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Abstract

Classification of Biomedical Data with Class Imbalance

In the machine learning task, pre-processing is a crucial step before feeding the data into
the model. It improves the quality of the data and performances of the model. One of
the pre-processing task is dealing with class imbalance. This problem can decrease the
performance or give the model bias results. A frequently used method to resolve this prob-
lem is through oversampling. In this study, we employ some oversampling methods and
features extraction methods as the pre-processing task. In the case of Chronic obstructive
pulmonary disease (COPD), we proposed methods that utilize gene expression data from
microarrays to predict the presence or absence of COPD. The proposed method assists in
determining better treatments to lower the fatality rates. In this study, microarray data
of the small airway epithelium cells obtained from 135 samples of 23 smokers with COPD
(9 GOLD stage I, 12 GOLD stage II, and 2 GOLD stage III), 59 healthy smokers, and 53
healthy non-smokers were selected from GEO dataset. Machine learning and regression
algorithms performed in this study included Random Forest, Support Vector Machine,
Naïve Bayes, Gradient Boosting Machines, Elastic Net Regression, and Multiclass Lo-
gistic Regression. After removing imbalanced data effect using SMOTE, classification
algorithms of elastic net regression and multiclass logistic regression achieved high AUC
score and the other metrics which outperformed the other classifiers. In the case of binary
features data, by converting binary features into numerical ones using feature extraction
methods prior to oversampling can fully display their potential in improving the classi-
fier’s performances. Although the comprehensive experiment in this study was done using
benchmark datasets and real medical datasets, it was observed that a converted dataset
consists of numerical features is better for oversampling methods. In addition, it is con-
firmed that features extraction and oversampling are synergistically contributing to the
improvement of classi-fication performance.

keywords: binary features, class imbalance, imbalanced data, feature extraction,
oversampling, dimensionality reduction, COPD, biomedical data, classification
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Chapter 1

Introduction

1.1 Class Imbalance

Imbalance datasets exist in many real-world data. Class imbalance happen when the
number of a class is far less than that in the other one as can be seen in Figure 1.1 of
PCA plot of dis dataset retrieved from [1]. The target class is usually the minority class
or the class which has samples far less than the other one and a sample in this class is
called as positive sample while a sample from the other one is called as negative sample.
This problem can lead classifier to bias toward the majority class because it will most
likely to predict a positive sample as negative sample. Therefore, a method to deal with
class imbalance should be done first before providing the data as an input to the classifiers
to improve detection of minority sample or the performance metrics.

Figure 1.1: An example of Imbalance Data

1



Introduction 2

Research on the class imbalance issue is cruial in the topic of in machine learning.
These two factors outline why class imbalance problem should be handling prior to clas-
sification. The problem of class imbalance is pervasive across a wide range of important
fields in the data mining community and when confronted with the problem of class im-
balance, most common classification learning methods were shown to be insufficiently
effective. Many available methods exist to deal with class imbalance at either in algo-
rithm level or data level. This thesis shows methods of the data level on the classification
of imbalanced data such as SMOTE, ADASYN, adaptive neighbor SMOTE, borderline-
SMOTE, safe-level SMOTE, relocating-safe-level SMOTE, and DBSMOTE.

1.2 Binary Features Data

In the field of machine learning, it is important to understand the characteristics of input
data and select the methods that are most suitable for achieving high performance in
the machine learning task (regression, classification, clustering etc.). As mentioned in the
previous section of methods for dealing with class imbalance, many of the methods are
specifically developed to overcome the problem in numerical data. In contrast, some types
of data are represented as binary value that can take only one of two values (0/1, T/F,
M/F, etc.). Such a binary feature is located on the border of numerical and categorical
values. It can be treated as numerical value; however, the domain of value is quite poor and
no difference from categorical value. Therefore, for a dataset consists of binary features,
direct application of oversampling methods is not a good idea since such methods rely on
numerically represented values for synthesizing new minority samples.

1.3 Objectives

Typically, classification is conducted on a dataset that consists of numerical features and
target classes. For instance, a grayscale image is usually represented as a matrix of
integers varying 0-255 and it enables to apply various classification algorithms to image
classification tasks. However, datasets represented as binary features are not so special
and their amount is not neg-ligible. On the other hand, oversampling algorithms such as
SMOTE and its variation are often used if the dataset for classification is imbalanced.
However, since SMOTE and its variant synthesize new minority samples based on the
original samples, the diversity of the samples synthesized from binary features is highly
limited due to the poor representation of original features. To solve this problem, a
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preprocessing approach is studied. By converting binary features into numerical ones
using feature extraction methods, succeeding oversampling methods can fully display
their potential. In this research, we study the method to handling class imbalance in
binary features dataset by combining feature extraction and oversampling methods as the
preprocessing task.

1.4 Contributions

Machine Learning is one of the frequently used systems to do classification and clustering
in biomedical data. Many studies of classifications such as drug discovery, disease detec-
tion, and genes selection have been explored by many researches. This study contributes
in:

• Proposed a method to apply machine learning in classification of biomedical data
with class imbalance.

• Proposed a method in classification of binary attributes data with class imbalance

• improved evaluation performances in microarray data classification with class im-
balance.

1.5 Thesis organization

This thesis consist of 6 chapters:

• Chapter 1 will briefly introduce the background of class imbalance and dimensional
reduction task. The objectives, contribution, and the organization of this research
will be presented in this chapter.

• Chapter 2 will present some background knowledge about machine learning that
we used in this research.

• Chapter 3 will introduce about class imbalance problem. Then it will show some
previous works of techniques to resolve this problem. It will also some basic ex-
planation of features extractions, one of dimensional reduction methods, that were
utilized in this research.



Introduction 4

• Chapter 4 will explain about the published article entitled "Machine Learning
Algorithms for Predicting Chronic Obstructive Pulmonary Disease (COPD) from
Gene Expression Data with Class Imbalance".

• Chapter 5 will explain about the published article entitled "Classification of Im-
balanced Data Represented as Binary Features".

• Chapter 6 will present the summary of the accomplished works in our research.
Other than that, it will also present some ideas for future works to improve perfor-
mances of our proposed methods.



Chapter 2

Machine Learning

In this chapter, I will present some background knowledge about machine learning. Then
I will describe about machine learning techniques we used in this research. And finally, I
will show some examples in implementing machine learning models in microarray dataset.

2.1 Definition

People have utilized data for decades and have adjusted systems to the data patterns
changes. However, when the volume and variability of data increases greatly and grows
beyond our ability to make sense of it and write those rules manually, we will increasingly
rely to automated systems that can learn from either the data or the changes in the data.
Machine learning is part of artificial intelligent (AI) which study computer algorithms and
gives it the ability to automatically learn and improve through experience without being
programmed periodically. Machine learning covers a whole process from data collection
to prediction to make use and get insight of the data. It includes a task consisting of
applying statistical and mathematical approaches to have machines learnt from data.It
is a tool and technology that we can utilize to answer questions with data. The data
type can be tabular data, text, images, videos, and anything that we can extract some
knowledge of. This capabilities of machine learning can be applied to a diverse number of
fields. We can see many examples of machine learning like on recommendation system of
Netflix, Amazon, and other e-commerces that suggest things for users or Ads that pops
up on Google and looks at user’s preferences. Apple’s siri also an example of technology
that convert voice’s acoustic pattern into probability distribution by utilizing machine
learning and deep learning.

In machine learning, the data is used to inform the building and fine tuning of a

5
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predictive model which can subsequently be used to make predictions on previously un-
labeled data and answer our questions. As more data is obtained, the built model can be
modified over time and new predictive models deployed and getting improved since the
model can adjust automatically to the data.

In the life science domain data, from drug discovery, genes and disease identification,
medical imaging diagnosis, outbreak prediction, and many more, machine learning has
provided computer systems completely new capabilities. In machine learning, the pur-
pose of training is to develop an accurate model that almost all of the time answers our
questions accurately. To train our model, we need to gather data to train it. Therefore,
we need to understand the steps in machine learning model, so we can develop a model
to get insight from our data.

2.2 Pre-processing data

Data pre-processing is the procedure for preparing raw data for use in a machine learning
model. It’s the first and essential stage in building a machine learning model. A real-world
data sometimes contains noise, missing values, data imbalance, or is not in the correct
format, making it unsuitable for use in machine learning models. Data pre-processing is an
essential step to clean up data and make it suitable for machine learning models resulting
in the improvement of the accuracy and efficiency of the model. This includes data
preparation and data wrangling. In general, pre-processing data can be as the process of
data cleaning, data integration, data transformation, dimensionality reduction, handling
missing value, dealing with class imbalance, outliers removal, and data validation. The
most common data structure in wrangling or preparing a data is data frame which based
on rows and columns as in a spreadsheet.

2.2.1 Data Cleaning

Data cleaning is a process to detect and repair errors, duplication, corrupted data, or
incomplete data in the dataset in order to create a reliable dataset and improve the quality
of the training data. This process is important since when collecting and combining data
from multiple source, there is possibility that we create duplicate, mislabelled, incomplete,
or improperly formatted data.
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2.2.2 Data Transformation

When collecting data, different type of variables with a significant gap or range of that
variables may occur. The collected data cannot be used directly for performing the
analysis process. Insisting on using the original scale of data in the analysis can lead to
error or bias and the algorithm may put more weight on the larger range variables. For that
reason, transform data which can be normalizing or standardizing is required to obtain
maximum data quality that is ready for analysis. Generally saying, data transformation
is a process of transforming or converting data from one format to another format that
required to a destination system.

2.2.3 Dimensionality Reduction

Dimensionality refers to the number of features or variables of dataset. Dimensionality
reduction is the technique of reducing the number of random variables considered by
generating a set of statistically important variables or by projecting the dataset into a
lower-dimensional subspace that captures the "gist" of the data. In a real-world data, it
is common to have thousands of features in a dataset. Not all the features have equal
importance or significance, in fact, sometimes only several features are informative and
needed to be included in analysis. In a very high dimension dataset, it is beneficial
to reduce the dimension of dataset to reduce computation cost, avoid over-fitting, visu-
alize the dataset more easily, improve the interpretation of the parameters by removing
multi-collinearity, and remove irrelevant features from the data. Dimensionality reduction
technique is divided into feature selection and feature extraction.

1. Feature Extraction

Features ectraction is the method to reduce the dimension of the data by projecting
the dataset into a lower-dimensional subspace that captures the "gist" of the data.
Feature extraction can be both linear and non linear. The most common linear
methods of features extraction used in machine learning are Principal Component
Analysis (PCA), Independent Component Analysis (ICA), and Linear Discrimi-
nant Analysis (LDA). As for non-linear features extraction methods, t-distributed
stochastic neighbor embedding (t-SNE) and uniform manifold approximation and
projection (UMAP) are commonly used in the machine learning algorithms. The
main disadvantage of dimensionality reduction using feature extraction is that the
generated features can not be interpreted by us directly as the original features.



