液状化領域の空間分布推定法の提案と ほぼ水平な地盤における流動予測への適用

吉田雅穂¹·宮島昌克²·北浦 勝³

¹正会員 福井工業高等専門学校講師 環境都市工学科(〒916-8507福井県鯖江市下司町) ²正会員 工博 金沢大学助教授 工学部土木建設工学科(〒920-8667石川県金沢市小立野2-40-20) ³フェロー 工博 金沢大学教授 工学部土木建設工学科(〒920-8667石川県金沢市小立野2-40-20)

本研究は、地盤統計手法であるクリギング法を用いた液状化領域の空間分布推定法を提案し、同手法を利 用した液状化地盤の流動予測の可能性について検討するものである.対象とした地盤流動は、地表面勾配や 護岸移動を主な変位促進要因としない、地表面勾配が約1%以下のほぼ水平な地盤で発生した地表の水平変 位であり、1995年兵庫県南部地震における液状化被害事例をケーススタディとして検討を行った.その結果、 限られた地盤データを基に液状化領域の空間分布を推定できる本手法の有用性を示すとともに、液状化層の 厚さや非液状化層との層境界面の傾斜など、地盤内の液状化の程度とその空間的な分布状況が、ほぼ水平な 地盤における流動の量や方向に影響を与えていることを明らかにした。

Key Words : earthquake, liquefaction, lateral flow of ground, ground displacement, plane ground estimation of spatial spread, Kriging, 1995 Hyogoken-Nambu earthquake

1. はじめに

液状化によって生じる地盤の沈下や流動は,多大 な永久変位を伴うため,当該地点の土木建築構造物 に甚大な被害をもたらす.構造物の設計外力として この現象を取り上げる場合には,その変位量や構造 物に作用する力を事前に予測する必要があり,特に 水平方向への流動の場合には,その変位の方向をも 検討する必要があると考えられる.1995年兵庫県南 部地震では,臨海部の埋立地盤において,この液状化 による流動現象が数多く確認されており,建造物の 基礎および埋設管路などに甚大な被害を与え,地震 後も長期間に亘って都市機能が麻痺する事態がもた らされた.

兵庫県南部地震を契機に,構造物の耐震設計においてこの流動の影響を十分に考慮すべきことが共通 認識となり,現在では各種の耐震設計基準にもその ことが盛り込まれ改訂が行われつつある.しかし,研 究レベルにおいては,流動の発生メカニズムを初め, 地盤変位の予測やその影響を考慮した耐震設計法お よび対策法の開発に関して,未だ明確な結論が得ら れていない状況にある.

液状化地盤の流動が発生する地盤条件としては, これまでの事例研究などにより次の2つのタイプが考 えられている¹⁾. 1つは地表面勾配を持つ地盤におい て標高の高い所から低い方に向かって地盤が流動す るタイプであり,もう1つは臨海埋立地や河川の護岸 のように一方に開放面を持つ地盤において,護岸が 開放面方向に移動することにより,その背後地盤が 流動するタイプである. この2つのタイプの地盤に対 する流動の予測法はいくつか提案されているが,こ のように地盤条件を単純化すれば,流動量の大小の 推定は可能と考えられる. また,流動方向について も,地盤の傾斜方向や護岸方向というように比較的 容易に推測可能と考えられる. しかし,予測対象地区 における地表面勾配が一様でない地盤の場合や,岸 壁背後から離れた地盤,また地表面が水平な地盤の 場合には,流動量や流動方向を予測することは非常 に困難である.

濱田ら¹は,既往地震の事例分析より傾斜地盤タイ プの地表面勾配を0.5~3%前後としているが,後述 の兵庫県南部地震の事例など過去の被害地震におけ る流動事例を調べると,護岸から遠く離れ,しかも地 表面勾配が約0.5%以下のほぼ水平な地盤でも流動が 発生していることが確認できる.

本研究では,前述の2つのタイプに属さない地表面 勾配が約1%以下のほぼ水平な地盤における流動を 「水平地盤タイプ」と呼んでいるが,このタイプの流 動に影響を及ぼす地盤条件は、地表面勾配や護岸移 動といった流動を引き起こす外面的に明確な誘因が 不明であるため、その因子は地盤内部に存在するも のと考えられる.著者らは、この因子として液状化し た土層の厚さとその分布状況に着目している.

従来より地盤の液状化を判定する手法としては, ボーリングデータを基に算出するF_L値を用いた簡易 法が実務上最も多く用いられている.しかし,これは ボーリングデータの存在する地点の任意深度におけ る液状化抵抗率を評価するものであり,流動のよう に広い範囲を対象とする場合や,液状化領域の分布 状況を空間的に評価したい場合などには,数多くの データを入手する必要があり,またデータの存在し ない地域では何らかの手法で補間して評価する必要 がある.

