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Recent neutrino oscillation experiments suggest that the Pontecorvo-Maki-Nakagawa-Sakata matrix in
the lepton sector has a CP violating phase like the Cabibbo-Kobayashi-Maskawa matrix in the quark sector.
However, the origins of these phases in both matrices are not clarified by now. Although complex Yukawa
couplings could induce these phases, the phases remain as free parameters of the model even in that case. If
the CP symmetry is considered to be spontaneously broken, they are expected to be determined by some
physics at a much lower energy scale than the Planck scale. We study such a possibility in a framework of
Pati-Salam-type unification. We also discuss other phenomenological issues in it.
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I. INTRODUCTION

A CP violation in a quark sector has been confirmed to be
explained by a Cabibbo-Kobayashi-Maskawa (CKM) phase
through experiments of the B meson system. However, its
origin is still not known now. Although the CKM phase can
be derived from complex Yukawa couplings of quarks [1],
the CP symmetry is considered to be explicitly broken in
such a case, and then the CKM phase remains as a free
parameter of the model. Even if its origin could be explained
in some physics at the Planck scale, it seems to be difficult to
confirm it through experiments. As another problem related
to the CP violation, we have a strong CP problem [2]. The
experimental bound of the electric dipole moment of a
neutron suggests that θ̄ ≲ 10−10 should be satisfied [3],
where θ̄ is defined as θ̄≡ θQCD þ argðdetMuMdÞ for up-
and down-type quark mass matrices Mu and Md. Since a
QCD parameter θQCD and the second term caused from the
quark masses are irrelevant to each other, the required
smallness of θ̄ seems to be unnatural, which is called the
strong CP problem in the standard model (SM).
One of the solutions for this problem is known to be

presented by the Peccei-Qiunn (PQ) mechanism [4]. Since
its validity could be examined through the existence of a
light pseudoscalar called axion [5–7], an axion search is
now performed in various experiments [8]. As another
solution for the strong CP problem, the Nelson-Barr (NB)
model is known [9]. In this scenario, the CP symmetry is
assumed to be an exact symmetry and then θQCD ¼ 0 is

satisfied. If quark mass matrices take a special form based
on some symmetry to satisfy argðdetMuMdÞ ¼ 0, θ̄ ¼ 0
could be realized at least at a tree level even after the
spontaneous CP violation. On the other hand, this sponta-
neous CP violation could give a CP phase in the CKM
matrix. In this point, the scenario is interesting since it
could explain an origin of the CP violation at a much lower
energy scale than the Planck scale. Moreover, if a CP
breaking sector couples also with leptons, aCP phase in the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [10],
whose existence is suggested through the long baseline
neutrino oscillation experiments such as NOvA and T2K,
might be explained by the same source as the quark sector.
A minimal simple example of the NB-type model has

been proposed by Bento, Branco and Parada (BBP) [11]. In
this model, extra heavy vectorlike down-type quarks are
introduced, and a Z2 symmetry is imposed on the model
which controls the down-type quark mass matrix so as not
to bring about a contribution to θ̄ through argðdetMuMdÞ
after the spontaneous CP violation. If we impose a global
Uð1Þ symmetry instead of the Z2 symmetry and assign its
charge to these extra heavy quarks, it is easy to find that the
required form of the mass matrix could be realized in the
same way. In such a case, interestingly enough, the model
has a similar structure to an invisible axion model by Kim-
Shifman-Vainstein-Zakharov [6], which solves the strong
CP problem through the PQ mechanism. If the introduced
global Uð1Þ works as the PQ symmetry, the contribution to
θ̄ through radiative corrections to argðdetMuMdÞ could be
erased out. In that case, one of the problems in the NB
model which is pointed out in [12] could disappear. In this
paper, we study this scenario in a Pati-Salam-type unified
model, in which the CP phases in the CKM matrix and the
PMNS matrix could be related.
The remaining part of the paper is organized as follows.

In Sec. II, we introduce our model and discuss a possible
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origin of CP phases in both the CKM and PMNS matrices.
The generation of small neutrino masses is also addressed.
We additionally examine a possible spontaneous CP
violation in the model. In Sec. III, we discuss several
phenomenological issues in the model. Section IV is
devoted to the summary of the paper.

II. ORIGIN OF CP VIOLATION

A. A Pati-Salam-type unified model

We consider a unification model of quarks and leptons
via Pati and Salam [13]. The gauge symmetry is taken to be
SUð4Þ × SUð2Þ ×Uð1ÞX, in which the forth color is
identified with a lepton. Fermion contents and their
representations under this gauge group are assumed to be

fLi
ð4; 2; 0Þ; hRi

ð4; 1; 1=2Þ; kRi
ð4; 1;−1=2Þ; ð1Þ

where i is the generation index (i ¼ 1, 2, 3). As they are
easily found, these contain all ordinary quarks and leptons.
We also introduce additional vectorlike colored fermions
FL;Rð4; 1;−1=2Þ, and n triplet fermions ΣRα

ð1; 3; 0Þ where
α ¼ 1 − n, and they are defined as

ΣRα
≡X3

a¼1

τa

2
Σa
Rα

¼ 1

2

 
Σ0
Rα

ffiffiffi
2

p
Σþ
Rαffiffiffi

2
p

Σ−
Rα

−Σ0
Rα

!
: ð2Þ

On the other hand, scalar contents and their representations
are taken to be

Φð4; 1; 1=2Þ; Ψð4; 1; 1=2Þ; ϕð1; 2;−1=2Þ; ηð1; 2;−1=2Þ;
σð1; 1; 0Þ; Sð1; 1; 0Þ; sð1; 1; 0Þ: ð3Þ

In addition to this structure, we impose a global Uð1Þ × Z8 symmetry. Its charge is assigned to these fields as follows:

fLi
; hRi

; kRi
⇒ ð0; 1Þ; FL;⇒ ð0; 7Þ; FR ⇒ ð2; 1Þ; ΣRα

⇒ ð1; 1Þ; S ⇒ ð0; 6Þ;
σ ⇒ ð2; 2Þ; η ⇒ ð−1; 1Þ; Φ ⇒ ð0; 4Þ; Ψ;ϕ ⇒ ð0; 0Þ; s ⇒ ð0; 1Þ: ð4Þ

We also assume that CP is an exact symmetry of the model. Although ΣRα
and ηmight be considered needless in the model

for the explanation of features shown through several experiments which cannot be explained in the SM framework,1 we
start our discussion in these field contents.
If we adopt these field contents, Yukawa couplings invariant under the imposed symmetry are written as