Machine Learning 8

2. Feature Selection

Features selection is a method to remove less or non-significant features for the data,
so that the remain features are the features that can contribute most in the machine
learning. Feature selection type can be divided as:

• embedded : feature importance using random forest, Lasso regularization, etc.

• wrapper: forward, backward, stepwise selection, etc.

• filter: chi-square test, fisher’s score, correlation coefficient, variance threshold,
mean absolute difference (MAD), etc.

• hybrid: combination of the different approaches mentioned above to get the
best possible feature subset.

The benefit of feature selection compared to feature reduction is that we can main-
tain our ability to interpret our model and output.

2.2.4 Handling Missing Value

Most of machine learning algorithms can not deal with missing values both in the target
and features. That is why, it is crucial to handle it first before go with machine learning
model. Delete the sample which has missing value in some features is the simplest way,
but sometimes the sample is an important sample that can not be delete by the researchers
with certain reason. Moreover, deleting that sample can lead to bias in the task. There
are some common ways to handling missing value, three common ways are:

1. Deletion method

This include delete a sample that has certain portion of missing value in the fea-
tures/variables. For example, if a data has at least 80 percent information of all the
variables, then it should be keep. Otherwise, the data will be deleted.

2. Data imputation with average or median

A common ways in data imputation are average imputation where the missing value
in a cell is inputted with the average value of that variable and median imputation
where the missing value is inputted with the median of that variable.

3. Data imputation with a model

Another way to handle missing value is using regression or k -nearest neighbour to
predict the null value using the dataset.
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2.2.5 Dealing with Class Imbalance

Class imbalance data occurs when the number of a class of a data is significantly smaller
than the number of the other classes. In real-world dataset, the occurrence of class
imbalance is frequent for example in medical such as disease-related data. The target
class is usually the minority class and is the main focus for the analysis. Most of machine
learning algorithms can not deal with class imbalance directly. Therefore, a method to
deal with class imbalance should be done first before feeding the data as an input to the
classifies to improve detection of minority sample or the performance metrics. There exist
many methods to deal with class imbalance such as:

• collecting more data

• changing performance metric

• using penalize algorithms

• using resampling technique

The detail explanation of the resampling methods to deal with this problem is presented
on Chapter 3 as it becomes our main interest in this work.

2.3 Machine Learning Model

Machine learning consist of four types of techniques:

2.3.1 Supervised Learning

In supervised learning, the data that is used to feed a model is a labelled data. There
are two types of supervised learning techniques: regression and classification. In the
regression, the built model aims at forecasting the output value based on historical data,
for example we want to predict the price of a house according to variables of area size,
location, and the distance from the house to a certain place. In regression, if X =

{x1, x2, ..., xi} is a set of independent variables and Y is target or dependent variable,
then Y should be continuous value. Algorithms such as linear regression, random forest,
decision tree, k -nearest neighbors can be used for regression.

In the classification, the built model aims at separates the data into different classes,
for example in deciding whether a received email is spam or not. Target of dependent
variable Y in classification is categorical or discrete value. Algorithms such as logistic
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regression, random forest, decision tree, support vector machine, and k-nearest neighbors
can be used for classification although some of them also can be used for regression. These
are some supervised learning for the classification task that commonly used in the machine
learning.

K -nearest neighbor

K -nearest neighbor (k -NN) is a basic classification method which does not require any
training. From statistics perspective, k -NN is a non-parametric classification method
which means it needs no underlying assumptions about the data or its distribution pat-
tern in general. In the binary classification, the value of k is usually set to an odd positive
integer, because if it is set to be an even number, there is a possibility that the number
of positive and negative samples in the k -nearest neighbor is equal. This can lead to a
tie in the decision, i.e., two class labels achieving the same score because k -NN algorithm
take majority as the class label for the given test sample.

Figure 2.1: K -NN classifier with different value of k.

Figure 2.1 shows an example of k -NN classifier in determining the given test sample
(marked with star) belongs to which class. If k is set to 5, the sample belongs to the
triangle class since it is the majority in the 5 nearest neighbor of the star sample. However,
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when it is set to 10, both triangle and circle class have 5 samples among its 10 nearest
neighbors. The value k in k -NN also depends on the size of the training data. In the rule of
thumb, k is set to be the square root of the number in the training data. In the imbalanced
data case, samples of minority classes appear sparsely in the data space when there is
uneven training data. When given a test sample, the computed k-nearest neighbors have
a higher probability of samples from the majority classes. As a result, a given test data
from minority classes are more likely to be classified wrongly. However, k -NN can be
used in combination with sampling techniques such as over-sampling or undersampling to
improve the classifier performance [2] . They reported that for the performance metric
of sensitivity, k -NN gave the higher result than SVM and logistic regression (LR) when
combined with oversampling technique.

Decision Tree C4.5

C4.5 is a famous algorithm of decision tree classification, which can be used to make a
decision based on a certain set of data either univariate or multivariate. This classifier is
flowchart-like tree structure where attributes or features are represented by internal node,
decision rule is represented by branch, and the outcome is represented by leaf node. Each
leaf note is assigned to the class that has majority value. Certain training algorithms are
applied to a training dataset to automatically create the decision tree. Fiqure 2.2 shows
an example of decision tree.

C4.5 is a type of decision tree which employs gain ration as a splitting criterion. C4.5
stops its splitting process when the number of samples to be split falls below a specified
threshold. The least reliable branches are pruned using error-based pruning. In the case of
class imbalance, decision trees may need to generate a lot of tests to differentiate between
minority and majority classes. The split process may be stopped before the branches for
forecasting minority classes are recognized in some learning procedures. Other learning
procedures may prune the branches for forecasting minority classes as they are prone to
overfitting. The reason for this is that accurately predicting only a few number of samples
from minority classes yields insufficient success to considerably minimize the error rate,
compared to the error rate generated by overfitting. Because the pruning in decision tree
is mostly based on forecasting error, certain branches that predict small classes are likely
to be deleted, and the new leaf node will be labeled with a dominating class.

Compared to another type of decision tree such as ID3, C5.0, and CART, C4.5 is said
to be less affected by class imbalance and performs noticeably better than MLP (multi-
layer perceptron), SVM, k-NN, and Naïve Bayes on medium datasets with high ratio of
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Figure 2.2: An example of decision tree.

class imbalance [3].

Random Forest (RF)

RF is also based on tree structure, however it utilizes many decision trees and random
sampling. In random forest, the built forest is an ensemble of decision trees, which are
commonly trained using the “bagging” method. The basic idea of “bagging” method is
that combining several learning models improves the overall output. The final decision is
taken from the majority of the trees which is chosen randomly by random forest.

From Figure 2.3, we can see that the majority voting of four decision trees is “Bad”,
which becomes the final prediction of the given sample. Besides for classification, random
forest can be used for regression. Random forest is said to be a classifier that prone to
class imbalance existence, but the inclusion of data sampling improves the classification
performance of random forest classifier [4].

Support vector machine (SVM)

Support vector machine (SVM) becomes one of the most popular algorithms which achieves
high performance in various kinds of two-class classification. In the case of binary class,
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Figure 2.3: An example of random forest.

to accurately separate two classes, a SVM tries to find an optimal splitting line called as
“hyperplane”. The goal in SVM classification is to find the optimal hyperplane through
training the SVM algorithm to the training dataset. A hyperplane with the greatest dis-
tance to the nearest training data points results in a good separation of classes as shown
on Figure 4.

Figure 2.5 presents a given dataset that linearly separable. A hyperplane showed
as straight-line function can be drawn to separate the samples into class “circle” and
“triangle”. SVM also can be used for both linearly or non-linearly separable data by set
the kernel to be used in the algorithm. In the case of imbalanced data, compared to other
classifiers, SVM is believed to be less vulnerable. This is because the class boundaries
are generated using only a few support vectors so that the class sizes may not have a
significant impact on the class boundary [5].

2.3.2 Unsupervised Learning

Contradiction with supervised learning, unsupervised learning utilizes a dataset without
the right answers. It means that we have just the data itself without labels. This technique
aims at uncovering hidden structure. The algorithm is developed to find cluster of the data
which means it tries to find similarities or difference and group the data according to their
similarities. Unlike classification, the output labels are not known beforehand instead, the
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Figure 2.4: Optimal hyperplane.

algorithm creates the label itself. Google news is one example that relies heavily on these
techniques. From the given news, it tries to decided whether it is criminal, market, or
sport news based on the text data. Some common algorithms used in clustering task are
k-means clustering and hierarchical clustering.

2.3.3 Semi-supervised Learning

Semi-supervised learning is used when the given dataset is partially labelled and left
the remains unlabelled. This type of learning applied both supervised and unsupervised
learning. This technique is often used when labelling massive amounts of data is time-
consuming and costly. In this process, unsupervised learning is used to discover and learn
the structure of the data, then the output of this learning is feed into supervised learning
as training data and use the supervised learning model to predict on new unseen data. As
an example of medical case, having clinicians manually label the data of medical imaging
to detect cancer is an extremely expensive task. Furthermore, those clinicians may have
more important priorities to respond to. So, we can see that the clinicians has labelled
part of the dataset while leaving the remains unlabeled.
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2.3.4 Reinforcement Learning

In the reinforcement learning, the algorithm learns from a series of reinforcement and
feedback where it will be given rewards for a positive result and it will be given punish-
ments for a negative result. This type of learning commonly used in a model built for
video game. When starting the game, the model of the game has no idea how to play,
then from every movement, the model gets a reward when it wins and receives punishment
when it loses. The model then can learn from the feedback, and becomes able to identify
which movements are good or bad.

2.4 Model Evaluation

After a model is built with training data, to determine the generalization accuracy of a
model on future unseen data, the model’s performance must be evaluated. Using test
data, methods for evaluating a model’s performance are divided into holdout and cross-
validation.

Figure 2.5: 5-fold cross validation.

In holdout method, the dataset is randomly divided into test data and training data.
Sometimes, other than that two, the dataset also is divided into validation data. The
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Table 2.1: Confusion matrix of binary class case.

Predicted as positive Predicted as negative
Actual positive True positive (TP) False negative (FN)
Actual negative False positive (FP) True negative (TN)

proportion of training and test data usually is set to 80 percent and 20 percent but it can
be different based on the analyst preference. As for validation set, it is a subset of the
dataset used to evaluate the model’s performance throughout the training phase. It acts
as a testing ground for fine-tuning model parameters and selecting the best performing
model. A validation set isn’t required for all modeling algorithms.