このような観点から本研究では、まず対象地域に 存在する有限個のボーリングデータを基に、データ の無い地点の地盤物性値を推定し、液状化領域を空 間的に評価する手法を提案し、その有効性について 検討を行った、地盤物性値の推定手法は種々提案さ れているが、本研究では物性値の空間相関を考慮し た推定の可能な、地盤統計学的手法の1つであるク リギング法を用いることとし、1995年兵庫県南部地 震における神戸市の液状化事例を対象にケーススタ ディを行った、つぎに、本手法で推定した液状化領域 より、液状化層の厚さや非液状化層との層境界面の 傾斜、また液状化強度の三次元的な分布状況を明ら かにし、それらと地震後に水平地盤において発生し た地表水平変位との関係について考察した. さらに、 液状化領域の分布状況をパラメータとした、水平地 盤における流動予測の可能性について検討を行った.

2. 対象地区と液状化による地盤変位

本研究では兵庫県南部地震における液状化被害事 例を対象としており、その対象地区は神戸市東灘区 の臨海部に位置する深江浜(東西1.2km×南北 1.6km)、魚崎浜(東西1.6km×南北1.2km)、御影・住 吉浜(東西1.2km×南北0.8km)の3地区である.こ れら3地区は周囲を全て岸壁に囲まれた埋立地盤であ り、地震後には岸壁が海側に大きく傾斜し、その背後 地盤も海側に大きく流動する被害が多数発生した. 対象地区より得られたボーリングデータ²は、それぞ れ31本、15本、22本であり、各地区の地形図より読 み取った地表面の標高とともに地盤データとして用 いた.3地区ともに埋立材料は六甲花崗岩であり、埋 立も1960年代のほぼ同時期に実施されており、地盤 条件のばらつきは比較的少ないと判断できる.また, 地盤変位のデータは地震前後の航空写真測量による 判読結果³⁾を数値化したものを用いている.なお,本 研究では対象地区を東西50m×南北50mのメッシュ に分割して以降の検討を行っているが,この大きさ は多くのメッシュにおいて流動データや標高データ が1メッシュに1個以上存在する最適な大きさであ る.

Fig.1 は各対象地区の地図上に、メッシュデータ化 した流動ベクトルおよびボーリング地点を示したも のである. また、Fig.2 は各地区の標高の等高線(図 中にメートル表示)と、Fig.1に示した流動ベクトル より護岸部におけるデータを削除した、内陸部の流 動ベクトルを示したものである.ここで、護岸部の データとは、護岸の水際線から最大で100mの範囲内 で発生した流動ベクトルのことであり、一方、内陸部 の流動ベクトルとは、全流動データより上記の護岸 部のデータを削除し, 護岸移動による流動の影響を 取り除いた内陸部のみのデータのことである.この 境界値は、地表面の水平変位量が護岸から50~100m の範囲で大きく減少し、その後はほぼ一定値であっ たという調査結果"に基づき決定した.なお、同地区 における地表変位のデータとしては、参考文献3の データ以外に,防災科学技術研究所で公開されてい るデータ4もあるが、統計的分析を行うに際し、単位 面積あたりの変位測定点の数が前者と比較して少な いため、本研究では前者のデータを利用した.

Fig.3はメッシュデータ化した水平および鉛直方向 の地盤変位より,各地区の最大値と平均値を求めて 示したものであり,前で分類した護岸部(SHORE)と 内陸部(INLAND)とに分けて表示している.ここで, 鉛直変位に関しては隆起を除き沈下のみを対象とし ている.護岸部での最大水平変位は約5m,鉛直変位 は約4mであるのに対して,内陸部ではそれぞれ約2m となっており,内陸部でも比較的大きな変位が発生 していたことが分かる.また,水平変位については最 大値と平均値ともに地区ごとの明瞭な差異は見られ ないが,鉛直変位に関しては比較的ばらついており, 特に御影・住吉浜での変位が小さいことが特徴的で ある.

Fig.4 は各地区におけるメッシュごとの水平変位と 鉛直変位の関係を示したものであり, Fig.3 と同様に 護岸部と内陸部に分けて表示した.3地区ともに内陸 部では両者に有意な関係は認められないが,護岸部 ではばらつきは大きいものの水平変位の増加につれ て鉛直変位も増加する傾向にある.護岸部ではケー ソン岸壁の海側への移動によって,その背後地盤が 流動し沈下するというように,両地盤変位の発生メ

Fig.1 Vectors of horizontal ground displacement and distribution of boreholes.

カニズムが比較的明確であるのに対し,内陸部での 水平変位の場合は,当該地点だけでなくその周囲の 地盤条件の影響も受けていると考えられ,そのため1 地点における水平変位と鉛直変位の相関性が低かっ

Fig.2 Contour lines of altitude and inland vectors of horizontal ground displacement.