−Ly ¼ yhijf̄Li
ϕhRj

þ ykijf̄Li
ϕ̃kRj

þ yiSF̄LkRi
þ xσ�F̄LFR þ γΣα

σ�Σ̄c
Rα
ΣRα

þ H:c:; ð5Þ

where ϕ̃ ¼ iτ2ϕ�. On the other hand, scalar potential is expressed as

V ¼ m̃2
SðS†SÞ þ m̃2

σðσ†σÞ þ m̃2
sðs†sÞ þ κSðS†SÞ2 þ κσðσ†σÞ2 þ κsðs†sÞ2 þ κSσðS†SÞðσ†σÞ þ κsσðs†sÞðσ†σÞ

þ κSsðS†SÞðs†sÞ þ κσϕðσ†σÞðϕ†ϕÞ þ κSϕðS†SÞðϕ†ϕÞ þ κsϕðs†sÞðϕ†ϕÞ þ κσηðσ†σÞðη†ηÞ þ κSηðS†SÞðη†ηÞ
þ κsηðs†sÞðη†ηÞ þ m̃2

ϕðϕ†ϕÞ þ m̃2
ηðη†ηÞ þ λ1ðϕ†ϕÞ2 þ λ2ðη†ηÞ2 þ λ3ðϕ†ϕÞðη†ηÞ þ λ4ðϕ†ηÞðη†ϕÞ

þm2
ΦðΦ†ΦÞ þm2

ΨðΨ†ΨÞ þ ζ1ðΦ†ΦÞ2 þ ζ2ðΨ†ΨÞ2 þ ζ3ðΦ†ΦÞðΨ†ΨÞ þ ζ4ðΦ†ΨÞðΨ†ΦÞ
þ ðζσσ†σ þ ζSS†Sþ ζss†sþ ζϕϕ

†ϕþ ζηη
†ηÞðΦ†ΦþΨ†ΨÞ þ VbðS; S†; σ†σ; s†s;Φ†Ψ;Ψ†Φ;ϕ†ϕ; η†ηÞ; ð6Þ

where Vb contains potential terms which are invariant under the symmetry mentioned above, but it violates the S number
conservation. Since CP is assumed to be exact, all coupling constants are real. If Φ and Ψ get vacuum expectation values
(VEVs) such as hΦi ¼ hΨi ¼ ð0; 0; 0;ΛÞT for example,2 the gauge symmetry is broken to the one of the SM:

SUð4Þ × SUð2Þ ×Uð1ÞX ⟶
hΦi;hΨi

SUð3ÞC × SUð2ÞL ×Uð1ÞY: ð7Þ

1If the axion is identified with the dark matter, they might be needless. However, we would like to consider much wider possibilities
because of reasons which are addressed later.

2hΦi ¼ hΨi is assumed just for simplicity.
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Theweak hyperchargeUð1ÞY , whose charge is normalized as
QEM ¼ τ3

2
þ Y, is obtained as a linear combination of a

diagonal generator T15 of SUð4Þ and a charge X ofUð1ÞX as

Y ¼ 2ffiffiffi
6

p T15 þ X; ð8Þ

where T15¼ 1

2
ffiffi
6

p diagð1;1;1;−3Þ. We note that the imposed

globalUð1Þ symmetry remains unbroken but Z8 is broken to
Z4 at this stage. All fermions remainmassless since they have
no Yukawa couplings only with Φ and Ψ.
After this symmetry breaking, each fermion is decom-

posed to the contents of the SM, such as

fLi
¼ðqLi

;lLi
Þ; hRi

¼ðuRi
;NRi

Þ; kRi
¼ðdRi

;eRi
Þ; ð9Þ

where qLi
and lLi

are SUð2ÞL doublet quarks and leptons;
and uRi

, dRi
, and eRi

are singlet quarks and charged leptons,
respectively. The vectorlike fermions FL;R are decomposed
as (DL;R, EL;R). If we use these decomposed fermions,
Yukawa couplings in Eq. (5) are expressed as3

−Ly ¼ yuijq̄Li
ϕuRj

þ ydijq̄Li
ϕ̃dRj

þ ðyDi Sþ ỹDi S
�ÞD̄LdRi

þ xDσ�D̄LDR þ yνijl̄Li
ϕNRj

þ yeijl̄Li
ϕ̃eRj

þ ðyEi Sþ ỹEi S
�ÞĒLeRi

þ xEσ�ĒLER

þ γΣα
σ�Σ̄c

Rα
ΣRα

þ H:c:; ð10Þ

where the Yukawa coupling constants are expected to
satisfy the conditions

yhij ¼ yuij ¼ yνij; ykij ¼ ydij ¼ yeij; yi ¼ yDi ¼ yEi ;

ỹi ¼ ỹDi ¼ ỹEi ; x ¼ xD ¼ xE; ð11Þ

at a unification scale Λ. After the spontaneous breaking
of SUð4Þ via hΦi and hΨi, new Yukawa couplings are
expected to be induced effectively as invariant ones under
the remaining symmetry,4

−L0
y ¼

�
yNi Sþ ỹNi S

� þ ai
s2

Λ
þ ãi

s�2

Λ

�
N̄c

Ri
NRi

þ h̃iα
s�

Λ
l̄Li

ΣRα
ηþ

�
bi
s2

Λ
þ bi

s�2

Λ

�
D̄LdRi

þ
�
ci
s2

Λ
þ ci

s�2

Λ

�
ĒLeRi

þ H:c:; ð12Þ

where we list the terms up to dimension five. The couplings
yNi and ỹNi are assumed to be diagonal. We also note that
there is a nonrenormalizable dimension five operator
λ̃5

σ
Λ ðϕ†ηÞ2 as an invariant one. It plays a crucial role in

the small neutrino mass generation, as seen later.
In this effective model, we consider symmetry breaking

due to VEVs of the singlet scalars σ, S, and s, such as5

hσi ¼ weiχ ; hSi ¼ ueiρ; hsi ¼ veiψ : ð13Þ

They could also break the CP symmetry spontaneously.
Although we will discuss whether this spontaneous CP
violation could be realistic or not in the present model later,
we assume it for a while. Here we note that for D̄LdRi

,
ĒLeRi

, and N̄cNRi
, in Eqs. (10) and (12) there are con-

tributions from the dimension four and five operators. We
can expect that the former ones give the dominant con-
tribution as long as v≲ u is satisfied at least. We suppose
such a situation and take account of these contributions
only in the following study.
After this symmetry breaking, the potential for the

remaining scalars ϕ and η can be written as

V ¼ m2
ϕðϕ†ϕÞ þm2

ηðη†ηÞ þ λ1ðϕ†
1ϕÞ2 þ λ2ðη†ηÞ2

þ λ3ðϕ†ϕÞðη†ηÞ þ λ4ðϕ†ηÞðη†ϕÞ þ λ5
2
½ðϕ†ηÞ2 þ H:c:�;

