differences.
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be easily understood. As found from eq. (17), the c2 term makes η somewhat smaller

than ε compared with the φ2 chaotic inflation model where ε = η is satisfied. Since this

effect becomes larger for the parameters in the case A than the ones in the case B, the

predicted points appear below the line for the φ2 chaotic inflation model. We find that

the model is expected to predict (ns, r) in the region on or below the line predicted by

the φ2 chaotic inflation model and also in the region where ns takes a larger value than

the one predicted by the φ2 chaotic inflation model for the fixed N∗ value. These features

show that the model could be an alternative interesting scenario to the simple φ2 chaotic

inflation model. If both values of ns and r could be constrained through the precise data

obtained from the future CMB observations, the model could be tested in the near future.

Finally, we should address the notorious η-problem in the model. Although we could

make higher order terms suppressed by the Planck scale in the potential ineffective, the

η problem still remains in the model. It may be formulated in two forms such that, (i)

why Λ
Mpl

in eq. (7) is smaller than O(1), and (ii) why m̃2
S, m

2
S and κ1ϕ

2 are small enough

in comparison with H2. As mentioned before, the first one is closely related to the UV

completion of the model, which fixes the exponential part of the potential. This could

be solved only if the UV completion is found and its dynamics is clarified. It is beyond

the present scope. The second one might be also determined in the UV completed model.

In the present model, however, the values of m̃2
S and m2

S are related to other low energy

physics, that is, the neutrino masses. This additional aspect might give a new physical

meaning to the η problem in this model. We might approach the problem based on this

view point.

3.2 Reheating after the end of inflation

The result shown in the previous part suggests that the model has favorable features as

an inflation scenario. In order for the model to be a realistic one, it is required that the

inflaton energy should be transferred to radiation energy to reheat the Universe after the

end of inflation. It could be expected to occur if the aperiodic circular motion of the

inflaton stops at a certain period and starts to behave as matter through the oscillation

around the global minimum of the potential. In fact, such a behavior can be found to

occur in the right panel of Fig. 2. Since the kinetic energy of the fields becomes larger

compared with the local potential barrier which gradually becomes smaller, the field
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Fig. 3 Predicted values of (ns, r) for several parameter sets (c2,
Λ

Mpl
) given in Table 1. A dotted line

represents the prediction by the quadratic chaotic inflation model and the crosses correspond to the points

for N∗ = 50 and 60. Horizontal solid lines and dotted lines represent the Bicep2 1σ constraints with and

without the foreground subtraction, respectively [17]. Contours given as Fig. 4 in Planck Collaboration

XXII [16] are used here. Since the running of the spectral index ns is negligible in the present model, the

blue contours should be compared with the predictions.

component ϕ is expected to leave the local minimum and go over the potential toward

the global minimum at a certain period.

As reheating processes during the ϕ1,2 oscillation, we have to consider both preheating

due to the parametric resonance [26] through quartic interactions of S with φ and η and

also the perturbative decay due to an interaction term µSη†φ given in eq. (2). Just after

the end of inflation, the fields ϕ1,2 start the oscillation around the global minimum with

very large amplitude. Since the fields coupled with them have large effective masses and

then it seems difficult for ϕ1,2 to produce these particles. However, the particle production

due to the parametric resonance is known to occur effectively even in such a situation.

In this model the parametric resonance due to the scalar quartic couplings might realize

rather high reheating temperature.

On the other hand, only preheating cannot transfer the inflaton energy to the radiation

completely [26, 27]. The decay of ϕ1,2 induced through three scalars interaction such as
µ√
2
ϕ1η

†φ and iµ√
2
ϕ2η

†φ can complete the energy transfer in this model. The decay width

for these processes is estimated as Γϕi
= 1

8π
|µ|2
m̄i

where m̄2
1 = m̃2

S +m2
S and m̄2

2 = m̃2
S −m2

S .