たものと推測できる.この点については後に詳細に 検討する.

Fig.5は各地区の水平変位の方位角を,内陸部と護 岸部とに分けてヒストグラム表示したものである.

Fig.3 Maximum and average ground displacement.

Fig.5(a)~(c)に示す内陸部に関しては、3地区ともに その分布に1つのピークを持ち、多くの流動が南東か ら南西にかけてのおよそ南方向に向かって発生して いたことが分かる.一方、Fig.5(d)~(f)に示す護岸部 では各方向に比較的均等に変位していることが見て 取れる.護岸部でも各地区で若干ピークが見られる が、深江浜では南北方向の護岸距離が長く、魚崎浜と 御影・住吉浜では東西方向の護岸距離が長いことに よる影響と考えられる.したがって、護岸部における 流動はそのほとんどが護岸の法線直交方向、すなわ ち海側に変位していたが、内陸部の変位はその方向 とは無関係であり、護岸移動とは異なる他の要因に よってその方向性が決定づけられていたことが容易 に推測できる.

本研究の主たる目的は、この内陸部で発生した南 方向への地表水平変位の誘因を明らかにするもので あり、この点について次章以降で検討することとす る.なお、東灘区の市街地にあたる対象地区北部の地 盤においても南方向への変位が卓越していたことが 確認されているが⁴、同地盤が非液状化地盤であるこ と、六甲山から臨海部に向けて大きな地表面勾配を 有すること、また埋立地盤と比べて地盤構造が複雑 であることの理由により、本研究では対象外とした.

(c) MIKAGE&SUMIYOSHI

Fig.4 Relationship between horizontal and vertical ground displacements.

3. 液状化領域の空間分布推定

第2章で示したように、本研究で対象とした3つの 埋立地盤では、広い範囲で大規模な地盤沈下や流動 が発生していた.これらの地盤変位の主要因が、地盤

Fig.5 Azimth of horizontal ground displacement.

内部で発生した液状化であったことは明白ではある が、地震後に確認された液状化の痕跡は、地表に現れ た噴砂がその主なものである.したがって、地盤内の 液状化領域の分布やそれが地盤変位に与える影響に ついて検討するためには、何らかの手法によってそ の分布を推定する必要がある.

著者らはこれまで,液状化領域の空間分布推定法 に関する研究を実施しており,形状補間関数を用い た方法やクリギング法を用いた方法を提案し,その 有効性や問題点について検討を行ってきた⁹.本研究 では,物性値の空間相関を考慮できる点,また推定誤 差も求まるという利点よりクリギング法を用いた方 法で検討を行うこととし,本章ではその手法の説明 と適用例の一部を紹介する.

(1)解析の手順

本研究で推定する地盤物性値は、平成8年版道路橋 示方書の方法®に基づいて算出された液状化抵抗率 F_L 値と,標準貫入試験より得られる地盤の硬軟を示すN 値である.両者とも対象領域にあるボーリングデー タの記載情報より求まるものであり、深さ方向のほ ぼ1mごとに値が得られている.したがって、クリギ ング法はデータ密度の小さい水平方向の2次元分布推 定のみに適用し、3次元分布については深さ1mごと に推定した2次元分布の推定結果を重ね合わせること により求めた.

(2)クリギング法⁷

クリギング法は空間的に変動する物性値の分布を 確率場として表現し、対象領域にある既知点の物性 値の空間相関を考慮しながら、未知点における推定 値および推定誤差を求める手法であり、それらの分 布図を客観的に描けるという利点を持っている。

任意地点 x_{o} における物性値の推定値 $\hat{V}(x_{o})$ は,既存 のn個の観測値 $V(x_{i})$ の重み付き線形和で求まる.こ こで,重みは w_{i} である.

$$\hat{V}(x_0) = \sum_{i=1}^{n} w_i \cdot V(x_i)$$
(1)

上式で求まる推定値と真値 $V(x_0)$ との差である推定誤差を $R(x_0)$ とすると、その期待値は以下の通りである.

$$E[R(x_0)] = E[\hat{V}(x_0) - V(x_0)]$$
(2)

ここで,確率過程 V に定常性を仮定すると上式の推 定誤差の期待値はゼロとなり,以下に示す推定値の 不偏条件式が導かれる.

$$\sum_{i=1}^{n} w_i = 1 \tag{3}$$

また,式(4)に示す推定誤差の分散よりラグランジェ の未定乗数法を用いてその最小値を求めると,式(5) が得られる.

$$\tilde{\sigma}_{R}^{2} = Var[R(x_{0})] = E[\{\hat{V}(x_{0}) - V(x_{0})\}^{2}]$$
(4)

$$\sum_{j=1}^{n} w_{j} \cdot \tilde{\gamma}_{ij} - \mu = \tilde{\gamma}_{i0} \quad \forall i = 1, \cdots, n$$
(5)