ð14Þ

where λ5 is defined as λ5 ¼ λ̃5
w
Λ and it is real.6 The scalar

masses are shifted through the symmetry breaking effect as

m2
ϕ ¼ m̃2

ϕ þ κσϕw2 þ κSϕu2 þ κsϕv2 þ 2ζϕΛ2;

m2
η ¼ m̃2

η þ κσηw2 þ κSηu2 þ κsηv2 þ 2ζηΛ2: ð15Þ

Since mϕ and mη are supposed to take much smaller values
than Λ, serious fine tunings are required. However, we do
not treat this hierarchy problem in the present study and
just assume that both mϕ and mη are of Oð1Þ TeV. The
coupling constants λi are also related to the ones at high
energy regions through threshold corrections at each
symmetry breaking scale [14].
An interesting feature of the present model is that the

spontaneous CP violation through Eq. (13) could derive
both CP phases in the CKM matrix and the PMNS matrix,
keeping θ̄ ¼ 0. In the next part, we discuss how the CP
phases in both CKM and PMNS matrices are induced.3We note that a nonrenormalizable operator such as

S�ðΨF̄LÞðΦ†kRi
Þ, which is invariant under the imposed sym-

metry, induces the Yukawa terms S�D̄LdRi
and S�ĒLeRi

.
4It should be noted that the Yukawa term S�N̄c

Ri
NRi

can be
induced by a nonrenormalizable operator S�ðΦ†hRi

ÞðΨhRi
Þ

invariant under the imposed symmetry, for example.

5The global symmetry Uð1Þ is broken to Z2 by these VEVs.
The Z2 guarantees the stability of DM as discussed later.

6The CP phase χ can be removed by the field redefinition of η.
It changes hiα in Eq. (12) to hiαe−i

χ
2.

PATI-SALAM UNIFICATION WITH A SPONTANEOUS … PHYS. REV. D 100, 055019 (2019)

055019-3



B. A CP phase in the CKM matrix

The CP symmetry is assumed to be exact in the model
and then all the coupling constants in the Lagrangian are
real. Thus, we cannot expect any origin of CP violation in
the up-type quark sector, which has no extended structure
compared with the SM. Since the up-sector mass matrix
mu

ij ¼ yuijhϕi is real, they can be diagonalized by orthogo-
nal transformations u0L ¼ OLuL and u0R ¼ ORuR. In the
present effective model, on the other hand, we find that the
down-type quark sector has the same structure as the BBP
model [11]. The BBP model is an extension of the SM by
extra colored vectorlike down-type heavy quarks (DL, DR)
and a singlet complex scalar S. We can apply their
discussion to the present model to show how the CP phase
could be induced in the CKM matrix. Although the Z2

symmetry is imposed to control the mass matrix in their
model, the global Uð1Þ symmetry in Eq. (4) could play the
same role as it in the present model. Moreover, since this
Uð1Þ is chiral and has a color anomaly, it can play a role as
the PQ symmetry, which has a domain wall number one as
in the Kim-Shifman-Vainstein-Zakharov model [6]. As a
result, a Nambu-Goldstone boson produced as a result of its
spontaneous breaking through the VEV hσi could work as
an axion to solve the strong CP problem without inducing
the domain wall problem [15]. On the other hand, since the
axion phenomenology constrains a breaking scale of this
symmetry, we have to fix the scale w to be [16]

109 GeV < w < 1012 GeV: ð16Þ

The Yukawa couplings of the down-type quarks shown
in Eq. (10) derive a 4 × 4 mass matrix Md as

ðd̄Li; D̄LÞ
�md

ij 0

F d
j μD

��
dRj

DR

�
; ð17Þ

where md
ij ¼ ydijhϕ̃i, F d

j ¼ ðyDj ueiρ þ ỹDj ue
−iρÞ, and μD ¼

xDweiχ . Due to the PQ mechanism, θ̄ ¼ θQCD þ
argðdetMuMdÞ ¼ 0 is satisfied via the axion even after
we take account of radiative corrections including the
phases caused by the spontaneous CP violation. Next
we see that this phase can generate the CKM phase
following the BBP model.
We consider the diagonalization of a matrixMdM

†
d by a

unitary matrix such as

�
A B

C D

��
mdmd† mdF d†

F dmd† μDμ
†
D þ F dF d†

��
A† C†

B† D†

�

¼
�
m2 0

0 M2

�
; ð18Þ

where a 3 × 3matrixm2 is diagonal in which the generation
indices are abbreviated. Equation (18) requires

mdmd† ¼ A†m2Aþ C†M2C;

F dmd† ¼ B†m2AþD†M2C;

μDμ
†
D þ F dF d† ¼ B†m2BþD†M2D: ð19Þ

If μDμ
†
D þ F dF d† is much larger than each component of

F dmd†, which means u; w ≫ hϕ̃i, we find that B, C, and D
can be approximated as

B ≃ −
AmdF d†

μDμ
†
D þ F dF d† ; C ≃

F dmd†

μDμ
†
D þ F dF d† ; D ≃ 1;

ð20Þ

which guarantee the approximate unitarity of the matrix A.
In such a case, it is also easy to find that

A−1m2A ¼ mdmd† −
1

μDμ
†
D þ F dF d† ðmdF d†ÞðF dmd†Þ:

ð21Þ

The right-hand side is an effective mass matrix of the
ordinary down-type quarks which are derived through
mixing with the extra heavy quarks. Since the second term
can have complex phases in off-diagonal components as
long as yDi ≠ ỹDi is satisfied, the matrix A could be complex.
Moreover, if μDμ

†
D < F dF d† is satisfied, the complex

phase in A could have a substantial magnitude since the
second term is comparable with the first term. Since the
CKM matrix is determined as VCKM ¼ OLTA, the CP
phase of VCKM is caused by the phase of A. Here, we have
to note that whether such phases could be physical or not is
dependent on the flavor structure of Yukawa couplings yd,
yD, and ỹD. It should also be noted that the matrix A needs
to take an almost diagonal form as long as there is no
correlation between A and OL since VCKM has a nearly
diagonal form. It may be instructive to show how the
physical phase could be induced through this mechanism
using a concrete example. We give such an example in the
Appendix.

