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Abstract

In this thesis, we concentrate on the average of complete joint weight enu-

merators of linear codes over Fq and Zk. From the very beginning in the study

of codes became inseparable from the study of their weight enumerators. One

of our main results in this work is to give an illustration of the average of com-

plete joint weight enumerators of two linear codes of length n over Fq and Zk

in terms of the compositions of n and their distributions in the codes. Next we

give a generalization of the illustration for the average of the g-fold complete

joint weight enumerators of linear codes over Fq and Zk.

Self-dual codes are one of the most remarkable branches in the study of cod-

ing theory. The study of the average intersection numbers of a pair of Type I

(resp. Type II) codes of length n over F2, where the average is considered over

the all Type I (resp. Type II) codes of length n, inspired us to investigate the

analogues for the case of Type III (resp. Type IV) codes of length n over F3

(resp. F4). Our another main result is to present an asymptotic bound for the

average of intersection numbers of a pair of Type III (resp. Type IV) codes.

Finally, we obtain an asymptotic bound for the second moment of the average

of intersection numbers of a pair of Type III (resp. Type IV) codes.

vii



CHAPTER 1

Introduction

In 1948, C. Shannon [20] introduced a sophisticated branch of mathematics

called coding theory with an application to the area of digital communication

system. Among the various types of coding, we are particularly interested in

the wing of error-correcting codes which have a special role in data transmission

through satellite and cellular telephone.

Let Fq be a finite field, where q is a prime power. An Fq-code of length n

is a subset of Fnq . The codes over F2 are called binary codes , while the codes

over F3 and F4 are known as ternary codes and quaternary codes , respectively.

An Fq-linear code is a linear subspace of Fnq . At the very beginning of the

study in coding theory M. J. E. Golay [7] and R. W. Hamming [8] introduced

two different binary linear codes which are known as the Golay code and the

Hamming code, respectively.

In recent years, there has been interest in studying codes over the finite

rings Zk of integers modulo k (k ≥ 2). Like as an Fq-code, the Zk-code of

length n is a subset of a Znk . But a Zk-linear code of length n is a submodule

1



1. INTRODUCTION 2

of Znk . In 1994, A. R. Hammons et al. [9] established the relations between

certain well-known families of nonlinear binary codes and Z4-linear codes.

Throughout our study, we assume that R denotes either the finite field Fq

or the finite ring Zk. The elements of an R-linear code are known as codewords

while the number of nonzero coordinates is called the weight of a codeword.

The weight enumerator of an R-linear code of length n is a homogeneous

polynomial of degree n whose each term interprets the number of codewords

for a certain weight. Dual of a code plays an important role in the study of

coding theory. We can determine the dual of a code with respect to a given

inner product on Rn. F. J. MacWilliams [11] showed that without knowing any

information about the dual of an Fq-linear code, the weight enumerator of the

dual code can be uniquely determined from the weight enumerator of the Fq-

linear code. These types of relations are known as MacWilliams identity. For

binary linear codes, a generalization of the MacWilliams identity for genus g

was given by B. Runge [19]. Further E. Bannai, S. T. Dougherty, M. Harada

and M. Oura [1] gave an analogue of the MacWilliams identity for genus g for

the codes over Z2k.

F. J. MacWilliams and N. J. A. Sloane [14] introduced the notion of the

complete weight enumerator of an Fq-linear code and gave a generalization of

the MacWilliams identity for the complete weight enumerator. T. Miezaki and

M. Oura [15] pointed out a relation between the genus g complete weight enu-

merator and the genus g cycle index of an Fq-linear code. F. J. MacWilliams,

C. L. Mallows and N. J. A. Sloane [12] introduced the notion of the joint
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weight enumerator of two Fq-linear codes and also discussed the MacWilliams

type identity for the joint weight enumerator. Further, the notion of the g-

fold complete joint weight enumerator of g linear codes over Fq was given by

I. Siap and D. K. Ray-Chaudhuri [21] while the concept of the g-fold joint

weight enumerator and the g-fold multi-weight enumerator of codes over Zk

was investigated by S. T. Dougherty, M. Harada and M. Oura [5].

In 1989, T. Yoshida [22] introduced the notion of the average joint weight

enumerators of two binary linear codes, and gave a representation of the av-

erage joint weight enumerators using the ordinary weight distributions of the

codes. In this thesis, we call this representation as Yoshida’s theorem. This

gives rise to a natural question: is there a generalization of the average joint

weight enumerators that is analogous to Yoshida’s theorem? The first aim of

this thesis is to give a candidate that answers this question.

In this thesis, we define the average complete joint weight enumerator of

two linear codes over R, and give a generalization of Yoshida’s theorem for it.

Moreover, we extend the idea of the average complete joint weight enumer-

ator to the average of the g-fold complete joint weight enumerators of linear

codes over R. We take the average on all permutationally (not monomially)

equivalent linear codes over R.

A self-dual code is a code that is equal to its dual. For this type of codes

over Fq, it is well-known that the length of the code is twice its dimension. In

1970, A. M. Gleason [6] provides the main motivation for studying self-dual

codes over F2, F3 and F4. These codes have a property that the weight of each



1. INTRODUCTION 4

codewords of a certain code is divisible by a certain integer greater than 1.

A binary self-dual code is called Type II if all weights of the codewords are

divisible by 4, otherwise called Type I. A Type III code is a self-dual code

over F3 whose weights of the codewords are divisible by 3. Finally, a self-dual

code over F4 is called Type IV if every codeword has even weight.

In 1991, T. Yoshida [23], introduced the notion of the average intersection

number for two binary codes. T. Yoshida [23] also proved that the average of

intersection numbers of a pair of Type I (resp. Type II) codes over F2 and their

second moments are asymptotically bounded. Here we have another question:

what is the asymptotic bound for the average of intersection numbers and its

second moments of a pair of Type III codes over F3 as well as Type IV codes

over F4? The second aim of this thesis is to answer this question.

In Chapter 2, we give the basic definitions and notations that we use in

this thesis. In Section 2.1, we discuss the basic concepts of a linear code

over Fq and its properties. In Section 2.2, we give a brief introduction about

Zk-linear codes. The concept of the weight enumerator of a code is discussed

in Section 2.3. The MacWilliams identity plays an important role in the study

of weight enumerators of a code. We discuss this identity in Section 2.4.

In Chapter 3, we review various types of weight enumerators, such as joint

weight enumerators and its properties specially the MacWilliams type identity

in Section 3.1, and average joint weight enumerator in Section 3.2. In Sec-

tion 3.2, we discuss Yoshida’s theorem. This theorem is the main topic of our

interest in this thesis.
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In Chapter 4, we present a generalization of the concept of the average

joint weight enumerator for the binary codes, namely the average of complete

joint weight enumerators of two linear codes over R. In Section 4.1, we give

the MacWilliams type identity for the complete joint weight enumerators of

codes over R. The main goal of this chapter is to answer our first question.

