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Abstract

In this thesis, we concentrate on the average of complete joint weight enu-
merators of linear codes over F, and Zj;. From the very beginning in the study
of codes became inseparable from the study of their weight enumerators. One
of our main results in this work is to give an illustration of the average of com-
plete joint weight enumerators of two linear codes of length n over IF, and Zj,
in terms of the compositions of n and their distributions in the codes. Next we
give a generalization of the illustration for the average of the g-fold complete
joint weight enumerators of linear codes over F, and Zj.

Self-dual codes are one of the most remarkable branches in the study of cod-
ing theory. The study of the average intersection numbers of a pair of Type I
(resp. Type II) codes of length n over Fy, where the average is considered over
the all Type I (resp. Type II) codes of length n, inspired us to investigate the
analogues for the case of Type III (resp. Type IV) codes of length n over Fj
(resp. Fy). Our another main result is to present an asymptotic bound for the
average of intersection numbers of a pair of Type III (resp. Type IV) codes.
Finally, we obtain an asymptotic bound for the second moment of the average

of intersection numbers of a pair of Type III (resp. Type IV) codes.

vii



CHAPTER 1

Introduction

In 1948, C. Shannon [20] introduced a sophisticated branch of mathematics
called coding theory with an application to the area of digital communication
system. Among the various types of coding, we are particularly interested in
the wing of error-correcting codes which have a special role in data transmission
through satellite and cellular telephone.

Let IF, be a finite field, where ¢ is a prime power. An F,-code of length n
is a subset of ;. The codes over Fy are called binary codes, while the codes
over '3 and F4 are known as ternary codes and quaternary codes, respectively.
An F,-linear code is a linear subspace of Fy. At the very beginning of the
study in coding theory M. J. E. Golay [7] and R. W. Hamming [8] introduced
two different binary linear codes which are known as the Golay code and the
Hamming code, respectively.

In recent years, there has been interest in studying codes over the finite
rings Zy of integers modulo k (k > 2). Like as an F,-code, the Zj-code of

length n is a subset of a Z}. But a Zj-linear code of length n is a submodule
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of Zy. In 1994, A. R. Hammons et al. [9] established the relations between
certain well-known families of nonlinear binary codes and Zy-linear codes.

Throughout our study, we assume that $R denotes either the finite field IF,
or the finite ring Z;. The elements of an R-linear code are known as codewords
while the number of nonzero coordinates is called the weight of a codeword.
The weight enumerator of an R-linear code of length n is a homogeneous
polynomial of degree n whose each term interprets the number of codewords
for a certain weight. Dual of a code plays an important role in the study of
coding theory. We can determine the dual of a code with respect to a given
inner product on R". F. J. MacWilliams [11] showed that without knowing any
information about the dual of an IF -linear code, the weight enumerator of the
dual code can be uniquely determined from the weight enumerator of the F,-
linear code. These types of relations are known as MacWilliams identity. For
binary linear codes, a generalization of the MacWilliams identity for genus g
was given by B. Runge [19]. Further E. Bannai, S. T. Dougherty, M. Harada
and M. Oura [1] gave an analogue of the MacWilliams identity for genus g for
the codes over Zo.

F. J. MacWilliams and N. J. A. Sloane [14] introduced the notion of the
complete weight enumerator of an F,-linear code and gave a generalization of
the MacWilliams identity for the complete weight enumerator. T. Miezaki and
M. Oura [15] pointed out a relation between the genus g complete weight enu-
merator and the genus ¢ cycle index of an [F-linear code. F. J. MacWilliams,

C. L. Mallows and N. J. A. Sloane [12] introduced the notion of the joint
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weight enumerator of two F,-linear codes and also discussed the MacWilliams
type identity for the joint weight enumerator. Further, the notion of the g-
fold complete joint weight enumerator of g linear codes over [F, was given by
I. Siap and D. K. Ray-Chaudhuri [21] while the concept of the g-fold joint
weight enumerator and the g-fold multi-weight enumerator of codes over Zj
was investigated by S. T. Dougherty, M. Harada and M. Oura [5].

In 1989, T. Yoshida [22] introduced the notion of the average joint weight
enumerators of two binary linear codes, and gave a representation of the av-
erage joint weight enumerators using the ordinary weight distributions of the
codes. In this thesis, we call this representation as Yoshida’s theorem. This
gives rise to a natural question: is there a generalization of the average joint
weight enumerators that is analogous to Yoshida’s theorem? The first aim of
this thesis is to give a candidate that answers this question.

In this thesis, we define the average complete joint weight enumerator of
two linear codes over R, and give a generalization of Yoshida’s theorem for it.
Moreover, we extend the idea of the average complete joint weight enumer-
ator to the average of the g-fold complete joint weight enumerators of linear
codes over RR. We take the average on all permutationally (not monomially)
equivalent linear codes over fR.

A self-dual code is a code that is equal to its dual. For this type of codes
over I, it is well-known that the length of the code is twice its dimension. In
1970, A. M. Gleason [6] provides the main motivation for studying self-dual

codes over Iy, F3 and [F4. These codes have a property that the weight of each
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codewords of a certain code is divisible by a certain integer greater than 1.
A binary self-dual code is called Type II if all weights of the codewords are
divisible by 4, otherwise called Type I. A Type III code is a self-dual code
over F3 whose weights of the codewords are divisible by 3. Finally, a self-dual
code over Fy is called Type IV if every codeword has even weight.

In 1991, T. Yoshida [23], introduced the notion of the average intersection
number for two binary codes. T. Yoshida [23] also proved that the average of
intersection numbers of a pair of Type I (resp. Type II) codes over Fy and their
second moments are asymptotically bounded. Here we have another question:
what is the asymptotic bound for the average of intersection numbers and its
second moments of a pair of Type III codes over 5 as well as Type IV codes
over F47 The second aim of this thesis is to answer this question.

