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Abstract.	 [Purpose] Lateral ankle sprains are common injuries suffered while playing sports, and abnormal 
forward- and inward-directed ground reaction force occurs during a jumping task. However, the influence of hip 
muscle strength training on jumping performance after ankle injuries has not been fully examined. This study thus 
examined changes in ground reaction force during a rebound-jump task after training to strengthen hip muscles. 
[Subjects and Methods] Ten of 30 female high school basketball players were assigned as subjects who showed a dif-
ference of 7 or more degrees in dorsiflexion ranges between the bilateral ankles. The subjects underwent 12 weeks 
of training to strengthen hip abductors and external rotators. Comparisons between before and after training were 
made regarding ground reaction force components, hip and knee joint angles, percentage of maximum voluntary 
contraction in leg muscles, and muscle strength of hip muscles during the rebound-jump task. [Results] After train-
ing, the subjects showed increased strength of external rotator muscles, increased percentage of maximum volun-
tary contraction in the gluteus medius muscle, decreased inward ground reaction force, and increased flexion angles 
of the hip and knee joints. [Conclusion] This study suggests that training to strengthen hip muscles may ameliorate 
the inward ground reaction force in athletes with ankle dorsiflexion restriction.
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INTRODUCTION

Lateral ankle sprains or injuries to the lateral ligaments of the ankle complex are commonly suffered while playing 
sports1–5), and Hosea et al.6) reported that female interscholastic and intercollegiate basketball players had a 25% greater risk 
of incurring grade I ankle sprains than their male counterparts. Moreover, recurrence rates were reported to exceed 70% in 
sports such as basketball7, 8). After an ankle sprain, three potential ankle factors chronically worsened: proprioceptive deficits, 
muscle weakness, and ligamentous laxity9). Chronic ankle instability caused significantly less dorsiflexibility (4.8 ± 0.6 
degrees) than in controls during jogging10). Gribble et al.11) reported that subjects with chronic ankle instability had deficits 
of torque in the ankle plantar flexor and in the knee flexor and extensor, but no similar deficits in the hip.

However, Negahban et al.12) reported that the average peak torque to body weight ratio in ankle dorsiflexor or hip flexor 
muscles was significantly lower in chronic ankle instability subjects than in healthy controls. Additionally, a significant delay 
in the onset of activation of the gluteus maximus was found in subjects with ankle sprain13). It was suggested that this delay 
was due to changes in proximal muscle function and local sensory function14). Thus, laxity at the ankle joint could involve hip 
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kinematics related to the change in balance strategy from an ankle strategy to a hip strategy15–17). For example, subjects with 
ankle instability showed a less externally rotated position of the hip joint at the initial contact of jump landing18). Moreover, 
ankle dorsiflexion restriction produced a decreased peak knee flexion angle, increased knee valgus angle, and medial knee 
displacement compared with cases without restriction during a squat task19).

In healthy subjects, increased hip abduction and external rotation strength improved the performance of single-leg 
squats20). However, the influence of hip muscle strength training on jumping performance after ankle injuries has not been 
fully examined. In terms of ground reaction force, subjects with ankle instability showed a significant increase in posteriorly 
and medially directed forces after initial contact during a jump landing task18). As repetitive malalignment stimulations on 
the ankle joints likely cause arthritis21, 22), it may be important to reduce abnormally directed ground reaction force by means 
of an intervention. The current study was thus conducted based on the hypothesis that increased strength of the hip abductors 
and external rotators may be effective in correcting the direction of ground reaction forces in female basketball players with 
ankle dorsiflexion restriction.

SUBJECTS AND METHODS

Subjects
Ten of 30 national-level female high school basketball players were assigned as subjects (age, 15.9 ± 1.1 years; weight, 

57.9 ± 3.3 kg; height, 165.2 ± 4.6 cm; mean ± SD) in this study because of a difference of 7 or more degrees (8.8 ± 1.3 
degrees, mean ± SD) in dorsiflexion ranges between the bilateral ankles. The reason for this selection was that Ota et al.23) 
reported that the knee kinematics and kinetics were affected by a reduced ankle dorsiflexion range of approximately 8 degrees 
during gait. Previous injuries included the following: two cases of ankle inversion sprain, one case of Achilles tendinitis, 
and one case of adductor muscle contusion on the restricted side. Exclusion criteria included previous knee injuries and a 
postoperative state of the ankle joints. As per the Declaration of Helsinki, the subjects’ written consent and approval of the 
Ethics Committee of Nittazuka Medical Welfare Center (approval no. 23-1) were obtained prior to the study. No subjects 
dropped out during the course of the study.