In Section 4.2, we answer the question and give a generalization of Yoshida’s

theorem for the average of complete joint weight enumerator of two linear

codes over R. In Section 4.3, we extend the idea of the average complete joint

weight enumerator to the average of g-fold complete joint weight enumerators

of linear codes over R and give a g-fold analogue of Yoshida’s theorem.

In Chapter 5, our aim is to find an answer of our second question. In

Section 5.1, we define the average intersection number of two codes over R and

discuss a relation with the average of the complete joint weight enumerator

of codes over R. We also give a formula to evaluate the average intersection

numbers. In Section 5.2, we give the asymptotic bounds for the average of

intersection numbers of a pair of Type III codes over F3 (resp. Type IV codes

over F4) and for their second moments which is actually the answer to our

second question.



CHAPTER 2

Linear Codes

In this chapter, we give the basic definitions and notations that we use in the

entire thesis. In Section 2.1, we discuss the basic concepts of a linear code

over Fq and its properties. In Section 2.2, we give a brief introduction about

Zk-linear codes. The concept of weight enumerator of a code is discussed in

Section 2.3. The MacWilliams identity plays an important role in the study

of weight enumerator of a code. We discuss this identity in Section 2.4. We

refer the readers to [1, 10, 14, 16] for more details about these concepts.

2.1. Codes over Fq

Let Fq be a finite field of order q, where q is a prime power. We denote

by Fnq the n-dimensional vector space over Fq. The elements of Fnq is usually

written in the form u = (u1, u2, . . . , un). A code C of length n is a nonempty

subset of Fnq . The elements of C are called codewords , and n is the (word)

length of C.

Definition 2.1.1 An Fq-linear code is a linear subspace of Fnq .

6



2.1. CODES OVER Fq 7

If C is an Fq-linear code with dimension k, then C is called an [n, k] linear

code. An [n, k] linear code C has qk codewords. A generator matrix G for an

[n, k] linear code C is any k×n matrix whose rows form a basis of C. A parity

check matrix H for the [n, k] code C is an (n − k) × n matrix over Fq with

rank n − k such that for any u ∈ Fnq , u ∈ C if and only if HuT = 0. The

generator matrix of an [n, k] linear code is said to be in the standard form if

it is of the form [Ik | A], where Ik is the k × k identity matrix, and A is a

k × (n− k) matrix. In the following theorem AT denotes the transpose of A.

Theorem 2.1.1 ([10]). If G = [Ik | A] is a generator matrix for the [n, k]

linear code C in standard form, then H = [−AT | In−k] is a parity check

matrix for C.

Example 2.1.1 We denote by H7 the [7, 4] Hamming code. The generator

matrix G = [I4 | A] of H7 in standard form is

G =



1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1


.

Then by Theorem 2.1.1, we have a parity check matrix H = [AT | I3] for H7 is

H =


0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

 .
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In order to define an inner product of the elements u = (u1, . . . , un) and

v = (v1, . . . , vn) in Fnq , we let q = pf for some prime number p. The inner

product of u and v is denoted by u · v and is defined as

u · v :=
n∑
i=1

(ui, vi),

where for any a, b ∈ Fq,

(a, b) :=


ab
√
q if f is even;

ab otherwise.

If u · v = 0, we call u and v orthogonal. An element u ∈ Fnq is called self-

orthogonal if u · u = 0.

Definition 2.1.2 Let C be an Fq-linear code of length n. Then the dual code

of C is given by

C⊥ := {u ∈ Fnq | u · v = 0 for all v ∈ C}.

It is easy to show that C⊥ is the same as the set of all parity checks on C.

If C has generator matrix G and parity check matrix H, then the generator

and parity check matrices of C⊥ are H and G, respectively. This implies that

if C is an [n, k] linear code then C⊥ is an [n, n− k] linear code.

Definition 2.1.3 An Fq-linear code is said to be self-orthogonal if C ⊆ C⊥,

and self-dual if C = C⊥.

Remark 2.1.1 The length n of a self-dual code is even and the dimension

is n/2.
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Example 2.1.2 Let F3 = {0, 1, 2}. Let C be a [4, 2] code over F3 with

generator matrix:

G =

1 0 1 1

0 1 1 2

 .
It is easy to check that C = C⊥. Therefore, C is a self-dual code. The elements

of C are listed as follows:

(0, 0, 0, 0), (0, 1, 1, 2), (0, 2, 2, 1),

(1, 0, 1, 1), (1, 1, 2, 0), (1, 2, 0, 2),

(2, 0, 2, 2), (2, 1, 0, 1), (2, 2, 1, 0).

2.2. Codes over Zk

Let Zk be the ring of integers modulo k for k ≥ 2. A Zk-linear code of

length n is an additive subgroup of Znk . Let u = (u1, u2, . . . , un) and v =

(v1, v2, . . . , vn) be the elements of Znk . We define the inner product of u and v

on Znk as follows:

u · v := u1v1 + u2v2 + · · ·+ unvn.

Let C be a Zk-linear code of length n. Like as the codes over Fq we call

the elements of C codewords. The matrix whose rows generate the code C is

called a generator matrix of C. The dual code C⊥ of C is defined as

C⊥ := {u ∈ Znk | u · v = 0 for all v ∈ C}.

We call C self-orthogonal if C ⊆ C⊥, and self-dual if C = C⊥.
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2.3. Weight enumerators

We assume that R denotes either the finite field Fq of order q, where q is

a prime power or the ring Zk of integers modulo k for some integer k ≥ 2.

Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be the elements of Rn.

The (Hamming) distance dist(u,v) between two elements u,v ∈ Rn is defined

by

dist(u,v) := #{i | ui 6= vi}.

It is immediate from the definition that the distance function dist(u,v) is a

metric on Rn. That is, the distance function satisfies the following properties:

(i) (non-negativity) dist(u,v) ≥ 0 for all u,v ∈ Rn.

(ii) dist(u,v) = 0 if and only if u = v.

(iii) (symmetry) dist(u,v) = dist(v,u) for all u,v ∈ Rn.

(iv) (triangle inequality) dist(u,w) ≤ dist(u,v)+dist(v,w) for all u,v,w ∈

Rn.

We denote by supp(u) of an element u ∈ Rn the support of u and defined

as

supp(u) := {i | ui 6= 0}.

The (Hamming) weight of an element u ∈ Rn is denoted by wt(u) and defined

as wt(u) := | supp(u)|. The minimum distance of an R-linear code C is the

minimum of the (Hamming) distance dist(u,v) for u,v ∈ C and u 6= v. The

following theorem gives a well-known relation between the distance function

and the weight function.
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Theorem 2.3.1 ([1, 10]). If u,v ∈ Rn, then dist(u,v) = wt(u−v) = wt(w)

for some w ∈ Rn. If C is an R-linear code, the minimum distance d is the

same as the minimum weight of the nonzero codewords of C.

