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Abstract

The radiative neutrino mass model with inert doublet dark matter is a promising model

for the present experimental issues which cannot be explained within the standard model.

We study an extension of this model focusing on cosmological features brought about from

the scalar sector. Inflation due to singlet scalars with hierarchical non-minimal couplings

with the Ricci scalar may give a favorable solution for both neutrino masses and baryon

number asymmetry in the Universe.
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1 Introduction

Recent discovery of the Higgs particle [1] suggests that the framework of the standard

model (SM) can describe Nature up to the weak scale. On the other hand, we have

several experimental results which are not explained within it. Representative ones are

the existence of both small neutrino masses [2] and dark matter (DM) [3], and also the

baryon number asymmetry in the Universe [4]. These require some extension of the SM.

As such an extension, we have an interesting simple model, in which the SM is extended

by an inert doublet scalar and singlet fermions [5]. It has promising features for the

simultaneous explanation of the neutrino oscillation data [2] and the observed abundance

of DM [3] through physics at TeV regions. In fact, if these new fields are assigned odd

parity of an imposed Z2 symmetry, the neutrino masses are generated at one-loop level and

the lightest Z2 odd particle can behave as DM. The quantitative conditions required for

their explanation and also other phenomenological aspects have been extensively studied

in this model and its extended models [6, 7, 8, 9, 10, 11]. They show that the simultaneous

explanation of these is possible without causing strong tension with other phenomena like

lepton flavor violating processes as long as DM is identified with the lightest neutral

component of the inert doublet scalar [11, 12].4 Moreover, in that case, the baryon

number asymmetry in the Universe could be also successfully explained if rather mild

mass degeneracy is assumed among the singlet fermions with masses of TeV scales [11].

In this paper, we consider how inflation can be embedded in this framework. CMB

observations [13, 14, 15] suggest that the exponential expansion of the Universe should

occur before the ordinary Big-Bang of the Universe. On the other hand, the analyses of

them seem to have already ruled out a lot of inflation models proposed by now. Higgs

inflation is a well-known example which is still alive [16]. This model is characterized

by the feature such that Higgs potential becomes flat enough for large field regions if the

Higgs scalar has a large non-minimal coupling with the Ricci scalar. We apply this idea to

a radiative seesaw model extended by real singlet scalars [17]. Although the singlet scalars

are originally introduced with the aim of generating the neutrino masses, it could work as

inflaton if they are supposed to have a substantial non-minimal coupling with the Ricci

4If the lightest singlet fermion is identified with DM, strong tension appears between the DM abun-

dance and the lepton flavor violating processes [6]. However, it could be resolved by assuming special

flavor structure [7] or introducing a new interaction [8].
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scalar. In fact, such a coupling of a real singlet scalar has been studied as s-inflation in a

different context [18]. Following it, we focus our attention on such a non-minimal coupling

of the singlet scalars with the Ricci scalar instead of the one of Higgs scalar and others.

In this case, unitarity problem which appears in the Higgs inflation and other general

models [19, 20] might be escaped under certain conditions. Moreover, the singlet scalars

could also play an important role in the generation of the baryon number asymmetry in

the Universe through non-thermal leptogenesis. We study this issue intensively.

The following parts of the paper are organized as follows. In section 2, we introduce

the model studied in this paper and discuss the neutrino mass generation. In section 3,

a possible inflation scenario in this model is discussed. Production of the baryon number

asymmetry due to the inflaton decay is studied in detail in section 4. Consistency of the

DM physics with this scenario is also discussed here. Section 5 is devoted to the summary

of the paper.

2 An extension with real singlet scalars

The radiative seesaw model proposed in [5] is characterized by a scalar quartic coupling

λ5(η
†φ)2 between the ordinary Higgs doublet φ and the inert doublet scalar η. Since

η and singlet fermions Nk are assigned odd parity of the Z2 symmetry and all the SM

contents are assigned even parity, the Dirac neutrino mass terms are forbidden at tree

level. Neutrino masses are generated through a one-loop diagram with Nk and η in the

internal lines. In this mass generation scenario at TeV scales, the above mentioned quartic

coupling between φ and η plays an essential role to explain the small neutrino masses.

An extension of the model might be done by considering a possibility that this quartic

coupling is an effective coupling appearing at low energy regions after integrating out

heavy scalar fields [17]. Such a scenario could be realized by introducing Z2 odd real

singlet scalars Sa (a = 1, 2).5 The model is defined by a part of Lagrangian relevant to

5One real scalar is enough for the neutrino mass generation and inflation. However, if we consider

leptogenesis in the model, two real scalars should be introduced at least. We take this minimal version

here.
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Fig. 1 The one-loop diagram which contributes neutrino mass generation in the present model.

the new fields as follows,

−L =

3
∑

α,k=1

[

hαkN̄kη
†ℓα + h∗

αk ℓ̄αηNk +
Mk

2
N̄kN

c
k +

Mk

2
N̄ c

kNk

]

+ m2
φφ

†φ+m2
ηη

†η + λ1(φ
†φ)2 + λ2(η

†η)2 + λ3(φ
†φ)(η†η) + λ4(η

†φ)(φ†η)

+
∑

a=1,2

[

m2
Sa

2
S2
a +

κ
(a)
1

4
S4
a +

κ
(a)
2

2
S2
a(φ

†φ) +
κ
(a)
3

2
S2
a(η

†η) + µaSaη
†φ+ µ∗

aSaφ
†η

]

,

(1)

where ℓα is a left-handed doublet lepton. We note that λ5(η
†φ)2 is allowed under the

imposed symmetry in general. However, if we assume λ5 = 0 in the original Lagrangian,

its β-function is proportional to itself and then λ5 = 0 is stable against the radiative

correction as long as µa terms are not included in eq. (1). On the other hand, if the

µa terms are introduced in eq. (1) assuming λ5 = 0, the λ5 term appears effectively as

discussed below. Later, this point will be discussed again in relation to the assignment of

lepton number to the new fields.