ここで、 \tilde{r}_{ij} は次節で述べるバリオグラムと呼ばれる物 性値の空間分布特性を表す値であり、共分散関数 \tilde{C}_{ij} との間に以下の関係が成り立つ.また、 $\tilde{\sigma}^2$ は確率過程 Vの分散である.

$$\tilde{\boldsymbol{\gamma}}_{ij} = \tilde{\boldsymbol{\sigma}}^2 - \tilde{C}_{ij} \tag{6}$$

さらに,式(4)の推定誤差の分散は以下のように変換される.

$$\tilde{\sigma}_{R}^{2} = \sum_{i=1}^{n} w_{i} \cdot \tilde{\gamma}_{i0} + \mu$$
(7)

式 (3) と式 (5) を連立して解けば,重み w_i とラ グランジェの未定係数 μ が求まり,それらを式(1)と 式 (7) に代入することにより,任意地点 x_a における 推定値 $\hat{v}(x_a)$ と推定誤差の分散 $\hat{\sigma}_a^2$ が求まる.

(3)バリオグラム"

物性値の空間分布特性の表現方法としては,共分 散関数,相関関数,バリオグラムなどがあるが,本研 究では物性値の分散が無限に大きい場合でも関数の モデル化が容易であるという利点を持つ,バリオグ ラムの一種であるセミバリオグラムを用いる.

セミバリオグラムは次式に示すように2地点間の物 性値の差の二乗平均の2分の1の形で示される.

$$\gamma_{ij} = \frac{1}{2} E \left[\left(V_i - V_j \right)^2 \right]$$
(8)

ここで用いるセミバリオグラムは距離のみの関数で あるが,得られたデータより連続関数である理論的 なセミバリオグラム_γを算出することは不可能であ る.したがって,次式に示すように任意の距離に存在 するデータの組ごとに離散化してセミバリオグラム を求める.これを実験セミバリオグラム_γ・(h)と言う.

$$\gamma^{*}(h) = \frac{1}{2N(h)} \sum_{(i,j)|h_{ij}=h} \left(v_{i} - v_{j} \right)^{2}$$
(9)

ここで, v,とv,は距離 h_{ij}だけ離れた地点に存在する

データであり, N(h)はその組数である.なお,任意の 距離 $_h$ における実験セミバリオグラムを求める場合に は, $\pm \Delta h$ の許容距離を設けてその範囲内にあるデータ の平均値より $_{\gamma^*(h)}$ を求めた.

このセミバリオグラムをクリギング法に取り込む には,離散化したデータをある関数モデルで近似す る必要があるが,本研究では次式に示す指数関数モ デルを用いた.

$$\gamma(h) = C_0 + C_1 \left\{ 1 - \exp\left(\frac{-3|h|}{a}\right) \right\}$$
(10)

ここで, aはレンジと呼ばれ, データ間の距離がこの 値以上になれば互いに無相関となることを示す値で ある.また, C。はナゲットと呼ばれ, 計測誤差等の データの不確実性を表す値であり, この値が大きい と推定精度は著しく低下する.そして, C。+C, はシル と呼ばれ, データ間の距離が a以上の時にセミバリオ グラムが一定となる収束値であり, それぞれ式 (9)の 結果より最小二乗法を用いて求める.

(4)推定結果

液状化の判定は、対象地区で得られたボーリング データ²を用いて, F, 値法と限界N値法の2通りで行っ たが、柱状図に記載されている情報のみで検討した 都合上, 各計算ではいくつかの仮定を設けている. ま ず,F,値法において,動的せん断強度比Rの算出で は,単位体積重量,平均粒径,細粒分含有率の各値は 土質ごとの代表値^{8,9}を用い,地震時せん断応力比L の算出では、深江浜と魚崎浜の間に架かる東神戸大 橋付近の地表で観測された地表面最大加速度327.3gal (N12°W)を利用した. つぎに, 地下水位は地表面 としている.これによって F, 値が小さく見積もられ る恐れがあるが、地下水位は場所や時間で変動する 不確定な要素であり, 不明のデータも存在したため, 本研究では特に液状化の発生しやすい領域を予測す るという観点から、安全側の推定結果となるよう便 宜上このような処理を行った. さらに, F, 値が2.0以 上の場合には全て2.0としているが、これは、平成8 年版道路橋示方書の方法では、地盤条件によっては 過大な F, 値を示す場合があり、それが局所的に存在 する場合には全体の推定結果に大きく影響を与える ため、この点も安全側の推定結果となるよう配慮し た. なお, 例えば深江浜の場合では, F, 値が 2.0 以上 の地点は全推定点の7%に過ぎず,このような操作が 後の検討結果には全く影響しないことを確認してい る. また, 限界 N 値法では, 地震動加速度の大きさの みによって限界N値を決定する簡便な手法を採用し, 300gal 程度の地震動に対するまさ土の限界 N 値であ

Fig.7 Results of two-dimensional estimation of liquefiable area.

