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Abstract

In this work, we concentrate on the average of complete joint
weight enumerators of linear codes over Fq and Zk. From the very
beginning, the study of codes became inseparable from the study of
their weight enumerators. One of our main aims in this work is to
give an illustration of the average of complete joint weight enumera-
tors of two linear codes of length n over Fq and Zk in terms of the
compositions of n and their distributions in the codes. Next we give a
generalization of the illustration for the average of the g-fold complete
joint weight enumerators of linear codes over Fq and Zk.

Self-dual codes are one of the most remarkable branches in the
study of coding theory. The study of the average intersection numbers
of a pair of Type I (resp. Type II) codes of length n over F2, where
the average is considered over the all Type I (resp. Type II) codes
of length n, inspired us to investigate the analogues for the case of
Type III (resp. Type IV) codes of length n over F3 (resp. F4). Our
another main result is to present an asymptotic bound for the average
of intersection numbers of a pair of Type III (resp. Type IV) codes.
Finally, we obtain an asymptotic bound for the second moment of the
average of intersection numbers of a pair of Type III (resp. Type IV)
codes.

1 Introduction

F. J. MacWilliams and N. J. A. Sloane [4] introduced the notion of the com-
plete weight enumerator of an Fq-linear code and gave a generalization of the
MacWilliams identity for the complete weight enumerator. T. Miezaki and
M. Oura [5] pointed out a relation between the genus g complete weight enu-
merator and the genus g cycle index of an Fq-linear code. F. J. MacWilliams,
C. L. Mallows and N. J. A. Sloane [3] introduced the notion of the joint weight
enumerator of two Fq-linear codes and also discussed the MacWilliams type
identity for the joint weight enumerator. Further, the notion of the g-fold
complete joint weight enumerator of g linear codes over Fq was given by
I. Siap and D. K. Ray-Chaudhuri [6] while the concept of the g-fold joint
weight enumerator and the g-fold multi-weight enumerator of codes over Zk
was investigated by S. T. Dougherty, M. Harada and M. Oura [2].

T. Yoshida [7] introduced the notion of the average joint weight enumera-
tors of two binary linear codes, and gave a representation of the average joint

2



weight enumerators using the ordinary weight distributions of the codes. In
this thesis, we call this representation as Yoshida’s theorem. This gives rise
to a natural question: is there a generalization of the average joint weight
enumerators that is analogous to Yoshida’s theorem? The first aim of this
thesis is to give a candidate that answers this question.

Throughout this work, we assume that R denotes either the finite field Fq
of order q, where q is a prime power or the ring Zk of integers modulo k for
some integer k ≥ 2.

In this dissertation, we define the average complete joint weight enumera-
tor of two linear codes over R, and give a generalization of Yoshida’s theorem
for it. Moreover, we extend the idea of the average complete joint weight enu-
merator to the average of g-fold complete joint weight enumerators of linear
codes over R. We take the average on all permutationally (not monomially)
equivalent linear codes over R.

T. Yoshida [8] introduced the notion of the average intersection number
for two binary codes. T. Yoshida [8] also proved that the average of inter-
section numbers of a pair of Type I (resp. Type II) codes over F2 and their
second moments are asymptotically bounded. Here we have another ques-
tion: what is the asymptotic bound for the average of intersection numbers
and its second moments of a pair of Type III codes over F3 as well as Type IV
codes over F4? The second aim of this thesis is to answer this question.

2 Preliminaries

Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be the elements of Fnq , where
q = pf for some prime p. Then the inner product of u,v ∈ Fq is given by
u · v := (u1, v1) + · · ·+ (un, vn) where for any a, b ∈ Fq,

(a, b) :=

{
ab
√
q if f is even;

ab otherwise.

Now the inner product of u,v ∈ Znk is given by u·v := u1v1+· · ·+unvn, where
u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn). If u·v = 0 for u,v ∈ Rn, we call
u and v orthogonal. An element u ∈ Rn is called self-orthogonal if u ·u = 0.