In this model, neutrino masses are generated through a one-loop diagram which is

shown in Fig. 1. They are estimated as

Mν
αβ =

3
∑

k=1

hαkhβkMk〈φ〉2
8π2

∑

a

µ2
aI(Mη,Mk, msa), (2)

where M2
η = m2

η + (λ3 + λ4)〈φ〉2 and 〈φ〉 = 174 GeV. The function I is defined by

I(ma, mb, mc) =
(m4

a −m2
bm

2
c) lnm

2
a

(m2
b −m2

a)
2(m2

c −m2
a)

2
+

m2
b lnm

2
b

(m2
c −m2

b)(m
2
a −m2

b)
2

+
m2

c lnm
2
c

(m2
b −m2

c)(m
2
a −m2

c)
2
− 1

(m2
b −m2

a)(m
2
c −m2

a)
. (3)
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If we suppose mSa ≫ Mη, Mk, this formula can be approximated as

Mν
αβ =

∑

a

µ2
a

m2
Sa

3
∑

k=1

hαkhβk〈φ〉2
8π2

Mk

M2
η −M2

k

[

M2
k

M2
η −M2

k

ln
M2

k

M2
η

+ 1

]

. (4)

This is equivalent to the neutrino mass formula in the original model if
∑

a
µ2
a

m2
Sa

is iden-

tified with the quartic coupling constant λ5 [17]. This correspondence could be directly

confirmed in an effective model at energy regions smaller than mSa , which can be derived

by integrating out Sa. In fact, since the equation of motion for Sa could be approximated

as Sa ≃ − 1
m2

Sa

(µaη
†φ+ µ∗

aφ
†η), the required terms are derived by using it as

− 1

2

∑

a

[

µ2
a

m2
Sa

(η†φ)2 +
µ∗2
a

m2
Sa

(φ†η)2
]

. (5)

Origin of the smallness of |λ5|, which is a key to explain the small neutrino masses in

the original model, is translated to the hierarchy problem between µa and mSa in this

scenario. We cannot answer the origin of this hierarchy at the present stage and we have

to leave it for a complete theory at high energy regions.

For the later study, we show an example of flavor structure of the neutrino Yukawa

couplings which can explain every neutrino oscillation data in the normal hierarchy case.

Here, we follow the procedure given in [11]. For this purpose, we assume that the neutrino

mass matrix (4) takes the following simple form as

Mν =









0 0 0

0 1 q1

0 q1 q21









(h2
1Λ1 + h2

2Λ2)
µ2
2

m2
S2

+









1 q2 −q3

q2 q22 −q2q3

−q3 −q2q3 q23









h2
3Λ3

µ2
2

m2
S2

, (6)

where |µ1|2
m2

S1

≪ |µ2|2
m2

S2

is assumed6 and Λk is represented as

Λk =
〈φ〉2

8π2 GeV

1GeV
Mk

M2
η

M2
k
− 1

[

1 +
M2

k

M2
η −M2

k

ln
M2

k

M2
η

]

≡ 〈φ〉2
8π2 GeV

Λ̃k. (7)

If we put q1,2,3 = 1 in eq. (6), the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing

matrix is found to reduce to the tri-bimaximal form

UPMNS =









2√
6

1√
3

0

−1√
6

1√
3

1√
2

1√
6

−1√
3

1√
2

















1 0 0

0 eiα1 0

0 0 eiα2









, (8)

6As explained in the later discussion, this assumption is adopted in connection with leptogenesis.
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Fig. 2 A region in the (q2, q3) plane allowed by the neutrino oscillation data, which is included inside

a circle drawn by the black solid line. Other parameters are fixed to satisfy the condition (10). Each

contour represents 2σ boundary values of neutrino oscillation parameters [21], that is, |∆m2
32
| (thick red

solid and dashed lines), ∆m2
21 (thin red solid and dashed lines), sin2 2θ23 (green solid and dashed lines),

sin2 2θ12 (blue solid and dashed lines) and sin2 2θ13 (black solid and dashed lines).

where Majorana phases α1,2 are determined by the phases hi and µa. If we put ϕi = arg(hi)

and ϕµa = arg(µa), they are expressed as

α1 = ϕ3 + ϕµ2 , α2 = ϕ2 + ϕµ2 , (9)

where |h1| is taken as a negligibly small value compared with others, for simplicity.7

Since one of mass eigenvalues is always zero in this flavor structure, we find that the mass

eigenvalues should satisfy |h2|2Λ2
|µ2|2
m2

S2

≃
√

∆m2
atm

2
and |h3|2Λ3

|µ2|2
m2

S2

≃
√

∆m2
sol

3
, where ∆m2

atm

and ∆m2
sol stand for the squared mass differences required by the neutrino oscillation

analysis for both atmospheric and solar neutrinos [2, 21].

Since we now know that sin θ13 takes a non-zero value, we have to consider a flavor

structure deviated from q1,2,3 = 1. For that purpose, we determine values of q1,2,3, h
2
2Λ̃2

|µ2|2
m2

S2

and h2
3Λ̃3

|µ2|2
m2

S2

to realize all the squared mass differences and the mixing angles required

7The model is equivalent to the one with two singlet fermions in this case. It should be noted that

the neutrino oscillation data could be explained as long as only two singlet fermions are introduced. We

use this setting throughout the following study.
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Mη(GeV) |µ1|
mS1

|µ2|
mS2

h2 h3 M2(GeV) M3(GeV) |YB |

103 (a) 2 · 10−5 10−3 1.12 · 10−2 5.13 · 10−3 5.30 · 103 9.00 · 103 1.3 · 10−9

(b) 2 · 10−6 8 · 10−2 8.40 · 10−3 3.85 · 10−3 1.73 · 108 2.19 · 108 3.5 · 10−10

600 2 · 10−5 10−3 9.62 · 10−3 4.54 · 10−3 5.30 · 103 9.00 · 103 5.1 · 10−10

3 · 103 2 · 10−5 10−3 2.15 · 10−3 8.94 · 10−3 2.67 · 104 2.77 · 104 3.4 · 10−9

Table 1 Examples of the model parameters which satisfy the latter two conditions in eq. (10). If we fix

a point in a circle of Fig. 2, all the neutrino oscillation data can be explained at 2σ level, consistently. In

all cases, mS1
= 109 GeV and

mS2

mS1

= 1.1 are assumed.

by the neutrino oscillation data through diagonalizing the matrix (6) numerically. This

analysis shows that the neutrino oscillation parameters can be in the 2σ range of the

experimental data if the values of (q2, q3) are contained in the region surrounded by a

circle in Fig. 2. In this figure, the remaining parameters are fixed so as to satisfy

q1 = 0.77, h2
2Λ̃2

|µ2|2
m2

S2

= 6.03× 10−14, h2
3Λ̃3

|µ2|2
m2

S2

= 1.02× 10−14. (10)

As long as the model parameters µ2

mS2
, Mη, h2,3 and M2,3 are varied by keeping these

conditions, the neutrino oscillation constraints are automatically fulfilled. In Table 1,

typical examples obtained by this simple procedure are shown. They include examples

such that the masses of the singlet fermions Mk are largely different in the case Mη =

1 TeV, in which they are of O(104) GeV and O(108) GeV in the cases (a) and (b),

respectively.