る19の値10を利用した.

Fig.6は各深度で求めた F_L 値のバリオグラムの一例 であり、深江浜における標高 -14mの結果である.な

Fig.8 Relationship between estimated and actual F,-values.

お、この深度での地盤条件はN値が10前後のマサ土 であり、式(9)の計算においては hを100m、また許 容距離 Δh を 50m としている. 同図には式(10)のナ ゲットを0と仮定した場合の近似曲線も併せて示して いるが、この分布特性が推定結果に大きく影響を及 ぼすものである. このバリオグラムを用いて, クリギ ング法により求めた同地点におけるF,値の2次元分 布の推定結果を示したのが Fig.7 である. Fig.7(a)の F, 値の分布を見ると, 南部に局所的に F, 値の大きな 地点があるが、ほとんどの領域でF,値が1.0を大きく 下回っており、液状化の程度が激しかったことが推 測できる. また, Fig.7(b)はF, 値の推定誤差の標準偏 差を示したものである.ボーリングデータの得られ ている地点ではその値がゼロであり、その周囲の地 区中央部では約0.2を下回っており、この範囲内での 推定結果の信頼性は比較的高いと思われる.

つぎに、本手法の推定精度について検討するため、 既存の全データから1点のデータを除外し、残りの データを用いて除外点のF_L値を推定する作業を全て のデータについて行い、その推定値と除外点におけ る実際のF_L値とを比較した.その結果の一例がFig.8 であり、Fig.7に示す深江浜における標高-14mの推定 断面にある31点のデータを用いて算出したものであ る.推定値が実際値と大きく異なる点がいくつか見 られるが、推定誤差の平均値は0.21と比較的精度良 く推定されていると思われる.

これと同様な推定精度の検討を,1964年新潟地震 における新潟市,および1983年日本海中部地震にお ける能代市を対象として行った結果,対象地区より 得られるデータの密度が小さい場合や,局所的に地 盤条件の異なる領域が存在する場合には推定精度が 著しく低下することを明らかにしている¹¹⁾.本研究で 対象とした3地区はいずれも埋立地盤であり,自然地 盤と比較すると地盤の均一性は高いと考えられる. また,数は少ないものの平面的な分布の偏りなく データが得られており,推定する地盤条件としては 好条件と考えられる.しかし,局所的な地盤条件の違 いやボーリングデータ自身が持つ測定誤差などの影 響によって,本解析においてもいくつかの推定にお いて,精度の低い結果が得られる場合もあった.この ような場合の推定結果の取り扱い方,また推定結果 の妥当性の検証方法については別途検討を要する.

4. 地盤流動の変位方向に関する要因分析

第2章において、本研究で対象とした3地区で発生 した内陸部における地盤の水平変位は、護岸移動の 影響は少なく、液状化による地盤沈下との相関性も 低いことを示した.また、同地区の地盤はFig.2から も分かるように、地表面勾配が最大でも約1%以下 の、工学的にはほぼ水平と見なせる地盤である.した がって、同地盤で発生した流動は従来より指摘され ている2つの流動発生パターンとは異なるタイプと考 えられる.このような観点から本章では、この水平地 盤タイプの場合の、水平方向への地盤変位のメカニ ズムについて検討するため、特に変位の方向を決定 づける要因に着目して考察した.

(1)地表面勾配による影響

まず,地表面勾配と流動方向の関係を検討するた め,検討地点からある基準距離(ΔM)だけ離れた地 点との標高差を,東西および南北方向でそれぞれ求 めて地表面勾配に変換し,また検討地点での流動量 を東西および南北方向の水平変位に分解し,両者の 関係を調べた.流動方向は東と北方向を正,勾配は同 方向に下る場合を正としており,傾斜方向と流動方 向が一致した場合,すなわち標高の高い所から低い 方向に地盤が移動した場合には,両者の関係は原点 を通る正比例の関係を示すものである.

なお,標高差の算出では,メッシュデータ化した標 高データを利用しているが, Fig.9にその算出の概念 図を示す.同図において検討メッシュの標高を*H_A*と すると,距離Δ*M*だけ離れた西(南)隣のメッシュ との標高差を求める場合がケース1,同様に東(北) 隣の場合がケース2,そしてケース1とケース2のう ち標高差の絶対値の大きいものの場合がケース3であ る.以上の計3ケースで検討を行ったが,明確な違い は認められなかったため,ここではケース3の結果を 利用する.また,標高データの最小読み取り単位が 0.1mであるため,Δ*M*が50mの場合の地表面勾配の

Fig.9 General view to calculate difference of ground level.

有効数字は0.2%までである.