C. Neutrino masses and the PMNS matrix

In the lepton sector, we can treat the charged lepton
sector in the same way as the down-type quark sector. In
fact, the Yukawa couplings in Eq. (10) induce the charged
lepton mass matrix as follows,

ðēLi; ĒLÞ
�me

ij 0

F e
j μE

��
eRj

ER

�
; ð22Þ

where me
ij ¼ yeijhϕ̃i, F e

j ¼ ðyEj ueiρ þ ỹEj ue
−iρÞ, and μE ¼

xEweiχ . Since the mass matrix takes the same form as the
one of the down-type quarks (18), the diagonalization
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matrix Ã for the above charged lepton mass matrix could be
complex, and it should satisfy the relation

Ã−1m̃2Ã ¼ meme† −
1

μEμ
†
E þ F eF e† ðmeF e†ÞðF eme†Þ;

ð23Þ

where m̃2 corresponds to the diagonalized mass matrix m2

in Eq. (18). As long as μEμ
†
E < F eF e† is satisfied, non-

negligible CP phases could be expected in Ã in the same
way as the down-type quark sector.
On the other hand, small neutrino masses are expected to

be produced not only by the type I seesaw [17] but also
by the scotogenic type III seesaw [18] in this model. In fact,
the lepton sector of the model has the structure in which
the scotogenic type III seesaw mechanism could work, as
found from the terms contained in Eqs. (10) and (12).
Diagrams which contribute to the neutrino mass generation
are shown in Fig. 1.

1. Neutrino masses due to the type I seesaw

The singlet fermions NRi
get Majorana mass via the

VEV hSi. On the other hand, they have Yukawa couplings
with the doublet leptons and the ordinary Higgs doublet
scalar ϕ. Thus, the ordinary type I seesaw makes neutrinos
νLi

massive through the diagram shown in the left of Fig. 1.
The neutrino mass matrix caused by this can be written as

ðν̄cL; N̄c
RÞ
�

0 yνhϕi
yνThϕi yNueiρ þ ỹNue−iρ

��
νL

NR

�
: ð24Þ

Since u ≫ hϕi is supposed in this model, the contribution
to neutrino masses from this diagram is estimated as

MðaÞ
ij ¼

X3
k¼1

yνiky
ν
jk

hϕi2
yNk ue

iρ þ ỹNk ue
−iρ : ð25Þ

The neutrino Yukawa couplings yνik satisfy the same
relation as the Yukawa couplings of the up-type quarks
as found in Eq. (11). Since Ã is expected to take an almost
diagonal form as A, the PMNS matrix is considered to have
a similar form to the CKM matrix. This means that other

contributions to the neutrino masses are indispensable
for the explanation of large flavor mixing required by
the neutrino oscillation data. This is one of the reasons why
we consider the extended structure with η and ΣRα

. These
fields could give additional contributions to the neutrino
masses in the following way.

2. Neutrino masses due to the scotogenic
type III seesaw

As found in Eq. (12), ΣRα
has Yukawa couplings with νLi

.
However, since ϕ has no coupling with these and η is
assumed to have no VEV, neutrino masses via ΣRα

are not
generated at a tree level but are generated at a one-loop level.
The coupling λ5

2
ðη†ϕÞ2 þ H:c: brings about a small mass

difference between the real and imaginary components of η0.
As its result, the one-loop diagram shown in the right of
Fig. 1 gives a contribution to the neutrino masses. It can be
estimated as

MðbÞ
ij ¼

XnΣ
α¼1

hiαhjαλ5hϕi2e−iρ
32π2MΣα

×

�
M2

Σα

M2
η −M2

Σα

�
1þ M2

Σα

M2
η −M2

Σα

ln
M2

Σα

M2
η

��

≃
XnΣ
α¼1

hiαhjαλ5hϕi2e−iρ
32π2MΣα

ln
M2

Σα

M2
η
; ð26Þ

where MΣα
¼ γΣα

w and M2
η ¼ m2

η þ ðλ3 þ λ4Þhϕi2. The
second similarity is satisfied for Mη ¼ Oð1Þ TeV since w
is much larger than a TeV scale as discussed in the previous
part. Although neutrino mass eigenvalues are determined

through Mν
ij ¼ MðaÞ

ij þMðbÞ
ij , MðaÞ

ij should be sufficiently

small compared with MðbÞ
ij for large flavor mixings. If we

consider that this matrix is diagonalized by a unitary matrix
U as UTMνU ¼ Mdiag, the PMNS matrix is obtained as
VPMNS ¼ Ã†U which could have a Dirac phase and two
Majorana phases. An example of VPMNS obtained through
this framework in a simple model is given in the Appendix.
Next, we address the constraint on the relevant param-

eters caused by the neutrino oscillation data. Since MðaÞ
should be a subdominant contribution to the neutrino

FIG. 1. Left: A diagram for the neutrino mass generation due to the type I seesaw in the minimal model. Right: A one-loop diagram for
the neutrino mass generation due to the scotogenic type III seesaw in the extended model.
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masses, we have to extend the model at least with two
triplet fermions (nΣ ¼ 2) for the explanation of the neutrino
oscillation data. In order to estimate the required magnitude
of the neutrino Yukawa couplings in such a case, we
suppose, for simplicity and definiteness, the tribimaximal
flavor structure for hiα as [19]

he1 ¼ 0; hμ1 ¼ hτ1 ≡ h1; he2 ¼ hμ2 ¼ −hτ2 ≡ h2;

ð27Þ

and also diagonal yνij such as y
ν
ij¼yνi δij with y

ν
1≪yν2≪yν3.

7

We also assume yN1;2 ¼ 0 and ỹN3 ¼ 0, for simplicity. Under
this assumption, if the normal hierarchy for the neutrino
masses is assumed, squared mass differences required by
the neutrino oscillation data suggest [20]

h21 ≃ 9.3 × 10−3
�
10−2

λ5

��
MΣ1

1010 GeV

�

×

�
1 −

�
yν3

4.4 × 10−3

�
2
�
1010 GeV

MN3

��
;

h22 ≃ 9.3 × 10−4
�
10−2

λ5

��
MΣ2

1010 GeV

�
;

yν21 < 9.2 × 10−7
�

MN1

109 GeV

�
;

yν22 < 9.2 × 10−7
�

MN2

109 GeV

�
;

yν23 < 1.0 × 10−5
�

MN3

1010 GeV

�
; ð28Þ

where MN1;2
¼ ỹN1;2u and MN3

¼ yN3 u, and Mη ¼ 1 TeV is
also assumed.
Finally, it may be useful to present a remark on the

extension by the vectorlike fermions. Although these
fermions are introduced to the down sector in the above
discussion, the CKM phase could be derived in the same
way even if we introduce them to the up sector. However,
the situation could be largely changed for the CP phases in
the PMNS matrix and the small neutrino mass generation.
The present choice seems to be crucial for the present
scenario. It could also play an important role when we
consider an embedding of the model into a fundamental
model at the Planck scale region.8

D. Spontaneous CP violation

In the previous part, we just assume that Eq. (13) is
realized as a potential minimum. Here, we discuss in what

situation the spontaneous CP violation could occur in a
realistic way in the present model. The condition required
for the spontaneous CP violation has been studied in detail
in [22]. If we follow their results, the VEVs of σ is found
not to break the CP symmetry spontaneously, and then
χ ¼ 0. The reason is that the spurions for it cannot be
introduced since the imposed global Uð1Þ symmetry is
assumed to be exact except for the color anomaly effect.
On the other hand, we can introduce the spurions for S
which has no global Uð1Þ charge. In fact, if we introduce
the terms such as S4 and S2 which break a Uð1Þ symmetry
corresponding to the S number, a nonzero ρ could appear as
a potential minimum.9