If Sa does not play any other role than the neutrino mass generation, this extension

may not be so appealing. However, we can find that the introduction of Sa could add

favorable features as an inflation model to the radiative seesaw model.8 Recent Planck

data suggest that the Higgs inflation scenario could be one of the favored inflation models.

However, if multi-component scalars like the Higgs doublet scalar are supposed to play a

role of inflaton, the model could be suffered from the unitarity problem [19, 20]. Since

unitarity could be violated in the scattering amplitudes among scalars with non-minimal

8We have proposed another inflation scenario in the similar context based on somewhat different

motivation in [22]. The inflaton potential assumed there differs from the present one. As a result, the

predicted values for the spectral index and the tensor-to-scalar ratio take distinct values from the present

ones.
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couplings to the Ricci scalar at a lower scale compared with the inflation scale, new physics

required for unitarity restoration could jeopardize the flatness of inflaton potential at the

inflation scale. The situation can be changed in a real singlet inflaton as discussed in [20].

In the following part, we consider that only the singlet scalars among scalars in the model

have non-negligible non-minimal couplings with the Ricci scalar.

3 Inflation due to the non-minimal coupling

It has been known that a scalar field coupled with the Ricci scalar can bring about the

exponential expansion of the Universe [23]. Using this idea to the SM, Higgs inflation

has been proposed in [16] as a scenario with a realistic inflaton candidate. After that,

the scenario has been studied from various view points [24]. We apply this idea to the

singlet scalars in this model but not to the Higgs doublet or the inert doublet.9 The

action relevant to the present inflation scenario is given in the Jordan frame as

SJ =

∫

d4x
√−g

[

1

2
M2

plR +
∑

a

1

2
ξaS

2
aR +

∑

a

1

2
∂µSa∂µSa − V (Sa)

]

, (11)

where Mpl is the reduced Planck mass and V (Sa) stands for the corresponding part of

the Sa potential in eq. (1). We note that only the singlet scalars are assumed to have

non-minimal coupling with the Ricci scalar.

We take S1 as inflaton and other scalars are assumed to have much smaller values than

S1 during the inflation. In that case, V (Sa) can be approximately expressed as V (Sa) ≃
κ
(1)
1

4
S4
1 for a sufficiently large value of S1, where the coupling κ

(1)
i of inflaton is abbreviated

as κi and κ1S
2
1 ≫ m2

S1
is supposed implicitly. In order to derive the corresponding action

to eq. (11) in the Einstein frame, we use the conformal transformation [16, 23]

g = Ω2gE , Ω2 = 1 +

∑

a ξaS
2
a

M2
pl

. (12)

As a result of this transformation, we find that it is written as

SE =

∫

d4x
√−gE

[

1

2
M2

plRE +
1

2Ω4

∑

a,b=1,2

(

δab +
ξaδabS

2
a + 6ξaξbSaSb

M2
pl

)

∂µSa∂µSb −
1

Ω4
V (Sa)

]

.

(13)

9The study of Higgs inflation in the inert doublet model can be found in [25]. Although the present

inflation scenario and its prediction are essentially the same as [16, 18], we note that the inflaton is shown

to play crucial roles in the neutrino mass generation and the leptogenesis in this model.
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An important feature is the appearance of the mixing between ∂µSa and ∂µSb in the

second term. We will discuss it later.

We consider a case in which only one real scalar S1 has the non-minimal coupling with

the Ricci scalar at first. In that case, a canonically normalized field χ can be introduced

as

dχ

dS1
=

[

1 + (ξ1 + 6ξ21)
S2
1

M2
pl

]1/2

1 +
ξ1S2

1

M2
pl

. (14)

The potential 1
Ω4V (S1) can be expressed by using this χ. It is easily seen that the new

field χ coincides with S1 at the regions where S1 ≪ Mpl√
ξ1

is satisfied. On the other hand,

if S1 takes a large value such as S1 ≫ Mpl√
ξ1
, S1 and χ are found from eq. (14) to be related

as S1 ∝ exp

(

χ
√

6+ 1
ξ1

Mpl

)

. The potential at this region is found to be almost constant as

V
(1)
E =

κ1S
4
1

4
(

1 +
ξ1S2

1

M2
pl

)2 ≃
κ1M

4
pl

4ξ21
. (15)

This suggests that χ could play a role of slow-rolling inflaton in this region.

The number of e-foldings induced by the potential V
(1)
E can be estimated as

N =
1

M2
pl

∫ χ

χend

dχ
V

(1)
E

V
(1)′
E

≃ 3

4

S2
1 − S2

1,end

M2
pl/ξ1

, (16)

where V
(1)′
E =

dV
(1)
E

dχ
and eq. (14) is used. Slow roll parameters derived from this potential

are summarized as [26]

ε =
1

M2
pl

(

V
(1)′
E

V
(1)
E

)2

=
4M4

pl

3ξ21S
4
1

, η = M2
pl

(

V
(1)′′
E

V
(1)
E

)

= −
4M2

pl

3ξ1S2
1

. (17)

Since the inflation is considered to end at ε ≃ 1, we have S2
1,end ≃

√

4
3

M2
pl

ξ1
, which suggests

that S1,end could be neglected in eq. (16). Thus, the slow roll parameters are found to be

expressed as ε ≃ 3
4
N−2 and η ≃ −N−1 by using the e-foldings N only.

The spectrum of density perturbation predicted by the inflation is expressed as

P(k) = As

(

k

k∗

)ns−1

, As =
V

(1)
E

24π2M4
plε

∣

∣

∣

k∗
. (18)

If we use As = (2.445± 0.096)× 10−9 at k∗ = 0.002 Mpc−1 [13], we find that the relation

κ1 ≃ 10−6ξ21N
−2 should be satisfied at the horizon exit time of the scale k∗. The spectral

9



index ns and the tensor-to-scalar ratio r are represented by using the slow-roll parameters

as [26]

ns = 1− 6ε+ 2η, r = 16ε. (19)

Using eq. (17) to these formulas, they are found to be determined only by the e-foldings

N such as ns ∼ 0.968 and r ∼ 3.0 × 10−3 for N = 60. These values coincide with the

ones estimated from the Planck data well. Although all these results are the same as

the ones found in the Higgs inflation, the quartic coupling κ1 is a free parameter in this

model. It is completely different from the Higgs inflation where the corresponding quartic

coupling is constrained by the Higgs mass 126 GeV. As a result, we cannot relate weak

scale physics to the inflation through the observational data of the Universe in this model.