Fig.10は南北方向の結果を示したものであり, ΔM が50mの場合である. 同図より, 地表面勾配と水平 変位との間に明瞭な右上がりの関係は見られず, こ の傾向は, 東西方向に関しても同様であった¹². ま た, 地表面勾配を求める基準距離である検討地点と の距離 (Δ M)を100m, 150m, 300m と変えて実施 したが, いずれも明瞭な関係は確認できなかった.

今回の対象地区における地表面勾配は,最大で1% 程度と工学的にはほぼ水平と判断できる地盤であり, 各地区で発生していた水平変位の方向性は,そのほ とんどが地表面の傾斜とは関係なく発生していたと 思われる.また,Fig.10の第2象限と第4象限に分布 する点は,結果として標高の低い所から高い方向に 地盤が流動していたことを意味しており,同図より このような地点が数多く存在していたことが明らか である.したがって,このように地表面勾配が非常に 小さい地盤に対して,従来より提案されている地表 面勾配をパラメータとした流動予測を適用する場合 には,十分な検討が必要と思われる.

(2)液状化領域の分布による影響

つぎに,液状化領域の分布と流動方向の関係を検 討するため,対象地区における液状化領域の空間分 布推定を行った.計算の結果,ほぼ全層のF_L値が1.0 以下で液状化の可能性ありと判定されたため,ここ ではF_L値が0.5以下の推定点とそれ以外の点とに分け て二値化した.ここでの閾値0.5以下の領域は,明ら かに液状化すると判断される領域であり,本文では これを液状化の程度の激しい領域と定義し,以降で はこの領域を強液状化層と称することとする.なお, ここでは限界 N値法は併用していない.

Fig.11は深度1mごとに求めた2次元の推定結果を, 地表面下30mまで重ね合わせて求めた液状化領域の3 次元分布より,南北方向中央断面を抽出して二値化

Fig.10 Relationship between gradient of ground surface and horizontal ground displacement along south-north direction.

した結果である.黒で示された部分がF,値が0.5以下 の強液状化層であり、各図の左方向が各地区におい て流動が卓越していた南方向である. これらの図か らは定量的な考察はできないが、多くの流動の下流 側である南側の領域で比較的強液状化層が厚いこと が分かる. さらに, 強液状化層と非強液状化層の境界 部に注目すると、強液状化層上面には明瞭な傾斜は 見られないが、前述の強液状化層厚の違いによって 下面に傾斜が生じている様子が確認できる. 一方, 東 西断面の場合では南北断面ほど明瞭な傾斜は確認で きなかった¹²⁾. また, F,値の閾値を変えて検討した結 果,強液状化層の厚さに変化はあるが,南北断面では 南側で厚く、東西断面では東西で差が見られない傾 向は同様であった.なお、対象地区付近の地盤図13に よれば、旧海底面である埋立土層底面とその下部に 存在する沖積粘土層の底面がともに北から南方向に 傾斜していることが明らかとなっており, Fig.11の結 果はこの地盤の堆積環境に起因するものと考えられ る.以上より、ある閾値で液状化の程度を区分し、強 液状化層とそうではない層とに分けて検討した結果, 強液状化層の下面に生じた層境界面の傾斜の方向が. 地盤の流動方向とほぼ一致していたことが明らかと なった.

規矩¹⁰は、地表面が水平な地盤において液状化に伴う地盤の水平変位が発生する地盤条件として、傾斜した基盤上に地盤が堆積したケースや、その基盤上に地盤が傾斜堆積したケースを取り上げ、その流動メカニズムについて模型振動実験と数値解析により検討を行っている.その結果、上記の様な堆積地盤には初期せん断力、すなわち重力のアンバランスが作用しており、地盤が液状化した際には変位量は小さいが、その応力が解放される方向に変位が発生する可能性を指摘している.本研究で対象とした埋立地盤の堆積状況については不明の点が多いが、Fig.11の

Fig.11 Cross section of F_L -value less than or equal to 0.5 along south-north direction.

結果より、南北方向断面には明らかに地盤条件の不 均衡が確認でき、それが同地盤の初期せん断力の方 向性、すなわち地盤変位の方向性に影響を与えてい た可能性があると思われる.

(c) AREA 3

Fig.12 Relationship between thickness of liquefied layer and horizontal ground displacement.

5. 地盤流動の変位量に関する要因分析

第4章の検討結果より,本研究の対象地区における 水平変位の方向が,液状化領域の分布状況の影響を 受けていたことを示した.つぎに本章では,その水平

Fig.13 Relationship between average thickness of liquefied layer and horizontal ground displacement at AREA3.

変位の大きさに影響を与える要因として液状化層厚 に注目し、両者の関係について検討を行った.