Cross-validation method used to partition the dataset into training set that is used to
train the model, and a test set that is used to evaluate the model. There are some type of
cross-validation such as k-fold cross validation, repeated k-fold cross validation, and leave
one out cross validation. The first type is the most commonly used in machine learning.
The k value in k-fold cross validation usually is set to 3, 5, or 10. When performing 5-fold
cross validation, the data is divided into 5 equal set. The 4 part of the data is used as
training set and the 1 part is used as test set of the model. This process is repeated for
each of these splits and the accuracy is averaged of all these 5 trials. This process ensure
that every data point is only used once in a test set and 4 times in a training set.The
process of cross validation is shown in the the Figure 2.5.

2.5 Performance Metrics

There are three families of machine learning’s performance metrics as we explain in this
section.

2.5.1 Threshold Metrics

All the metrics in this family is based on confusion matrix. The input of this matrix is
recorded from the number of samples of each class that were either correctly predicted or
missclassified in each class. The entries for confusion matrix can be seen in the following
table.

The TP indicates the number of samples that correctly predicted as positive when
the actual value is positive. The FN value indicates the number of samples that wrongly
predicted as negative when the actual value is positive. Some threshold metrics such
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as accuracy, sensitivity, specificity, precision, F1-score, G-mean, and Cohen’s kappa are
derived from the value in the above table.

Accuracy

Accuracy is the most basic evaluation metric in machine learning. It defines the ratio of
the number of samples that correctly predicted/classified in both positive and negative
class versus the total number of the samples. This metric can be calculated as follow:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

Accuracy only works well when there are an equal number of samples in each class. But
when it comes to class imbalance situation, other metrics are advisedly used along together
with accuracy. It happens because in the imbalance case, the model tend to classify a
given sample as the majority class but still achieving high accuracy. When dealing with
a rare disease, the cost of failing to diagnose a sick person’s sickness is far more than the
cost of subjecting a healthy individual to further testing. In this case, another metric
such as sensitivity will give better interpretation than accuracy.

Sensitivity/Recall and specificity

The sensitivity metric is drawn from the positive samples. It shows the ratio of positive
samples that correctly predicted as positive. In the opposite, specificity is drawn from
the negative samples. It shows the ratio of negative samples that correctly predicted
as negative. These two metrics are usually used in the medical domain data such as
disease-related data, drug discovery, etc. Those metrics can be calculated as follows:

Sensitivity =
TP

TP + FN
(2.2)

Specificity =
TN

TN + FP
(2.3)

Unlike accuracy that measure how often a classifier correctly predict the positive and
negative samples, sensitivity and specificity also measure the same case, but in separate
way or in each class.
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Precision

Precision is the ratio between the TP and all the ’positive’ values, TP and FP. It is drawn
from the positive prediction value which means it is the measure of sample that correctly
classified as positive out of all the positive prediction. Precision can be calculated as:

Precision =
TP

TP + FP
(2.4)

When it comes to reducing the amount of false positives, this measure is crucial since this
metric put more focus on the positive class.

F1-score

F1-score is the Harmonic mean of the precision and recall/sensitivity. This score can be
an indication of a good precision as well as a good recall. It can be calculated as:

F1− score = 2 ∗ precision ∗ recal
precision+ recall

(2.5)

High precision but low recall offers you an incredibly accurate result, but it also misses a
big number of difficult-to-classify cases. The higher the F1 Score, the better our model’s
performance. If we want to weigh the contribution of each component as desired, we can
change the value formula above as:

Fα =
(1 + α)[precision ∗ recall]

[α ∗ precision] + recall
, α ∈ R+ (2.6)

Usually, α can be 1,2, or 0.5 depends on the desired weigh. When α = 1, as in F1−score,
it means that the weigh of recall and precision are equal. Basically, we can use α = 1 if
false negatives and false positives are equally important, α = 2 if false negatives is more
important, and α = 0.5 if false positives is more important.

There are other types of threshold metrics such as Geometric Mean (G-mean), Fleiss’
kappa, Cohen’s Kappa, Macro Average Accuracy (MAA), or combinations of threshold
metrics such as mean-class-weighted accuracy, optimized precision, adjusted G-mean, and
index of balanced accuracy.
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2.5.2 Ranking Methods and Metrics

Receiver Operating Characteristic (ROC) and AUC

ROC plots TP rate or sensitivity in the y-axis and FP rate or 1-specificity in the x-axis
at every possible thresholds so that it is also called as probability curve. The closer the
ROC curve to the top left corner, the better the classifier performance in predicting the
class label. FPR or 1-specificity can be calculated from confusion matrix value as follow:

FPR =
FP

FP + TN
(2.7)

ROC curve is considered as one of the evaluation metrics which well suited to class
imbalance case since ROC separates performance of each class i.e sensitivity and specificity
into two different measures. It can also be extended to problems with three or more classes
by utilizing one versus all classes.

AUC is abbreviation of Area under the ROC Curve. AUC calculated the entire area
under a two-dimensional ROC curve. The best classifier on average is said to have the
highest AUC. Mathematically, using the Wilcoxon’s rank sum statistic, AUC can be
calculated as:

AUC(f) =

∑|Tp|
i=1 (Ri − i)
|Tp| |Tn|

(2.8)

whereRi is the rank of ith example in Tp fiven by classifier f and |Tp| ⊂ T and |Tn| ⊂ T

are the subsets of positive and negative examples in test set T respectively.

Precision and Recall Curve

As mentioned in the previous section, precision represents the percentage of data that is
truly positive among the data classified as positive by the classification model in other
words, it represents the certainty of positive judgment where hinger is better. While
recall or sensitivity represents the percentage of actual positive data correctly classified as
positive The Precision-Recall (PR) curve is a frequently used graphical tool for evaluating
scoring function performance in terms of their ability to differentiate between two class.
Therefore, the PRC becomes a more appropriate metric for imbalanced datasets than the
ROC curve since it represents the connection between precision and recall (sensitivity).

In the comparison of ROC and PRC, the ROC curve has both the viewpoint that
Positive can be judged as Positive and Negative can be judged as Negative. However,the
PRC focuses only on the fact that Positive can be judged as Positive. Therefore, it is
better to use the ROC curve that looks at the balance of both as a performance index of
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Figure 2.6: (a) comparison of ROC; (b) comparison of precision-recall curve (PRC)

the classifier, but if there are overwhelmingly many Negatives, it is accurate to judge the
majority of Negatives as Negatives. And use PRC to see if you are only interested in the
results of the Positive class as this metric sees whether a small number of Positives can
be judged properly. The ideal state for PRC is where the curve sticks to the upper right.
While ideal ROC is where the curve sticks to the upper left as can be seen in the Figure
2.6 below.

2.5.3 Probabilistic Metrics

The purpose of probabilistic metrics is to measure the uncertainty in a classifier’s pre-
dictions. These are appropriate for issues where we’re less concerned with correct vs.
incorrect class predictions and more concerned with the model’s prediction uncertainty
and punishing predictions that are wrong yet extremely confident. Some widely used
metrics in this family include root-mean-squared error, log loss (cross entropy),and brier
score. It examines the performance of a classification model with a probability value
between 0 and 1 as the prediction input. As the predicted probability diverges from the
actual label, log loss rises. Brier score focused on the positive class or minority class in
the case of class imbalance, which makes it is appropriate for imbalanced classification.
A perfect classifier has root-mean-squared error and brier score of 0.0 and log loss of 0.0
with the worst is being infinitely positive.



Machine Learning 21

2.6 Frameworks

The general framework to approaching the process of machine learning as described by
Guo can be seen as these 7-steps:

1. Data collection : it starts with defining the problem to be solved or question to be
asked with and gathering a dataset.

2. Data preparation : preparing and wrangling the data to make it suitable for the
model.

3. Choose model : defining and choosing an appropriate model for the data.

4. Train model : developing model that can be improved so it gives better result than
baseline model.

5. Evaluate model : choosing performance metrics and deciding on evaluation protocol
such as cross validation.

6. Parameter tuning : model tweaking and regularization and hyperparameters tuning

7. Predicting

The framework of machine learning algorithm can be seen in the Figure 2.7.

Figure 2.7: Machine Learning Framework by Guo.



Chapter 3

Dealing with Class Imbalance and

Features Extraction Methods

Imbalance datasets exist in many real-world data. Class imbalance happen when the
number of a class is far less than that in the other one. The target class is usually the
minority class or the class which has samples far less than the other one and a sample
in this class is called as positive sample while a sample from the other one is called as
negative sample. This problem can lead classifier to bias toward the majority class because
it will most likely to predict a positive sample as negative sample. Therefore, a method
to deal with class imbalance should be done first before feeding the data as an input to
the classifiers to improve detection of minority sample or the performance metrics. There
exist many methods to deal with class imbalance at either in algorithm level or data level.

3.1 Algorithm Level

At algorithm level, a method is proposed to modify the algorithm either change or add
another line of algorithm in order to solve the imbalance data issue. Ensemble learning
and cost-sensitive learning are some examples of algorithm-level methods. Bagging and
boosting are classic ensemble learning methods that have shown to be effective in dealing
with class imbalanced problems. This method includes modifying the already available
classification algorithms to make them suitable for imbalanced data sets. In cost sensitive
learning, a large misclassification cost is assigned to defective examples while a small
misclassification cost is assigned to non-defective instances.

22
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3.2 Data Level

At data level, there are some available form of re-sampling methods that were proposed.
This method consists of over-sampling and under-sampling to re-balance the original
dataset. The under-sampling method is done by reducing samples of the majority class
whilst over-sampling method is done by adding samples of minority to the original dataset
so that the new dataset become nearly balanced.

3.2.1 Down-sampling

Downsampling is a technique for reducing the number of training samples that belongs
to the majority class. The majority class is subsampled to achieve basically the same
number of sample as the minority class. For example, if we have a training data with
900 of it are negative samples and the remain 100 are positive sample. Down-sampling
would randomly sample the first class so that we will have 100 samples of each positive
and negative class. The main drawback of downsampling if that we tend to lose a lot of
important information when we remove the data.

3.2.2 Up-sampling

Up-sampling is a technique to increase the number of training samples of the minority
class by randomly duplicating the minority class. Using this method, the numbers of both
classes are (nearly) the same. As the same example of downsampling, after upsampling is
done, in the final dataset, each positive and negative class will have a training data of 900
samples. This balancing technique keeps the model from bias toward the majority class.
The relationship (border line) between the class labels is also unaffected. Furthermore,
because of the added samples, the upsampling method introduces bias into the system.