In Chapter 2, we give the basic definitions and notations that we use in
this thesis. In Section 2.1, we discuss the basic concepts of a linear code
over [F, and its properties. In Section 2.2, we give a brief introduction about
Zi-linear codes. The concept of the weight enumerator of a code is discussed
in Section 2.3. The MacWilliams identity plays an important role in the study
of weight enumerators of a code. We discuss this identity in Section 2.4.

In Chapter 3, we review various types of weight enumerators, such as joint
weight enumerators and its properties specially the MacWilliams type identity
in Section 3.1, and average joint weight enumerator in Section 3.2. In Sec-
tion 3.2, we discuss Yoshida’s theorem. This theorem is the main topic of our

interest in this thesis.
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In Chapter 4, we present a generalization of the concept of the average
joint weight enumerator for the binary codes, namely the average of complete
joint weight enumerators of two linear codes over PR. In Section 4.1, we give
the MacWilliams type identity for the complete joint weight enumerators of
codes over SR. The main goal of this chapter is to answer our first question.
In Section 4.2, we answer the question and give a generalization of Yoshida’s
theorem for the average of complete joint weight enumerator of two linear
codes over fR. In Section 4.3, we extend the idea of the average complete joint
weight enumerator to the average of g-fold complete joint weight enumerators
of linear codes over R and give a g-fold analogue of Yoshida’s theorem.

In Chapter 5, our aim is to find an answer of our second question. In
Section 5.1, we define the average intersection number of two codes over R and
discuss a relation with the average of the complete joint weight enumerator
of codes over R. We also give a formula to evaluate the average intersection
numbers. In Section 5.2, we give the asymptotic bounds for the average of
intersection numbers of a pair of Type III codes over F3 (resp. Type IV codes
over Fy) and for their second moments which is actually the answer to our

second question.



CHAPTER 2

Linear Codes

In this chapter, we give the basic definitions and notations that we use in the
entire thesis. In Section 2.1, we discuss the basic concepts of a linear code
over [F, and its properties. In Section 2.2, we give a brief introduction about
Zi-linear codes. The concept of weight enumerator of a code is discussed in
Section 2.3. The MacWilliams identity plays an important role in the study
of weight enumerator of a code. We discuss this identity in Section 2.4. We

refer the readers to [1, 10, 14, 16] for more details about these concepts.

2.1. Codes over F,

Let IF, be a finite field of order ¢, where ¢ is a prime power. We denote
by Fj the n-dimensional vector space over F,. The elements of F} is usually
written in the form u = (uy, ug,...,u,). A code C of length n is a nonempty
subset of . The elements of C are called codewords, and n is the (word)

length of C.

Definition 2.1.1  An F-linear code is a linear subspace of Fy.

6
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If C'is an [F-linear code with dimension k, then C' is called an [n, k] linear
code. An [n, k] linear code C has ¢* codewords. A generator matriz G for an
[n, k] linear code C'is any k X n matrix whose rows form a basis of C. A parity
check matriz H for the [n, k| code C' is an (n — k) x n matrix over F, with
rank n — k such that for any u € F, u € C if and only if Hu® = 0. The
generator matrix of an [n, k| linear code is said to be in the standard form if
it is of the form [[ | A], where I; is the k x k identity matrix, and A is a

k x (n — k) matrix. In the following theorem AT denotes the transpose of A.

Theorem 2.1.1 ([10]). If G = [I}, | A] is a generator matriz for the [n, k]
linear code C in standard form, then H = [—AT | I, ] is a parity check

matrix for C.

Example 2.1.1 We denote by H; the [7,4] Hamming code. The generator

matrix G = [I | A] of H; in standard form is

Then by Theorem 2.1.1, we have a parity check matrix H = [AT | I5] for H is

01 11{1 00

H=11011/010

110 1{0 01
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In order to define an inner product of the elements u = (uy,...,u,) and
v = (vg,...,0,) in Fy, we let ¢ = p/ for some prime number p. The inner

product of u and v is denoted by u - v and is defined as

n
u-v = Z(uz, Vi),

i=1

where for any a,b € Fy,

abv® if f is even;
(a,0) :=

ab otherwise.

If u-v =0, we call u and v orthogonal. An element u € Fy is called self-

orthogonal if u-u = 0.

Definition 2.1.2 Let C' be an F,-linear code of length n. Then the dual code

of C' is given by
Cr:={uecF;|lu-v=0foralveC}

It is easy to show that O is the same as the set of all parity checks on C'.
If C has generator matrix G' and parity check matrix H, then the generator
and parity check matrices of C+ are H and G, respectively. This implies that

if C'is an [n, k| linear code then C* is an [n,n — k] linear code.

Definition 2.1.3 An F,-linear code is said to be self-orthogonal if C' C C*+,

and self-dual if C = C*.

Remark 2.1.1 The length n of a self-dual code is even and the dimension

is n/2.



2.2. CODES OVER Z; 9

Example 2.1.2 Let F3 = {0,1,2}. Let C be a [4,2] code over F3 with

generator matrix:
1 011

G =
0112

It is easy to check that C' = C'*. Therefore, C is a self-dual code. The elements

of C are listed as follows:

(0,0,0,0), (0,1,1,2), (0,2,2,1),
(1,0,1,1), (1,1,2,0), (1,2,0,2),

(2,0,2,2), (2,1,0,1), (2,2,1,0).

2.2. Codes over Z,

Let Zj; be the ring of integers modulo k for k > 2. A Zg-linear code of
length n is an additive subgroup of Z}. Let u = (uy,ug,...,u,) and v =
(v1,v9,...,v,) be the elements of Z}. We define the inner product of u and v

on Z} as follows:

UV .=UV + UsVo + ++* + UpUp.