On the contrary, this fact allows that ξ1 takes a much smaller value compared with the

one of the usual Higgs inflation. For example, ξ1 = O(102) can realize both N = 60 and

the observed value of As if a very small value such as O(10−6) is assumed for κ1. However,

as found from the expression of the slow-roll parameters which depend only on N , the

predicted values for ns and r are the same as those of the Higgs inflation.

Next, we consider the model with two real scalars, which corresponds to the one

discussed in the previous section. The situation could largely change if multi-scalars have

couplings with the Ricci scalar. In general, the mixing in eq. (13) cannot be resolved by

any field redefinition and then it is difficult to find canonically normalized basis for them.

An exceptional situation for this could be found for hierarchical couplings such as ξ1 ≫ 1

and ξ1ξ2 ≪ 1. This condition can be freely imposed on the present model since S1 and S2

are not related by any symmetry. In that case, the model could behave as a single real

field model [20]. We can introduce a canonically normalized field χ for S1 in the same way

as eq. (14). On the other hand, the S2 relevant terms in eq. (13) are strongly suppressed

as long as ξ1S
2
1 > M2

pl is satisfied. In the potential V , the S2 relevant part can be given

as

V
(2)
E =

κ
(2)
1 S4

2

2
(

1 +
ξ1S2

1

M2
pl

)2 ≃
κ
(2)
1 M4

pl

2ξ21

(

S2

S1

)4

≪ V
(1)
E . (20)

This means that only the χ could play a role of slow-roll inflaton also in this case.

In addition, under the condition ξ1ξ2 ≪ 1, the scale of unitarity violation could be

comparable to the inflation scale
Mpl√
ξ1

[20]. The unitarity violating scattering induced by

the mixing part in the second term in eq. (13) could give the strongest constraint. A

10



simple power counting for the scattering amplitude between S1 and S2 suggests that the

unitarity violating scale is given by Λ =
Mpl√
ξ1ξ2

. However, since the condition
√
ξ1ξ2 <

√
ξ1

is satisfied, the unitarity violating scale Λ could be comparable to or larger than the

inflation scale
Mpl√
ξ1
. Since S1 and S2 are independent fields in the present model, ξ2 ≪ 1

is possible even if we assume a suitable value of ξ1 for inflation. Other possible unitarity

violation induced by other parts such as VE might be studied through the analysis by

taking account of the background field dependence. It suggests that the unitarity violation

scale is comparable to the inflation scale or larger than that. Thus, the flatness of the

present inflaton potential is reliable throughout the inflation period. Any physics which

remedies the unitarity violation does not affect the present inflation scenario.

4 Non-thermal leptogenesis and dark matter

4.1 Leptogenesis

Reheating after inflation is another important problem for this inflation scenario to be

realistic. If we impose the existence of sufficient thermal relics of the inert doublet DM

η0R in the present Universe, reheating temperature should be higher than its mass Mη0R
at

least, which is supposed to be of O(1) TeV in the present study. Since the allowed decay

mode for the inflaton S1 is limited to S1 → η†φ, φ†η, the decay width of S1 could be

estimated as ΓS1 =
1
8π

|µ1|2
mS1

. Applying instantaneous thermalization approximation to this

process, the reheating temperature could be estimated from the condition H ≃ ΓS1 as

TR ≃ 1.74g−1/4
∗ (ΓS1Mpl)

1/2 ≃ 1.6× 1012
( |µ1|
mS1

)1/2( |µ1|
108 GeV

)1/2

GeV, (21)

where g∗ = 116 is used. If TR > Mη0R
is satisfied and η0R exists in the thermal bath, the

observed DM abundance could be explained as the relic abundance of this thermal η0R.

The relic abundance is discussed in the next subsection.

Several leptogenesis scenarios may be considered in this reheating processe depending

on the lepton number assignment for new ingredients. First, we consider an ordinary

lepton number assignment to the new fields η and Nk such that L(η) = 0 and L(Nk) = 1.

In this case, if the reheating temperature is higher than a certain bound required for the

heavy singlet fermion masses,10 the usual thermal leptogenesis could work. On the other

10As discussed in [11], this bound for the singlet fermion masses could be relaxed in the radiative seesaw
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hand, if the reheating temperature is not so high but high enough to thermalize the singlet

fermions with masses of O(1) TeV for example, the sufficient baryon number asymmetry

could be generated through the resonant leptogenesis [28, 29] as long as the masses of the

singlet fermions are finely degenerate [11].

If we find that there is another possible assignment of the lepton number such as

L(η) = 1 and L(Nk) = 0 [17, 30], we can consider a new leptogenesis scenario allowed

in this model. It is based on the non-thermal generation of lepton number asymmetry

through the inflaton decay.11 Although the quartic coupling λ5(η
†φ)2 is forbidden by this

lepton number assignment, it could be generated effectively through the lepton number

violating tri-linear scalar couplings µa at low energy regions as discussed in the previous

section. Since this coupling violates the lepton number, the decay of inflaton induced

through this coupling could generate the lepton number asymmetry in the η sector through

the interference between tree and one-loop processes. The CP asymmetry expected in

this decay can be estimated as

ǫ ≡ Γ(S1 → ηφ†)− Γ̄(S1 → η†φ)

Γ(S1 → ηφ†) + Γ̄(S1 → η†φ)

=
|µ2|2
8π

[

1

m2
S1

ln
(m2

S1
+m2

S2
)

m2
S2

+
m2

S1
−m2

S2

(m2
S1

−m2
S2
)2 +m2

S2
Γ2
S2

]

sin 2(θ1 − θ2), (22)

where θa = arg(µa) and ΓS2 = 1
8π

|µ2|2
mS2

. In the following study, we assume the maximum

CP phase | sin 2(θ1 − θ2)| = 1.