Methods
Rebound-jump tasks were performed three times from a 30-cm-high24–27) step platform (Training Chair K3340M, Minato 

Medical Science Co., Ltd.) to a ground reaction force plate with goniometers and surface electrodes on the limb side with 
ankle restriction (Fig. 1). Regarding the ground reaction force components, Fx, Fy, and Fz were measured using a force 
plate (9286A; Kistler). They were recorded as positive (+) in the outward, forward, and upward directions and negative (−) 
in the inward, backward, and downward directions for each component, respectively. The component values were divided 
by body weight and normalized to calculate %Fx, %Fy, and %Fz. The landing point was initially identified based on the Fz 
value recorded on the ground reaction force plate to classify it into the following five points and to calculate the mean ground 
reaction force component values and joint angles (Fig. 2): 1) the landing point, the first peak of the Fz value after landing; 2) 
the impact-absorbing point, the bottom peak of the Fz value after landing; 3) the disturbance response point, the second peak 
of the Fz value between the impact-absorbing and unweighting points; 4) the unweighting point, the lowest Fz value after 

Fig. 1.	 Measurement system and wiring diagram
Biaxial goniometers and surface electrodes were attached to the 
leg with ankle restriction. Rebound-jump tasks were performed 
from a 30-cm-high step platform to two ground reaction force 
plates; one of them was for the leg with ankle restriction, and the 
other was a dummy for the opposite leg. This figure presents the 
measurement system for a subject with restriction in the right 
ankle.

Fig. 2.	  Points and phases during a rebound-jump task identified 
based on the Fz value

The horizontal axis represents time in seconds, and the vertical 
axis represents the upward ground reaction force divided by body 
weight.
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landing; and 5) the take-off point, the Fz value marked immediately before taking off. In addition, to evaluate the relative 
myoelectric activity, the rebound-jump task was classified into the following three phases: the impact phase, from the landing 
to disturbance response points; pre-push-off phase, from the disturbance response to unweighting points; and push-off phase, 
from the unweighting to take-off points.

Biaxial goniometers (SG150, Biometrics Co., Ltd.) were attached to the lateral side of the hip joint and knee joint of the 
ankle-restricted leg. Flexion/extension and abduction/adduction in the hip joint and flexion/extension and valgus/varus in the 
knee joint were measured. Hip and knee flexion in the sagittal plane was recorded as positive (+), and hip and knee exten-
sion in the sagittal plane was recorded as negative (−). Hip abduction and knee varus in the frontal plane were recorded as 
positive (+), and hip adduction and knee valgus in the frontal plane were recorded as negative (−). The measured angles were 
considered those projected in the sagittal and frontal planes. A Butterworth low-pass filter was used at a cut-off frequency 
of 15 Hz for waveform processing of each angle24, 28, 29). To measure muscle activity, surface electrodes (SX230W, Biomet-
rics Co., Ltd.) were attached to the gluteus maximus, gluteus medius, vastus medialis, and vastus lateralis muscles on the 
measurement side30), while a ground electrode (R206, Biometrics Co., Ltd.) was attached to the ulnar styloid process on the 
same side. Waveform data were processed within a band-pass range of 20 to 450 Hz and fully rectified to calculate integrals 
during the rebound-jump task and means per unit time. EMG data for maximum voluntary contraction (MVC) were recorded 
from the gluteus maximus muscle while the subjects performed maximum isometric voluntary hip extension at 0 degrees 
of hip extension and 90 degrees of knee flexion in a prone position, from the gluteus medius muscle while the subjects 
performed maximum isometric voluntary hip abduction at 0 degrees of hip abduction in a side-lying position, and from the 
vastus medialis and vastus lateralis muscles while the subjects performed maximum isometric voluntary knee extension at 60 
degrees of knee flexion in an upright sitting position against manual resistance for 6 s. The mean integrals of the middle 3 s 
were used to obtain before and after training MVCs. Muscle activities are presented as relative values percentage of MVC; 
%MVC during each phase of the rebound-jump task. All ground reaction force components, joint angles, and muscle activity 
were synchronized using a TRIAS device (TRIAS System ver. 1.61, DKH Co., Ltd.) and recorded at a sampling frequency 
of 1 kHz.