An Fq-linear code of length n is a vector subspace of Fnq , and a Zk-linear
code of length n is an additive group of Znk . Let C be an R-linear code of
length n. The elements of C are called codewords. The dual code of C is
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defined as
C⊥ := {v ∈ Rn | u · v = 0 for all u ∈ C}.

If C ⊆ C⊥, then C is called self-orthogonal, and if C = C⊥, then C is called
self-dual. Clearly, if C is self-dual, every codeword u ∈ C is self-orthogonal.

It is well known that the length n of a self-dual code over Fq is even and
the dimension is n/2. A self-dual code C over F2 is called Type II if the
weight of each codeword of C is a multiple of 4. It is well-known that the
length n of a Type II code is a multiple of 8. A self-dual code over F2 which
is not Type II is called Type I. A self-dual code C over F3 is called Type III if
the weight of each codeword of C is a multiple of 3. The length of a Type III
code is a multiple of 4. Finally, a self-dual code C over F4 having even weight
is called Type IV.

Let the elements of R be 0 = ω0, ω1, . . . , ω|R|−1 in some fixed order. Then
the composition of an element u ∈ Rn is defined as

comp(u) := s(u) := (sa(u) : a ∈ R),

where sa(u) denotes the number of coordinates of u that are equal to a ∈ R.
Obviously,

∑
a∈R sa(u) = n. In general, a composition s of n is a vector s =

(sa : a ∈ R) with non-negative integer components such that
∑

a∈R sa = n.
Let C be an R-linear code of length n. We denote by TCs the set of

codewords of C with composition s, that is,

TCs := {u ∈ C | sa = sa(u) for all a ∈ R},

and let ACs := |TCs |. Then the complete weight enumerator of C is defined
as:

CC(xa : a ∈ R) :=
∑
u∈C

∏
a∈R

xsa(u)a =
∑
s

ACs
∏
a∈R

xsaa ,

where xa for a ∈ R are indeterminates and the sum extends over all compo-
sitions s of n.

Let C and D be two R-linear codes of length n. We denote by η(u,v)
the bi-composition of the pair (u,v) for u,v ∈ Rn which is a vector with
non-negative integer components ηαβ(u,v) defined as

ηαβ(u,v) := #{i | (ui, vi) = (α, β)},
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where (α, β) ∈ R2. Clearly
∑

α,β∈R ηαβ(u,v) = n. In general, a bi-composition
η of n is a vector with non-negative integer components ηαβ such that∑

α,β∈R

ηαβ = n.

The complete joint weight enumerator of C and D is defined as

CJC,D(xa with a ∈ R2) :=
∑

u∈C,v∈D

∏
a∈R2

xηa(u,v)a

=
∑
η

AC,Dη

∏
a∈R2

xηaa ,

where a := a1a2 := (a1, a2) ∈ R2 and xa for a ∈ R2 are the indeterminates
and AC,Dη is the number of pair (u,v) ∈ C × D such that ηa(u,v) = ηa for
all a ∈ R2.

We write Sn for the symmetric group acting on the set {1, 2, . . . , n},
equipped with the composition of permutations. For any R-linear code C,
the code Cσ := {uσ | u ∈ C} for some permutation σ ∈ Sn is called permu-
tationally equivalent to C, where uσ := (uσ(1), . . . , uσ(n)). Then the average
complete joint weight enumerator of R-linear codes C and D is defined as

CJ av
C,D(xa with a ∈ R2) :=

1

n!

∑
σ∈Sn

CJCσ ,D(xa with a ∈ R2).

3 MacWilliams Identity

The MacWilliams identity for g-fold complete joint weight enumerators of
codes over Fq was established in [6]. Further, in [2], the MacWilliams iden-
tity for g-fold joint weight enumerators of codes over Zk was given. In this
section, we study the MacWilliams type identity for the average complete
joint enumerators over R. At the beginning of this section we recall [2, 3] to
take some fixed character over R.