Since η0R is supposed to be DM, all components of η is expected to be lighter than

Nk. In that case, the generated lepton number asymmetry cannot be transferred from

the η sector to the doublet lepton sector through the η decay.12 However, it can be

converted to the lepton sector through 2-2 scattering processes. If this conversion occurs

model in comparison with the famous Davidson-Ibarra bound in the usual seesaw model [27].
11The generation of lepton number asymmetry through the inflaton decay has been considered. In [31],

for example, the asymmetry is supposed to be generated by its decay to the heavy right-handed neutrinos

and their successive decay in the SO(10) GUT framework. Mass of the decay products is largely different

from the one in the present scenario.
12If a singlet fermion is considered to be DM, η could decay to the lepton and then the lepton number

asymmetry in the η sector moves to the lepton sector directly through it [17]. In this case, unfortunately,

the relic DM abundance could have serious tensions with the lepton flavor violating processes (LFV) [6].

However, if we assume a certain flavor structure for neutrino Yukawa couplings, the LFV constraints

could be satisfied. Detailed analysis for realistic parameters will be presented elsewhere.

12



efficiently without inducing any contradiction with other phenomenological constraints,

the sphaleron interaction is expected to generate the baryon number asymmetry from this

lepton number asymmetry. It has already been studied in a different inflation scenario

[30]. However, since the parameter space of the present model is much simpler than the

one of that model, we can study the feature of the scenario in a systematic way. We start

with a brief review for the method of the analysis at first.

The lepton number asymmetry in the co-moving volume is expressed by using the

entropy density s as ∆YL ≡ nℓ−nℓ̄

s
in the doublet lepton sector and as ∆Yη ≡ nη−n

η†

s

in the η sector, respectively. Boltzmann equations which describe the evolution of these

quantities are given as

d∆Yη

dz
= − z

sH(Mη)

[

2(γa + γb)

(

∆Yη

Y eq
η

− ∆YL

Y eq
L

)

+ 2(γx + γy)
∆Yη

Y eq
η

]

,

d∆YL

dz
=

z

sH(Mη)
2(γa + γb)

(

∆Yη

Y eq
η

− ∆YL

Y eq
L

)

, (23)

where we introduce a dimensionless parameter z which is defined as z = Mη

T
. The equilib-

rium values for these are expressed as Y eq
η (z) = 45

π4g∗
z2K2(z) and Y eq

L = 81
π4g∗

, where K2(z)

is the modified Bessel function of the second kind. These equations are derived under the

assumption such that the existence of S1,2 in the thermal bath can be neglected. It means

that both the inverse decay of S1,2 and the scattering containing S1,2 in the initial and final

states do not contribute to these equations. This requires TR < mS1,2 for the reheating

temperature TR. If we take account of eqs. (10) and (21) with it, |µ1|2
m2

S1

≪ |µ2|2
m2

S2

is found

to be imposed. Reaction densities γa,b for lepton number conserving scattering processes

ηη → ℓαℓβ and ηℓ†α → η†ℓβ cause the transition of the lepton number asymmetry between

the η sector and the doublet lepton sector. On the other hand, reaction densities γx,y for

lepton number violating scattering processes ηη → φφ and ηφ† → η†φ control the washout

of the lepton number asymmetry in the η sector. Formulas of these reaction densities are

summarized in Appendix A. If we note that nS1(TR) =
ρS1

(TR)

mS1
and ρS1(TR) =

π2

30
g∗T

4
R are

satisfied for the number density and the energy density of S1 at TR under the assumption

of instantaneous thermalization, ∆Yη(TR) =
3
4
ǫ TR

mS1
could be obtained by using eq. (22).

We use it and ∆YL(TR) = 0 as the initial values for this analysis. The lepton number

asymmetry ∆YL obtained at the weak scale as the solution of these Boltzmann equations

is converted to the baryon number asymmetry through the sphaleron processes. In the

present model, the resulting baryon number asymmetry could be estimated by using the

13
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Fig. 3 Relevant reaction rates and solutions of the Boltzmann equations for the cases (a) (upper panels)

and (b) (lower panels). They correspond to the cases with single fermion masses of O(104) GeV and

O(108) GeV. In the left-hand panels, the ratio of reaction rate Γ to the Hubble parameter H for the

relevant process is plotted as functions of z. In the right-hand panels, the evolution of ∆Yη and ∆YL are

plotted as functions of z. The lepton number asymmetry required to explain the observational results is

shown by the horizontal black dashed line.

solution of eq. (23) as13

YB = − 7

19
∆YL(zEW ). (24)

Now we show the results of the numerical analysis of the baryon number asymmetry

generated through the scenario described above. Since a factor
∑

k(hh
†)kk is included

in the reduced cross section σ̂a,b given in Appendix A, we have to determine the flavor

structure of neutrino Yukawa couplings for the realistic analysis. We adopt the results

obtained in Fig. 2 for it and then they are fixed as

(hh†)22 = (1 + q21)h
2
2, (hh†)33 = (1 + q22 + q23)h

2
3, (25)

13We find a relation B = − 7

19
(B − L) at the weak scale from the chemical equilibrium condition [17].

Since B − L is conserved under the sphaleron interaction, we note that eq. (23) should be regarded as

the Boltzmann equations for it but not for L.
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where we could choose the values of q2,3 in the allowed region shown in Fig. 2 for q1 = 0.77.

In the following analysis, we use q2 = −0.4 and q3 = 2.1 which fix the neutrino oscillation

parameters as ∆m2
32 = 2.51 · 10−3 eV2, ∆m2

21 = 7.63 · 10−5 eV2, sin2 2θ23 = 0.977,

sin2 2θ12 = 0.863 and sin2 2θ13 = 0.097. In Fig. 3, we show the solutions obtained for the

model parameters given as the cases (a) and (b) in Table 1. For each case, the ratio of

the relevant reaction rate to the Hubble parameter is plotted as a function of z in the left

panels. The evolution of ∆Yη and ∆YL is shown in the right panels, where ∆YL(zEW )

required for the observed baryon number asymmetry is implicated by the horizontal dotted

lines. We find that the sufficient amount of baryon number asymmetry is generated for

parameters which are consistent with the neutrino oscillation data. The obtained values

are listed in the last column of Table 1.