Hip abductor and external rotator muscle strengths were evaluated at angular velocities of 0, 60, and 90 degrees/s using 
CYBEX Norm (CYBEX Corporation). While abduction tasks were performed in a side-lying position to facilitate the gluteus 
medius muscle output, rotations were performed in an upright sitting position with the hip flexed to confirm muscle strength 
changes. The muscle strength was divided by the body weight for comparison.

Following the initial evaluation, the subjects underwent training to strengthen hip abductors and external rotators on both 
sides. Hip abductors were trained by laterally raising the leg in a side-lying position while keeping the hip and knee joints 
straight without trunk rotation. Hip external rotators were also trained by outwardly rotating the hip joint in a side-lying posi-
tion but with 45 degrees of hip joint flexion and 90 degrees of knee joint flexion. One repetition maximum of each movement 
was measured using a handheld dynamometer (PowerTrack II MMT Commander, Nihon Medix Co., Ltd.), at one-third distal 
of the thigh. One set of training consisted of 10 repetitions at 70% intensity, as monitored using the dynamometer. The dyna-
mometer was handled by members of the team under our supervision during training. A set was performed in approximately 
10 s, and five sets were performed with 2 min of rest between the sets. The training was conducted three times a week for 12 
weeks after regular team training after school.

Paired t-tests were performed to examine the difference in measurements between before and after training for muscle 
strength, muscle activities, ground reaction forces, and joint angles. The significance level was set at less than 5% of the 
risk rate. For statistical analysis, add-in software (4-Step Excel Statistics ver. 3, OMS Publishing Inc.) was installed within 
Microsoft Office Excel 2010.

RESULTS

The strength of external rotator hip muscles increased at an angular velocity of 0 degree/s after training (81.0 ± 12.6 Nm/
kg vs. 64.9 ± 15.4 Nm/kg, p<0.05) (Table 1). The %MVC of the gluteus medius muscle significantly increased during the 
pre-push-off (46.6 ± 24.9% vs. 25.6 ± 14.2%, p<0.05) and push-off phases (103.3 ± 39.4% vs. 74.1 ± 24.5%, p<0.05) after 
training (Table 2).

The inward component decreased at the impact-absorbing (−9.1 ± 4.7% vs. −12.0 ± 3.1%, p<0.05) and take-off points 
(−15.9 ± 3.6% vs. −18.4 ± 3.8%, p<0.05) (Table 3). The upward component of the subjects increased at the unweighting point 
(93.2 ± 17.7% vs. 79.0 ± 5.5%, p<0.05).

The hip flexion angle significantly increased at all points (landing point, 59.2 ± 14.4 degrees vs. 44.6 ± 11.4 degrees, 
p<0.05; impact-absorbing point, 77.4 ± 13.1 degrees vs. 61.8 ± 13.2 degrees, p<0.05; disturbance response point, 89.8 ± 13.3 
degrees vs. 73.6 ± 12.4 degrees, p<0.05; unweighting point, 89.3 ± 17.0 degrees vs. 82.1 ± 12.5 degrees, p<0.05; take-off 
point, 63.1 ± 20.0 degrees vs. 48.4 ± 10.9 degrees, p<0.05) (Table 4). Furthermore, the knee flexion angle also significantly 
increased at the landing (54.0 ± 11.3 degrees vs. 46.5 ± 7.2 degrees, p<0.05) and take-off points (68.9 ± 9.8 degrees vs. 61.6 
± 5.5 degrees, p<0.05) after training. The hip and knee angles in the frontal plane did not change.
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Table 1.	Strengh of hip abductors and external rotators at each angular velocity (n = 10)

Before training, Nm/kg After training, Nm/kg
Hip abductor strength 0 degree/s 145.7 ± 33.1 149.1 ± 26.6

60 degrees/s 111.3 ± 25.0 121.4 ± 22.0
90 degrees/s 103.0 ± 19.6 109.8 ± 23.7

Hip external rotator strength 0 degree/s 64.9 ± 15.4 81.0 ± 12.6*

60 degrees/s 61.0 ± 13.8 62.4 ± 13.8
90 degrees/s 54.0 ± 10.0 55.7 ± 12.3

Values are divided by body weight and are expressed as the mean ± SD. *p<0.05 between before and after 
training.

