(134) グラベルドレーンを用いた地中埋設管の液状化対策工法 に関する基礎的研究

金沢大学工学部	正会員	北浦	勝

金沢大学工学部 正会員 〇宮島 昌克

第二電電 ㈱ 正会員 北島 孝

1. はじめに

液状化対策工法の1つに、低振動、低騒音で施工できることを特徴とするグラベルドレーン工法がある。 この工法は、砂質地盤中に透水性の高いグラベルを打設し、地震時に発生する過剰間隙水圧の上昇を抑える とともに、それを急速に消散させるものであり、既存構造物や護岸への対策としてその施工実績が増加しつ つある。しかし、地中埋設管をはじめとする地中埋設ライフラインに対しては、地上構造物に比べて液状化 が構造物の応答に及ぼす影響が複雑であること、敷設延長距離が膨大であるので、対策工法の有効な施工範 囲を明確にしなければ、従来の方法では非常にコストアップとなることなどにより、施工例が限られている のが現状である。そこで本研究では、地中埋設管の液状化対策工法におけるグラベルドレーン工法の適用に 関して、模型実験および透水シミュレーションを実施し、対策工法の施工範囲と対策の効果との関係を明ら かにしようとした。

2. 模型実験

本研究では、既存の埋設管にも施工が可能であり、施工範囲が広大にならないことを考慮して、埋設管の 両脇にトレンチを掘り、そこをグラベルで埋め戻すという工法について検討した。埋設管の破壊要因として 液状化地盤と非液状化地盤との境界部に生ずる動的および静的な地盤の相対変位に注目し、管模型の両端部 の地盤を締め固め、中央部のみが液状化するように模型地盤を作成し、実験を実施した。Fig. 1に実験装置 の概略を示す。グラベルドレーンを施した場合と施さない場合について等しい入力条件で液状化加振実験を 実施し、地盤および管路の応答を計測した。なお、実験材料、実験地盤の諸定数はTables 1,2 に示すとお りである。入力波は、加振開始後5秒後に約 100gal となり、その後は一定加速度である5 Hzの調和波で約 30秒間加振した。

Figs. 2, 3は、対策を施さない場合と施した場合の入力加速度、応答加速度、過剰間隙水圧、管模型の軸 歪の時刻歴変化をそれぞれ示している。両者の過剰間隙水圧の変化の比較から、グラベルドレーンを施した Fig. 3 の方が、その過剰間隙水圧消散促進効果によりゆる詰め地盤における液状化継続時間が短くなってい ることがわかる。しかし本実験においては、対策を施した場合もグラベルドレーンの周辺地盤において完全 液状化に至っている。管の軸歪に注目すると、無対策の場合には特に液状化地盤と非液状化地盤との境界部 (SG5 and SG6)で動歪(歪の動振幅)が卓越している。また他の箇所においては動的な成分よりも静的な成 分が卓越しているが、これは液状化地盤に埋設されている管中央部付近が浮上したためである。一方グラベ ルドレーンを施した場合には、液状化の継続時間が短くなることと対応して、動歪の卓越する時間も短くな っている。しかしその最大値に注目すると、無対策の場合とあまり変わらない値となっている。これは本実 験においては、対策を施した場合も継続時間は短いものの完全液状化に至っているためであると考えられる。 なお実験終了後の地盤の沈下量に注目すると、グラベルドレーンを施した場合の方が間隙水の排水が促進さ れるので、液状化地盤における沈下量が無対策の場合に比べて大きくなると考えられるが、Table 3に示す ように本実験においては大きな差は生じなかった。しかし、液状化地盤と非液状化地盤との相対変位量は無 対策のほうがむしろ大きくなっている。またグラベルドレーンの沈下量を計測すると、液状化地盤において は0.65cm, 非液状化地盤では 0.5cm, それぞれ沈下していた。すなわち, 周辺地盤が不等沈下した場合でも グラベルドレーンはそれ自身の創性によりほとんど鉛直方向の相対変位を生じないことがわかった。したが って, グラベルドレーンに挟まれている埋設管にも大きな静歪が生じなかったものと考えられる。このよう にグラベルドレーンの削性が不等沈下の埋設管に与える影響を緩和するということが明らかとなった。

3. 透水シミュレーション

本対策工法の施工範囲と液状化対策効果の関係を検討するために、透水シミュレーションを実施した。本 シミュレーションにおいては、液状化の発生している状態を初期条件として与え、過剰間隙水圧の消散過程 について解析を進めた。過剰間隙水圧の消散に関する基礎方程式には次式を用いた。

 $\frac{\partial}{\partial t} \frac{u}{t} = \frac{1}{m_v} \frac{\gamma_w}{\gamma_w} \left\{ \frac{\partial}{\partial x} \left(k_x \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial z} \left(k_z \frac{\partial u}{\partial z} \right) \right\}$

ここで, U:間隙水圧, t:時間, ™:体積圧縮係数, ‰:水の単位体積重量, & , & :それぞれ 水平, 鉛直方向の透水係数である。なお, 本シミュレーションでは管軸に直角方向の鉛直断面について解析 を行った。シミュレーションで用いた諸定数をTable 4に示す。△+は解析の時間ステップである。本解析に おいては, 過剰間隙水圧比に対する体積圧縮係数の変化についても文献1)を参考にして考慮している。