Let C be an R-linear code of length n. Then for 0 ≤ i ≤ n, we call

ACi := #{u ∈ C | wt(u) = i}

the weight distribution of C. We can easily verity the following facts about

the weight distribution of an R-linear code with the minimum distance d.

(i) AC0 = 1.

(ii) AC1 = AC2 = · · · = ACd−1 = 0.

(iii) AC0 +AC1 + · · ·+ACn = |C|.

Example 2.3.1 Let C be the code over F3 of Example 2.1.2. The weight

distribution of C is as follows:

A0 = 1, A1 = A2 = 0, A3 = 8, A4 = 0.

The weight enumerator of an R-linear code of length n is a homogeneous

polynomial of degree n which presents the weight distribution of C and defined

as

wC(x, y) :=
∑
u∈C

xn−wt(u)ywt(u) =
n∑
i=0

ACi xn−iyi,

where x and y are indeterminates. Let the elements of R be 0 = ω0, ω1, . . . , ω|R|−1

in some fixed order. Then the composition of an element u ∈ Rn is defined as

comp(u) := s(u) := (sa(u) : a ∈ R),
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where sa(u) denotes the number of coordinates of u that are equal to a ∈ R.

Obviously, ∑
a∈R

sa(u) = n.

In general, a composition s of n is a vector s = (sa : a ∈ R) with non-

negative integer components such that

∑
a∈R

sa = n.

Let C be an R-linear code of length n. We denote by TCs the set of code-

words of C with composition s, that is,

TCs := {u ∈ C | sa = sa(u) for all a ∈ R},

and by ACs := |TCs |. Then the complete weight enumerator of C is defined as:

CC(xa : a ∈ R) :=
∑
u∈C

∏
a∈R

xsa(u)a =
∑
s

ACs
∏
a∈R

xsaa ,

where xa for a ∈ R are indeterminates and the sum extends over all composi-

tions s of n.

Remark 2.3.1 Let C be an R-linear code of length n. Then for any u ∈ C,

wt(u) =
∑

a∈R,a 6=0 sa(u). Therefore,

CC(x0 ← x, xa ← y for all 0 6= a ∈ R) = wC(x, y).

Example 2.3.2 Let C be the code over F3 of Example 2.1.2. Let the com-

position s = (s0, s1, s2). Then we have the following list of non-zero ACs :

AC(4,0,0) = 1, AC(1,3,0) = 1, AC(1,0,3) = 1, AC(1,2,1) = 3, AC(1,1,2) = 3.
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Therefore, the complete weight enumerator and weight enumerator of C is as

follows:

CC(x0, x1, x2) = x40x
0
1x

0
2 + x10x

3
1x

0
2 + x10x

0
1x

3
2 + 3x10x

2
1x

1
2 + 3x10x

1
1x

2
2,

wC(x, y) = CC(x, y, y) = x4 + 8xy3.

2.4. MacWilliams identity

At the beginning of this section we recall [5, 12] to take some fixed char-

acters over R.

A character χ of R is a homomorphism from the additive group of R to

the multiplicative group of non-zero complex numbers.

Let R = Fq, where q = pf for some prime number p. Again let F (x) be

a primitive irreducible polynomial of degree f over Fp and let λ be a root of

F (x). Then any element α ∈ Fq has a unique representation as:

(1) α = α0 + α1λ+ α2λ
2 + · · ·+ αf−1λ

f−1,

where αi ∈ Fp, and χ(α) := ζα0
p , where ζp is the primitive p-th root e2πi/p of

unity, and α0 is given by (1).

Again if R = Zk, then for α ∈ Zk we defined χ as χ(α) := ζαk , where ζk is

the primitive k-th root e2πi/k of unity.

Example 2.4.1 Let R = F4 = {0, 1, ω, ω2}. Therefore q = 4 = 22. So, we

have p = f = 2 and ζp = ζ2 = e2πi/2. Then any element a ∈ F4 can be uniquely

written for a0, a1 ∈ F2 as:

a = a0 + a1ω.
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Now the characters of each element of F4 are as follows:

χ(0) = ζ02 = 1, χ(1) = ζ12 = −1, χ(ω) = ζ02 = 1, χ(ω + 1) = ζ12 = −1.

Lemma 2.4.1.
∑

a∈R χ(a) = 0.

Proof. Firstly, let R = Fq, where q = pf for some prime number p. Then we

have

∑
a∈Fq

χ(a) =
∑
a∈Fq

ζa0p , where a0 is given by (1)

=

f−1∏
i=0

(
p−1∑
a0=0

ζa0p

)

= f

p−1∑
k=0

ζkp

= f
1− ζpp
1− ζp

= 0 since ζpp = 1.

Now if R = Zk, then
∑

a∈Zk χ(a) =
∑

a∈Zk ζ
a
k =

∑k−1
a=0 ζ

a
k =

1− ζkk
1− ζk

= 0. �

Lemma 2.4.2. Let C be an R-linear code of length n. For v ∈ Rn, let

δC⊥(v) :=


1 if v ∈ C⊥,

0 otherwise.

Then we have the following identity

δC⊥(v) =
1

|C|
∑
u∈C

χ(u · v).
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Proof. Let v ∈ C⊥. Then u · v = 0 for all u ∈ C. This implies
∑

u∈C χ(u ·

v) = |C|. If v /∈ C⊥, then χ(u.v) takes each value in R equally often, so∑
u∈C χ(u · v) = 0. This completes the proof. �

Now we have the MacWilliams identity for the complete weight enumerator

of a code C over R as follows.

Theorem 2.4.3 ([5, 12]). For a linear code C over R we have

(2) CC⊥(xa with a ∈ R) =
1

|C|
TR · CC(xa),

where TR = (χ(αβ))α,β∈R.

Proof. Let C be an R-linear code of length n. Then

|C|CC⊥(xa : a ∈ R) = |C|
∑

u′∈C⊥

∏
a∈R

xsa(u
′)

a

= |C|
∑
v∈Rn

δC⊥(v)
∏
a∈R

xsa(v)a

=
∑
v∈Rn

∑
u∈C

χ(u · v)
∏
a∈R

xsa(v)a

=
∑
u∈C

∑
v∈Rn

χ(u · v)
∏
a∈R

xsa(v)a

=
∑
u∈C

∑
v∈Rn

χ(u1v1 + · · ·+ unvn)
n∏
i=1

xvi

=
∑
u∈C

n∏
i=1

∑
vi∈R

χ(uivi)xvi

=
∑
u∈C

∏
α∈R

(∑
β∈R

χ(αβ)xβ

)sα(u)
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= CC

(∑
β∈R

χ(αβ)xβ with α ∈ R

)

= TR · CC(xa).