Table 2.  Activity of thigh muscles in each phase (%MVC) (n = 10)

Before training, % After training, %
Gluteus maximus Impact phase 71.9 ± 73.9 61.2 ± 34.8

Pre-push-off phase 81.1 ± 74.7 126.6 ± 91.8
Push-off phase 111.2 ± 103.6 125.3 ± 74.5

Gluteus medius Impact phase 35.7 ± 17.2 53.4 ± 40.0
Pre-push-off phase 25.6 ± 14.2 46.6 ± 24.9*

Push-off phase 74.1 ± 24.5 103.3 ± 39.4*

Vastus medialis Impact phase 145.8 ± 62.9 148.1 ± 47.0
Pre-push-off phase 133.9 ± 45.5 158.2 ± 65.4
Push-off phase 164.8 ± 36.0 201.2 ± 79.6

Vastus lateralis Impact phase 143.2 ± 51.3 158.0 ± 56.8
Pre-push-off phase 118.0 ± 44.5 146.2 ± 48.1
Push-off phase 185.0 ± 71.0 200.5 ± 68.0

Values are relative values of maximum voluntary contraction and are expressed as the mean ± SD. 
*p<0.05 between before and after training.

Table 3.  Three components of ground reaction force at each point (n = 10)

Before training, % After training, %
Outward/inward components (Fx) Landing point −11.6 ± 7.9 −7.8 ± 9.4

Impact-absorbing point −12.0 ± 3.1 −9.1 ± 4.7*

Disturbance response point −10.5 ± 2.9 −11.0 ± 4.3
Unweighting point −6.2 ± 9.1 −10.3 ± 4.4
Take-off point −18.4 ± 3.8 −15.9 ± 3.6*

Forward/backward components (Fy) Landing point −23.3 ± 12.2 −22.6 ± 14.9
Impact-absorbing point 24.9 ± 6.1 22.4 ± 4.7
Disturbance response point 2.5 ± 5.6 0.9 ± 4.1
Unweighting point 0.1 ± 5.1 −0.4 ± 3.4
Take-off point 8.2 ± 3.2 6.6 ± 3.5

Upward/downward components (Fz) Landing point 217.2 ± 45.4 233.3 ± 29.6
Impact-absorbing point 86.6 ± 8.0 89.2 ± 7.0
Disturbance response point 111.4 ± 11.6 121.0 ± 17.6
Unweighting point 79.0 ± 5.5 93.2 ± 17.7*

Take-off point 110.3 ± 8.2 111.7 ± 9.5
Values are divided by body weight and are expressed as the mean ± SD. *p<0.05 between before and after training.



323

DISCUSSION

In this study, the inward direction component of the ground reaction force was significantly ameliorated in subjects with 
ankle dorsiflexion restriction after hip abduction and external rotation muscle training. For an initial explanation of the kinetic 
change, it seemed important to consider the hip and knee angles during the rebound-jump task. The change in ground reaction 
force was observed at the impact-absorbing point and the take-off point, where the hip flexion angle and the knee flexion 
angle somewhat increased, as shown by the angles in the sagittal plane. There was no significant difference in hip and knee 
angles in the frontal plane in this study, but the values for the hip angle in the frontal plane tended to be larger, which indicated 
further hip abduction, and the knee tended to be in varus after training. It was suggested that deeper bending of the hip and 
knee joints with slightly further hip abduction could correct the valgus of the knee to an extent that would not appear in the 
change in angle. A previous study reported that 8 weeks of lower extremity training, such as with bilateral and unilateral 
squats, lunges, step-ups, and Romanian deadlifts, induced a significant increase in knee flexion angle during the drop vertical 
jump task; however, significant differences in knee valgus and hip flexion angles were not shown31). Even if the knee angle 
changed from valgus to varus, it might not be detected as a statistically significant change by the present method.