Let C' be a Zj-linear code of length n. Like as the codes over I, we call
the elements of C' codewords. The matrix whose rows generate the code C' is

called a generator matriz of C. The dual code C* of C is defined as

Ct={ueZ|u-v=0foralveC}

We call C' self-orthogonal if C C C+, and self-dual if C' = C*.
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2.3. Weight enumerators

We assume that 9; denotes either the finite field F, of order g, where ¢ is
a prime power or the ring Z; of integers modulo k£ for some integer k > 2.

Let u = (ug,ug,...,u,) and v = (v1,vs,...,v,) be the elements of R".
The (Hamming) distance dist(u, v) between two elements u, v € R" is defined

by
dist(u,v) := #{i | u; # v;}.

It is immediate from the definition that the distance function dist(u,v) is a

metric on R™. That is, the distance function satisfies the following properties:
(i) (non-negativity) dist(u,v) > 0 for all u,v € R"™.
(ii) dist(u,v) = 0 if and only if u = v.
(iii) (symmetry) dist(u,v) = dist(v,u) for all u,v € R".
(iv) (triangle inequality) dist(u, w) < dist(u, v)+dist(v, w) for allu, v, w €
R™.
We denote by supp(u) of an element u € R" the support of u and defined

as

supp(u) := {i | u; # 0},

The (Hamming) weight of an element u € R" is denoted by wt(u) and defined
as wt(u) := |supp(u)|. The minimum distance of an R-linear code C is the
minimum of the (Hamming) distance dist(u,v) for u,v € C' and u # v. The
following theorem gives a well-known relation between the distance function

and the weight function.
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Theorem 2.3.1 ([1, 10]). Ifu,v € R", then dist(u,v) = wt(u—v) = wt(w)
for some w € R™. If C is an R-linear code, the minimum distance d is the

same as the minimum weight of the nonzero codewords of C'.

Let C' be an PR-linear code of length n. Then for 0 <17 < n, we call

AY = #{u e O | wt(u) =1}

the weight distribution of C. We can easily verity the following facts about
the weight distribution of an fR-linear code with the minimum distance d.

(i) A =1.

(i) A =AF =-.. = A | =0.

(iil) A§ + AY + -+ AT =|C.

Example 2.3.1 Let C be the code over F3 of Example 2.1.2. The weight

distribution of C is as follows:

Ag=1, Ai=A=0, A3=8, A;=0.

The weight enumerator of an PR-linear code of length n is a homogeneous

polynomial of degree n which presents the weight distribution of C' and defined

as
an wt(u) wt(u ZAC n—i z7
ueC

where z and y are indeterminates. Let the elements of R be 0 = wp, wy, ..., win|—1

in some fixed order. Then the composition of an element u € R" is defined as

comp(u) := s(u) := (s,(u) : a € R),
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where s,(u) denotes the number of coordinates of u that are equal to a € fR.

Obviously,

Z Sq(u) =n.

a€R

In general, a composition s of n is a vector s = (s, : a € R) with non-

negative integer components such that

E Sy =M.

aER

Let C be an R-linear code of length n. We denote by T the set of code-

words of C' with composition s, that is,
TC .= {u e C| s, = s4(u) for all a € R},

and by AY := |TC|. Then the complete weight enumerator of C'is defined as:

Cc(l’a a € 9%) = Z H IZa(u) — ZASC H xia7

ueC aeRr s a€ER

where z, for a € R are indeterminates and the sum extends over all composi-

tions s of n.

Remark 2.3.1 Let C be an P-linear code of length n. Then for any u € C,

wt(1) = ) a0 Sa(1). Therefore,
Co(zg < z, 2, <y for all 0 # a € R) = we(z,y).

Example 2.3.2 Let C be the code over F3 of Example 2.1.2. Let the com-

position s = (sg, 51, 52). Then we have the following list of non-zero A¢:

Aa70’0) - 1, A(Ci’?”()) — 17 A(Ci’073) — 1, A(Ci72’1) - 3, A(Ci71,2) - 3.
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Therefore, the complete weight enumerator and weight enumerator of C' is as

follows:
4.0.0  1.3.0 1.0 3 1,2 1 1,1, 2
Co(xo, 1, T2) = TeXiTy + ToX Ty + ToX Ty + 3Tax Ty + 3215,
(z,y) =Col@.y,y) = 2" + 8z’
welx,Yy) =Lc\2,Y,Y) =T ry-.

2.4. MacWilliams identity

At the beginning of this section we recall [5, 12] to take some fixed char-
acters over fR.

A character x of R is a homomorphism from the additive group of R to
the multiplicative group of non-zero complex numbers.

Let R = F,, where ¢ = p/ for some prime number p. Again let F(z) be
a primitive irreducible polynomial of degree f over I, and let A be a root of

F(z). Then any element o € F, has a unique representation as:
(1) oz:oz0+ozl>\+oz2)\2+--~+af_1)\f_1,

where a; € F,, and x(«) := (5°, where ¢, is the primitive p-th root e*™/? of
unity, and «aq is given by (1).
Again if R = Zy, then for a € Z; we defined y as x(«a) := (7, where (j is

2mi/k

the primitive k-th root e of unity.

Example 2.4.1 Let R = F; = {0,1,w,w?}. Therefore ¢ = 4 = 22. So, we
have p = f = 2 and ¢, = (, = €2™/2. Then any element a € F, can be uniquely

written for ag, a; € Fy as:

a = ag+ aw.
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Now the characters of each element of F, are as follows:

Lemma 2.4.1. > .. x(a) =0.

Proof. Firstly, let R = F,, where ¢ = p/ for some prime number p. Then we

have

Z x(a) = Z »°,  where qq is given by (1)

=0 since ¢f = 1.