3.2.3 Under-sampling

Undersampling the majority class is one of the most popular and simplest approaches to
handle imbalanced data. In order to effectively balance the class distribution, undersam-
pling methods eliminate samples from the training dataset that belong to the majority
class, such as lowering the skew from a 1:1000 to a 1:100, 1:10, 1:3, or even a 1:1 class
distribution. There are some methods of undersampling, and in this chapter we will take
a look only on four methods.
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Random Undersampling

The simplest or basic undersampling method is by random undersampling. In this method,
we can simply choose n samples at random from the majority class, where n is the number
of samples for the minority class in the training data. Despite simple and effective, this
method has the drawback of removing samples without regard for how important or
significant they may be in defining the decision border between the classes. We potentially
lose important data in this process. The wiser method for undersampling are Near Miss
and Condensed Nearest Neighbor undersampling.

Near Miss

A near-miss method can contribute in the balancing of an imbalanced dataset. This
undersampling algorithms is a good technique to balance the data that done by examining
the class distribution and removing samples from the majority class at based on their
distance to other samples in the minority class. When two samples of different classes are
relatively near to each other, this method will remove the sample of the majority class to
balance the distribution.

There are three versions of this near miss method.

1. Version 1: The data is balanced by selecting the sample of majority class with the
minimum average distance to the three nearest samples of minority class.

2. Version 2: The data is balanced by selecting the sample of majority class with the
minimum average distance to the three furthest samples of minority class

3. Version 2: The data is balanced by selecting the sample of majority class with the
minimum average distance to the each samples of minority class.

Condensed Nearest Neighbor (CNN)

The aim of CNN undersampling is to select a subset of the training set T let’s say U,
such that every point in T has a neighbor in U who belongs to the same class. According
to More, A (2016), U can be chosen through this steps::

1. Choose a random sample from T and set U = p.

2. Scan T − U and add to U the first sample found which its nearest neighbor in U is
from a different class.

3. Repeat step 2 until U is maximal.
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Because CNN undersampling involves multiple runs over the training data, it becomes
slower than other methods. Furthermore, the subset chosen might vary significantly due
to the randomness related to the selection of samples at each iteration. The method of
condensed nearest-neighbor (CNN) also selects samples at random. As a result redundant
samples are retained and internal rather than boundary samples are occasionally retained.

Tomek Link

A pair of a positive sample and a negative sample is called a Tomek link if they are the
closest neighbors to each other. This undersampling method is done by deleting all tomek
links from the dataset. Another option is to simply delete only the majority class sample
from a Tomek link. In practice, the Tomek Link method is commonly combined with
other methods, such as the Condensed Nearest Neighbor Rule.

3.2.4 Over-sampling

On the contrary of undersampling methods, over sampling is used when the number of
obtained data is insufficient. To balance the classes, oversampling approaches increase the
number of objects in the minority class. There are some popular oversampling methods
which most of them is developed based on SMOTE. In this study, seven methods of
oversampling are explained.

SMOTE

SMOTE is known as the pioneer method for oversampling an imbalance dataset. The
method use k-nearest neighbors in creating new synthetic samples to balance the class
distribution of the dataset [6]. Each positive sample is pairing with its nearest neighbors
then along a line connecting the samples with one of the selected nearest neighbors,
synthetic sample is generated. Mathematically, the process can be described as follow. A
new synthetic samples s’ is computed by s′=s+gap(ls−s) where gap ∈ [0, 1] and ls is a selected
neighbor from k-positive nearest neighbors of point s. Then, the process is repeated until
the number of positive and negative samples become balanced. In dealing with class
imbalance data by creating new synthetic samples, SMOTE is the pioneer methods where
many methods in this issue were developed in order to improve classification performances
based on this technique.
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ADASYN

[7] introduced another technique to deal with class imbalance called ADASYN. The main
idea of this method is to create synthetic samples based on the level of difficulty in learning
the samples of minority class. The procedure to calculate new synthetic sample with
ADASYN is as follows. Training datasets with m samples {xi, yi}, where i = 1, . . . ,m,
xi is data sample in R dimensional feature pace X, and yi ∈ Y = 1, . . . , C where C
is class label. The data is divided into mmin and mmaj, where mmin+mmaj = m and
mmin ≤ mmaj. mmin and mmaj are the number of minority class and the number of
majority class respectively. First, determine the value of β ∈ [0, 1], with β is parameter
to determine the level of balance. Then calculate the desired number of new synthetic
samples to be generated:

G=
(
mmaj −mmin

)
β (3.1)

If β = 1, then the dataset will become perfectly balanced. Second, determine k-nearest
neighbors for each xi in minority class to calculate ri value as the ratio of majority samples
in k nearest neighbors of xi. ri is defined as:

ri = ∆i/K, i = 1, ..,mmin (3.2)

where ∆i is the number in K nearest neighbors of xi that belongs to mmaj. From the
above formula, it can be seen that ri ∈ [0, 1]. ri shows the difficulty of learning, where the
higher the value of ri, the more difficult the classification algorithm to learn the dataset.
Third, with S =

∑i=mmin

i=1 ri, normalize ri by:

r̂i = ri/S (3.3)

so that
∑i=mmin

i=1 r̂i = 1 shows that r̂i is a density distribution. Fourth, for each xi in
minority class, calculate gi for the number of synthetic samples to be generated by:

gi = r̂i ×G (3.4)

Finally, a synthetic sample can be generated by:

si = xi + (xji − xi)λ (3.5)

where xji is randomly selected positive sample from k-nearest neighbors of xi and
λ ∈ [0, 1]. This process is repeated until all the positive samples is used in generating a
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set of synthetic sample.

Borderline SMOTE

There also exist some oversampling techniques developed based on SMOTE. One of them
is Borderline SMOTE introduced by [8]. This technique developed based on the SMOTE
by putting focus more on the borderline of each class. It highlighted the problem that a
sample located on or nearby the borderline tend to be misclassified by classification meth-
ods than that located far from the borderline. Therefore, a sample located on or near
the borderline will give more contribution to classification. From that reason, this tech-
nique tries to strengthen the borderline minority samples by generating synthetic samples
along this region only. The procedure to synthesize new samples with this technique can
be described as follows. First, find the borderline of minority samples. It defines three
region of positive instance by considering the number of negative instance on k -nearest
neighbors of each positive sample. Suppose that S is the training set that divided into Mj
and Mn as the majority and minority class respectively, and Mj =

{
y1, y2, . . . , yn_maj

}
,

Mn =
{
x1, x2, . . . , xn_min

}
where n_maj and n_min are the number of majority class

samples and the number of minority class samples in k -nearest neighbors of xi ∈ minority.
The region of xi can be described as noise if the number of nmaj = k. If 0 ≤ nmaj ≤ k

the region is described as safe, while if k/2 ≤ nmaj ≤ k then the region is described
as easily misclassified and put xi into DANGER set so that DANGER ⊆ Mn and
DANGER =

{
x′1, x

′
2, . . . , x

′
d_min

}
, 0 ≤ d_min ≤ n_min. Second, determine the de-

sired number n×dnum, n ∈ [1, k] of synthetic minority samples to be generated. For each
x′i ∈Mn, select n nearest neighbors from its k-nearest neighbors in Mn, so that we have
diff j, j = {1, 2, . . . , n} as the difference between x′i and its nearest neighbors from Mn.
Therefore, the synthetic samples can be generated by synj = x′i + rj × diff j. This idea
of Borderline SMOTE in selecting certain region to generate synthetic samples inspired
other SMOTE-based techniques in oversampling methods such as safe-level SMOTE and
relocating safe level SMOTE.

Safe-level SMOTE

[9] introduced another improvement of SMOTE, namely Safe-level SMOTE. This tech-
nique highlighted the drawback of SMOTE that SMOTE naively ignore nearby majority
instances in synthesizing the minority samples along a joining line of a minority samples
and its selected nearest neighbors. This new generated synthetic sample by SMOTE cause
a classification model tends to create larger and less specific region resulting in overgen-
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eralization. Therefore, safe-level SMOTE will determine whether a sample in minority
class is safe to use in generating synthetic samples or not. In other word, Safe-Level
SMOTE is designed to generate synthetic samples around selected positive samples that
considered as safe. The procedure of this technique can be described as follows. First, the
process is done by calculating k-nearest neighbors of each positive sample xi ∈ minority,
then safe-level value is calculated by counting the number of positive instance in its k-
nearest neighbors. xi is considered as noise and will be excluded from the next step if
there is no positive instance in k-nearest neighbors of xi. For the rest of positive instance
xi ∈ minority, x̂i is a randomly selected positive sample of its k-nearest neighbors. Then
define safe level ratio slR as:

slR = slxi/slx̂i (3.6)

where slxi and slx̂i are the number of positive samples in k-nearest neighbors of xi and
the number of positive instance in k-nearest neighbors of x̂i respectively. By considering
the above values, a synthetic sample s is generated according to these criteria: 1) if
slR =∞ and slx̂i = 0, a synthetic sample will be generated in range [xi, xi]; 2) if slR = 1

and slx̂i 6= 0, a synthetic sample will be generated in range [xi, x̂i]; 3) if slR > 1 and
slx̂i 6= 0, a synthetic sample will be generated in range [xi, (xi − x̂i) /slR]; and 4) if slR < 1

and slx̂i 6= 0, a synthetic sample will be generated in range [x̂i − slR • (xi − x̂i) , x̂i]. After
completing the process, a set of synthetic samples is combined to original dataset to obtain
a new, nearly balanced dataset.

Relocating Safe-level SMOTE

This method is extended work of Safe-Level SMOTE which synthesize new sample in a safe
region by avoiding majority samples. It highlights the fact that safe-level SMOTE ignored
the possibility that some synthetic samples are generated closer to negative samples than
to positive samples. It contradicts with the procedure in generating synthetic sample of
safe-level SMOTE where it tries to avoid negative samples in generating synthetic samples.
Therefore, [10] introduced an additional algorithm to relocate generated synthetic samples
if it locates around negative samples. After the process in generating synthetic sample s
with Safe-level SMOTE is done, then the distance of s to xi dan x̂i are calculated. This
two values are compared to the distance between s and its closest negative samples. If
the distance is less than the closest distance either to xi or x̂i, the synthetic sample is
relocated closer to that point.
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Density-Based SMOTE

Another variation of SMOTE-based oversampling technique is Density-based minority
over-sampling technique or DBSMOTE. It is an integration of DBSCAN and SMOTE.
DBSCAN or Density-Based Spatial Clustering of Application with Noise is proposed by
[11] aiming at discovering clusters of arbitrary shape. DBSMOTE is proposed by [12] to
create synthetic samples of an arbitrarily shaped cluster found by DBSCAN. Inspired by
Borderline-SMOTE in maintaining detection rate of majority class, DBSMOTE focused
the work on over-lapping region. However, this technique also highlights the drawbacks of
Borderline-SMOTE which fails in maintaining the detection rate of negative samples while
improving that on positive samples. To resolve this drawback, DBSMOTE developed
different approach to precisely oversampling both in the over-lapping and the safe region
to improve positive sample detection while maintaining detection rate on the negative
samples. In this technique, by Definition 1, underlying weighted directional graph term
is introduced.