Hence the proof is completed. �

With the help of Remark 2.3.1, if we replace x0 by x and xa by y for all

a ∈ R and a 6= 0 in (2), then we have the MacWilliams identity presenting the

weight enumerator of C⊥.

Theorem 2.4.4 ([14, 16]). If C be an R-linear code of length n with its C⊥,

then

wC⊥(x, y) =
1

|C|
wC(x+ (|R| − 1)y, x− y).



CHAPTER 3

Variants of Weight Enumerators

The notion of the joint weight enumerator of two Fq-linear codes was intro-

duced in [12]. Further, the notion of the g-fold complete joint weight enumer-

ator of g linear codes over Fq was given in [21]. The concept of the g-fold

joint weight enumerator and the g-fold multi-weight enumerator of codes over

Zk was investigated in [5]. Furthermore, the average of joint weight enumer-

ators of two binary codes was investigated in [22] using the ordinary weight

distributions of the codes. In this chapter, we give a brief discussion about

the above mentioned concepts for the codes over R and some of its properties.

We thoroughly review [22] and its the main result which we call Yoshida’s

theorem along with the proof.

17
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3.1. Joint weight enumerators

Let u = (u1, . . . , un) and v = (v1, . . . , vn) be any two elements of Rn. Then

we define

i(u,v) := #{t | ut = 0, vt = 0},

j(u,v) := #{t | ut = 0, vt 6= 0},

k(u,v) := #{t | ut 6= 0, vt = 0},

`(u,v) := #{t | ut 6= 0, vt 6= 0}.

Clearly

i(u,v) + j(u,v) + k(u,v) + `(u,v) = n,

j(u,v) + `(u,v) = wt(v),

k(u,v) + `(u,v) = wt(u).

Let C and D be two R-linear codes of length n. The joint (Hamming)

weight enumerator of C and D is defined as:

JC,D(x, y, z, w) :=
∑
u∈C

∑
v∈D

xi(u,v)yj(u,v)zk(u,v)w`(u,v)

=
∑
i,j,k,`

AC,Di,j,k,`x
iyjzkw`,

where x, y, z, w are indeterminates and AC,Di,j,k,` is the number of the pair of

u ∈ C and v ∈ D such that

i(u,v) = i, j(u,v) = j, k(u,v) = k, `(u,v) = `.
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For any two R-linear codes C and D, it is immediate from the above definition

that

JC,D(1, 1, 1, 1) = |C||D|,

JD,C(x, y, z, w) = JC,D(x, z, y, w).

Remark 3.1.1 Let C and D be two R-linear codes of length n. Then

(1) wC(x, y) =
1

|D|
JC,D(x, x, y, y),

(2) wD(x, y) =
1

|C|
JC,D(x, y, x, y),

(3) If D = {(0, 0, . . . , 0)}, then wC(x, y) = JC,D(x, 1, y, 1).

(4) If C = {(0, 0, . . . , 0)}, then wD(x, y) = JC,D(x, y, 1, 1).

In [12], MacWilliams et al. present the MacWilliams type identity for

the joint weight enumerator over Fq while in [5], Dougherty et al. give a

generalization of the theorem over Zk. Hence we have the MacWilliams type

identity for the joint weight enumerator over R. We will give a proof of the

above theorem in a more general setting in Theorem 4.1.1.

Theorem 3.1.1 ([12, 5]). Let C and D be two R-linear codes of length n.

Then we have the following relations:

JC⊥,D(x, y, z, w) =
1

|C|
JC,D(x+ γz, y + γw, x− z, y − w),

JC,D⊥(x, y, z, w) =
1

|D|
JC,D(x+ γy, x− y, z + γw, z − w),

JC⊥,D⊥(x, y, z, w) =
1

|C||D|
JC,D(x+ γ(y + z) + γ2w, x− y+

γ(z − w), x− z + γ(y − w), x− y − z + w).
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where γ = |R| − 1.

3.2. Average of joint weight enumerators

The concept of the average joint weight enumerators for codes over F2 was

introduced in [22]. In this section, we discuss the same notion for the codes

over R. We write Sn for the symmetric group acting on the set

[n] := {1, 2, . . . , n},

equipped with the composition of permutations. For any R-linear code C, the

code Cσ := {uσ | u ∈ C} for permutation σ ∈ Sn is called permutationally

equivalent to C, where uσ := (uσ(1), . . . , uσ(n)). Then the average joint weight

enumerator of R-linear codes C and D is defined as

JavC,D(x, y, z, w) :=
1

n!

∑
σ∈Sn

JCσ ,D(x, y, z, w).

Obviously, if C ′ is permutationally equivalent to C and D′ is permutationally

equivalent to D, then

JavC′,D′(x, y, z, w) = JavC,D(x, y, z, w).

The following theorem gives the MacWilliams type identity for the average

joint weight enumerators over R.

Theorem 3.2.1. Let C and D be two R-linear codes of length n. Then we

have the following relations:

JavC⊥,D(x, y, z, w) =
1

|C|
JavC,D(x+ γz, y + γw, x− z, y − w),
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where γ = |R| − 1.

Proof. From the definition of the average joint weight enumerator we can

write:

JavC⊥,D(x, y, z, w)

=
1

n!

∑
σ∈Sn

J(C⊥)σ ,D(x, y, z, w)

=
1

n!

∑
σ∈Sn

J(Cσ)⊥,D(x, y, z, w)

=
1

n!

∑
σ∈Sn

1

|Cσ|
JCσ ,D(x+ γz, y + γw, x− z, y − w)

=
1

|C|
JavC,D(x+ γz, y + γw, x− z, y − w).

This completes the proof. �

Corollary 3.2.2. For two R-linear codes C and D, we have

JavC,D⊥(x, y, z, w) =
1

|D|
JavC,D(x+ γy, x− y, z + γw, z − w)

Corollary 3.2.3. For two R-linear codes C and D, we have

JavC⊥,D⊥(x, y, z, w) =
1

|C||D|
JavC,D(x+ γ(y + z) + γ2w,

x− y + γ(z − w), x− z + γ(y − w), x− y − z + w).

3.3. Yoshida’s theorem

In [22], Yoshida represented the average of joint weight enumerators of two

binary linear codes of length n in terms of the ordinary weight distributions
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of the codes. That is, if C and D are two binary linear codes of length n, the

average joint weight enumerator of C and D can be represented by using the

weight distribution of C and D which we have in the the following theorem.

Theorem 3.3.1 ([22]). Let C and D be two binary linear codes of length n.

Then

JavC,D(x, y, z, w) =
∑
i,j

ACi ADj xn−i−jyjziFn,i,j(xw/yz)

where

Fn,i,j(a) :=
∑
t

(
j

t

)(
n− j
i− t

)
(
n

i

) at.