1— ¢k

=0. L]
1 — G

Now if R = Z;,, then Zank x(a) = Zank F = Z’;;é =

Lemma 2.4.2. Let C' be an R-linear code of length n. For v € R", let

1 if veClH
(ScL(V) =

0 otherwise.

Then we have the following identity

dor(v) = % Zx(u V).

ueC
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Proof. Let v € Ct. Then u-v = 0 for all u € C. This implies Y e x(u-
v) = |C|. If v ¢ C*, then y(u.v) takes each value in R equally often, so

Y uwec X(u-v) =0. This completes the proof. O

Now we have the MacWilliams identity for the complete weight enumerator

of a code C over fR as follows.

Theorem 2.4.3 ([5, 12]). For a linear code C' over R we have

(2) Cor (g with a € R) = |%|ng -Co(zy,),

where Ty = (X(@ﬁ))a,gem'

Proof. Let C' be an MR-linear code of length n. Then

|C|Coi (g : a € R) = |C| Z sza(u’)

weCt aceRr
=101 Y dou(v) ] wr®
VERN acR
=33 ) [T
veR" ueC aER
=33 v [
ueC veRn a€R
= Z Z X(uvy + -+ + upvy) Hazvi
ucC veRn i=1

= Z H Z X(Uivi)%i

uel i=1 v;€R

Bl (z X<aﬂ>xﬁ> -

ueC aeR \pBeR
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=Cco (Z x(aB)xs with a € 9%)

BER

= Tg{ . CC (.Clﬁa).
Hence the proof is completed. O

With the help of Remark 2.3.1, if we replace xq by x and x, by y for all
a € R and a # 0 in (2), then we have the MacWilliams identity presenting the

weight enumerator of C'*.

Theorem 2.4.4 ([14, 16]). If C be an R-linear code of length n with its C*,

then

1



CHAPTER 3

Variants of Weight Enumerators

The notion of the joint weight enumerator of two F,-linear codes was intro-
duced in [12]. Further, the notion of the g-fold complete joint weight enumer-
ator of g linear codes over I, was given in [21]. The concept of the g-fold
joint weight enumerator and the g-fold multi-weight enumerator of codes over
Zy was investigated in [5]. Furthermore, the average of joint weight enumer-
ators of two binary codes was investigated in [22] using the ordinary weight
distributions of the codes. In this chapter, we give a brief discussion about
the above mentioned concepts for the codes over SR and some of its properties.
We thoroughly review [22] and its the main result which we call Yoshida’s

theorem along with the proof.

17
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3.1. Joint weight enumerators

Let u = (uq,...,u,) and v = (vy,...,v,) be any two elements of R". Then

we define

i(u,v) = #{t | uy = 0,0, = 0},
j(u,v) =3t [ uy = 0,0, # 0},
k(u,v) == #{t | us # 0,v, = 0},

€<uvv) = #{t | Uy 7£ O7Ut 7é 0}
Clearly

i(u,v) + j(u,v) + k(u,v) + £(u,v) = n,
j(u7 V) + E(u’ V) = Wt(V),
kE(u,v) + {(u,v) = wt(u).

Let C' and D be two R-linear codes of length n. The joint (Hamming)

weight enumerator of C' and D is defined as:

Jon(@,y, 2w) = 33 g yilam) oK) f)

ueC veD

= ZA”nyzw

1,7,k,0
. . D . .
where z,y, z,w are indeterminates and A?}H is the number of the pair of

u € C and v € D such that

i(u,v) =1, jlu,v)=yj, k(uv)=%k {(av)="L
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For any two MR-linear codes C' and D, it is immediate from the above definition

that
Jop(1,1,1,1) = |C|| D],
Jp.c(z,y,z,w) = Jop(x, z,y,w).

Remark 3.1.1 Let C' and D be two P-linear codes of length n. Then

1
(1) wC(x7y> = WJC,D(x7x7y7y)a

1
(2) wp(r,y) = EJC,D(%%I,Q)?
(3) It D= {(Oa 07 s 70)}a then wc(fﬁ, y) = JC,D(‘Ta ]-a Y, 1)

(4) ItC= {(0,0, s 70)}7 then QUD(-T,y) = JC7D(-T,y, 17 1)

In [12], MacWilliams et al. present the MacWilliams type identity for
the joint weight enumerator over F, while in [5], Dougherty et al. give a
generalization of the theorem over Z;. Hence we have the MacWilliams type
identity for the joint weight enumerator over SR. We will give a proof of the

above theorem in a more general setting in Theorem 4.1.1.

Theorem 3.1.1 ([12, 5]). Let C and D be two R-linear codes of length n.

Then we have the following relations:

1
JCJ-,D(xayWZJw) = |F|JC,D(‘r +’727y +fyw7x —ZY— UJ),
1
JC,DL(ZEJyWZaw) - EJC,D('r +’7y,l‘ - Y,z +’)/U),Z - w)7
1 2
JcJ_7DJ_(.T,y,Z,w) = mjch(l‘ +’Y(y+ Z) +’7 w,xr — y+

Vz—w)r—z+y(y—w)r—y—z+w).
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where v = |R| — 1.
3.2. Average of joint weight enumerators
The concept of the average joint weight enumerators for codes over Fy was

introduced in [22]. In this section, we discuss the same notion for the codes

over R. We write S,, for the symmetric group acting on the set
n] :={1,2,...,n},

equipped with the composition of permutations. For any fi-linear code C', the
code C7 := {u? | u € C} for permutation o € S, is called permutationally
equivalent to C', where u” := (Ug(1), - - -, Us(n)). Then the average joint weight
enumerator of JR-linear codes C' and D is defined as

av 1
JC,D(‘raywzuw) = ﬁ Z JCU7D(JJ,y,Z,U}>.

’ UGSTL

Obviously, if C' is permutationally equivalent to C' and D’ is permutationally

equivalent to D, then

JgﬂD,(x,y, zZ,w) = Jng(x,y, Z,w).