The relevant potential is found from Eq. (6) to be

VCP ¼ m̄2
SðS†SÞ þ m̄2

σðσ†σÞ þ κSðS†SÞ2 þ κσðσ†σÞ2
þ κSσðS†SÞðσ†σÞ þ Vb; ð29Þ

where m̄2
a ¼ m̃2

a þ ζaΛ2 (a ¼ S, σ) and m̃2
a > 0 and ζa < 0

are assumed since we suppose that the potential minimum
is fixed as a result of the SUð4Þ breaking. As examples, we
consider two cases for Vb in (29) such as10

ðiÞ Vb ¼ αðS4 þ S†4Þ þ μ2ðS2 þ S†2Þ;
ðiiÞ Vb ¼ αðS4 þ S†4Þ þ βðS2 þ S†2Þðσ†σÞ: ð30Þ

Here, we confine our study to the situation where the VEVs
u and w are determined by a part of VCP except for Vb. It
could be realized for κS ≫ α and jm̄2

Sj ≫ jμ2j in the case (i)
and also for κS ≫ α and jβj ≪ 1 in the case (ii). The
potential minimum could be found for sufficiently small
jκSσj in both cases:

u2 ¼ −
m̄2

S

2κS
; w2 ¼ −

m̄2
σ

2κσ
; ð31Þ

and also the CP phase is determined as

ðiÞ cos 2ρ ¼ −
μ2

4αu2
; ðiiÞ cos 2ρ ¼ −

βw2

4αu2
; ð32Þ

in each case. These examples show that the spontaneous
CP violation could occur through the scalar S as long as
suitable values of the parameters are chosen. In fact, for
example, if μ2¼−4αu2 is satisfied for α≪1 and jμ2j ≪ u2,
the maximum CP phase ρ ≃ π

2
could be realized in the

case (i). We should note that these conditions on α and μ2

are consistent with the requirement for which u and w are
determined as Eq. (31). In the case (ii), the maximum CP

7This assumption is adopted due to the relation (11) to the up-
type quarks which is caused by the SUð4Þ symmetry.

8The model might be embedded into an effective model derived
by a suitable compactification of the E8 × E0

8 superstring [21].

9We do not consider such terms for s in the present study.
10We note that terms proportional to S2 are induced through the

SUð4Þ breaking from an operator Φ†ΨS2, which is invariant
under the imposed symmetry.
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phase is obtained for βw2 ≃ 4αu2, which is consistent with
the determination of u and w as found from Eq. (31). As a
result of this symmetry breaking, the mass of S is fixed
as mSR ¼ ffiffiffiffiffiffiffi

4κS
p

u.
On the other hand, in order for this breaking to cause

large CP phases in both the CKM and PMNS matrices,
the conditions μDμ

†
D < F dF d† and μEμ

†
E < F eF e† should

be satisfied as discussed before. They are supposed to
require

u > w; ð33Þ

as long as the relevant Yukawa couplings have a similar
magnitude. This condition can be easily satisfied for
suitable parameters as found from Eq. (31). Although the
tuning of parameters is necessary, the present scenario is
found to work as long as the scalar potential takes a
suitable form. We can expect that the required CP
violation is induced in both the quark and lepton sectors
based on the same origin.

III. PHENOMENOLOGY

In the previous part, we addressed that theCP problem in
the SM could be solved in this model. In this section, we
order several discussions and comments on other phenom-
enological issues.

A. Inflation

The model has candidates for the inflaton, such as σ
and S. They can have nonminimal couplings with the Ricci
scalar R [23]:

1

2
ξσσ

†σR;
1

2

�
ξS1S

†Sþ ξS2
2

ðS2 þ S†2Þ
�
R: ð34Þ

Although the real and imaginary components of σ have
the same coupling ξσ, only the real part of S could have
a nonzero coupling 1

2
ξS2RR in the case ξS1 ¼ ξS2 where

S≡ 1ffiffi
2

p ðSR þ iSIÞ and ξ≡ ξS1 þ ξS2 . If we suppose that a

coupling ξ takes a sufficiently large value in such a case,
inflation via SR is expected to occur in the same way as
the Higgs inflation [24]. A nice feature in this scenario is
that the dangerous unitarity violation caused by a higher

order mixing between SR and SI [25] is not induced at Mpl

ξ

but could be suppressed at least up to an inflation scale
Mplffiffi
ξ

p [26].

The potential of the inflaton can be expressed in the
Einstein frame as

VE ¼ κS�
1þ ξS2R

M2
pl

�
2

�
1

2
ðS2R þ S2I Þ − u2

�
2

: ð35Þ

Since the canonically normalized inflaton χ is defined as

dχ
dSR

¼ 1

1þ ξS2R
M2

pl

�
1þ ξS2R

M2
pl

þ 6ξ2S2R
M2

pl

�
1=2

; ð36Þ

χ and SR are related each other as SR ∝ exp χffiffi
6

p
Mpl

at a large

field region S2R ≫
M2

pl

ξ . In that region, the potential of χ

becomes constant VE¼
κSM4

pl

4ξ2
as long as SR ≫ SI is satisfied.

The slow roll parameters for χ can be expressed as

ϵ≡M2
pl

2

�
V 0
E

VE

�
2

¼ 3

4N2
e
; η≡M2

pl
V 00
E

VE
¼ −

1

Ne
ð37Þ

by using the e-foldings number Ne. If we take Ne ¼ 60, we
obtain the spectral index ns ¼ 0.97 and the tensor-to-scalar
ratio r ¼ 3.3 × 10−3. On the other hand, since the ampli-
tude of scalar perturbation is given as AS ¼ VE

24π2M4
plϵ
and the

CMB observation constrains it as AS ¼ 2.4 × 10−9 at k� ¼
0.002 Mpc−1 [27], κS has to satisfy κS ¼ 4.7 × 10−10ξ2 for
Ne ¼ 60. Using this constraint, the inflaton mass is found
to be determined as

mSR ¼ 4.3 × 1010
�

ξ

103

��
u

1012 GeV

�
GeV: ð38Þ

The inflaton mass should be fixed in a consistent way with
Eqs. (16) and (33). We also note that the assumed vacuum
with the spontaneous CP violation could be consistently
realized for suitable parameters in this inflation framework.
The reheating after the end of inflation is expected to

be caused by the inflaton decay to the singlet neutrino
pairs NiNi through the couplings in Eq. (12). In the case
yN3 > ỹN1;2 which is assumed in this study, a dominant
process is SR → N3N3. Since singlet fermions Ni interact
with other fields only through the neutrino Yukawa
couplings, except for the couplings with S and S�,
instantaneous reheating is expected to occur for the case
MSR > 2MN3

and H ≃ ΓS ≳ ΓN3
, where ΓS and ΓN3

are the
decay width of SR → N3N3 and N3 → l̄iϕ

†, respectively.11

If we take account of these conditions which may be
expressed as

ffiffiffiffiffi
κS

p
> yN3 and 2

ffiffiffiffiffi
κS

p
yN3 ≳ yν23 , the reheating

temperature TR could be bounded as12

11Here, we do not consider a possibility for nonthermal
leptogenesis which could be expected to occur for the
case ΓNi