In Fig. 3, we find completely different behavior in the transition of the lepton number

asymmetry between the two cases. The difference comes from whether the lepton number

conserving scatterings could be in the thermal equilibrium or not. It is determined de-

pending on both values of the neutrino Yukawa couplings and singlet fermion masses. In

this model, they are constrained by the neutrino oscillation data together with the value

of the effective coupling λ5(≃ µ2
2

m2
S2

) as found in eq. (10). If the lepton number conserving

scatterings could be expected in the thermal equilibrium for TR ≫ Mk, the situation

∆YL ≃ ∆Yη is realized during that period. It is found in the case (a). The final value

of ∆YL at the electroweak scale is determined depending on the time when they leave

the equilibrium. On the other hand, if we suppose that these processes could never be

in the thermal equilibrium, we find that TR ≪ Mk should be satisfied and the relation

∆YL ≃ ∆Yη cannot be kept during any substantial period. This corresponds to the case

(b). The final value of ∆YL in this case is fixed mainly by the strength of the lepton

number conserving scattering processes at TR.

It is useful to clarify the parameter dependence of the generated baryon number asym-

metry YB in order to understand this scenario. In the case (a), YB is stable against the

change of h2,3 and M2,3 which satisfies the conditions given in eq. (10) as long as λ5 is

kept to be a constant value. This feature is considered to be brought about since the

decoupling temperature of the lepton number conserving scatterings is not affected by

this variation substantially. On the other hand, YB is deeply dependent on the values of

µ1 and µ2. The former one determines the initial value of ∆Yη and the latter one controls
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Fig. 4 Left: The dependence of |YB| on |µ1|
mS1

, |µ2|
mS2

(≃
√

|λ5|) which are relevant to the initial value of the

lepton number asymmetry and the washout of the lepton number asymmetry, respectively. mS2
= 1.1mS1

is assumed. Right: The dependence of |YB | on ∆ ≡ mS2

mS1

− 1 for several values of |λ5|. |µ1|
mS1

= 2 · 10−5

is assumed. In both panels, other parameters are fixed to satisfy the neutrino oscillation data assuming

mS1
= 109 GeV and Mη = 1 TeV as discussed in the part relevant to eq. (10).

the washout of ∆Yη. Examples of this dependence could be seen are through the left

panel of Fig. 4. Smaller |µ1| makes the reheating temperature TR lower and then reduces

the initial lepton number asymmetry ∆Yη(TR). Larger |µ1| makes TR higher and TR could

take a near value to mS1,2 in the present setting. This makes the washout of ∆Yη at the

neighborhood of TR be enhanced due to the tail effect of the s-channel resonance. It can

be seen at a small z region in the figures of Γ
H
. These could explain the reason why |YB|

is a convex function of |µ1|
mS1

. Since larger |λ5| makes the washout effect larger as found

from the formulas of σ̂x,y given in Appendix A, |λ5| is expected to have an upper bound.

The left panel of Fig. 4 shows that |λ5| should be smaller than 2 · 10−6 to guarantee the

sufficient amount of |YB| in this case. Degeneracy between mS1 and mS2 is also crucial

to fix the value of the CP asymmetry and then the initial lepton number asymmetry

∆Yη(TR). In the right panel of Fig. 4, |YB| is plotted as a function of ∆(≡ mS2

mS1
− 1). If

the mass difference becomes smaller, the second term in eq. (22) which comes from the

self-energy diagram is enhanced and then the initial value of ∆Yη(TR) becomes larger.

However, as shown in these examples, the fine degeneracy is not required as long as λ5

takes a smaller value as mentioned above. It is a distinctive point from the ordinary TeV

scale thermal leptogenesis. This comes from the non-thermal origin due to the inflation

decay which could prepare a sufficient amount of asymmetry.
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In the case (b), the situation is completely different from the case (a). YB is largely

dependent on the setting of h2,3 and M2,3 for a fixed value of λ5. Unless Mk is much

larger than TR, the rate of the lepton number conserving scatterings could be enhanced

to be almost in the thermal equilibrium at the neighborhood of TR. In that case, since

the washout processes are in the equilibrium due to an assumed large value of |λ5|, ∆Yη

decreases steeply and the transferred ∆YL follows ∆Yη not to reach a substantial value.

To escape this situation, it seems to be necessary for Mk to be larger than TR by an order

of magnitude at least. These features clarify how both µ1

mS1
and µ2

mS2
play crucial roles in

this scenario. Anyway, these studies suggest that the present non-thermal leptogenesis

could give us a successful scenario for the generation of the baryon number asymmetry.

It is completely consistent with the neutrino mass generation which could explain all the

neutrino oscillation data.

4.2 Dark matter

In this subsection, we discuss the connection between this leptogenesis scenario and DM

physics under the assumption that the lightest neutral scalar η0R is DM. At first, we

discuss the relic abundance of η0R. In the mass range of η0R discussed in this paper, its

abundance is known to be determined by the couplings λ3,4 in eq. (1) [11, 12], which are

completely irrelevant to the analysis of other phenomena studied here.14 As discussed in

[30], the lepton number asymmetry kept in the η sector cannot play any role in the DM

abundance. The asymmetry in this sector disappears through the effective coupling λ5

after the electroweak symmetry breaking. Thus, the required relic abundance should be

realized as thermal relics for suitable values of λ3,4. The estimation of its relic abundance

for Mη = 600 GeV, 1 and 3 TeV is shown in Fig. 5, which is obtained by using the ordinary

method whose detail can be found in [30]. Since the required abundance is displayed by

the horizontal dotted line in this figure, we find that appropriate values of λ3,4 could make

the thermal η0R be a favorable DM candidate naturally.

Next, we discuss the consistency between this leptogenesis scenario and the η0R DM.

Since the effective coupling λ5(≃ µ2
2

m2
S2

) takes a small value, the real and imaginary parts

η0R,I of the neutral component of η have almost degenerate masses whose difference is

14We note that the required relic abundance cannot be explained for Mη0

R

<
∼ 530 GeV where only the

gauge interaction reduces it below the required value [12].
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Fig. 5 Thermal η0R relic abundance for Mη = 600 GeV, 1 TeV and 3 TeV from the left to the right,

respectively. It is estimated by taking account of the coannihilation between the components of η which

is controlled by the couplings λ3,4.

expressed as15

δ ≡ Mη0I
−Mη0R

=
〈φ〉2
Mη

µ2
2

m2
S2

. (26)

On the other hand, η0R and η0I have a weak gauge interaction such as

Lint =
g

2
Zµ(ηR∂µηI − ηI∂µηR). (27)

This interaction induces the spin-independent inelastic scattering ηRN → ηIN with a

nucleus N mediated by a Z0 exchange in which the nucleus is not excited as long as the

mass difference δ is sufficiently small. This reaction can contribute to the direct search of

DM. The η0R-nucleon cross section for this inelastic scattering can be estimated as

σ0
n,inel =

G2
F

2πµ2
n

≃ 7.44× 10−39 cm2, (28)

where µn is the reduced mass of this η0R-nucleon system and δ ≪ Mη is assumed. If we

apply the bound from recent DM direct search experiments to this cross section, we could

approximately derive a useful constraint on this leptogenesis scenario.