Definition 1
A directly density-reachable graph of a cluster C discovered by DBSCAN is denoted

by G(C) = (V, E), where V is a set of nodes represented as instances in C and E is a
set of edges where E = {(v1, v2) ∈ V × V | an instance v1 is directly density-reachable
instance v2 w.r.t. Eps and MinPts or vice versa}. Let w : E → R be a weight function
where w(v1, v2) is set as a distance nodes v1, v2 ∈ V .

The algorithm DBSMOTE synthesizes a minority instance along the shortest path
retrieved in a directly density-reachable graph from each sample to the pseudo-centroid
cluster. Define S as original dataset which then is parted to Mmin and Mmaj for minority
class and majority class respectively. DBSCAN starts generating C1, C2, . . . , Cm of disjoint
clusters to detect a set of noise samples N which eroded away in the next step from
the minority class Mmin. From generated disjoint clusters, DBSMOTE then generated
C ′1, C

′
2, . . . , C

′
m set of synthetic samples which added to the original dataset S to create

an oversampled dataset S’.

Adaptive Neighbor SMOTE

While methods mentioned above focused on where to generate synthetic samples, Adap-
tive Neighbor Smote (ANS) put its focused on how many neighbors needed to synthesize
a new sample [13]. In other word, ANS concentrates on deciding the appropriate value
for parameter k in k -nearest neighbors of each positive sample that is needed in SMOTE
and SMOTE-based algorithms to synthesize a new sample. The parameter k is selected
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according to density level of each positive sample’s region. Other than that, this technique
tries to utilize noise sample which usually excluded from the process in generating syn-
thetic samples by other techniques. The procedure began with detecting noise sample(s)
and excluding it from the entire dataset. Then, choose the maximum distance value that
connects a positive sample xi ∈ minority, so that it has at least one nearest neighbor of
positive instance. Then, k is defined as the total number of positive instance in under
the previously chosen distance. SMOTE is then performed for each xi with different k
depends on its density. By utilizing the value of k, the area of the generated synthetic
samples will be more spread out inside the dense area and not sparsely distributed as in
SMOTE.

3.3 Features Extraction

Feature extraction is a process meant to reduce the number of variables in a high-
dimensional dataset by creating new variables from the existing variables without losing
the information of the original dataset. This process is done for some purposes such as to
reduce the problem arising from high dimension of a dataset, to increase computational
efficiency, or to visualize the dataset either in 2D or 3D.

3.3.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is one of feature extraction methods that commonly
used to reduce the dimension of a large dataset. PCA is a statistical technique of features
extraction that uses orthogonal transformation to transform a set of data of possibly
correlated variables into a set of values of linearly uncorrelated variables. [14]. Generally,
the procedure of this method can be described as follows. First, the range of the original
variables is standardized to make all the variables contribute equally to the analysis. After
the standardization is done, compute the covariance matrix to identify the correlation of
each variable to the others. Then eigenvectors and eigenvalues of the matrix are computed
to identify the principal components. Once it is done, the eigenvectors are ordered by
their eigenvalues in descending order. Eigenvalues which are less significant are excluded
and the rest eigenvalues form Feature vector. Finally, the result of feature extraction with
PCA is obtained by:

final_dataset = Feature_vectorsT ∗ Standardized_datasetT
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3.3.2 Independent Component Analysis (ICA)

Another linear methods of feature extraction using component analysis is Independent
Component Analysis (ICA). ICA is an important method in signal-based analysis such
as EEG signal to help separating normal and abnormal signals. The general framework
of ICA was introduced in 1980s by some researcher which aims at extract hidden factors
of a dataset by transforming the variables to a new set of variables that is maximally
independent. What distinguished ICA from PCA is that PCA assumes that signals are
subject to multivariate Gaussian distribution and uses orthogonal bases to decompose
signals. There exist some methods to perform ICA for reducing dimensionality of dataset.
[15] describes one way to perform ICA through three steps dimensionality reduction. First
is to remove the average of dataset. The second step is to remove the correlation between
components using the covariance matrix. And the last step is to and maximize non-
Gaussian components using kurtosis or negentropy method to measure the non-Gaussian’s
level.

3.3.3 T-Distributed Stochastic Neighbor Embedding (tSNE)

Other than linear dimensionality reduction techniques, there are some available techniques
that are nonlinear. One of those is t-distributed stochastic neighbor embedding (tSNE)
first introduced by [16]. It reduces the dimensionality of a dataset by giving each data
point a location in 2D or 3D dimensional map. This technique aims at identifying the
relevant pattern of a dataset while maintain its local structure [13]. For each point of a
datasets, tSNE models the probability distribution of other points which are closest to it.
One of the most im-portant parameters to be set when using t-SNE is perplexity, which
is the expected num-ber of nearest neighbors each point has. The performance of tSNE
is fairly robust under different settings of this parameter. Generally, the perplexity is set
depend on the size of the dataset. The default value of perplexity in some packages is set
to 30 for a dataset whose variables more than 30.

3.3.4 Uniform Manifold Approximation and Projection for Di-

mension Reduction (UMAP)

Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) is
another nonlinear dimensionality reduction which builds a mathematical theory to jus-
tify the graph-based approach [17]. It is developed based on ideas from topological data
analysis and manifold learning techniques, which assumes that the data is uniformly
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distributed on the manifold. To make this assumption true, it defines a Riemannian
met-ric on the manifold. Compared to tSNE, UMAP provides much faster computational
run-ning time.



Chapter 4

Machine Learning Algorithms for

Predicting Chronic Obstructive

Pulmonary Disease (COPD) from Gene

Expression Data with Class Imbalance

4.1 Introduction

Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory lung disease
that reduces lung airflow and has a substantial impact on patients’ everyday life. COPD
has become one of the most important risk factors for lung cancer [18]. According to
the World Health Organization, COPD was responsible for 5% of all deaths worldwide in
2015, and by 2020, there will be 4.7 million of the 68 million deaths worldwide caused by
COPD [19]. When COPD has caused significant lung damage, it has just been detected
some time later which means it is too late. COPD is difficult to identify early on since
symptoms don’t develop until the lungs have been severely damaged. Opportunities for
early detection of COPD can be improved with the helps of existing computational
technology, development of machine learning algorithms, and better access to health and
disease-related data. [20] emphasized the need of using machine learning algorithms in
the development of Clinical Decision Support Systems to classify the various phases of
COPD in patients. [21] used machine learning methods to identify 38 genes linked to the
pathophysiology of COPD and ILD (interstitial lung disease). The genes that has been
identified can help in the development of improving COPD and ILD treatments. Gene
expression data is extensively used in disease research, which can identify components
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of the genome that are significantly changed. It helps us understand which biological
processes are affected [22]. However, because the number of experiments or samples
is less than the number of genes or probes that are typically employed as attributes or
features, gene expression data analysis and management becomes complex and challenging
task. Furthermore, platform differences that cause batch effects, varied experimental
circumstances, and a lack of standardization in experimental annotation pose a significant
obstacle.

Figure 4.1: Flowchart of this study.

The presence of class imbalance, i.e., the number of data represented in one class is
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smaller than in other classes, makes this task considerably more difficult. The minority
class is usually the target class, but a classifiers will most likely to underperform in this
category while bias towards the majority. One of the methods to deal with class imbalance
is by resampling the original dataset either by oversampling or undersampling [6]. The
goal of this work was to use machine learning techniques to solve the problem of class
imbalance through the synthetic minority oversampling technique (SMOTE). We used
the “caret” package to run additional resampling approaches for comparison. This figure
above shows the flowchart for this study.

The rest of this document goes into our methods in details. The material and methods
used in this study are described in section 2. It briefly discusses about data selection
methods of improving model performance. We briefly discuss the machine learning and
regression methods and approaches for this study, and the evaluation metrics that we use
to evaluate the performance of our method proposed. The experiment and results are
discussed in Section 3. Finally, section 4 brings this paper to a conclusion.

4.2 Material and Methods

We utilized microarray dataset of the small airway epithelium (SAE) downloaded from the
Gene Expression Omnibus (GEO) database, https://www.ncbi.nlm.nih.gov/geo/, with
accession number GSE20257. Bronchoscopy and brushing were used to acquire the airway
epithelial cells, which were performed by Crystal Laboratory at Weill Cornell Medical
College’s Department of Genetic and Medicine. The data was first collected on June 27,
2011 and was most recently updated on March 25, 2019. Gene expressions are organized
in GeneChip HG-U133 Plus2.0 arrays, which represent roughly 14,500 well-characterized
human genes which can be used to investigate human biology and disease processes [23].

A total of 54,675 probes are included in the collection, which contains gene expression
data from 135 human patients. There are 23 smokers with COPD (9 GOLD stage I, 12
GOLD stage II, and 2 GOLD stage III) among the 135 individuals, 59 healthy smokers,
and 53 healthy nonsmokers. Bioconductor’s "affy" and "biobased" R packages were used
to log2 normalize the data and remove batch effects respectively. The “Limma” packages
was then used to identify probes that were significantly different in healthy nonsmokers
compared to COPD patients by utilizing differential expression analysis. The machine
learning algorithms then employed the chosen probes. The probe selection aims to re-
duce the dataset’s dimension, which is important for lowering the computational cost
of modeling. Additionally, deleting unwanted, irrelevant, and duplicated attributes that
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statistically do not contribute to the predictive model’s accuracy and other evaluation
metrics might improve the model’s performance.

4.3 Machine Learning Methods

For the classification task, we used various machine learning models such as support
vector machine (SVM), naïve bayes, random forest, gradient boosting machine (GBM),
and regression models such as elastic net regression and multiclass logistic regression (LR).
The R packages "caret," "e1017," "nnet," and "naivebayes" were used to implement all
machine learning and regression algorithms.

Elastic net is a regularized regression model that employs an L1 and L2 linear combi-
nation penalty. The strengths of the other two regularized regression models, ridge and
lasso regression, are combined in this Elastic net model. In this regression model, param-
eter has a value between 0 and 1. The goal of this regression model was to reduce the loss
function. Multiclass logistic regression is a extension of binary logistic regression. This
model is used to predict categorical response variables with more than two outcomes.
The goal of this model is to capture the linear relationship between the response and
independent variables.

4.4 Evaluation Metrics of Predictive Models

The mean accuracy, AUC, sensitivity, and specificity for each of the proposed classification
models were analyzed to assess the model’s performances. The ability of a model to
distinguish positive and negative outcomes of a disease-related dataset is evaluated using
sensitivity and specificity [24]. Confusion matrix is used to calculate various evaluation
metrics such as accuracy, sensitivity, and precision as described in Chapter 2. This table
below illustrates the nine potential outputs for the three classes 1, 2, and 3. It shows the
elements of three-dimensional confusion matrix described [25].