The following theorem gives the MacWilliams type identity for the average

joint weight enumerators over fR.

Theorem 3.2.1. Let C' and D be two R-linear codes of length n. Then we

have the following relations:

av 1 av
CL,D<x7y7sz) = WJC,D(QJ +y2,y +yw, v — 2,y —w),
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where v = |R| — 1.

Proof. From the definition of the average joint weight enumerator we can

write:

g’qi,D(xv ya 27 w)

= 'ZJ(CL (x,y, z,w)

" oEeS,

1
b Z Jicoyt p(T: Y, 2,w)

’ O'ES’VL

:n' Z ]C"’ ——Joop(z 4+ 72,y + yw,z — 2,y — w)
O'GSn

KWkD@+vzy+wvx 2,y —w).

This completes the proof. O

Corollary 3.2.2. For two R-linear codes C' and D, we have

1
CDJ-<x y,zw) ’D‘ Cfb(x#—’yy,a:—y,z—{—vw,z—w)

Corollary 3.2.3. For two R-linear codes C' and D, we have

1

CJ-DJ-('I y,Z’U}) ‘CHD‘ CD( +7(y+2)+72w,
r—y+y(z-w)hr—z+y(y—w),r—y—z+w).
3.3. Yoshida’s theorem

In [22], Yoshida represented the average of joint weight enumerators of two

binary linear codes of length n in terms of the ordinary weight distributions
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of the codes. That is, if C' and D are two binary linear codes of length n, the
average joint weight enumerator of C' and D can be represented by using the

weight distribution of C' and D which we have in the the following theorem.

Theorem 3.3.1 ([22]). Let C' and D be two binary linear codes of length n.

Then

Je'p(x,y, z,w) = Z A?A?x”_i_jyjzime (xw/yz)

1,

where

Proof. Let C' and D be two linear binary codes of length n. Then the joint

weight enumerator of C' and D is

(3) Jop(z,y,z,w) = Z ACW€ oy Pt
ikl

where ¢ 4+ 7 + k + ¢ = n. Now define

BEY = #{(u,v) € C x D | wt(u) = i, wt(v) = j, {(u,v) = t}.

2,45t

Therefore

C,D C,D ) )
Ao =Bl foriti+k+l=n.

Thus we can write from (3)

C,D _
(4) Jop(z,y, z,w) = E Bl g Iy Iyt

1,5t
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Then we have

Z BP = #{(u,v,0) € Cix D; x S, | £(u?,v) =t}

it
gES)
=3 Y #oes ) =1}
ueC; VED]'
where C; denotes the set of codewords u € C such that wt(u) =4. Let u € C;
and v € D;. Again let X := supp(u), Y := supp(v). It is well-known that the

order of a subgroup of S,, which stabilizes a subset X with | X| = ris rl(n—r).

Therefore

SN BT =3 #{oes. X nY|[=1)

oSy ueC; veD;

= A?Af’r!(n—r)!#{X’ Ch|IXT=4| X' NnY| =t}

— ATAPI(n —1)! (i) (?:Z)
= AfAfn!—G) (7; - D
(0

Now by (4) we have

av 1
ngD(x,y,z,w) = a Z JCJ7D(ac,y,z,w)

T oES,

1 CoD i L
— _' E : E : B”t7 P j+ty1 th twt
n 2Js

" it 0€Sn
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Hence we have

t

(j) (n _ j)
av C 2D t 1 —1 n—i—j+t
JC’D(Ly,z,w): g AV AP L ~ 7

i A n T yi_tzj_tw
it
()
(=)
ZACAD t 1 —t wn—i—j+t i—t j—t, t

i 45 n y =z w
ihj?t .
{

Hence the proof. O



CHAPTER 4

Generalization of Yoshida’s Theorem

In this chapter, we give the notion of the average of complete joint weight
enumerators of two linear codes over fR. The main focus of this chapter is
to give a generalization of Yoshida’s theorem for the average of complete joint
weight enumerator of two linear codes over SR. Moreover, we extend the idea of
the average complete joint weight enumerator to the average of g-fold complete

joint weight enumerators of linear codes over fA.

4.1. Basic definitions and properties

Let C' and D be two QR-linear codes of length n. We denote by n(u,v)
the bi-composition of the pair (u,v) for u,v € W™ which is a vector with

non-negative integer components 7,5(u, v) defined as

n&ﬁ(uvv) = #{Z | (U’ivvi) - (Oé,ﬁ)},

where (a, ) € R?. Clearly

Z Nap(W, V) = n.

a,BER

25
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In general, a bi-composition 1 of n is a vector with non-negative integer com-

ponents 7,4 such that

Z Nap = M.

a,BER
The complete joint weight enumerator of C' and D is defined as

CJc.p(z, with a € R?) = Z H e(u)

ueC,veD qeR?2

_ C,D U]
= A7 =
n

a€R?

where a := ajay 1= (a1,as) € R? and z, for a € R? are the indeterminates
and ASP is the number of pair (u,v) € C' x D such that 1,(u,v) = 7, for

all a € R2.

Remark 4.1.1 For a = ajay € R?, let

r ifa; =ay =0,

y ifa; =0,a9 #0,

Ya
z ifal;éO,agzo,

w if a; # 0,a9 # 0.

For two R-linear codes C' and D, we have the following relation between com-

plete joint weight enumerators and joint weight enumerators.

CjC,D(xa —Yg i aE %2> = JC,D(muyazaw)'



4.1. BASIC DEFINITIONS AND PROPERTIES 27

For a code C over R let C' denote either C' or C+. Then we define

Before giving the MacWilliams type identity for the complete joint weight
enumerator of codes, we recall the character x of R and the definition of the

matrix Ty from Chapter 2.