Fig.4に解析対象地盤を示す。一例として幅10m,深さ4mにわたって地盤が液状化した場合を想定し, その半分について解析を行った。地表面から 1.5mの深さに管が埋設されているものとし,管の中心から水 平方向に60cm離れた位置から幅1m,深さ2mの大きさのグラベルドレーンを考え,これを標準タイプのグ ラベルドレーンとして解析を行った。また幅をさらに60cm拡張したものや,深さをさらに60cm拡張したもの などについても同様の解析を行った。図中の過剰間隙水圧比の値は,解析の初期条件として与えたものであ る。なお地表面付近では車の通行などにより密度が比較的高くなり,液状化抵抗が大きくなることを考慮し て,ここでは初期の過剰間隙水圧比を小さくしている。

Fig. 5 は、標準タイプのグラベルドレーンを施した場合の30秒後の過剰間隙水圧比の分布状況を示してい る。この場合、グラベルドレーンの周辺はもとより、ドレーン直下の深い部分でも過剰間隙水圧が消散して いるようすがわかる。Fig. 6 は、埋設管が位置する要素の過剰間隙水圧比の時刻歴変化を示している。同図 によれば、無対策の場合には下方からの浸透流によって埋設位置の過剰間隙水圧比が上昇していくのに対し、 対策を施した場合には初期の2~3秒間に過剰間隙水圧比の上昇が見られるのみで、その後は急激に低下す ることがわかる。

4. おわりに

本研究では、地中埋設管の液状化対策工法におけるグラベルドレーン工法の適用に関して、模型実験およ び透水シミュレーションを実施した。グラベルドレーンの間隙水排水促進効果により液状化をある程度抑制 することのできることが明らかとなったが、一方では地盤沈下を増大させる働きをすることが考えられる。 地盤沈下に対する対応や、管路とグラベルドレーンとの距離、グラベルドレーンの規模などについてはさら に検討を要する。

最後に、本研究の一部が文部省科学研究費奨励研究(A) (No. 62750421)の補助によって行われたことを 記して感謝いたします。

参考文献

1) 大野・伊藤・大北:砕石ドレーン工法の間隙水圧消散解析に用いる体積圧縮係数について,第18回土質 工学研究発表会講演集,pp. 575 ~576, 1983.

Fig. 1 General view of experimental apparatus.

- Fig. 2 Time histories of acceleration, exess pore water pressure and axial strain (without gravel drain).
- Fig. 3 Time histories of acceleration, excess pore water pressure and axial strain (with gravel drain).

sand,	gravel	and model	р
SAND			
Specific Gravity	(G_{s})	2.67	
Uniformity Coefficient	(U _C)	2.96	
Maximum Void Ratio	(Cmax)	1.030	
Minimum Void Ratio	(enin)	0.721	
50 Percent Diameter	(D)	0.2 (mm)	
Coefficient of Permeability	(k)	1.92 ×10 ⁻² (cm/sec)	
GRAVEL			
Specific Gravity,	(G_{S})	2.69	
Maximum Grain Size	(D	25 (ma)	
Coefficient of Permeability	(koraval)	8.24 (cm/sec)	
PIPE MODEL			
Young's Modulus	(<i>E</i>)	810 (kgf/cm²)	
Unit Weight	(7)	1.65 (gf/c∎³)	
Length	(1)	1000 (💼)	
Diameter	(d)	20 (mm)	

Table 1 Physical properties of

Table 3 Settlement of model ground.

Table 2 Physical properties of sand layer.

Loose Sand L	ayer (l	.iguefi	able Part)
Wet Density	(7.)	1.84	(g/cm³)
Void Ratio	(e)	0.95	
Water Content	(w)	32.4	(%)
Relative Density	(D ₁)	26.5	(%)
Dense Sand L	ayer (l	h-liqu	efiable Part)
Wet Density	(7.)	1.90	(g/cm³)
Void Ratio	(e)	0.87	
Water Content	(w)	32.9	(%)
Relative Density	(D ₁)	52.4	(%)
Gravel Drain			
Wet Density	(7.)	1.79	(g/c a 3)

Fable 4	Const	tant	s ar	nd	coefficients
	used	in	the	si	mulation.

	Liquefied Part	Un-liquefied Part
Case 1 (Without Gravel Drain)	2.15 cm	0 cm
Case 2 (With Gravel Drain)	2.30 cm	0.38 cm

Δţ		0.001 (sec)		
mo	sand	0.027 (cm²/kg	f)	
	gravel	0.075 (cm²/kg	f)	
ĩω		0.001 (kgf/cm	3)	
k	sand	1.92×10-2	(cm/sec)	
	gravel	8.24	(c∎/sec)	

Fig. 4 Initial condition of excess pore water pressure ratio in the sand layers.

Fig. 6 Time histories of excess pore water pressure ratio in the element on which the pipeline is located.

Fig. 5 Distribution of the pore water pressure ratio after 30 seconds. (with standard gravel drain).