Since m̃S ≫ mS is assumed to be satisfied here, the reheating temperature realized
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through these processes could be estimated as [27]

TR ≃ 0.35 g−1/4
∗ |µ|

√

Mpl

m̃S
, (24)

where we use g∗ = 116 as the relativistic degrees of freedom in this model. Since both µ

and m̃S are relevant to the neutrino mass generation as shown in the previous part, we

should take account of the constraint from it. The present inflation scenario also requires

that eq. (7) is the dominant potential of S at the inflation era. This brings about the

additional constraints on m̃S as

m̃S ≪ √
c1

(

ϕ∗
Mpl

)n−2

ϕ∗ ≃ 3.1× 10−4

(

n

N∗

)1/2(
Mpl

ϕ∗

)2

ϕ∗, (25)

where eq. (21) is used. If we apply N∗ = 60 and ϕ∗ ≃ 0.5Mpl which are the typical

values for the case n = 3 in the previous part, the bound for m̃S can be obtained as

m̃S ≪ 3.4× 1014 GeV. Taking account of this constraint, we may estimate the reheating

temperature through this process as

TR ≃ 1.6× 108
( |λ5|
10−6

)1/2(
m̃S

mS

)(

m̃S

106 GeV

)1/2

GeV. (26)

Here we also note that |λ5| should be smaller than O(10−6) from the present bound of DM

direct search since the lightest neutral component of η is DM and its mass is ∼ 1 TeV

[14]. We find that the reheating temperature could be in a rather wide range such as

105GeV <
∼ TR

<
∼ 1015 GeV depending on a value of m̃S. This temperature is high enough

to produce thermal right-handed neutrinos in the present model since the masses of right-

handed neutrinos are assumed to be of O(1) TeV. If the right-handed neutrino masses are

sufficiently degenerate, the baryon number asymmetry could be generated through the

resonant leptogenesis as discussed in [14]. Right-handed neutrinos need not to be light

but they could have large mass such as O(109) GeV in a consistent way with this neutrino

mass model [14]. Even in that case, eq. (26) shows that sufficient reheating temperature

could be induced for leptogenesis to work well without the resonant effect. Anyway, the

model could cause sufficient reheating temperature for the generation of baryon number

asymmetry independently from the details of preheating in the model.
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4 Summary

In this paper we have considered an extension of the radiative seesaw model with a

complex singlet scalar to realize the inflation of the Universe keeping favorable features of

the original model, that is, the simultaneous explanation of the small neutrino masses, the

DM abundance and the baryon number asymmetry in the Universe. This singlet scalar

plays a crucial role not only in the exponential expansion of the Universe as an inflaton

but also in the small neutrino mass generation. In this scenario inflaton trajectory follows

an aperiodic circle during the inflation. This feature makes it possible that sub-Planckian

values of the relevant field induce trans-Planckian changes of the inflaton value which is

needed for the sufficient e-foldings. The model could be free from the serious problem

caused by trans-Planckian field values. However, the η problem still remains. The UV

completion of the model is expected to give a solution for it.

We have also shown that the model has other interesting aspects as the inflation model.

As a limiting situation, it gives the same formulas for the spectral index ns and the tensor-

to-scalar ratio r as ones of the m2ϕ2 type chaotic inflation, in which r could take a large

value. In more general cases, we have estimated them by solving numerically the field

equations for the component fields of the singlet scalar. The tensor-to-scalar ratio could

take large values in these cases also. Both the spectral index ns and the tensor-to-scalar

ratio r could have values which are favorable from the recent CMB observations. If the

precise data from the CMB observations are given in the near future, we could restrict the

model parameters much more. Since the roughly estimated reheating temperature tells

us that it could be high enough for leptogenesis, the model seems to explain consistently

the crucial problems in the SM including the baryon number asymmetry. Although we

cannot mention the origin of the specific potential at this stage, the features shown by

the model seem to be interesting. The model may deserve further study.
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