In the table below, the columns represent the predicted classes, and the rows represent
the actual classes. We then have the numbers of nine cases where TP1 is the case for which
the classifier predicted as class-1 and the sample were actually class-1, and E12 is a sample
from class-1 that misclassified as class-2. Thus, the false negative in the class-1 (FN1) is
the sum of E12 and E13 (FN1 = E12 + E13) which indicates the sum of all samples that
were actually class-1 but were misclassified as class-2 or class-3. Whereas the false positive
in the class-1 (FP1) is the sum of E21 and E31 (FP 1 = E21 + E31) which indicates the sum
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Table 4.1: An illustrative example of the confusion matrix for a 3-class classification
test.

Predicted as 1 Predicted as 2 Predicted as 3
Actual 1 TP1 E21 E31

Actual 2 E12 TP2 E32

Actual 3 E13 E23 TP3

of all sample that actually were not class-1 but were misclassified as class-1.
In the “caret” packages, the accuracy is defined as the overall accuracy using the

predicted classes, while sensitivity and specificity are defined as the averages of the “one
versus all” statistics. As described in Ballabio et al., (2018), the overall accuracy is
computed as follows:

Acc =

∑l
i=1 TP i

n
(4.1)

where TP i is the number of true positive samples in class-i, and n is the total number
of samples. Accuracy shows how accurate our classification model is able to predict the
class labels given in the problem statement. In other word, the best selected model has
the highest accuracy.

Sensitivity for multiclass classification is computed as follows:

Sn =

∑g
i=1 Sni
g

(4.2)

where Sni is sensitivity for class-i and g is the total number of classes. Sni can be
calculated as follows:

Sni =
TP i

TP i + FN i

(4.3)

On the other hand, specificity for multiclass classification is computed as follows:

Sp =

∑g
i=1 Spi
g

(4.4)

where Spi is specificity for class-i. Spi can be calculated as follows:

Spi =

∑g
k=1 (nk−Eik)

i 6=k

n− ni
(4.5)

Sensitivity shows the ability of a model in correctly identifying positive data out of
all actual positives data. In contrast, specificity shows the ability of a model in correctly
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identifying negative data out of all actual negative data. The higher the sensitivity and
specificity, the better the model in correctly identifying data that belong to a certain class
as well as a data that do not belong to the class.

To calculate AUC score, we used multiclass.roc function from pROC packages which
computed multiclass AUC as an average AUC defined by [26]. For multiple classes labelled
as 0, 1, 2, . . . , (c− 1) with c > 2, the separability between class i and j or auc is defined
as follows:

auc =
Â (i|j) + Â (j|i)

2
(4.6)

where Â (i|j) is the probability shows that if we draw a member of class j randomly, the
estimated probability of j belongs to class i will be lower than if if we randomly draw
a member of class i instead. This also applies to the reverse case. For multiclass case
Â (i|j) 6= Â (j|i).

AUC =
2

c (c− 1)

∑
aucs (4.7)

with aucs all the pairwise roc curves.
The best model is selected based on the highest value of the four evaluation metrics.

The higher the AUC, the better the model in distinguishing a positive example from a
negative one.

4.5 Evaluation of Resampling Methods

We applied the SMOTE algorithm in the experiment with two distinct CRAN pack-
ages, “DMwR” and “smotefamily.” For comparison, we employed down-sampling and up-
sampling methods. Up-sampling involves sampling a dataset randomly so that all classes
have equal number as the majority class. Down-sampling, on the other hand, will sample
a data set randomly so that all classes have equal number as the minority class.

We utilized repeated k -fold cross-validations to assess the performance of all the clas-
sifiers, as this is a standard approach for this purpose. By repeating the k -fold cross-
validation method n times and providing the mean result of all folds from all runs, this
evaluation technique enhances the performance of machine learning and regression algo-
rithms. According to [27], repeated cross validation is an effective technique for reducing
the complexity of regression and machine learning models.
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4.6 Experiment and Result

During the data collecting process, gene expression data frequently contains unnecessary,
irrelevant, and duplicated data. We eliminated unnecessary data in the first stage before
conducting the classification model so that our proposed classification method would be
more accurate. The raw data obtained from the GOE dataset was log2 normalized using
the “biobased” R package, batch effects and unnecessary variation were eliminated using
the “affy” package, and statistically compared or analysed for differential expression using
the “Limma” tool.

Out of 54,675 probes, 20,663 were chosen after batch effects were removed in the data
pre-processing. As shown in this figure below, we found 825 probes that were significantly
different in COPD patients compared to healthy non-smokers using a p-value of 0.0001 .
The dataset was split into two parts: a training set and a test set, each with a proportion
of 80% and 20%, respectively. SMOTE was then used to resample the data only in the
training data. With repeated 10-fold cross-validations 10 times, the oversampled data
were included in machine learning and regression modeling techniques.

Figure 4.2: Mean difference (MD) plot displays log2 fold change versus average log2
expression values for all the 54,675 probes. Highlighted genes are significantly differen-
tially expressed in COPD compared to healthy non-smoker (red = upregulated, blue =
downregulated)
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Table 4.2: Accuracy and AUC for different models.

Classifier Accuracy (%) AUC (%)
SVM 68 73
+SMOTE 68 85
Naïve Bayes 48 70
+SMOTE 64 76
Random Forest 48 60
+SMOTE 64 81
GBM 64 81
+SMOTE 56 70
Elastic Net 64 71
+SMOTE 76 89
Multiclass LR 72 82
+SMOTE 80 90

4.7 Comparison of Machine Learning Algorithm and

Regression Analysis

This tabel below shows the comparison of the accuracy and AUC scores of SVM, naïve
bayes, random forest, GBM, elastic net regression, and multiclass LR models with and
without SMOTE to handle with class imbalance.

Table 4.3: Average sensitivity and specificity for different models.

Classifier Sensitivity Specificity
SVM 0.53 0.81
+SMOTE 0.70 0.82
Naïve Bayes 0.44 0.71
+SMOTE 0.67 0.80
Random Forest 0.37 0.69
+SMOTE 0.61 0.81
GBM 0.57 0.80
+SMOTE 0.50 0.76
Elastic Net 0.56 0.80
+SMOTE 0.76 0.87
Multiclass LR 0.67 0.84
+SMOTE 0.80 0.89

Except for GBM, all performance increased in the models with SMOTE compared to
those without SMOTE after repeated 10-fold cross-validation 10 times. This showed that



Machine Learning Algorithms for Predicting Chronic Obstructive Pulmonary
Disease (COPD) from Gene Expression Data with Class Imbalance 41

SMOTE is effective in handling class imbalance. Multiclass LR with SMOTE achieves
the best results, with an overall accuracy score of 80 percent and an AUC of 90 per-
cent, respectively. As seen in the table below, this model has the highest sensitivity and
specificity values of 0.80 and 0.89, respectively. The high sensitivity and specificity of the
model signify that it can properly distinguish subjects who belong to a certain class as
well as those who do not belong to the class.

From those table, it can be seen that Elastic net regression is the second-best model
based on the evaluation metrics, with a slightly lower accuracy and AUC score (76 percent
and 89 percent, respectively) than multiclass LR.

4.8 Comparison of Resampling Methods

In multiclass LR, we investigated some resampling methods to evaluate their effects
on model performance. Two SMOTE functions from two independent packages were
used. The difference between SMOTE in the "DMwR" and "smotefamily" packages is
that "DMwR" employs a combination of SMOTE and majority class under-sampling,
whilst "smotefamily" does not. In using “DMwR,” we need to tune the two parameters,
perc_over and perc_under until we achieve an appropriate sample size. We set perc
over to 200 and perc under to 300 in this function. We also conducted up-sampling and
down-sampling for comparison.

After splitting the dataset into training and validation data, 110 out of 135 data sam-
ples were used as training data, including 43 samples of healthy nonsmokers, 48 samples of
healthy smokers, and 19 samples of COPD. The "caret" package’s function of upSample
randomly replicating the data and add those data into the original dataset so that each
class has 48 samples, while downSample randomly select the data, so that each class has
19 samples.

The AUC values for multiclass LR of several resampling methods are shown in Table
4.4. The AUCs of SMOTE from “DMwR” and “smotefamily” are quite similar, with only
a 0.8 percent difference. Since the results from both packages are insignificantly different,
we may use one of the SMOTE functions from those packages. In comparison, using the
upSample function to resample the dataset improved the AUC performance by 5%, whilst
using the downSample function lowered the performance by 4.3 %. The AUC performance
of the upSample function, however, is still lower to that of SMOTE, either by employing
"DMwR" or "smotefamily" packages. In all four evaluation metrics, models trained with
SMOTE outperformed models trained without it.
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Table 4.4: Multiclass LR with different resampling method.

Resampling methods AUC of Multi-
class LR (%)

Without resampling 82.4
SMOTE from “DMwR” 90.1
SMOTE from “smotefamily” 89.3
upSample 87.4
downSample 78.1

4.9 Conclusion

We employed a microarray dataset to predict the existence of COPD in this study by
first addressing the class imbalance. Previous research on this dataset has predicted the
existence of COPD but neglecting the existence of class imbalance. Based on repeated
10-fold cv 10-times, our proposed model can predict the existence of COPD with an
overall accuracy and AUC score of 80% and 90%, respectively. The results show that
by addressing class imbalance in the pre-processing task can more correctly predict the
existence of COPD.

Our proposed methods have higher sensitivity and specificity than those that do not
take class imbalance into consideration in the pre-processing task. It indicates that the
chosen model can accurately identify sample that belongs to a certain class as well as
sample that does not belong to that class. The proposed technique in this study can be
utilized to assist in the design of improved therapies to reduce COPD-related morbidity
and mortality. To improve the performance, in the future study, we are considering using
more recent and sophisticated resampling approaches.



Chapter 5

Classification of Imbalanced Data

Represented as Binary Features

5.1 Introduction

Understanding the properties of input data and selecting the methods that are most
suited for obtaining high performance in the machine learning job are critical in the
field of machine learning (regression, classification, clustering etc.). Class imbalance is a
typical problem that arises from real-world data. This occurs when the number of samples
represented in one class is less than the number of samples represented in the other(s)
class(es), as in a rare disease dataset. Typically, the minority class is more important and
is designated as the target class.