> ΓS [28].
12The restoration of the PQ symmetry could occur in the

reheating process depending on the parameters. However, since
the domain wall number is one in this model, no domain wall
problem is induced even if the PQ symmetry is restored.
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TR ≃ 1.6 × 108yν3ðyN3 uÞ1=2

< 5 × 1011
�

ξ

103

�
3=2
�

u
1012 GeV

�
1=2

GeV: ð39Þ

Although this shows that TR > MN1
ð≡ỹN1 uÞ could be

satisfied for suitable parameters, N1 is not expected
to be thermalized as a relativistic particle since the
Yukawa coupling yν1 of N1 is supposed to be very small.
Fortunately, it could be expected to reach the thermal
equilibrium through the scattering process N3N3 → N1N1

mediated by the scalar SR before it becomes nonrelativistic
(T < MN1

). This allows the present model to generate the
lepton number asymmetry sufficiently through the out-of-
equilibrium decay of N1, although the Yukawa coupling yν1
of N1 is very small. We discuss this possibility in the
next part.

B. Leptogenesis

The model has two possible decay processes N1 → liϕ
†

and Σα → liη
† which could contribute to the generation of

the lepton number asymmetry since these processes violate
the lepton number. However, Σα has the SUð2Þ gauge
interaction so that its out-of-equilibrium decay is impos-
sible, at least before the electroweak symmetry breaking.
On the other hand, as addressed above, N1 could reach
the equilibrium abundance through the scattering mediated
by SR even if its neutrino Yukawa coupling yν1 is very
small. In that case, its decay could generate the lepton
number asymmetry through the out-of-equilibrium decay
at T < MN1

. As long as the couplings yNi or ỹNi between
the inflaton and Ni have sufficient magnitude, such as
yN3 > ỹN2 ≳ ỹN1 ≳ 10−3, the equilibrium number density of
N1 can be easily realized at T > MN1

as shown below.13 On
the other hand, since the mass of Ni is generated through

the Yukawa coupling ðyNi Sþ ỹNi S
�ÞN̄c

i Ni, Ni cannot be
light if we take account of the values of yNi and ỹNi mentioned
above. In fact, under the constraints (16) and (33), the mass
of N1 has to be M1 > 107 GeV at least.
In order to check whether this scenario works, we present

a typical solution of the Boltzmann equations for YN1
and

YN3
as functions of zð≡MN1

T Þ in the left panel of Fig. 2.

Here, YNi
is defined as YNi

¼ nNi
s with the Ni number

density nNi
and the entropy density s. In this calculation, as

an example, we assume u ¼ 2 × 1012 GeV and ξ ¼ 500,
and then the inflaton mass is fixed as mSR ¼ 4.3×
1010 GeV. Taking account of the constraints in Eq. (28),
we fix other relevant parameters at the following values14

yN3 ¼ 10−2; ỹN2 ¼ 10−0.2yN3 ; ỹN1 ¼ 10−0.5yN3

yν3 ¼ 2.8 × 10−3; yν2 ¼ 10−5; yν1 ¼ 10−6: ð40Þ

Since mSR > 2MN3
is satisfied, N3 is allowed to be

produced through the inflaton decay SR → N3N3. The
following N3 decay N3 → liϕ

† caused by the coupling
yν3 is considered to be a substantial process for the thermal-
ization. Thus, the initial value of YN3

is fixed as the one
produced through this inflaton decay assuming the instan-
taneous reheating. The figure shows that YN1

reaches the
equilibrium value Yeq

N1
around z ≃ 1 for the assumed value

of ỹN1 and leaves its equilibrium value at z≳ 1, where the
out-of-equilibrium decay could generate the lepton number
asymmetry.15

10-10

10-8

10-6

10-4

10-2

100

102

10-1 100 101

Y

z

YN1

YN3

YN1

eq

YN3

eq

10-20

10-15

10-10

10-5

100

 1  10  100  1000

Y

z

  YL
  YN1

  YN1

eq

FIG. 2. Left panel: A typical solution of the Boltzmann equations for YN1
and YN3

. Their equilibrium values Yeq
N1

and Yeq
N3

are also
plotted in the same panel. While YN3

is found to follow Yeq
N3

at z ≳ 0.4, YN1
keeps a constant value until N1 starts decaying. Right panel:

The evolution of the lepton number asymmetry YL generated through the out-of-equilibrium decay of N1. Horizontal dotted lines show
the value of YL required in this model to realize the baryon number asymmetry in the Universe [20].

13We should recall that yN1;2 ¼ 0 and ỹN3 ¼ 0 are assumed.

14These values of yνi require some overall suppression effect
compared with the Yukawa couplings of the up-type quarks in
Eq. (11). We just assume it in this setting.

15For a smaller value of ỹN1 or a larger value of yν3, YN1
cannot

reach an equilibrium value Yeq
N1

for z < 1, although YN1
keeps a

constant value in the same way as the one in the left panel of
Fig. 2. A larger value of ỹN1 realizes YN1

¼ Yeq
N1

at an earlier stage.
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The generated lepton number asymmetry through the N1

decay is converted to the baryon number asymmetry
through the sphaleron process as in the usual leptogenesis
[29,30]. In the present model, the CP asymmetry ε for the
decay N1 → lϕ† [31] is dominantly caused by an inter-
ference between a tree diagram and a one-loop diagram
mediated by N3 which are shown in Fig. 3. Under the
assumption given in Eq. (27), it can be estimated as