Proof. Let C and D be two linear binary codes of length n. Then the joint

weight enumerator of C and D is

(3) JC,D(x, y, z, w) =
∑
i,j,k,l

AC,Di,j,k,`x
iyjzkw`.

where i+ j + k + ` = n. Now define

BC,D
i,j,t := #{(u,v) ∈ C ×D | wt(u) = i,wt(v) = j, `(u,v) = t}.

Therefore

AC,Di,j,k,` = BC,D
k+`,j+`,` for i+ j + k + ` = n.

Thus we can write from (3)

(4) JC,D(x, y, z, w) =
∑
i,j,t

BC,D
i,j,t x

n−i−j+tyi−tzj−twt.
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Then we have

∑
σ∈Sn

BCσ ,D
i,j,t = #{(u,v, σ) ∈ Ci ×Dj × Sn | `(uσ,v) = t}

=
∑
u∈Ci

∑
v∈Dj

#{σ ∈ Sn | `(uσ,v) = t},

where Ci denotes the set of codewords u ∈ C such that wt(u) = i. Let u ∈ Ci

and v ∈ Dj. Again let X := supp(u), Y := supp(v). It is well-known that the

order of a subgroup of Sn which stabilizes a subset X with |X| = r is r!(n−r)!.

Therefore

∑
σ∈Sn

BCσ ,D
i,j,t =

∑
u∈Ci

∑
v∈Dj

#{σ ∈ Sn | |Xσ ∩ Y | = t}

= ACi A
D
j r!(n− r)!#{X ′ ⊆ [n] | |X ′| = i, |X ′ ∩ Y | = t}

= ACi A
D
j r!(n− r)!

(
j

t

)(
n− j
i− t

)

= ACi A
D
j n!

(
j

t

)(
n− j
i− t

)
(
n

i

)

Now by (4) we have

JavC,D(x, y, z, w) =
1

n!

∑
σ∈Sn

JCσ ,D(x, y, z, w)

=
1

n!

∑
i,j,t

∑
σ∈Sn

BCσ ,D
i,j,t xn−i−j+tyi−tzj−twt
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Hence we have

JavC,D(x, y, z, w) =
∑
i,j,t

ACi A
D
j

(
j

t

)(
n− j
i− t

)
(
n

i

) xn−i−j+tyi−tzj−twt

=
∑
i,j,t

ACi A
D
j

(
j

t

)(
n− j
i− t

)
(
n

i

) xn−i−j+tyi−tzj−twt

Hence the proof. �



CHAPTER 4

Generalization of Yoshida’s Theorem

In this chapter, we give the notion of the average of complete joint weight

enumerators of two linear codes over R. The main focus of this chapter is

to give a generalization of Yoshida’s theorem for the average of complete joint

weight enumerator of two linear codes over R. Moreover, we extend the idea of

the average complete joint weight enumerator to the average of g-fold complete

joint weight enumerators of linear codes over R.

4.1. Basic definitions and properties

Let C and D be two R-linear codes of length n. We denote by η(u,v)

the bi-composition of the pair (u,v) for u,v ∈ Rn which is a vector with

non-negative integer components ηαβ(u,v) defined as

ηαβ(u,v) := #{i | (ui, vi) = (α, β)},

where (α, β) ∈ R2. Clearly

∑
α,β∈R

ηαβ(u,v) = n.

25
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In general, a bi-composition η of n is a vector with non-negative integer com-

ponents ηαβ such that

∑
α,β∈R

ηαβ = n.

The complete joint weight enumerator of C and D is defined as

CJC,D(xa with a ∈ R2) :=
∑

u∈C,v∈D

∏
a∈R2

xηa(u,v)a

=
∑
η

AC,Dη

∏
a∈R2

xηaa ,

where a := a1a2 := (a1, a2) ∈ R2 and xa for a ∈ R2 are the indeterminates

and AC,Dη is the number of pair (u,v) ∈ C × D such that ηa(u,v) = ηa for

all a ∈ R2.

Remark 4.1.1 For a = a1a2 ∈ R2, let

ya =



x if a1 = a2 = 0,

y if a1 = 0, a2 6= 0,

z if a1 6= 0, a2 = 0,

w if a1 6= 0, a2 6= 0.

For two R-linear codes C and D, we have the following relation between com-

plete joint weight enumerators and joint weight enumerators.

CJC,D(xa ← ya : a ∈ R2) = JC,D(x, y, z, w).
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For a code C over R let C̃ denote either C or C⊥. Then we define

δ(C, C̃) :=


0 if C̃ = C,

1 if C̃ = C⊥.

Before giving the MacWilliams type identity for the complete joint weight

enumerator of codes, we recall the character χ of R and the definition of the

matrix TR from Chapter 2.

Theorem 4.1.1 ([3]). Let C and D be two R-linear codes of length n. Then

we have the MacWilliams type relation as follows:

CJC̃,D̃(xa with a ∈ R2) =
1

|C|δ(C,C̃)|D|δ(D,D̃)
T
δ(C,C̃)
R ⊗ T δ(D,D̃)

R

CJC,D(xa with a ∈ R2).

Proof. It is sufficient to show

|D|CJC,D⊥(xawith a ∈ R2) = (I ⊗ TR)CJC,D(xawith a ∈ R2),

where C̃ = C, D̃ = D⊥, and I is the identity matrix. Now by Lemma 2.4.2,

we can write

|D|CJC,D⊥(xa with a ∈ R2)

= |D|
∑
c∈C

∑
d′∈D⊥

∏
a∈R2

xηa(c,d
′)

a

= |D|
∑
c∈C

∑
v∈Rn

δD⊥(v)
∏
a∈R2

xηa(c,v)a

=
∑
c∈C

∑
v∈Rn

∑
d∈D

χ(d · v)
∏
a∈R2

xηa(c,v)a
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=
∑
c∈C

∑
d∈D

∑
v∈Rn

χ(d · v)
∏
a∈R2

xηa(c,v)a

=
∑

c∈C,d∈D

∑
v∈Rn

χ(d1v1 + · · ·+ dnvn)
n∏
i=1

xcivi

=
∑

c∈C,d∈D

n∏
i=1

∑
vi∈R

χ(divi)xcivi

=
∑

c∈C,d∈D

∏
(α,β)∈R2

(∑
v∈R

χ(βv)xαv

)ηαβ(c,d)

= CJC,D

(∑
v∈R

χ(βv)xαv with (α, β) ∈ R2

)

= (I ⊗ TR)CJC,D(xawith a ∈ R2).

Hence, the proof is completed. �

4.2. Average of complete joint weight enumerators

We recall from Chapter 3 the symmetric group Sn acting on [n], equipped

with the composition of permutations. We also recall that for any R-linear

code C, the code Cσ denotes the permutationally equivalent code of C for

permutation σ ∈ Sn. Then the average complete joint weight enumerator

of R-linear codes C and D is defined as

CJ av
C,D(xa with a ∈ R2) :=

1

n!

∑
σ∈Sn

CJCσ ,D(xa with a ∈ R2).