As briefly described the in Appendix B, the present bound on σ0
n estimated for the

elastic scattering (δ = 0) might be translated to the one for the inelastic scattering (δ 6= 0)

as

σ0
n,inel = σ0

n,el

∫ vesc

vmin(δ=0)

dv

(

e
− (v−ve)

2

v20 − e
− (v+ve)

2

v20

)

∫ vesc

vmin(δ 6=0)

dv

(

e
− (v−ve)

2

v2
0 − e

− (v+ve)
2

v2
0

) , (29)

15 η0R and η0I could be mass eigenstates for a real λ5. Since we assume that µ2 is real and |µ1|
2

m2

S1

≪ |µ2|
2

m2

S2

is satisfied, the effective coupling λ5 can be treated as a real parameter.
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Fig. 6 Constraint on the effective coupling λ5, which is derived from the DM direct detection experiments.

Each line represents σ0

n,inel for (Mη, ER). A bound for σ0
n at mDM= 3 TeV, 1 TeV and 600 GeV given

by LUX is used.

where vmin is the minimum η0R velocity required to induce this scattering. This σ0
n,inel

obtained by using the present bound on σ0
n should be larger than the value given in

eq. (28) since DM has not been detected in any direct detection experiments [32, 33]. We

also note that η0R cannot be detected in any direct search experiments unless vmin < vesc

is satisfied for the local escape velocity vesc from our Galaxy. It is estimated as 498

km/s< vesc <608 km/s [34] and its medium value 544 km/s is used as vesc in this analysis.

In Fig. 6, we plot σ0
n,inel corresponding to it as a function of |λ5| for typical values of the

recoil energy of nucleus ER by using the bound of σ0
n given by LUX [33] as σ0

n,el in eq. (29).16

Since the endpoint of each line represents the occurrence of vmin = vesc, the scattering is

kinematically forbidden at the larger |λ5| region than it and then such a region of |λ5| is
allowed from the result of the present direct DM search. Unless the escape velocity takes

much larger values than the one used here, this analysis unfortunately suggests that this

DM with the mass Mη
<
∼ 6 TeV is difficult to be detected through this inelastic scattering

process in the direct search experiments.

If we take account of the relation |λ5| ≃ |µ2|2
mS2

in this model, we might roughly read off

16Since the differential WIMP-nucleus cross section in the case of scattering leading to a heavier WIMP

depends on the recoil energy very differently from that associated with the standard elastic scattering

and since in the present case the nucleon cross section depends on the WIMP velocity, clearly we cannot

derive an exact bound by using the experimental result for the elastic scattering.
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the condition required from this figure as follows,

µ2
2

m2
S2

>
∼















(1− 2)× 10−5 for Mη0R
= 3 TeV,

(5− 7)× 10−6 for Mη0R
= 1 TeV,

(3− 4)× 10−6 for Mη0R
= 600 GeV,

(30)

although it has non-negligible dependence on ER and vesc. We should note that |λ5|
cannot take small values freely even if the neutrino mass constraints have only to be

satisfied. In the case (b), this constraint is found to be consistent with the parameters

used in the above analysis of the baryon number asymmetry. On the other hand, in

the case (a), one might consider from Fig. 6 that this constraint is not satisfied and the

scenario is inconsistent. However, it may be appropriate to judge that the consistency of

the parameters used here is marginal if we take account of several uncertainties included

in the estimation of the bound on |λ5|. We also note that the situation could be improved

if we suppose fine mass degeneracy between S1 and S2 such as ∆ = 10−6 and a favorable

value for |µ1|
mS1

such as 2 · 10−5. As we find in the right-panel of Fig. 5, these could enhance

the initial asymmetry of the lepton number produced through the inflaton decay. In this

case, for example, |YB| = 1.2 · 10−10 can be obtained for |λ5| = 3.5 · 10−6 at Mη = 1 TeV.

5 Summary

We have proposed an extension of the radiative neutrino mass model with Z2 odd real

singlet scalars, which give a seed of lepton number violation to allow Majorana neutrino

mass generation at one-loop level. If they have hierarchical non-minimal couplings with

the Ricci scalar such as
∑

a ξaS
2
aR with ξ1 ≫ 1 ≫ ξ2, the S1 potential at large field regions

is so flat that sufficient inflation could be induced. Although both the scalar spectral index

and the tensor-to-scalar ratio take favorable values just as the Higgs inflation, the model

can evade from the unitarity problem differently from the ordinary Higgs inflation. Since

the unitarity violating scale could be similar to or larger than the inflation scale, the

flatness of the inflaton potential is never disturbed by new physics which restores the

unitarity of the model.

The decay of inflaton could non-thermally produce the lepton number asymmetry

in the η sector through the reheating processes. Although its decay cannot yield this

asymmetry directly in the lepton sector, the lepton number conserving scatterings could
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convert a sufficient amount of asymmetry from the η sector to the lepton sector. This

lepton number asymmetry is transferred to the baryon number asymmetry through the

sphaleron interaction. Parameters relevant to this leptogenesis are constrained by the

neutrino oscillation data and the DM direct search experiments. We have shown that the

sufficient baryon number could be generated consistently with these constraints under

suitable conditions. Moreover, the DM abundance could be fixed by the parameters

which are irrelevant to all of these as long as η0R is supposed to be DM. Although the

model considered here is very simple, it can compactly explain problems in the SM such

as the neutrino mass generation, the DM origin and its abundance, the inflation and the

baryon number asymmetry in the Universe. They are closely related each other through

the radiative mechanism for the neutrino mass generation.
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Appendix A

We summarize the formulas for the reaction densities which contribute to the Boltzmann

equations used in this analysis. We introduce dimensionless variables

x =
s

M2
η

, ak =
M2

k

M2
η

, ba =
m2

Sa

M2
η

, ca =
|µa|2
M2

η

, (31)

where s is the squared center of mass energy. The reaction density for the scattering

processes is expressed as

γ(ab → ij) =
T

64π4

∫ ∞

smin

ds σ̂(s)
√
sK1

(√
s

T

)

, (32)

where σ̂(s) is the reduced cross section and K1(z) is the modified Bessel function of the

second kind. The lower bound of integration is defined as smin = max[(ma +mb)
2, (mi +

mj)
2].