Theorem 4.1.1 ([3]). Let C' and D be two R-linear codes of length n. Then

we have the MacWilliams type relation as follows:

1 ~ ~
. - 2\ _ 5(C,0) §5(D,D)
CIs p(Ta with a € R*) = Cped | DpoD) Ty ® Ty

CJc.p(wq with a € R?).
Proof. 1t is sufficient to show
|D|CTe pr(zowith a € R?) = (I @ Tg)CIe,p(x.with a € R?),

where C = C, D = D+, and I is the identity matrix. Now by Lemma 2.4.2,

we can write

|D|CTe,pr (x4 with a € R?)

D3PI EEi

ceC d’eD-L aenR?

DI Y dpew) T e

ceC veRrn aEMR2

— Z Z ZX(d V) H ga(eV)

ceC veRn deD acR?
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S I)ID SRRV FE

ceC deD veRn a€R?

= Z Z X(d1U1 —|— te + dnvn) H‘Tcivi
=1

ceC,deD veRrn

= Z H Z X(divi)xcivi

ceC,deD i=1 v;eER

Nag(c,d)
S| <Zx(ﬂv)wav>

ceC,dED (a,B)eR? \veER

=CJc.p (Z X(Bv)Zay with («, ) € 9%2>

vER

= (I ® Tw)C T, p(w,with a € R?).

Hence, the proof is completed. O

2. Average of complete joint weight enumerators

We recall from Chapter 3 the symmetric group S, acting on [n], equipped
with the composition of permutations. We also recall that for any fR-linear
code C, the code C denotes the permutationally equivalent code of C for
permutation ¢ € S,,. Then the average complete joint weight enumerator

of R-linear codes C and D is defined as

CIE D (xq with a € R?) = Z CJco p(r, with a € R?).

. UGSTL

Remark 4.2.1 Let C and D be two R-linear codes. Then if C" is permuta-
tionally equivalent to C' and D’ is permutationally equivalent to D, then we

have

CIE (x4 with a € R?) = CTS (2, with a € R?).
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Now from Theorem 4.1.1, we have the generalized MacWilliams identity
for the average complete joint weight enumerator of fR-linear codes C' and D

as follows:

1 ) N
av . 2y _ 4(C,C) 3(D,D)
C d[)(xa with a € R*) = ’0|6(C,C‘)|D’5(D,D) Ty ® Ty

CIEp (T with a € R?).

Now we presents a generalization of Yoshida’s theorem (Theorem 3.3.1) as

follows. Before stating the theorem we put

a o al
bi,ba,....by/)  bilbol. .. byl

Theorem 4.2.1 ([3]). Let C' and D be two R-linear codes of length n, and
r and s be the compositions of n. Again let  be the bi-composition of n such

that

<Z NwoBs -+« Z nwmlﬁ) )

r =
BeR BeER

S = <Z Nawgs « + + s Znaw|m—1) .
aER aER

Then we have

CIEp(xq with a € R?)

Sp
i )
R \Twobs - - - 7770.)‘9“,117

=5 A0aP™

ui
) {7
7,8,1 aeR?
Two s

s Ty
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Proof. Let C' and D be two R-linear codes of length n. Then the complete

joint weight enumerator of C' and D is

(5) CJIc.p(r, with a € R?) = ZAg’D H xle

n a€R?

where ) 52 7o = n. Now let us define

C.D
T7S7T]

= #{(u,v) € C x D | comp(u) = r,comp(v) = s,n(u,v) = n}.

Therefore, Ag’D = Bﬁ;{%, where

BER BER
= (S = (ZnZn) |
aER aER

Hence, we can write from (5)

(6) CIc.p(xq with a € R?) ==Y " BSD T .

7,8,M a€R?

Now

BYP =#{(a,v,0) € TZ x T x 8, | n(u’,v) =n}

r78777
O'GSTL

=Y > #{oeS,nu,v)=n}

ueTf¢ veTh

It is well known that the order of a subgroup of S,, which stabilizes u € T is

[I,c0: 75! Therefore,
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|R[-1

ce.D __ |

2 B =22 1!
0ESK ueTf veTP i=0

#{u' € R" | comp(u’) = r,n(u’,v) =7}

|9R]— |?R[—
=2 > H H e
ueTf veTP =0 Jj= 0 wjwi
[9R]— |?R[—
e T I
Wi |9{\ |
J 0 w]wl

HIU"I— S

=0
¢ HIW ijz

__ AC 4D
= AC APp
H‘“' r

Wz

nwoww e 777w|9q|_1wi

( . )
Twoyr -+ Ty

= ACAPn!

Now we have

CIEp (zq with a € R?)

— Z CJco p(x, with a € R?)

JES
_1 3 0 e
n r 5,
T,8,M Ues’n aGSRQ

H ( ) > I I
beRr
77wob7 cee an‘m‘_lb n
I’au.

n
> ac€R?
Tuwor -+ + s Twm 1

This completes the proof.

31
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4.3. Average of g-fold complete joint weight enumerators

In this section, we give a generalization of Theorem 4.2.1 for the average
g-fold complete joint weight enumerators of codes over fR.

Let C1,Cy,...,C4 be R-linear codes of length n. For any g-tuple

(Cl,...,Cg)601X“‘XCg,

we denote by n?(cy,...,c,) a vector with non-negative integer components
nJ(cy,...,c,) for a € R

and defined as:

ni(cy,...,cy) :=#{i| (c1,...,cq) = a}.