Remark 4.2.1 Let C and D be two R-linear codes. Then if C ′ is permuta-

tionally equivalent to C and D′ is permutationally equivalent to D, then we

have

CJ av
C′,D′(xa with a ∈ R2) = CJ av

C,D(xa with a ∈ R2).
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Now from Theorem 4.1.1, we have the generalized MacWilliams identity

for the average complete joint weight enumerator of R-linear codes C and D

as follows:

CJ av
C̃,D̃

(xa with a ∈ R2) =
1

|C|δ(C,C̃)|D|δ(D,D̃)
T
δ(C,C̃)
R ⊗ T δ(D,D̃)

R

CJ av
C,D(xa with a ∈ R2).

Now we presents a generalization of Yoshida’s theorem (Theorem 3.3.1) as

follows. Before stating the theorem we put

(
a

b1, b2, . . . , bm

)
:=

a!

b1!b2! . . . bm!
.

Theorem 4.2.1 ([3]). Let C and D be two R-linear codes of length n, and

r and s be the compositions of n. Again let η be the bi-composition of n such

that

r =

(∑
β∈R

ηω0β, . . . ,
∑
β∈R

ηω|R|−1β

)
,

s =

(∑
α∈R

ηαω0 , . . . ,
∑
α∈R

ηαω|R|−1

)
.

Then we have

CJ av
C,D(xa with a ∈ R2)

=
∑
r,s,η

ACr A
D
s

∏
b∈R

(
sb

ηω0b, . . . , ηω|R|−1b

)
(

n

rω0 , . . . , rω|R|−1

) ∏
a∈R2

xηaa ,
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Proof. Let C and D be two R-linear codes of length n. Then the complete

joint weight enumerator of C and D is

(5) CJC,D(xa with a ∈ R2) :=
∑
η

AC,Dη

∏
a∈R2

xηaa ,

where
∑

a∈R2 ηa = n. Now let us define

BC,D
r,s,η := #{(u,v) ∈ C × D | comp(u) = r, comp(v) = s, η(u,v) = η}.

Therefore, AC,Dη = BC,D
r,s,η, where

r = (rω0 , . . . , rω|R|−1
) =

(∑
β∈R

ηω0β, . . . ,
∑
β∈R

ηω|R|−1β

)
,

s = (sω0 , . . . , sω|R|−1
) =

(∑
α∈R

ηαω0 , . . . ,
∑
α∈R

ηαω|R|−1

)
.

Hence, we can write from (5)

(6) CJC,D(xa with a ∈ R2) :=
∑
r,s,η

BC,D
r,s,η

∏
a∈R2

xηaa .

Now

∑
σ∈Sn

BCσ ,D
r,s,η = #{(u,v, σ) ∈ TCr × TDs × Sn | η(uσ,v) = η}

=
∑
u∈TCr

∑
v∈TDs

#{σ ∈ Sn | η(uσ,v) = η}.

It is well known that the order of a subgroup of Sn which stabilizes u ∈ TCr is∏
b∈R rb!. Therefore,
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∑
σ∈Sn

BCσ ,D
r,s,η =

∑
u∈TCr

∑
v∈TDs

|R|−1∏
i=0

rωi !

#{u′ ∈ Rn | comp(u′) = r, η(u′,v) = η}

=
∑
u∈TCr

∑
v∈TDs

|R|−1∏
i=0

rωi !

|R|−1∏
i=0

sωi !∏|R|−1
j=0 ηωjωi !

= ACr A
D
s

|R|−1∏
i=0

rωi !

|R|−1∏
i=0

sωi !∏|R|−1
j=0 ηωjωi !

= ACr A
D
s n!

∏|R|−1
i=0

sωi !∏|R|−1
j=0 ηωjωi !

n!∏|R|−1
i=0 rωi !

= ACr A
D
s n!

∏|R|−1
i=0

(
sωi

ηω0ωi , . . . , ηω|R|−1ωi

)
(

n

rω0 , . . . , rω|R|−1

) .

Now we have

CJ av
C,D(xa with a ∈ R2)

=
1

n!

∑
σ∈Sn

CJCσ ,D(xa with a ∈ R2)

=
1

n!

∑
r,s,η

∑
σ∈Sn

BCσ ,D
r,s,η

∏
a∈R2

xηaa

=
∑
r,s,η

ACr A
D
s

∏
b∈R

(
sb

ηω0b, . . . , ηω|R|−1b

)
(

n

rω0 , . . . , rω|R|−1

) ∏
a∈R2

xηaa .

This completes the proof. �
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4.3. Average of g-fold complete joint weight enumerators

In this section, we give a generalization of Theorem 4.2.1 for the average

g-fold complete joint weight enumerators of codes over R.

Let C1, C2, . . . , Cg be R-linear codes of length n. For any g-tuple

(c1, . . . , cg) ∈ C1 × · · · × Cg,

we denote by ηg(c1, . . . , cg) a vector with non-negative integer components

ηga(c1, . . . , cg) for a ∈ Rg

and defined as:

ηga(c1, . . . , cg) := #{i | (c1i, . . . , cgi) = a}.

We call ηg(c1, . . . , cg) the g-fold composition of (c1, . . . , cg) ∈ C1 × · · · × Cg.

We denote by ηg a g-fold composition of n, a vector with non-negative integer

components ηga for a ∈ Rg such that

∑
a∈Rg

ηga = n.

We also denote by T
C1,...,Cg
ηg the set of codewords of C1 × . . . × Cg with

g-fold composition ηg. The g-fold complete joint weight enumerator is defined

as follows:

CJC1,...,Cg(xa with a ∈ Rg) :=
∑

c1∈C1,...,cg∈Cg

∏
a∈Rg

xη
g
a(c1,...,cg)
a

=
∑
ηg

A
C1,...,Cg
ηg

∏
a∈Rg

xη
g
a
a ,



4.3. AVERAGE OF g-FOLD COMPLETE JOINT WEIGHT ENUMERATORS 33

where xa for a ∈ Rg are the indeterminates and A
C1,...,Cg
ηg is the number of

g-tuples (c1, . . . , cg) ∈ C1 × · · · × Cg such that

ηg(c1, . . . , cg) = ηg.

The average g-fold complete joint weight enumerators are defined as:

CJ av
C1,C2,...,Cg

(xa : a ∈ Rg) :=
1

n!

∑
σ∈Sn

CJCσ1 ,C2,...,Cg(xa : a ∈ Rg).

Let a = (a1, . . . , ag) ∈ Rg and b = (b1, . . . , bg−1) ∈ Rg−1. Then we denote

[a; j] := (a1, . . . , aj−1, aj+1, . . . , ag) ∈ Rg−1,

(z; b) := (z, b1, . . . , bg−1) ∈ Rg for z ∈ R.

Now we have the following generalization of Theorem 4.2.1.