As a result, a dataset with class imbalance is more vulnerable to missclassification in
the minority class than in the majority class. This problem makes it difficult for classifiers
to properly predict the minority class since they are more likely to predict minority class
data as majority class data. To handle the problem of class imbalance, a number of
methods have been developed. At the data level method, resampling is a frequently
used solution for this problem. Undersampling the majority class or oversampling the
minority class are examples of the method. Many existing method, however, were designed
explicitly to overcome the problem in numerical data. Some kinds of data, on the other
hand, are represented as binary values that can only have one of two values (0/1, T/F,
M/F, etc.). A binary feature like this sits at the border of numerical and categorical values.
It can be considered as a numerical value, but the domain of value is limited, and there
is no difference between itself and categorical value. Direct application of oversampling
methods to a dataset with binary features is not a good idea since such techniques rely
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on numerically represented values for synthesizing new minority samples.
In this study, we studied on utilizing feature extraction to convert binary features into

numerical features before oversampling. Classification performance was evaluated using a
variety of datasets, classifiers, feature extraction approaches, and oversampling techniques.
The effectiveness of the approach was validated through extensive experiments.

Figure 5.1: The flowchart of the proposed approach.

In this study, we investigated an approach of using feature extraction for converting
binary feature into numerical feature prior oversampling. The flowchart of our approach
is shown in Figure 5.1. Using various datasets from different domains and imbalance
ratios, classifiers, feature extraction methods, and oversampling methods, classification
performances were measured. Through comprehensive experiments, the effectiveness of
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the approach was confirmed.

5.2 Material and Methods

All of the datasets used in this study are binary features, which means that all of the
data input is binary (values of target class are also represented as binary, but they are
treated as categorical values). SPECT, analcatdata fraud, and ring are three benchmark
datasets downloaded from Github repository [1] . SPECT and analcatdata_fraud are
datasets which all the input data are binary. The ring dataset’s input data are originally
numeric with two class label (binary) which then were normalized and binarized using the
k -means clustering algorithm of the “Binarize” R packages. It was done because of the
lack of available benchmark datasets of imbalanced class especially for binary features.
The ring_1500vs3000, ring_100vs500, ring_100vs2000, and ring_60vs3000 are randomly
drawn from the ring dataset. The same procedure was also done by [28] in order to evaluate
their models on different degrees of imbalance due to the lack of available datasets.

The remaining three datasets are biological data from Kanazawa University Hospital.
Two MRSA datasets have practically identical feature data, which represents the presence
of mutations in each MRSA strain associated to each sample [29]. The target class is the
main difference between two MRSA datasets. In MRSA pathogenicit0y dataset, 0 and
1 represent latent and developed, respectively. In MRSA drug resistance dataset, target
class represent the resistance of each strain to Clindamycin (CLDM). Similarly, C. difficile
pathogenicity dataset contains feature data representing the exist-ence of mutations in
each strain of C. difficile, which causes diarrhea in human and has difficulty in antibiotic
treatment. To generate the feature data, whole genome of 77 strains were sequenced
by Hiseq 2500 with 150 base reads. The reads were mapped to the refer-ence genome
NC_009089 in RefSeq (the same as AM180355.1 in GenBank) by BWA. After the mapping
and file conversion by SAMtools, mutations were detected by Varscan. Between Indels and
SNPs type of mutation, Only Indels (insertions and deletions) were used in this study. If
the feature data (presence of mutation) of two or more Indels were completely the same in
77 strains after Indel identification , the features were combined as one because redundant
features might have a negative impact on machine learning classification performance.
Finally, 77 samples are used along with 2610 generated features, where each of the feature
correspond to one or more mutations.

The basic information regarding the number of samples and other characteristics of
the datasets are summarized in Table 5.1. All the input variables of these datasets are
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Table 5.1: Multiclass LR with different resampling method.

Dataset # of features # of samples Target class
ratio (0:1)

SPECT 22 267 55:212
analcatdata_fraud 10 42 29:13
car_evaluation 22 1728 1210:384:65:69
MRSA pathogenicity 1978 96 33:63
MRSA drug resistance 1976 94 75:19
C. difficile pathogenicity 2610 77 46:31
ring_1500vs3000 21 4500 1500:3000
ring_100vs500 21 2100 100:500
ring_100vs2000 21 2100 100:2000
ring_60vs3000 21 3060 60:3000

binary. All the features of these datasets are included in the analysis.

5.3 Oversampling and Features Extraction Method

In the pre-processing step, at first, the binary features are converted into numerical value
using some linear and non-linear features extraction methods. For the linear method,
principal component analysis (PCA) and independent component analysis (ICA) were
performed. What distinguished ICA from PCA is that PCA assumes that signals are
subject to multi-variate Gaussian distribution and uses orthogonal bases to decompose
signals.

For the non-linear methods, t-distributed stochastic neighbor embedding (tSNE) and
uniform manifold approximation and projection (UMAP) were performed. tSNE tech-
nique aims at identifying the relevant pattern of a dataset while maintain its lo-cal struc-
ture. For each point of a datasets, tSNE models the probability distribution of other
points which are closest to it. UMAP is developed based on ideas from topological data
analysis and manifold learning tech-niques, which assumes that the data is uniformly dis-
tributed on the manifold. Compared to tSNE, UMAP provides much faster computational
running time.

After the datasets are converted into numerical data using those features extraction
methods, those datasets then were split into test and training data by 10-fold cross val-
idation. Then, the training datasets were oversampled using various methods such as
SMOTE, ADASYN, borderline-SMOTE, adaptive neighbor SMOTE, safe-level SMOTE,
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relocating-safe-level SMOTE, and DBSMOTE. This resampled dataset were used in the
next step of machine learning.

5.4 Classification Methods

In this study, we employ various well-developed classification methods such as k -nearest
neighbour (k -nn), decision tree C4.5, random forest, and support vector machine (SVM).
According to [30], most research efforts on the class imbalance issue focus on decision
tree C4.5 although the existence of a class imbalance makes this classifier a needs many
splits to distinguish the minority class. As the ensemble of decision trees, the capability of
random forest in imbalance class classification also been studied. Other studies reported
that SVMs are less affected by the class imbalance issue [5]. The strength of SVM’s
method such as the ability to combine with kernel-based learning, allows SVM for a more
flexible analysis and optimal solution. We have provided a brief introduction to each
mentioned classifier’s learning techniques and generated an insight into the inadequacy of
each learning method in the Chapter 2 to be comprehended by less knowledgeable readers
of these learning algorithms.

In general, while building a classification model, a learning algorithm reveals the un-
derlying relationships between the features and the target class, and then finds the best
model that suit the training data. The classifier’s goal is to predict the class labels for
any input data. As a result, the learning goal is to develop a classification model that is
capable of predicts the class labels of previously unseen data with high accuracy.

However, we can’t fit and analyze machine learning algorithms on raw data; instead,
we have to modify the data to match the requirements of the selected algorithms. Further-
more, in order to obtain the highest performance, we need to pick a data representation
that optimally exposes the unknown underlying structure of the prediction issue to the
learning algorithms. To achieve the goal, pre-processing task is essential task in this
whole process. Regarding the issue of the binary features data mentioned in the previous
section, in this study, datasets are pre-processed using oversampling and features extrac-
tion methods. After the pre-processing tasks are completed, the datasets are ready to be
feed into the machine learning models. In this process, the combination of oversampling
methods, features extraction methods, and classification methods are analyzed. If the
best combinations are selected, the parameters of the methods and model were tuned to
achieve the highest performances.
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5.5 Evaluation Metrics

Evaluation metrics play an essential role in both evaluating the classifier’s performance
and guiding the classifier in the next process. Standard metrics for assessing classification
prediction models, such as classification accuracy and classification error, are commonly
used. Standard metrics are commonly used because they perform effectively for most
tasks. All metrics, however, involve assumptions about the problem or what is important
in the problem. As a result,the project stakeholders need to choose an appropriate evalu-
ation metrics that best represents what they feel is essential about the model or forecasts,
which makes selecting model evaluation metrics problematic.

When there is a skew in the class distribution, this issue becomes considerably more
difficult. The reason behind it is that many standard metrics become inaccurate when
facing high skewness in the class imbalance data such as with the ratio of 1:100 or 1:1000
ratio between a minority and majority class. It can drive to misleading result if we report
classification accuracy for a highly imbalance data classification. So, using different eval-
uation metrics for imbalance data classification are highly advised besides also resampling
the dataset at first in the pre-processing task [31].

In this study, some evaluation metrics from threshold family such as accuracy, sen-
sitivity, specificity, precision, and F1-score are used. All the mentioned metrics except
accuracy are less prone to class imbalance problem, because those metrics evaluate the
performance separately in each class of instances. As a result, the class imbalance does not
affect these metrics. In addition, we also applied 10-fold cross validation to evaluate the
metrics using original dataset (orig), SMOTE, ADASYN, borderline-SMOTE, adaptive
neighbor SMOTE, safe-level SMOTE, relocating-safe-level SMOTE, and DBSMOTE.

5.6 Result and Discussion

Six datasets, four classifiers, five feature extraction techniques, including "no feature ex-
traction," and eight oversampling methods, including "no over-sampling," were combined
and evaluated. Some combinations were excluded from the experiments due to data and
software limitations. For example, for the C. difficile pathogenicity dataset, oversampling
methods of ICA, BLS, and ANS were not evaluated.

Table 5.2 shows the results of 10 datasets used in this study based on the evaluation
metrics of accuracy, sensitivity, specificity, precision, and F1-score. The results of base
model compared to the best combination of feature extraction and oversampling method
were observed. The values are the average of 3- or 5- or 10-fold cross-validation on the
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Table 5.2: Performance metrics of the best combination compared to base model.