ε≡ ΓðN1 → lϕ†Þ − ΓðNc
1 → l̄ϕÞ

ΓðN1 → lϕ†Þ þ ΓðNc
1 → l̄ϕÞ

¼ 1

8π

ImðPiỹ
ν
1ie

−iρ
2yν�3i e

−iρ
2Þ2

ðPiy
ν
1iy

ν�
1i Þ

F

�
M2

N3

M2
N1

�

¼ 1

4π
jyν3j2F

��
yN3
ỹN1

�
2
�
sinð−2ρÞ; ð41Þ

where FðxÞ is defined as

FðxÞ ¼ ffiffiffi
x

p �
1 − ð1þ xÞ ln 1þ x

x

�
: ð42Þ

In the following analysis, we assume sinð−2ρÞ ¼ 1 which
makes ε maximal.
If N1 is in the thermal equilibrium at z < 1, the out-of-

equilibrium decay of N1 could start at z ∼ 1 and the lepton
number asymmetry is effectively generated at z > 1. By
introducing an efficiency factor for the washout of the
generated lepton number asymmetry as κ, the lepton
number asymmetry YL, which is defined as YL ≡ nL

s by
using a net lepton number density nL, is roughly estimated
as YL ¼ εκYeq

N1
jz¼1. It suggests that ε≳ 8 × 10−8κ−1 is

necessary to realize a value YL ≳ 2.5 × 10−10 at a sphaleron
decoupling temperature in order to produce the sufficient
baryon number asymmetry in the Universe for Yeq

N1
jz¼1≃

3.1 × 10−3. Since yν1 is supposed to be very small in this
model, N1 is considered to start its substantial decay at a
later stage, such as z ≫ 1, where the washout caused by N3

and Σα could be largely Boltzmann suppressed as long as
MN3

MN1

; MΣα
MN1

> 1 are satisfied. Thus, in such a case, the almost

all lepton number asymmetry generated there could be kept

and the sufficient lepton number asymmetry is expected to
be generated through the out-of-equilibrium decay of N1.
In the right panel of Fig. 2, we present the evolution of

the lepton number asymmetry YL generated through the
out-of-equilibrium decay of N1 using the same parameters
given in Eq. (40), which can prepare an initial value
YN1

ð1Þ ≃ Yeq
N1
ð1Þ as shown in the left panel. In this analysis

of Boltzmann equations, we fully take account of the
washout processes and use the neutrino Yukawa couplings
h1;2 which are fixed by taking account of the condition (28)
with Mη ¼ 103 GeV, MΣ1;2

¼ 3MN1
, and jλ5j ¼ 10−1.5.

The small neutrino Yukawa coupling yν1 makes the N1

decay be delayed until the temperature where the washout
processes could be frozen out due to the Boltzmann
suppression. This feature can be found in the behavior
of YN and YL in the right panel. As its result, almost all the
lepton number asymmetry generated through the out-of-
equilibrium N1 decay could be converted to the baryon
number asymmetry in the Universe as discussed above. The
model is found to present a successful leptogenesis
framework. Results of the analysis for several parameter
settings are also listed in Table I.
Here, we order a few remarks related to these results.

First, since a smaller jλ5j makes h1;2 larger through the
neutrino mass condition (28) for the fixedMΣ1;2

, the washout
processes mediated by Σ1;2 are considered to suppress the
generation of the lepton number asymmetry at an early stage
where it is not frozen out. Second, the N1 mass seems to be
bounded as M1 > 109 GeV in the present model in order to
produce the required baryon number asymmetry. This bound
is similar to the one given in [32]. Third, for the present
parameter settings, w≳ 1010 GeV seems to be required to
avoid the washout of the generated lepton number asym-
metry, which is consistent with the requirement from the PQ
symmetry breaking scale. Finally, the coexistence of the
couplings yNi and ỹNi , such as y

N
i ≠ ỹNi in Eq. (12), is crucial

for the leptogenesis. We should recall that the same feature is
required in the explanation of the CKM phase through the
mass matrix (17).

TABLE I. The CP asymmetry ε and the generated baryon
number asymmetry YB for the parameters in Eq. (40) with
u ¼ 2 × 1012 GeV and ξ ¼ 500, which realize the spectrum
mSR
2

> MN3
> MN2

> MN1
. The Yukawa couplings h1;2 of Σ1;2

are determined through the neutrino oscillation conditions (28) by
assuming the values of jλ5j and MΣ1;2

.

MΣ1;2
jλ5j h1 h2 jεj YB

3MN1
10−1 3.7 × 10−2 1.3 × 10−2 9.6 × 10−8 9.5 × 10−11

3MN1
10−1.5 6.6 × 10−2 2.4 × 10−2 9.6 × 10−8 9.4 × 10−11

3MN1
10−2 1.2 × 10−1 4.2 × 10−2 9.6 × 10−8 7.2 × 10−11

5MN1
10−1.5 8.4 × 10−2 3.0 × 10−2 9.6 × 10−8 9.4 × 10−11

10MN1
10−1.5 1.2 × 10−1 4.2 × 10−2 9.6 × 10−8 9.4 × 10−11

FIG. 3. The N1 decay diagrams which contribute to the
generation of the lepton number asymmetry. The interference
between them causes the CP asymmetry ε.
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C. Dark matter

The model has three dark matter (DM) candidates, that
is, the axion, the neutral component of Σα, and the lightest
neutral component of η. The axion could explain the
required DM abundance as long as w ≃ 1012 GeV is
satisfied [16]. The latter two have odd parity of the remnant
Z2 of the global Uð1Þ symmetry, which makes them stable
and then DM candidates. However, Σ0

α is supposed to have
a large mass so that it cannot be DM in the present model.16

On the other hand, η is assumed to have a mass of
Oð1Þ TeV as discussed in the neutrino mass generation.
In that case, the lightest neutral component of η can be DM.
Moreover, even if the VEV w is not large enough to
guarantee the sufficient axion density for the explanation
of the DM energy density, the thermal relics of η0 could
explain it as long as the quartic couplings λ3;4 in Eq. (14)
take suitable values [33,34]. As a result, the breaking scale
w of the PQ symmetry could be free from the explanation of
the DM energy density in this model.

D. Quark and lepton mass hierarchy

Yukawa coupling constants for quarks and leptons are
related to each other by Eq. (11) at a SUð4Þ breaking scaleΛ.
On the other hand, their weak scale values, which determine
mass eigenvalues of the quarks and the leptons, are fixed
through the renormalization group equations taking them as
the initial values. It can bring about a difference of a factor
three due to the color effect between quarks and leptons. The
mass difference between the down-type quarks and the
charged leptons seems to be partially explained by this
effect, but it is not satisfactory. Even if corrections caused by
the mixing with heavy fermions in these sectors are taken
into account, this situation is not improved and then some
new ingredients are needed to be introduced for it.
On the other hand, in the up-type quarks and the

neutrinos, several additional parameters related to the
neutrino mass generation could give a different feature
in these sectors. Especially since neutrino masses are
determined by the type III seesaw contribution, the relation
among the Yukawa couplings of quarks and leptons at the
high energy scale does not directly affect their mass
matrices. These features could make the large difference
found in the CKM and PMNS matrices be consistently
realized in the present unification scheme. Since details
depend on the model parameters, and this issue is beyond
the scope of present study, we will not discuss it further
here and leave it to future study. Finally, it may be useful to
note the fact that the present unification scheme could make
the leptogenesis work well. A requirement that the third
generation Yukawa coupling of the up-quark sector
should be much larger than others brings about the relation

yν1;2 ≪ yν3 in the neutrino sector, which plays a crucial role
in the present leptogenesis scenario as shown in the
above study.