We call n9(cy,...,c,) the g-fold composition of (cy,...,c,) € Cy X -+ x C,.
We denote by n? a g-fold composition of n, a vector with non-negative integer
components n? for a € RY such that

> ni=n.

acmy

We also denote by T,gl""’cg the set of codewords of C x ... x C, with

g-fold composition n?. The g-fold complete joint weight enumerator is defined
as follows:

CIon,...c,(Tq With a € RY) 1= Z H xgg(%---v%)

c1€C,...,cg€Cy a€RI

Z Ci,iCy nd
= Ang H I’aa,
179

a€RY
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is the number of

. . C1,.,C
where z, for a € RY are the indeterminates and Ang1 g

g-tuples (cy,...,¢c,) € Cp X -+ x Cy such that

The average g-fold complete joint weight enumerators are defined as:

av 1
CIE ... (g :a € RY) = o Z CIcoCo,...cp(Ta - a € RY).

’ UESn

Let a = (ay,...,a,) € RY and b= (by,...,b,_1) € RI~!. Then we denote

[a’j] = (al? ey G51, Q5415 7ag) S 9{9717

(2;0) == (2,b1,...,b4_1) € R for z € R.

Now we have the following generalization of Theorem 4.2.1.

Theorem 4.3.1 ([3]). Let Cy,Cs,...,C, be the R-linear codes of length n
and s1, 82, ...,54 be the composition of n. Let n? be the g-fold composition of

n such that for j =1,2,...,9,

s; = (an withaj:wiforizo,la---a|m|_1>'

a€eRY

Again let 91 be the (g — 1)-fold composition of n such that the non-negative
integer components nffl for b € RI7L is equal to the sum of n? over all a € RY

with [a; 1] = b, that is,

g—1 __ E : g
m = nal[a;l]:b'

acRY
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Then we have

CIE ..o, (Ta with a € RI)

g—1
My
Ca,...,Cy BERIT! Mewosby - - - ’n(w\m\—nb)

E AclA ;
N ( ) >
81w07 Slw‘m‘ 1

g9
Ta
||£L‘a.

s1,m9~ 1 a€RI

Proof. Let C4,...,C, be R-linear codes of length n. Then by the definition

of g-fold complete joint weight enumerator of the codes Cf,...,C, we have,
(7) CJcn,...c,(Tqa With a € RY) ZACL ? H T

acRI
where

> ni=n.

acRY

Now let us define

Cy,nC
somi e = #{(c1,....¢q) € C1 x -+ x Cy | comp(cy) = s1,
" ca, .. ) =07 ey, ..., ey) = 10
Therefore,

Hence, we can write from (7)

(8) CJe,..c,(xq with a € RY) = Z ff;,q’?g,,q H T

517775’_17779 aceRI
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Now

Z pOT 02Oy
317779717779

gESy

= #{(c1,....cq0) €T x ... x T xS, |

ng(ctlj7 Co, ... ’Cg) = 779}

Z Z #{o €S, |n(c],ca,....cq) =1}

C1 .\ _Coyy
cleTsl1 (c2,... )6T7g 1

The order of a subgroup of S, stabilizing ¢; € Tgl is H'ml S1w;!. Therefore,

j : c?7,Co,...,C,
B 1 a1 gg
51,7 i

UESn

IR

-r T 1] s

c1 GTS1 (ca,... cg)ET """

#{c} € ®R" | comp(c]) = s1,n%(c], Ca,...,¢,) =17}
|?%]-1

Cy 4 C2 (Ug_l)!
= ASllAngi17 H Slwz H . 7]

|. I’
beRI—1 (Wo;b)) (n(w|m|,1;b))'

Now it is easy to complete the proof by following similar arguments stated in

the proof of Theorem 4.2.1. O



CHAPTER 5

Average Intersection Number

The notion of the average intersection number for a pair binary linear codes
was introduced in [22]. In this chapter, we adopt the same notion for the
MR-linear codes of length n. In [23], Yoshida gave the asymptotic bound for
the average of intersection numbers of a pair of Type I (resp. Type II) codes
over [F5 and also for their second moments. We give the asymptotic bound for
the average of intersection numbers of a pair of Type III codes over F3 (resp.

Type IV codes over F,) and for their second moments.

5.1. Properties of average intersection number

Let C' and D be two fR-linear codes of length n. Then the average inter-

section number of C and D are given as follows:

1
A(C,D) =~ > |cnpry.

’ O’GSn
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Let u = (uy,...,u,) and v = (uy, ..., u,) be two elements of R". Then it
is easy to say that for any a = (a, as) € R? such that a; # as, 7,(u,v) = 0 if

and only if u = v. Thus we have the following remark.
Remark 5.1.1 For a = (ay,a) € R?, we let

0 if aq 7& aog,
1 otherwise.

Then CTE (o < Yo - a € R?) = A(C, D).
Now we have the following result.

Proposition 5.1.1. Let C, D be two R-linear code of length n, and r be the

composition of n. Then we have

AC AP

A(C,D) =) - .
(o )

r

SN T
Proof. Let T and TP be the set of all elements of C' and D, respectively,
with the composition r = (ry,, . .. ’T‘*’IR\—I) of n. Then we can write
nlA(C,D) =) |CNn D
S

=#{(u,v,0) eCxDxS,|u=v}

:ZZ Z#{068n|u:v"}

r ueT¢ veTP

93 —1

=Y ACAP ] rt
r =0

Hence, this completes the proof. O
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5.2. Self-dual codes over F,

We recall the definition of the self-dual codes from Chapter 2. It is well
known that the length n of a self-dual code over F, is even and the dimension is
n/2. A self-dual code C over FFy is called Type 11 if the weight of each codeword
of C'is a multiple of 4. It is well-known that the length n of a Type II code is a
multiple of 8. A self-dual code over Fy which is not Type II is called Type I. A
self-dual code C over I3 is called Type III if the weight of each codeword of C'
is a multiple of 3. The length of a Type III code is a multiple of 4. Finally, a
self-dual code C over F4 having even weight is called Type I'V.

Let C be an [F-linear code of length n for ¢ = 2,3,4. For m = 1 and 2, we

define
m 1 m
AT(C) =T > lenbm,
" peJ,

where J,, denotes the set of self-dual codes of Type .J, where J stands for I, II,

III or IV. The following results for J =T and II are presented in [23].