A character χ of R is a homomorphism from the additive group R to the
multiplicative group of non-zero complex numbers.

Let R = Fq, where q = pf for some prime number p. Again let F (x) be
a primitive irreducible polynomial of degree f over Fp and let λ be a root of
F (x). Then any element α ∈ Fq has a unique representation as:

(1) α = α0 + α1λ+ α2λ
2 + · · ·+ αf−1λ

f−1,
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where αi ∈ Fp, and χ(α) := ζα0
p , where ζp is the primitive p-th root e2πi/p of

unity, and α0 is given by (1).
Again if R = Zk, then for α ∈ Zk we defined χ as χ(α) := ζαk , where ζk

is the primitive k-th root e2πi/k of unity.
We have the MacWilliams identity for the complete weight enumerator

of a code C over R as follows.

Theorem 3.1 ([2, 3]). For a code C over R we have

CC⊥(xa with a ∈ R) =
1

|C|
TR · CC(xa with a ∈ R),

where TR = (χ(αβ))α,β∈R.

For a code C over R let C̃ be either C or C⊥. Then we define

δ(C, C̃) :=

{
0 if C̃ = C,

1 if C̃ = C⊥.

Now we the following MacWilliams type identity for the average of complete
joint enumerators of codes over R.

Theorem 3.2 ([1]). Let C and D be two R-linear codes of length n. Then
we have

CJ av
C̃,D̃

(xa with a ∈ R2) =
1

|C|δ(C,C̃)|D|δ(D,D̃)
T
δ(C,C̃)
R ⊗ T δ(D,D̃)

R

CJ av
C,D(xa with a ∈ R2).

4 Generalization of Yoshida’s theorem

In this section, we give a generalization of Yoshida’s theorem which is pre-
sented in the following theorem. Before stating the theorem we put(

a

b1, b2, . . . , bm

)
:=

a!

b1!b2! . . . bm!
.

6



Theorem 4.1 ([1]). Let C and D be two R-linear codes of length n, and r
and s be the compositions of n. Again let η be the bi-composition of n such
that

r =

(∑
β∈R

ηω0β, . . . ,
∑
β∈R

ηω|R|−1β

)
, s =

(∑
α∈R

ηαω0 , . . . ,
∑
α∈R

ηαω|R|−1

)
.

Then we have

CJ av
C,D(xa with a ∈ R2) =

∑
r,s,η

ACr A
D
s

∏
b∈R

(
sb

ηω0b, . . . , ηω|R|−1b

)
(

n

rω0 , . . . , rω|R|−1

) ∏
a∈R2

xηaa .

Let C1, C2, . . . , Cg be R-linear codes of length n. Let (c1, . . . , cg) ∈ C1 ×
· · · × Cg,. We denote by ηg(c1, . . . , cg) a vector with non-negative integer
components ηga(c1, . . . , cg) for a ∈ Rg and defined as:

ηga(c1, . . . , cg) := #{i | (c1i, . . . , cgi) = a}.

We call ηg(c1, . . . , cg) the g-fold composition of (c1, . . . , cg) ∈ C1 × · · · × Cg.
We denote by ηg a g-fold composition of n, a vector with non-negative integer
components ηga for a ∈ Rg such that

∑
a∈Rg η

g
a = n.

We also denote by T
C1,...,Cg
ηg the set of codewords of C1 × . . .×Cg with g-

fold composition ηg. The g-fold complete joint weight enumerator is defined
as follows:

CJC1,...,Cg(xa with a ∈ Rg) :=
∑

c1∈C1,...,cg∈Cg

∏
a∈Rg

xη
g
a(c1,...,cg)
a

=
∑
ηg

A
C1,...,Cg
ηg

∏
a∈Rg

xη
g
a
a ,

where xa for a ∈ Rg are the indeterminates and A
C1,...,Cg
ηg is the number of

g-tuples (c1, . . . , cg) ∈ C1 × · · · × Cg such that

ηg(c1, . . . , cg) = ηg.