Fig.12は第3章で推定された液状化領域より算出し た,50m 四方メッシュごとの液状化層厚(F,値が1.0 以下の累積層厚)とその地点における流動量の関係 を示したものであり、流動の発生していない地点は 除外してある.ここでは、護岸から50mまでの範囲 をAREA1, 50mから100mまでの範囲をAREA2, 100m より内陸側の範囲をAREA3と3つの地域に分けて検 討している、同図に示す直線は分布のおよそ上限を 包絡する線であるが、護岸近傍のAREA1の場合には 護岸移動の影響が大きいため, その上限分布は他の2 地区と比較すると明瞭ではないが、3地区ともに液状 化層厚の増加に対して流動量の最大値が増加する傾 向が確認できる、しかし、いずれの地区も各液状化層 厚に対する変位量の下限値は大きくばらついており, これらの図から一意的な関係を見出すことは困難で ある.

そこで、同図では 50m メッシュごとの液状化層厚 と変位量との関係を見ており局所的な地盤条件の影 響が大きいと考えられたため、流動の卓越していた 南北方向で地盤を200mごとに分割し、そのブロック ごとの液状化層厚と流動量の平均値を求め、比較的 広い領域における両者の関係を調べた. Fig.13 は AREA3のみのデータで求めたものであるが、同一液 状化層厚に対する変位量の差が0.6m程度あるものの、 上限値、下限値ともに右上がり傾向が確認できる.

液状化層厚は、ある対象地点における下部地盤の 液状化継続時間と密接な関係にあり、これは流動に 要する変形時間、さらに流動量に影響をおよぼす流 動予測における重要な地盤パラメータである.本研 究で対象とした水平地盤の場合では、地表面の傾斜 が流動を大きく促進させる要因にはなりえなかった ため、この液状化層厚が流動量の最大値を決定づけ ていた1つの要因と考えられる.また、流動を予測す る場合にはこのような促進要因以外に、その移動を 抑制する要因も考慮することも必要である.Fig.12と Fig.13は流動量を液状化層厚のみの関係で示したが、 図中に示す上下の包絡線の幅、すなわち変位量のば らつきが、前述の促進要因と抑制要因により支配さ れていたものと考えられる.

著者らはこれまで、水平地盤における流動に影響 を及ぼす因子として、N値に基づく表層地盤の硬軟分 布¹⁹や地動加速度¹⁹,また抑制力に相当する基礎を有 する建物の割合¹⁷を取り上げ、それらが流動量および 流動方向に影響を及ぼしていることを指摘している. 特に地動加速度について、東神戸大橋付近の地盤上 における強震記録の分析によれば、その卓越方向は ほぼ南北方向であり、これが前述の堆積地盤の重力 アンバランスの解放に寄与し、また液状化地盤に作 用する慣性力によって過大な残留変形が生じたので はないかと推察している.今後は、これらも含めた流 動予測の検討を行っていきたい.

6. おわりに

本研究は、従来よりあまり注目されていなかった 水平地盤における流動現象のメカニズムについて、 液状化領域の空間分布推定という新しい手法を用い て考察を行ったものである。1995年兵庫県南部地震 における液状化被害事例をケーススタディとして検 討を行った結果、以下のような結論が得られた。

- (1)埋立地盤で発生した地盤流動よりケーソン岸壁の 移動に伴う岸壁近傍の流動を除外し、内陸部にお ける流動の特徴について検討した.その結果、地 表面勾配の非常に小さい地盤や勾配のない地盤で も、最大で約2m、平均でも約1mもの大きな水平 変位が発生していたことを示した.また、護岸部 での水平変位は、そのほとんどが護岸移動の影響 により護岸法線直交方向の海側に変位していたが、 内陸部では南方向の一方向にその多くが変位して おり、護岸移動以外の要因がその方向性を決定づ けていたことを示した.
- (2)クリギング法を用いた液状化領域の空間分布推定 法を提案し、ボーリングデータの得られていない 地点においても、周囲の既存データを利用してF_L 値法や限界N値法による液状化判定が可能である ことを示した.また、その推定結果を2次元または 3次元的に表示することにより、液状化危険度の分 布状況を空間的に評価することが可能であること

を示した.

- (3)液状化領域の空間分布推定結果と地盤流動との関係を検討した結果,水平地盤における地盤流動は,地盤内の液状化の程度の分布状況の影響を受けており,その方向は液状化層下面の傾斜方向と一致していたことを明らかにした.また,その傾斜は地盤を構成する土層境界面の傾斜に起因するものであり,それによって地盤に作用していた初期せん断力の方向が,変位方向に影響を与えていた可能性を示した.
- (4)流動による水平変位と液状化層厚との関係を調べた結果,水平地盤における水平変位の最大値を決定づける1つの大きな要因は液状化層厚であるが,地点ごとに異なる流動量のばらつきは,その他の地盤条件や入力条件による促進要因や抑制要因により決定されることを示唆した.