Model Accuracy SensitivitySpecificityPrecision F1-score
SPECT
RF base model 0.816896 0.901468 0.490909 0.872211 0.886598
RF+tSNE+RSLS 0.982938 0.99109 0.951515 0.987467 0.989275

(+0.1660) (+0.0896) (+0.4606) (+0.1153) (+0.1027)
analcatdata_fraud
RF base model 0.690476 0.247863 0.888889 0.5 0.331429
RF+umap+RSLS 0.97619 0.940171 0.992337 0.982143 0.960699

(+0.2857) (+0.6923) (+0.1035) (+0.4821) (+0.629)
car_evaluation
RF base model 0.954138 0.84172 0.983518 0.895227 0.867647
RF+PCA+RSLS 0.995804 0.988627 0.998363 0.988205 0.988389

(+0.0417) (+0.1469) (+0.0149) (+0.0930) (+0.1207)
MRSA pathogenic-
ity
RF base model 0.617187 0.873016 0.128788 0.656716 0.749574
RF+ica+RSLS 0.979167 0.988095 0.962121 0.980315 0.98419

(+0.3620) (+0.1151) (+0.8333) (+0.3236) (+0.2346)
MRSA drug resis-
tance
RF base model 0.906915 0.644737 0.973333 0.859649 0.736842
RF+tSNE+RSLS 0.99734 0.986842 1.000000 1.000000 0.993377

(+0.0904) (+0.3421) (+0.0267) (+0.1404) (+0.2565)
C. diffcl. pathogenic-
ity
RF base model 0.750361 0.727599 0.7657 0.676667 0.701209
RF+umap+RSLS 0.984127 0.982079 0.985507 0.982014 0.980322

(+0.2338) (+0.2546) (+0.2198) (+0.3054) (+0.2791)
ring_1500vs3000
RF base model 0.75025 0.915357 0.365 0.770827 0.836898
RF+PCA+RSLS 0.9717 0.976857 0.959667 0.982612 0.979726

(+0.2215) (+0.0615) (+0.5947) (+0.2118) (+0.1428)
ring_100vs500
RF base model 0.849167 0.9925 0.1325 0.851201 0.916436
RF+PCA+RSLS 0.985 0.9945 0.9375 0.987587 0.991031

(+0.1358) (+0.002) (+0.805) (+0.1364) (+0.0746)
ring_100vs2000
RF base model 0.951905 0.9995 0 0.952358 0.97536
RF+PCA+RSLS 0.993413 0.997833 0.905 0.995262 0.996546

(+0.0415) (-0.0017) (+0.9050) (+0.0429) (+0.0212)
ring_60vs3000
RF base model 0.972222 1. 00000 0 0.972222 0.985915
RF+PCA+RSLS 0.996042 0.998786 0.9 0.997148 0.997966

(+0.0238) (-0.0012) (+0.9) (+0.0249) (+0.0121)
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datasets.
The best combination is selected based on the highest value of the sum of accuracy

and F1-score. As can be shown in the Table 3, it can be observed that most of the metrics
outperformed the base model without feature extraction and oversampling methods as the
preprocessing task. It strongly confirmed our hypothesis that the combination of feature
extraction and oversampling method can improve the performances of classifiers. This
approach can be applied on the imbalanced binary features dataset with different ratio
of imbalance from low to high (33:63 to 60:3000). In our results, the best combination
of all datasets is obtained by random forest classi-fier. Random forest is said to be a
classifier that prone to class imbalance, but when it is combined with feature extraction
methods and oversampling techniques, it outperformed the other classifiers with the same
combination. This result was also confirmed by [4] which reported the same result that
the inclusion of data sampling improves the classification performance of random forest
classifier. In the preprocessing task, RSLS is selected as the best oversampling method for
all the datasets, while the best feature extraction method varies in each of the datasets.

The experimental results supported our hypothesis that "converting binary values of
features into numerical values might increase over-sampling performance." The values in
the rightmost column “MAX – (no feature extraction)” in most of the table rows in S1
and S2 were larger than zero. It indicates that a feature extraction approach tends to
increase the initial performance of an oversampling method. For example, the combination
of SPECT, random forest (RF), no feature extraction, and RSLS has an accuracy of
0.8169. It was significantly improved to 0.9829 using a feature extraction (tSNE) (in
other words, MAX – (no feature extraction) = 0.064). At this point, it’s reasonable to
conclude that combining oversampling with feature extraction will give great results. It
should be noted that F1 scores also improved similarly. Furthermore, in many cases, the
similar combination of feature extraction and oversampling methods produced the highest
results in terms of accuracy and F1 score. Because accuracy and F1 score usually show
trade-offs for imbalanced data, this finding suggests that the technique used in this work
can help improve the performance of a wide range of binary feature datasets. About the
applicability, it is also noticeable that this approach was effective for various ra-tios of
imbalance (from 557:567 to 19:75) and various ratio between features and samples (from
10:1124 to 2610:77).

The results show that the combination of oversampling and features extraction method
sinergistically improved the performance. For example, the accuracies of the combina-
tions (SPECT, RF, no feature extraction, no oversampling) and (SPECT, RF, no feature
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Table 5.3: Summary of accuracy improvements about SPECT dataset.

Oversampling
method

C4.5 KNN RF SVM

no oversampling 0.0062 0.0050 0.0050 -0.0013
SMOTE -0.0125 0.0108 -0.0008 -0.0109
ADASYN 0.0221 0.0304 -0.0034 0.0025
SLS -0.0004 -0.0058 0.0067 0.0008
BLS -0.0154 0.0016 0.0050 0.0163
ANS -0.0133 0.0200 -0.0063 -0.0033
RSLS 0.0824 0.0220 0.0640 0.0133
DBS 0.0079 -0.0096 -0.0042 0.0071

Table 5.4: Summary of accuracy improvements about analcatdata_fraud dataset.

Oversampling
method

C4.5 KNN RF SVM

no oversampling 0.0741 0.0370 0.0661 0.0688
SMOTE 0.0291 0.0582 0.0052 0.0634
ADASYN 0.0397 0.0609 -0.0080 0.0185
SLS 0.0450 0.0318 0.0476 -0.0106
RSLS 0.1031 0.0185 0.0291 -0.0132
DBS 0.0159 0.0900 0.0185 0.0556

extraction, tSNE) are so different (0.8169 and 0.8170, respectively). It indicates that
applying tSNE on the original data without oversampling has no effect on performance.
Despite this, when employed as a preprocessing technique prior to the RSLS oversampling
approach, it significantly improved accuracy (as described above). Furthermore, we can
see that in many cases, using a feature extraction technique alone degraded performance,
while using it in combination with an oversampling method improved the performance.
The application of tSNE, for example, reduced the F1 score of the combination (SPECT,
C4.5, no over-sampling) from 0.8810 to 0.8512. In contrast, the F1 score of the combina-
tion (SPECT, C4.5, RSLS) increased from 0.9003 to 0.9528 by tSNE. Finally, Tables 2-11
summarize the achieved improvements (i.e. “MAX – (no feature extraction)”) in S1 and
S2. In these summary tables, it can be seen that most of the tables are filled by positive
values indicating the improvement by feature extraction.
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Table 5.5: Summary of accuracy improvements about MRSA pathogenicity dataset.

Oversampling
method

C4.5 KNN RF SVM

no oversampling 0.1120 0.0937 0.0312 0.0416
SMOTE 0.0651 0.1640 -0.0052 0.0599
ADASYN 0.0625 0.1380 -0.0052 0.0286
SLS 0.1068 0.1771 0.0182 0.0599
BLS 0.0678 0.1718 0.0078 0.0520
ANS 0.0443 0.1458 0.0078 0.0443
RSLS 0.0417 0.3307 0.0104 0.0469
DBS 0.0547 0.1588 -0.0026 0.0599

Table 5.6: Summary of accuracy improvements about C. difficile pathogenicity dataset.

Oversampling
method

C4.5 KNN RF SVM

no oversampling 0.0389 0.0144 0.0346 0.0028
SMOTE 0.0159 0.0043 0.0159 0.0245
ADASYN 0.0332 0.0173 -0.0044 0.0346
SLS 0.0418 0.0216 0.0245 0.0188
RSLS 0.1356 0.0375 0.1356 0.0144
DBS 0.0822 0.0274 0.0476 0.0274

Table 5.7: Summary of F1 score improvements about SPECT dataset.

Oversampling
method

C4.5 KNN RF SVM

no oversampling 0.0059 0.0053 0.0054 0.0030
SMOTE -0.0114 0.0079 0.0003 -0.0040
ADASYN 0.0149 0.0231 -0.0012 0.0054
SLS -0.0023 -0.0030 0.0066 0.0015
BLS -0.0116 0.0047 0.0053 0.0128
ANS -0.0144 0.0152 -0.0039 -0.0013
RSLS 0.0525 0.0134 0.0404 0.0087
DBS 0.0043 -0.0088 -0.0023 0.0048
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Table 5.8: Summary of F1 score improvements about analcatdata_fraud dataset.

Oversampling
method

C4.5 KNN RF SVM

no oversampling 0.2359 0.2142 0.1815 NaN
SMOTE 0.0493 0.1082 0.1032 0.1560
ADASYN 0.0527 0.1066 0.0835 0.0856
SLS 0.0896 0.1127 0.1551 0.0513
RSLS 0.1186 0.0241 0.0486 -0.0270
DBS 0.0685 0.1830 0.0956 0.1677

Table 5.9: Summary of F1 score improvements about MRSA pathogenicity dataset.

Oversampling
method

C4.5 KNN RF SVM

no oversampling 0.1308 0.0619 0.0354 0.0351
SMOTE 0.0536 0.3240 0.0043 0.0558
ADASYN 0.0589 0.2979 0.0051 0.0363
SLS 0.0927 0.3444 0.0009 0.0378
BLS 0.0553 0.3279 0.0039 0.0242
ANS 0.0314 0.3261 0.0006 0.0445
RSLS 0.0297 0.4217 0.0078 0.0372
DBS 0.0596 0.3298 0.0063 0.0327

Table 5.10: Summary of F1 score improvements about MRSA drug resistance dataset.

Oversampling
method

C4.5 KNN RF SVM

no oversampling 0.1085 0.0489 0.0526 0.1310
SMOTE 0.0890 0.1998 0.0094 0.1241
ADASYN -0.0179 0.2772 0.0053 0.0886
SLS 0.0568 0.1615 0.0555 0.1304
RSLS 0.0381 0.1291 0.0199 0.0592
DBS 0.0036 0.1280 0.0196 0.0735
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Table 5.11: Summary of F1 score improvements about C. difficile pathogenicity dataset.

Oversampling
method

C4.5 KNN RF SVM

no oversampling -0.1232 -0.073 -0.0919 -0.1225
SMOTE 0.0037 0.064 0.0098 0.0773
ADASYN 0.0663 0.0191 0.0261 0.0776
SLS 0.0597 0.0192 0.032 0.0059
RSLS 0.2877 0.0905 0.2423 0.0648
DBS 0.0456 -0.0063 0.0172 -0.0165

5.7 Conclusion

An approach to utilize feature extraction methods as a preprocessing prior to oversampling
was proposed, focusing on the problem of binary features that are too poor to apply
oversampling algorithms like SMOTE. It was proven that this approach works well in
many cases through extensive tests using various datasets and methods. Converting
binary features into numerical ones using feature extraction methods leads to a better
results for oversampling methods. Furthermore, it has been proven that feature extraction
and oversampling sinergistically increase classification performance.



Conclusion

We can outlined some conclusion of this study as follows:

1. Some oversampling methods can improve the performance metrics.

2. Converting binary features into numerical ones using feature extraction methods
leads to a better results for oversampling methods.

3. Combination of oversampling and feature extractions methods synergistically im-
prove the performance metrics better than sole method.

4. Accuracy and F1 score frequently show a trade-off relationship for imbalanced data,
this result indicates that the approach in this study can contribute to the perfor-
mance improvement of a wide variety of binary feature datasets.

5. It is also noticeable that this approach was effective for various ratio of imbal-
ance (from 557:567 to 19:75) and various ratio between features and samples (from
10:1124 to 2610:77).

6. Furthermore, we can see many cases that simple application of a feature extraction
method decreased the performance but the combined use of it with an oversampling
method improved it.
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