The average g-fold complete joint weight enumerators are defined as:

CJ av
C1,C2,...,Cg

(xa : a ∈ Rg) :=
1

n!

∑
σ∈Sn

CJCσ1 ,C2,...,Cg(xa : a ∈ Rg).
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Let a = (a1, . . . , ag) ∈ Rg and b = (b1, . . . , bg−1) ∈ Rg−1. Then we denote

[a; j] := (a1, . . . , aj−1, aj+1, . . . , ag) ∈ Rg−1,

(z; b) := (z, b1, . . . , bg−1) ∈ Rg for z ∈ R.

Now we have a generalization of Theorem 4.1 for the average g-fold com-
plete joint weigh enumerators over R.

Theorem 4.2 ([1]). Let C1, C2, . . . , Cg be the R-linear codes of length n and
s1, s2, . . . , sg be the compositions of n. Let ηg be the g-fold composition of n
such that for j = 1, 2, . . . , g,

sj =

(∑
a∈Rg

ηga with aj = ωi for i = 0, 1, . . . , |R| − 1

)
.

Again let ηg−1 be the (g−1)-fold composition of n such that the non-negative
integer components ηg−1b for b ∈ Rg−1 is equal to the sum of ηga over all
a ∈ Rg with [a; 1] = b, that is,

ηg−1b =
∑
a∈Rg

ηga|[a;1]=b .

Then we have

CJ av
C1,...,Cg

(xa with a ∈ Rg)

=
∑

s1,ηg−1,ηg

AC1
s1
A
C2,...,Cg
ηg−1

∏
b∈Rg−1

(
ηg−1b

ηg(ω0;b)
, . . . , ηg(ω|R|−1;b)

)
(

n

s1ω0 , . . . , s1ω|R|−1

) ∏
a∈Rg

xη
g
a
a .

5 The Average of Intersection Numbers

The notion of the average intersection number was introduced in [7] for binary
linear codes. We take the same notion for R-linear codes C and D of length n
and define the average intersection number as follows:

∆(C,D) :=
1

n!

∑
σ∈Sn

|C ∩Dσ|.

Now we have the following result.
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Proposition 5.1 ([1]). Let C,D be two R-linear code of length n, and r be
the composition of n. Then we have

∆(C,D) =
∑
r

ACr A
D
r(

n

r0, . . . , r|R|−1

) .
Let C ⊆ Fnq for q = 2, 3, 4 be a code. Now for m = 1, 2 we define

∆m
J (C) :=

1

|Jn|
∑
D∈Jn

|C ∩D|m,

where Jn denotes the set of self-dual codes of Type J , where J stands for I,
II, III or IV. The following results for J = I and II are presented in [8].

Theorem 5.1 ([8]). Let C be a binary self-dual code of length n. Then

(i) ∆I(C) ≈ 4 if C is of Type I,

(ii) ∆II(C) ≈ 6 if C is of Type II.

Theorem 5.2 ([8]). Let C be a binary self-dual code of length n. Then

(i) ∆2
I (C) ≈ 24 if C is of Type I,

(ii) ∆2
II(C) ≈ 60 if C is of Type II.

We give the analogous results of the above theorems for Type III and
Type IV codes over F3 and F4 respectively as follows.

Theorem 5.3 ([1]). Let C be a Type III code over F3 of length n ≡ 0
(mod 4). Then we have

(i) ∆III(C) = 4− 4

3n/2−1 + 1
≈ 4,

(ii) ∆2
III(C) =

40(3n/2)2

(3n/2 + 3)(3n/2 + 9)
≈ 40.

Theorem 5.4 ([1]). Let C be a Type IV code over F4 of length n ≡ 0
(mod 2). Then we have

(i) ∆IV(C) = 3− 3

22(n/2)−1 + 1
≈ 3,

(ii) ∆2
IV(C) =

27(22(n/2))2

(22(n/2) + 2)(22(n/2) + 8)
≈ 27.
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