The reduced cross section σ̂a,b for the lepton number conserving scattering processes

are given as

σ̂a(x) =
1

2π

[

3
∑

k=1

(hh†)2kk

{

ak(x
2 − 4x)1/2

akx+ (ak − 1)2

+
ak

x+ 2ak − 2
ln

(

x+ (x2 − 4x)1/2 + 2ak − 2

x− (x2 − 4x)1/2 + 2ak − 2

)}

+
∑

i>j

Re[(hh†)2ij ]
√
aiaj

x+ ai + aj − 2

{

2x+ 3ai + aj − 4

aj − ai
ln

(

x+ (x2 − 4x)1/2 + 2ai − 2

x− (x2 − 4x)1/2 + 2ai − 2

)

+
2x+ ai + 3aj − 4

ai − aj
ln

(

x+ (x2 − 4x)1/2 + 2aj − 2

x− (x2 − 4x)1/2 + 2aj − 2

)}]

(33)

for ηη → ℓαℓβ and

σ̂b(x) =
1

2π

(x− 1)2

x2

[

3
∑

k=1

(hh†)2kk
ak
x

{

x2

xak − 1
+

2x

Dk(x)
+

(x− 1)2

2Dk(x)2

− x2

(x− 1)2

(

1 +
2(x+ ak − 2)

Dk(x)

)

ln

(

x(x+ ak − 2)

xak − 1

)}

+
∑

i>j

Re[(hh†)2ij ]

√
aiaj

x

{

x

Di(x)
+

x

Dj(x)
+

(x− 1)2

Di(x)Dj(x)

+
x2

(x− 1)2

(

2(x+ ai − 2)

aj − ai
− x+ ai − 2

Dj(x)

)

ln
x(x+ ai − 2)

xai − 1

+
x2

(x− 1)2

(

2(x+ aj − 2)

ai − aj
− x+ aj − 2

Di(x)

)

ln
x(x+ aj − 2)

xaj − 1

}]

(34)
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for ηℓ†α → η†ℓβ. In these formulas, we use the following definition for convenience:

1

Dk(x)
=

x− ak
(x− ak)2 + a2kdk

, dk =
1

64π2

(

∑

α=e,µ,τ

|hαk|2
)2
(

1− 1

ak

)4

. (35)

If we take account of the assumption |µ1|2
m2

S1

≪ |µ2|2
m2

S2

, the reduced cross section σ̂x,y of

the lepton number violating scattering processes could be approximately represented as

σ̂x(x) ≃ c22
π

1

(x3(x− 4))1/2

(

2

P 2
2 − 1

+
1

P2
ln

P2 + 1

P2 − 1

)

,

σ̂y(x) ≃ c22
π

[

2

(x− 1)2
1

Q2
2 − 1

+
(x− 1)2

2x2

1

D̃2(x)
+

1

x

x− b2

D̃2(x)
ln

Q2 + 1

Q2 − 1

]

(36)

for ηη → φφ and ηφ† → η†φ, respectively. In these formulas we use the definition such as

1

D̃a(x)
=

1

(x− ba)2 + b2ad̃a
, d̃a =

1

64π2

(

ca
ba

)2(

1− 1

ba

)2

,

Pa =
2(1− ba)− x

[x(x− 4)]1/2
, Qa = −1 +

2(1− xba)

(x− 1)2
. (37)

Appendix B

We consider the direct DM detection through the inelastic scattering with the target

composed of the nucleus with the atomic number Z and the mass number A [35, 36]. Its

differential detection rate per unit target mass is

dR

dER

= NT
ρDM

mDM

∫

d3v vf(~v, ~ve)
dσ

dER

, (38)

where NT is a number of target nuclei per unit mass and ER is the recoil energy of nucleus.

The DM velocity distribution in the rest frame of detector may be taken as a Maxwell-

Boltzmann distribution f(~v, ~ve) = 1
(πv20)

3/2 exp
(

− (~v+~ve)2

v20

)

with v0 = 220 km/s. We take

into account the motion of the Sun and the Earth by using ~ve whose magnitude changes

as ve = v0

[

1.05 + 0.07 cos
(

2π(t−tp)
1 yr

)]

. The minimum velocity for which the scattering

can occur is estimated as

vmin =
1√

2mNER

(

mNER

mr
+ δ

)

, (39)

where mN is the mass of a target nucleus and mr is the reduced mass of DM-nucleus

system mr =
mDMmN

mDM+mN
. The differential cross section dσ

dER
for spin independent interaction
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is expressed by using the DM-nucleon cross section σ0
n at zero momentum transfer as

dσ

dER
=

mN

2v2µ2
n

[Zfp + (A− Z)fn]
2

f 2
n

σ0
nF

2(ER), (40)

where F (ER) is a form factor of the nucleus. If we substitute this in eq. (38), the differ-

ential rate can be represented by using eq. (40) as

dR

dER
= DNσ

0
n

∫

d3v
1

v
f(~v, ~ve), (41)

where DN is written as

DN = NT
mNρDM

2µ2
nmDM

[Zfp + (A− Z)fn]
2

f 2
n

F 2(ER). (42)

We note that DN takes a fixed value as long as the same target is used.

The remaining part depends on the sub-process and it can be expressed as

σ0
n

∫

dv
1

v2
f(~v, ~ve) = σ0

n

1√
πv0ve

∫ vesc

vmin

dv

(

e
− (v−ve)

2

v2
0 − e

− (v+ve)
2

v2
0

)

. (43)

This depends on whether the scattering occurs elastically (δ = 0) or inelastically (δ 6= 0).

If we interpret the present direct detection results based on these scattering processes, the

present bound on the elastic scattering cross section σ0
n,el can be translated to the bound

on the inelastic scattering cross section σ0
n,inel through

σ0
n,inel

∫ vesc

vmin(δ 6=0)

dv

(

e
− (v−ve)

2

v20 − e
− (v+ve)

2

v20

)

= σ0
n,el

∫ vesc

vmin(δ=0)

dv

(

e
− (v−ve)

2

v20 − e
− (v+ve)

2

v20

)

.

(44)

We use this relation to constrain the allowed values of δ, which makes us possible to find

the lower bound of the effective coupling |λ5|.
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