Theorem 5.2.1 ([23]). Let C C Fy be a binary self-dual code. Then the

following hold:
(i) A(C) =4 if C is of Type ],
(i) Ap(C)~6  if C is of Type II.
Theorem 5.2.2 ([23]). Let C C F} be a binary self-dual code. Then we have

(i) A}C)~24 if C is of Typel,

(ii) A%(C)~60 if C is of Type IL.
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In this section, we give the analogous results of the above theorems for
Type III and Type IV codes over F3 and Fy, respectively. Before presenting
our findings, we adopt the following mass formulas which give the numbers of

Type III and Type IV codes over F3 and Fy, respectively.

Theorem 5.2.3 ([13, 17]). The following hold:

(i) The number of Type 111 codes over Fs of length n =0 (mod 4) is
n/2—1
2 [T 3 +1).
i=1
(ii) The number of Type IV codes over Fy of length n =0 (mod 2) is
n/2—1
H (22i+1 + 1)
i=0
Let C’ C F§ be a self-orthogonal code of dimension k. We denote by N,
the number of Type III codes over 3 of length n containing C’. Then from [2]

we have

For k =1, we get from [18] the number of Type III codes over F3 of length n
containing a self-orthogonal vector of ;. The following theorem is a Type III

analogue of Theorem 5.2.1 and Theorem 5.2.2.

Theorem 5.2.4 ([3]). Let C be a Type 111 code over Fs of length n = 0

(mod 4). Then we have

4

- 3n/2-1 +1 ~
40(371/2)2

(372 4 3)(3"/2 + 9)

(i) A (C) =4 4,

(i) Afu(C) = ~ 40.




5.2. SELF-DUAL CODES OVER F,

Proof. (i) Let C € I1I,,. Then

> |CnD|=#{(u,D)eCx1I, |uc D}

Delll,

=> #{Delll, |ue D}

ueC

— Z+ Z #{D €1, |u e D}

u=0 ueC\{0}

= || + (IC] = N1

Since [I1L,| = 2 [TM27' (3" + 1), therefore we can write

II1

Nn,l
Am(C) =1+ (|C] - 1)@

32 —1
3n/2=1 4 3n/2
3r/2-1 41

3n/2-1 _}_3‘371/271
3n/2-1 41
4.3/
B
4
4= s

=14+

This completes the proof of (i).
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(ii) Similarly as (i) we can write

Y |lcnDP =#{(u,v,D) € CxCxIIl, |uveD}

Delll,

_ Z #{D €11, | (u,v) C D}

u,veC

(e x - %

u,v=0 dim(u,v)=1 dim(u,v)=2

#{D €111, | (u,v) C D}

= [IIL| +4(/C] = DN + (IC] = 1)(|C| = 3)N}T5.

Since [I11,,| = 2 H?ﬁ_l(?f + 1), therefore we can write

IH HI

4(37% - 1) (3"/2 —1)(3"% - 3)

3n/2-1 +1 (3n/2—2 + 1)(3n/2 14 )

12(37/2 - 1) N 27(3%/2 — 1)(3"/% — 3)
324+ 3 (372 +9)(37/2 + 3)

B 40(3n/2)2

(324 3)(37/2 +9)

Af(C) =1+4(/C| - 1)

=1+

=1+

This completes the proof of (ii). O

Now if C" C F} is a self-orthogonal code having dimension k, then the

number of Type IV codes over F, of length n containing C”, denoted by NV

n,k?

is given in [4] as follows:

n/2—k—1
NY= [ @+
=0

In particular, for £ = 1 we get the number from [13].
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We close this paper with the following Type IV analogue of Theorem 5.2.1

and Theorem 5.2.2.

Theorem 5.2.5 ([3]). Let C be a Type IV code over Fy of length n = 0

(mod 2). Then we have

3 ~

S 2m/2)-1 L1
27(22(n/2)>2

(22(n/2) 4 2)(22(n/2) 4 8) ~ 2.

(1) AI\/(C) - 3 3,

(i) Afy(C) =
Proof. (i) Let C € IV,,. Then

> |CnD|=#{(u,D)eCx1V,|uc D}
Delv,

=Y #{DelV,|ue D}

ueC

=)+ > |#{De1v,|ueD}

u=0 ueC\{0}

= IV,.| + (|C] — 1)N,§§§.

Since [IV,| = [[27" (22! + 1), therefore,

NIV

A (C) =1 Cl—1)—2

w(C) =1+ (1] = D
22(n/2) _q

=1+ 22(n/2)-1 1 |

92(/2)-1 4 92(n/2)
22(n/2)-1 4 1
3920021
= R
3
22(n/2)—-1 + 1

=3

This completes the proof of (i).
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(ii) Similarly as (i) we can write

> 1CnDP=#{(u,v,D) e CxCxIV,|uveD}
Delv,

=Y #{DelV,|(uv)CD}

u,veC

(T ey

u,v=0  dim(u,v)=1 dim(u,v)

#{D €1V, | (u,v) C D}

[IV,] +5(IC] = 1N + (0] = 1)(IC] = 4N,

Since [IV,,| = [TM27" (2271 4 1), therefore,

IV v

Nn2
)HVI () =ndcl - >HVJ

22(n/2) -1 (22(n/2) 1)(22 (n/2) _ )
22(n/2)—-1 +1 + (22 (n/2)— 3+ 1)(22 (n/2)— 1)
2 2(n/2) _ 1 (22 (n/2) _ 1 22(n/2) )

)(
/2) 2 + 16 (22 (n/2) + 8) (22(n/2) + 2)

27(22(n/2))
(2207 1 8) (220D 2y’

AN (C) =1+5(|C] -

— 145

—1+10

This completes the proof of (ii).
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