Theorem 4.3.1 ([3]). Let C1, C2, . . . , Cg be the R-linear codes of length n

and s1, s2, . . . , sg be the composition of n. Let ηg be the g-fold composition of

n such that for j = 1, 2, . . . , g,

sj =

(∑
a∈Rg

ηga with aj = ωi for i = 0, 1, . . . , |R| − 1

)
.

Again let ηg−1 be the (g − 1)-fold composition of n such that the non-negative

integer components ηg−1b for b ∈ Rg−1 is equal to the sum of ηga over all a ∈ Rg

with [a; 1] = b, that is,

ηg−1b =
∑
a∈Rg

ηga|[a;1]=b .
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Then we have

CJ av
C1,...,Cg

(xa with a ∈ Rg)

=
∑

s1,ηg−1,ηg

AC1
s1
A
C2,...,Cg
ηg−1

∏
b∈Rg−1

(
ηg−1b

ηg(ω0;b)
, . . . , ηg(ω|R|−1;b)

)
(

n

s1ω0 , . . . , s1ω|R|−1

) ∏
a∈Rg

xη
g
a
a .

Proof. Let C1, . . . , Cg be R-linear codes of length n. Then by the definition

of g-fold complete joint weight enumerator of the codes C1, . . . , Cg we have,

(7) CJC1,...,Cg(xa with a ∈ Rg) :=
∑
ηg

A
C1,...,Cg
ηg

∏
a∈Rg

xη
g
a
a ,

where

∑
a∈Rg

ηga = n.

Now let us define

B
C1,...,Cg
s1,ηg−1,ηg := #{(c1, . . . , cg) ∈ C1 × · · · × Cg | comp(c1) = s1,

ηg−1(c2, . . . , cg) = ηg−1, ηg(c1, . . . , cg) = ηg}.

Therefore,

A
C1,...,Cg
ηg = B

C1,...,Cg
s1,ηg−1,ηg .

Hence, we can write from (7)

(8) CJC1,...,Cg(xa with a ∈ Rg) :=
∑

s1,ηg−1,ηg

B
C1,...,Cg
s1,ηg−1,ηg

∏
a∈Rg

xη
g
a
a .
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Now

∑
σ∈Sn

B
Cσ1 ,C2,...,Cg
s1,ηg−1,ηg

= #{(c1, . . . , cg, σ) ∈ TC1
s1
× . . .× TCgsg × Sn |

ηg(cσ1 , c2, . . . , cg) = ηg}

=
∑

c1∈T
C1
s1

∑
(c2,...,cg)∈T

C2,...,Cg

ηg−1

#{σ ∈ Sn | ηg(cσ1 , c2, . . . , cg) = ηg}.

The order of a subgroup of Sn stabilizing c1 ∈ TC1
s1

is
∏|R|−1

i=0 s1ωi !. Therefore,

∑
σ∈Sn

B
Cσ1 ,C2,...,Cg
s1,ηg−1,ηg

=
∑

c1∈T
C1
s1

∑
(c2,...,cg)∈T

C2,...,Cg

ηg−1

|R|−1∏
i=0

s1ωi !

#{c′1 ∈ Rn | comp(c′1) = s1, η
g(c′1, c2, . . . , cg) = ηg}

= AC1
s1
A
C2,...,Cg
ηg−1

|R|−1∏
i=0

s1ωi!
∏

b∈Rg−1

(ηg−1b )!

(ηg(ω0;b)
)! · · · (ηg(ω|R|−1;b)

)!
.

Now it is easy to complete the proof by following similar arguments stated in

the proof of Theorem 4.2.1. �



CHAPTER 5

Average Intersection Number

The notion of the average intersection number for a pair binary linear codes

was introduced in [22]. In this chapter, we adopt the same notion for the

R-linear codes of length n. In [23], Yoshida gave the asymptotic bound for

the average of intersection numbers of a pair of Type I (resp. Type II) codes

over F2 and also for their second moments. We give the asymptotic bound for

the average of intersection numbers of a pair of Type III codes over F3 (resp.

Type IV codes over F4) and for their second moments.

5.1. Properties of average intersection number

Let C and D be two R-linear codes of length n. Then the average inter-

section number of C and D are given as follows:

∆(C,D) :=
1

n!

∑
σ∈Sn

|C ∩Dσ|.

36
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Let u = (u1, . . . , un) and v = (u1, . . . , un) be two elements of Rn. Then it

is easy to say that for any a = (a1, a2) ∈ R2 such that a1 6= a2, ηa(u,v) = 0 if

and only if u = v. Thus we have the following remark.

Remark 5.1.1 For a = (a1, a2) ∈ R2, we let

ya :=


0 if a1 6= a2,

1 otherwise.

Then CJ av
C,D(xa ← ya : a ∈ R2) = ∆(C,D).

Now we have the following result.

Proposition 5.1.1. Let C,D be two R-linear code of length n, and r be the

composition of n. Then we have

∆(C,D) =
∑
r

ACr A
D
r(

n

rω0 , . . . , rω|R|−1

) .
Proof. Let TCr and TDr be the set of all elements of C and D, respectively,

with the composition r = (rω0 , . . . , rω|R|−1
) of n. Then we can write

n!∆(C,D) =
∑
σ∈Sn

|C ∩Dσ|

= #{(u,v, σ) ∈ C ×D × Sn | u = vσ}

=
∑
r

∑
u∈TCr

∑
v∈TDr

#{σ ∈ Sn | u = vσ}

=
∑
r

ACr A
D
r

|R|−1∏
i=0

ri!.

Hence, this completes the proof. �
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5.2. Self-dual codes over Fq

We recall the definition of the self-dual codes from Chapter 2. It is well

known that the length n of a self-dual code over Fq is even and the dimension is

n/2. A self-dual code C over F2 is called Type II if the weight of each codeword

of C is a multiple of 4. It is well-known that the length n of a Type II code is a

multiple of 8. A self-dual code over F2 which is not Type II is called Type I. A

self-dual code C over F3 is called Type III if the weight of each codeword of C

is a multiple of 3. The length of a Type III code is a multiple of 4. Finally, a

self-dual code C over F4 having even weight is called Type IV.

Let C be an Fq-linear code of length n for q = 2, 3, 4. For m = 1 and 2, we

define

∆m
J (C) :=

1

|Jn|
∑
D∈Jn

|C ∩D|m,

where Jn denotes the set of self-dual codes of Type J , where J stands for I, II,

III or IV. The following results for J = I and II are presented in [23].

Theorem 5.2.1 ([23]). Let C ⊆ Fnq be a binary self-dual code. Then the

following hold:

(i) ∆I(C) ≈ 4 if C is of Type I,

(ii) ∆II(C) ≈ 6 if C is of Type II.