IV. SUMMARY

We proposed a model which gives the origin of the CP
violation at an intermediate scale. In this model, the CP
symmetry is supposed to be spontaneously broken, but it
does not cause the strong CP problem and θ̄ ¼ 0 is kept
even if the radiative corrections are taken into account. We
showed that such a model could be realized in a Pati-Salam-
type unification model, in which CP phases in both the
CKM and PMNS matrices are derived from the same
source. Neutrino masses are generated in a hybrid way by
the tree level type I seesaw and the one-loop type III
seesaw. The required baryon number asymmetry can be
produced through the leptogenesis. The out-of-equilibrium
decay of N1 occurs at a later stage where the washout
effects are almost frozen out. As a result, the generated
lepton number asymmetry could be effectively converted to
the baryon number asymmetry. This feature comes from the
present unification based on the fact that the top Yukawa
coupling is much larger than others. The model has two
DM candidates and the dominant DM is fixed depending
on the intermediate symmetry breaking scale. Since the
axion needs not to be DM, the PQ symmetry breaking scale
can be free from the condition for the DM energy density
realization. We also note a possibility such that the model
might be derived as the low energy effective model of the
E8 × E0

8 superstring. It will be discussed elsewhere.

ACKNOWLEDGMENTS

This work is partially supported byMinistry of Education,
Culture, Sports, Science and Technology (MEXT) Grant-
in-Aid for Scientific Research on Innovative Areas
(Grant No. 26104009) and Japan Society for Promotion
of Science, a Grant-in-Aid for Science Research (C)
(Grant No. 18K03644).

APPENDIX: EXAMPLES OF THE CKM MATRIX
AND THE PMNS MATRIX

In this Appendix, we present a simple example which
could bring about a phase in the CKM matrix. We assume
the relevant couplings yd, yD, and ỹD to be written as17

yd ¼ c

0
B@

ϵ4 ϵ3 xϵ3

ϵ3 ϵ2 yϵ2

ϵ2 1 −1

1
CA;

yD ¼ ða1; a2; a3Þ; ỹD ¼ ðb1; b2; b3Þ; ðA1Þ

16The DM study in the cases where Σ has a mass of Oð1Þ TeV
can be found in [18].

17A similar Yukawa coupling matrix for the down-type quarks
has been considered in a different context [35]. There is no
background to explain its hierarchical structure in the present
model.
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by using real constants ai, bi, c, and x, y. As long as ϵ satisfies ϵ ≪ 1, the down-type quark mass matrix mdð≡ydhϕ̃iÞ has
hierarchical mass eigenvalues. Here, we introduce Xij and Yij whose definition is given as

Xij ¼ 1þ pipj þ
ða2 þ b2Þ2 þ ða3 þ b3Þ2pipj þ fa2b3 þ b2b3 þ ða2b3 þ a3b2Þ cos 2ρgðpi þ pjÞ

a22 þ a23 þ b22 þ b23 þ 2ða2b2 þ a3b3Þ cos 2ρ
;

Yij ¼
ða2b3 − a3b2Þðpi − pjÞ sin 2ρ

a22 þ a23 þ b22 þ b23 þ 2ða2b2 þ a3b3Þ cos 2ρ
; ðA2Þ

where pi is fixed as p1 ¼ x, p2 ¼ y, and p3 ¼ −1. If we define Rij and θij by using these quantities as

Rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
ij þ Y2

ij

q
; tan θij ¼

Yij

Xij
; ðA3Þ

the component of Eq. (23) is found to be expressed as

ðA−1m2AÞij ¼ c2hϕ̃i2ϵijRijeiθij ; ðA4Þ

where μ2D ≪ F dF d† is assumed. ϵij is defined as

ϵ11 ¼ ϵ6; ϵ22 ¼ ϵ4; ϵ33 ¼ 1; ϵ12 ¼ ϵ21 ¼ ϵ5; ϵ13 ¼ ϵ31 ¼ ϵ3; ϵ23 ¼ ϵ32 ¼ ϵ2: ðA5Þ

By solving Eq. (A4), we find that A is approximately written as

A ≃

0
BBB@

1 −λ λ3ð X23

jαj2X33
eiθ − X13

jαj3X33
Þ

λ 1 −λ2 X23

jαj2X33
eiθ

λ3 X13

jαj3X33
λ2 X23

jαj2X33
e−iθ 1

1
CCCA; ðA6Þ

where the constants λ, α, and θ are defined as

α ¼ X12X33 − X13X23e−iðθ23þθ12−θ13Þ

X22X33 − X2
23

; λ ¼ jαjϵ; θ ¼ argðαÞ þ θ23 þ θ12 − θ13: ðA7Þ

This expression shows that A could have a nontrivial phase which gives the origin of the CKM phase as long as
a2b3 − a3b2 ≠ 0 and x ≠ y are satisfied. If the diagonalization matrixOL for the mass matrix of the up-type quarks takes an
almost diagonal form, an interesting matrix could be obtained as the CKMmatrix, such as VCKM ≃ A. In this case, the mass
eigenvalues for the down-type quarks are obtained as

X1=2
33 chϕ̃i;

�
X22 −

X2
23

X33

�
1=2

ϵ2chϕ̃i;
	
X11 −

X2
13

X33

þ jαj2
�
X22 −

X2
23

X33

− 2

�

1=2

ϵ3chϕ̃i: ðA8Þ

A diagonalization matrix Ã for the charged lepton mass matrix takes the same form as A as a result of the Pati-Salam
SUð4Þ symmetry in the model. However, since the Yukawa couplings which induce the neutrino mass matrix could be
irrelevant to the ones in the up-type quarks as discussed in the text, the large mixing in the PMNS matrix could be obtained
if large flavor mixings are realized in the neutrino mass matrix. If we use the assumption in Eq. (27), the PMNS matrix in
this example is found to be written as
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VPMNS ¼

0
BB@

1ffiffi
6

p ð2 − λÞ 1ffiffi
3

p ð1þ λÞ 1ffiffi
2

p λ

1ffiffi
6

p ð−1 − 2λþ βλ2Þ 1ffiffi
3

p ð1 − λ − βλ2Þ 1ffiffi
2

p ð1þ βλ2Þ
1ffiffi
6

p ð1þ β�λ2Þ − 1ffiffi
3

p ð1þ β�λ2Þ 1ffiffi
2

p ð1 − β�λ2Þ

1
CCAþOðλ3Þ; ðA9Þ

where β ¼ X23

jαj2X33
eiθ and the Majorana phases are not taken into account.
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