なお,本研究で得られた結果は,兵庫県南部地震に おける埋立地盤の液状化という限られた入力条件と 地盤条件に基づいたものであり,今後は多くの事例 分析や模型実験,数値解析などにより,そのメカニズ ムをさらに究明していく必要がある.また,本研究で ・は特に深く考察を加えなかった,地震動による慣性 力や地盤の埋立状況,また地盤内に存在する基礎構 造物の影響など他の要因との関係についても今後検 討していきたいと考えている.

謝辞:本研究を遂行するにあたり,福井工業高等専門 学校および金沢大学大学院の元学生の協力を得た. ここに記して謝意を表する.また,本研究は文部省科 学研究費補助金奨励研究(A)(課題番号09750584)の補 助を得て実施されたことを付記する.

参考文献

- 濱田政則,若松加寿江:液状化による地盤の水平変位の 研究,土木学会論文集,No.596/III-43, pp.189-208, 1998.
- 2) 神戸市開発局:神戸の地盤, 1980.
- 3) 濱田政則,磯山龍二,若松加寿江:1995年兵庫県南部 地震 液状化、地盤変位及び地盤条件,地震予知総合研 究振興会,1995.
- 田中耕平:1995年兵庫県南部地震による地表面変位量
 欧,防災科学技術研究所,1996.
- 5) 吉田雅穂, 宮島昌克, 北浦 勝: 液状化領域の空間分布 推定法に関する検討, 第29回土質工学研究発表会平成 6年度発表講演集, 3分冊の2, pp.1047-1048, 1994.
- 6)日本道路協会:道路橋示方書・同解説、V耐震設計編、 pp.91-95,1996.

- Edward H.Isaaks and R.Mohan Srivastava: An Introduction to Applied Geostatistics, Oxford University Press, 1989.
- 8) 日本道路協会:道路橋示方書・同解説、V耐震設計編, p.114, 1990.
- 9) 平澤賢治,松原勝巳,脇田和試,吉見憲一,大前延夫: 大型振動三軸試験装置を用いたレキ質マサ土の液状化試験,阪神・淡路大震災に関する学術講演会論文集, pp.183-186, 1996.
- 10) 地盤工学会,阪神大震災調査委員会:阪神・淡路大震災 調査報告書(解説編), p.178, 1996.
- 11) Yoshida, M., Miyajima, M., Kitaura, M. and Fukushima, S.: Estimation of Spatial Liquefaction Potential Using Kriging Technique, Proc. of the First International Conference on Earthquake Geotechnical Engineering, Vol.2, pp.911-916, 1995.
- 吉田雅穂,宮島昌克,北浦 勝:1995年兵庫県南部地 震における液状化地盤の流動方向に関する検討,第10 回日本地震工学シンポジウム論文集,Vol.2, pp.1359-1364, 1998.

- 13) 岩見義男:神戸のまちと地盤, pp.149-162, 1987.
- 14) 規矩大義:液状化による地盤の永久変位に関する研究, 九州工業大学博士論文, 1993.
- 15) Yoshida, M., Miyajima, M. and Kitaura, M. : Evaluation of Liquefied Ground Flow Based on Estimation of Spatial Liquefaction Potential, Proc. of the Eleventh World Conference on Earthquake Engineering, No.1051, 6p., 1996 (CD-ROM).
- 16)吉田雅穂,宮島昌克,北浦 勝,中屋有加里:兵庫県南 部地震における埋立地盤内陸部での地表の水平変位に関 する一考察,土木学会第54回年次学術講演会講演概要 集,第3部(A), pp.236-237, 1999.
- 17) 宮島昌克,福島聡一郎、中川浩明、北浦 勝:建物の影響を考慮した液状化地盤側方流動ポテンシャルの簡易予測、地震時の地盤・土構造物の流動性と永久変形に関するシンポジウム発表論文集、pp.405-410、1998.

(1998.12.4受付)

ESTIMATION OF SPATIAL LIQUEFACTION POTENTIAL AND ITS APPLICATION TO EVALUATION OF LIQUEFIED GROUND FLOW AT PLANE GROUND

Masaho YOSHIDA, Masakatsu MIYAJIMA and Masaru KITAURA

This paper deals with a method for estimation of a spatial liquefaction potential and evaluation of liquefied ground flow. This method is based on a geostatistical procedure which is called as Kriging technique using variogram. It was applied to the liquefied sites after the 1995 Hyogoken-Nambu earthquake. Horizontal ground displacements at the plane reclaimed ground that were not due to the influence of the inclination of ground surface and movement of quay wall were especially investigated here. As a result of estimation of spatial liquefaction potential, it was clarified that the magnitude and direction of liquefied ground flow were influenced by the condition of spatial spread of liquefied area such as thickness of liquefied layer and inclination of boundary between high liquefiable potential layer and others.