Theorem 5.2.2 ([23]). Let C ⊆ Fnq be a binary self-dual code. Then we have

(i) ∆2
I (C) ≈ 24 if C is of Type I,

(ii) ∆2
II(C) ≈ 60 if C is of Type II.
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In this section, we give the analogous results of the above theorems for

Type III and Type IV codes over F3 and F4, respectively. Before presenting

our findings, we adopt the following mass formulas which give the numbers of

Type III and Type IV codes over F3 and F4, respectively.

Theorem 5.2.3 ([13, 17]). The following hold:

(i) The number of Type III codes over F3 of length n ≡ 0 (mod 4) is

2

n/2−1∏
i=1

(3i + 1).

(ii) The number of Type IV codes over F4 of length n ≡ 0 (mod 2) is

n/2−1∏
i=0

(22i+1 + 1).

Let C ′ ⊆ Fn3 be a self-orthogonal code of dimension k. We denote by N III
n,k

the number of Type III codes over F3 of length n containing C ′. Then from [2]

we have

N III
n,k = 2

n/2−k−1∏
i=1

(3i + 1).

For k = 1, we get from [18] the number of Type III codes over F3 of length n

containing a self-orthogonal vector of Fn3 . The following theorem is a Type III

analogue of Theorem 5.2.1 and Theorem 5.2.2.

Theorem 5.2.4 ([3]). Let C be a Type III code over F3 of length n ≡ 0

(mod 4). Then we have

(i) ∆III(C) = 4− 4

3n/2−1 + 1
≈ 4,

(ii) ∆2
III(C) =

40(3n/2)2

(3n/2 + 3)(3n/2 + 9)
≈ 40.
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Proof. (i) Let C ∈ IIIn. Then

∑
D∈IIIn

|C ∩D| = #{(u, D) ∈ C × IIIn | u ∈ D}

=
∑
u∈C

#{D ∈ IIIn | u ∈ D}

=

∑
u=0

+
∑

u∈C\{0}

#{D ∈ IIIn | u ∈ D}

= |IIIn|+ (|C| − 1)N III
n,1.

Since |IIIn| = 2
∏n/2−1

i=1 (3i + 1), therefore we can write

∆III(C) = 1 + (|C| − 1)
N III
n,1

|IIIn|

= 1 +
3n/2 − 1

3n/2−1 + 1

=
3n/2−1 + 3n/2

3n/2−1 + 1

=
3n/2−1 + 3.3n/2−1

3n/2−1 + 1

=
4.3n/2−1

3n/2−1 + 1

= 4− 4

3n/2−1 + 1
.

This completes the proof of (i).
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(ii) Similarly as (i) we can write

∑
D∈IIIn

|C ∩D|2 = #{(u,v, D) ∈ C × C × IIIn | u,v ∈ D}

=
∑

u,v∈C

#{D ∈ IIIn | 〈u,v〉 ⊆ D}

=

∑
u,v=0

+
∑

dim〈u,v〉=1

+
∑

dim〈u,v〉=2


#{D ∈ IIIn | 〈u,v〉 ⊆ D}

= |IIIn|+ 4(|C| − 1)N III
n,1 + (|C| − 1)(|C| − 3)N III

n,2.

Since |IIIn| = 2
∏n/2−1

i=1 (3i + 1), therefore we can write

∆2
III(C) = 1 + 4(|C| − 1)

N III
n,1

|IIIn|
+ (|C| − 1)(|C| − 3)

N III
n,2

|IIIn|

= 1 +
4(3n/2 − 1)

3n/2−1 + 1
+

(3n/2 − 1)(3n/2 − 3)

(3n/2−2 + 1)(3n/2−1 + 1)

= 1 +
12(3n/2 − 1)

3n/2 + 3
+

27(3n/2 − 1)(3n/2 − 3)

(3n/2 + 9)(3n/2 + 3)

=
40(3n/2)2

(3n/2 + 3)(3n/2 + 9)
.

This completes the proof of (ii). �

Now if C ′ ⊆ Fn4 is a self-orthogonal code having dimension k, then the

number of Type IV codes over F4 of length n containing C ′, denoted by N IV
n,k,

is given in [4] as follows:

N IV
n,k =

n/2−k−1∏
i=0

(22i+1 + 1).

In particular, for k = 1 we get the number from [13].



5.2. SELF-DUAL CODES OVER Fq 42

We close this paper with the following Type IV analogue of Theorem 5.2.1

and Theorem 5.2.2.

Theorem 5.2.5 ([3]). Let C be a Type IV code over F4 of length n ≡ 0

(mod 2). Then we have

(i) ∆IV(C) = 3− 3

22(n/2)−1 + 1
≈ 3,

(ii) ∆2
IV(C) =

27(22(n/2))2

(22(n/2) + 2)(22(n/2) + 8)
≈ 27.

Proof. (i) Let C ∈ IVn. Then

∑
D∈IVn

|C ∩D| = #{(u, D) ∈ C × IVn | u ∈ D}

=
∑
u∈C

#{D ∈ IVn | u ∈ D}

=

∑
u=0

+
∑

u∈C\{0}

#{D ∈ IVn | u ∈ D}

= |IVn|+ (|C| − 1)N IV
n,1.

Since |IVn| =
∏n/2−1

i=0 (22i+1 + 1), therefore,

∆IV(C) = 1 + (|C| − 1)
N IV
n,1

|IVn|

= 1 +
22(n/2) − 1

22(n/2)−1 + 1

=
22(n/2)−1 + 22(n/2)

22(n/2)−1 + 1

=
3.22(n/2)−1

22(n/2)−1 + 1

= 3− 3

22(n/2)−1 + 1
.

This completes the proof of (i).
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(ii) Similarly as (i) we can write

∑
D∈IVn

|C ∩D|2 = #{(u,v, D) ∈ C × C × IVn | u,v ∈ D}

=
∑

u,v∈C

#{D ∈ IVn | 〈u,v〉 ⊆ D}

=

∑
u,v=0

+
∑

dim〈u,v〉=1

+
∑

dim〈u,v〉=2


#{D ∈ IVn | 〈u,v〉 ⊆ D}

= |IVn|+ 5(|C| − 1)N IV
n,1 + (|C| − 1)(|C| − 4)N IV

n,2.

Since |IVn| =
∏n/2−1

i=0 (22i+1 + 1), therefore,

∆2
IV(C) = 1 + 5(|C| − 1)

N IV
n,1

|IVn|
+ (|C| − 1)(|C| − 4)

N IV
n,2

|IVn|

= 1 + 5
22(n/2) − 1

22(n/2)−1 + 1
+

(22(n/2) − 1)(22(n/2) − 4)

(22(n/2)−3 + 1)(22(n/2)−1 + 1)

= 1 + 10
22(n/2) − 1

22(n/2) + 2
+ 16

(22(n/2) − 1)(22(n/2) − 4)

(22(n/2) + 8)(22(n/2) + 2)

=
27(22(n/2))

2

(22(n/2) + 8)(22(n/2) + 2)
.

This completes the proof of (ii). �
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