As another possible explanation, the corrective reaction on the inward direction component might be explained by in-
creased external rotational muscular strength of the hip joint and improved utilization of the gluteus medius muscle. Gener-
ally, the hip external rotation muscles have been reported to be the obturator externus, quadratus femoris, and iliopsoas 
muscles when the hip joint is flexed 40 degrees or more32, 33). In particular, as external rotational muscular strength training 
was performed with 45 degrees of hip joint flexion, the stability of the hip joint was possibly increased in a flexed position 
by the external rotation muscles.

Additionally, the gluteus medius muscle was shown to produce an internal rotation moment around the hip joint when 
the hip was flexed more than 40 degrees32, 33). Increased activity of the gluteus medius muscle was also suggested to assist 
hip stabilization and pelvic rotation besides hip abduction34). In the present study, the range of hip flexion angle was 59–89 
degrees at each measurement point of the rebound-jump task after training, and internal rotation of the hip joint by the gluteus 
medius muscle might induce more stability of the hip joint during hip joint external rotation.

A previous program to prevent injury after ankle sprain focused on decreasing hip adductor activity and increasing hip 
abductor and external rotator activities35). We intended to follow this program and could show the compensatory movements 

Table 4.  Hip and knee angles in the sagittal and frontal planes at each point (n = 10)

Before training,   
degrees

After training,   
degrees

Hip angle
In the sagittal plane Landing point 44.6 ± 11.4 59.2 ± 14.4*

Impact-absorbing point 61.8 ± 13.2 77.4 ± 13.1*

Disturbance response point 73.6 ± 12.4 89.8 ± 13.3*

Unweighting point 82.1 ± 12.5 89.3 ± 17.0*

Take-off point 48.4 ± 10.9 63.1 ± 20.0*

In the frontal plane Landing point 8.3 ± 5.2 9.9 ± 9.1
Impact-absorbing point 6.2 ± 13.6 8.2 ± 11.4
Disturbance response point 5.6 ± 16.1 7.5 ± 15.7
Unweighting point 12.0 ± 16.9 11.1 ± 15.9
Take-off point 4.1 ± 8.2 10.5 ± 11.4

Knee angle
In the sagittal plane Landing point 46.5 ± 7.2 54.0 ± 11.3*

Impact-absorbing point 69.0 ± 8.8 74.7 ± 12.2
Disturbance response point 81.1 ± 7.9 85.7 ± 10.6
Unweighting point 85.6 ± 10.8 88.7 ± 9.1
Take-off point 61.6 ± 5.5 68.9 ± 9.8*

In the frontal plane Landing point −9.3 ± 6.2 −9.4 ± 3.5
Impact-absorbing point −3.2 ± 7.7 −0.8 ± 5.3
Disturbance response point −0.1 ± 7.7 4.1 ± 8.0
Unweighting point 4.8 ± 8.4 5.1 ± 11.4
Take-off point −5.5 ± 8.3 −5.3 ± 6.8

Values are expressed as the mean ± SD. *p<0.05 between before and after training.
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of the hip and knee flexion and simultaneous reduction of the inward component of ground reaction force. Consequently, 
muscle strength training around the hip joint may be useful for improving movement during the rebound jump.

There are some limitations to the present study. We could show the difference in ground reaction force between before 
and after training in the subjects; however, precise compliance and reliability of the training technique in the high school 
students could not be shown even though the method was well directed by a physical therapist during the training. Generally, 
12 weeks of training at 70% intensity of muscle strength is suggested to be sufficient to increase muscle strength. The result 
of no increase in hip abductor muscle strength may have been due to an inaccurate hip flexion training position or some other 
reason. As we evaluated muscle strength only in the hip abductor and external rotator muscles, the effect of other hip muscles 
on the rebound-jump task was obscure.

The current study examined changes in ground reaction force in ankle dorsiflexion restriction during a rebound-jump task 
following 12 weeks of training to strengthen hip abductors and external rotator muscles. This study suggests that training may 
have been effective to increase the muscle strength of external rotators and gluteus medius muscle activity, which resulted in 
increased hip and knee joint flexion angles and reduced inward ground reaction force at the impact-absorbing and take-off 
points in ankle dorsiflexion restriction.
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