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Abstract

In this study, we consider the hyperbolic type of free boundary problems. There are two types of

these problems which we will present. The first one is the obstacle problems for the wave equation

which are introduced by Schatzman, K.Kikuchi and Omata from differential viewpoints. The type

of problems introduced by K.Kikuchi and Omata can be said the time evolutional variant of Alt–

Caffarelli type free boundary problems, and whose treatment is based on the calculus of variations.

During the past of couples decades, K.Kikuchi, Omata, Svadlenka, Ginder have developed many

mathematical tools for the mathematical modeling of the vibration motion of the film and volume

constrain problems. e.g. Discrete Morse Flow method which is based on minimizing movement

method and can be an effective numerical tools. In this work, we present the new numerical scheme

based on discrete Morse flow method which maybe gives improvement the numerical simulation.

The second one is the hyperbolic variant of the moving boundary problems, especially the mean

curvature accelerated flow, so-called, hyperbolic mean curvature flow. When a family of smooth

surfaces evolves with the acceleration that is equal to their mean curvature, we call it the mean

curvature acceleration flow. These type equations correspond the mathematical modeling of the

oscillation of interface e.g. the melting or crystalizing of Helium crystal or the motion of soap

bubbles. There are few mathematical results e.g. the graph solutions by LeFloch-Smoczyk, etc.

and numerical computation by Ginder–Svadlenka. However, the solution of this equation dose not

have the energy preserving property. Here, the energy means the sum of the surface area and the

kinetic energy which corresponds to the energy of the solution of the wave equation. In this thesis,

we propose the new hyperbolic mean curvature flow equation whose solution conserves the energy

in some sense and study their properties.
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Introduction

The free boundary problems, which are one of the important subjects in the field of partial differ-

ential equations, have many connections to other mathematical fields e.g. real analysis, differential

geometry, geometric measure theory. These problems also correspond the mathematical model

for real phenomena, melting ice, a film with an obstacle, soap film or bubbles, fire burning, grain

boundaries, etc. There are many types of the free boundary problems (see [21], [29], [30] for general

references), we focus on the following three types as an introduction to this thesis.

The first type is Alt–Caffarelli type the free boundary problems which is introduced by H. W.

Alt, L. A. Caffarelli and A. Freedman in [4], [5] with describing following the variational problem.
Minimize

∫
Ω
(F (|∇u|2) +Q2χu>0) dL

N

on {u ∈ L2
loc(Ω) : ∇u ∈ L2(Ω), w = u0 onS}

where Ω is a connected Lipshitz domain in N -dimnesional Euclidian space RN . F = F (u) is a

given function belong to Hölder space C2,1[0,∞) with F (0) = 0 and some technical conditions. Q

is a given bounded positive measurable function, and χu>0 denotes the characteristic function of

{u > 0} := {x ∈ Ω : u(x) > 0}, dL N means the integration by N -dimensional Lebesgue measure.

u0 is a given non-negative function belonging to L2
loc(Ω) with ∇u0 ∈ L2(Ω) and S is a subset of

∂Ω with positive (N − 1)-dimensional Hausdorff measure H N−1. They showed the existence and

the regularity of the minimizer, and the free boundary ∂{u > 0} is smooth in some sense by using

the blow-up method, and the framework of geometric measure theory. This problem is related to

the mathematical model of the jet flow. Let us explain a little details of this problem in the case

of F is the identify function i.e. F (t) = t. Then, the first variation for the above functional leads

that the minimizer u satisfies the following condition:

∆u = 0 in Ω ∩ {u > 0}, |∇u| = Q on Ω ∩ ∂{u > 0}.

The second equation is called the free boundary condition which gives the information on the

free boundary. As other important consequence, ∆u ≥ 0 holds in the distribution sense, and this

leads ∆u is a positive Radon measure whose support is contained the free boundary. From this

fact, after the delicate arguments, the above two equations, we can rewrite to the one equation as

follows (see [4] for more details):

∆u = QH N−1⌊∂red{u > 0} in Ω,

3



INTRODUCTION 4

where ∂red{u > 0} is the reduced boundary of {u > 0} that we can consider the normal vector in

appropriate sense (see [80] Section 14 for precise definition). Additionally, S. Omata [72] and S.

Omata and Y. Yamaura [75] got the same results for the non-linear version of the above problem

in the case of N = 2, F (|∇u|2) replaced by aij(u)DiuDju where aij(z) is a given smooth function

with some elliptic condition. Moreover, Y. Yamaura [86] treated the following problem which is

the above problem for the minimal surface equation with some generalization.
Minimize

∫
Ω

√
1 + |∇u|2 +

∫
Ω
Q2χu>0 dL

N +

∫
S
|u− u0| dH N−1

on BV (Ω),

where the first term of the above functional should be interpreted as Radon measure on Ω, and

BV (Ω) denotes the space of functions of bounded variations, that is, whose distributional deriva-

tives are Radon measure on Ω. In this case, because of the lack of the compactness of the space

W 1,1, it is useful for the framework of the theory of the functions of bounded variation. See [39].

[6] for the theory of BV functions and applications.

The second type is hyperbolic variants of the above Alt–Caffarelli type free boundary problems,

so called the wave type of obstacle problem which is described as follows:

Problem 0.0.1. Find u : Ω× [0, T ) → R such that
χ{u>0} utt −∆u = − Q2

|Du|
H N⌊∂{u > 0} in Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

ut(x, 0) = v0(x) in Ω,

(0.0.1)

under suitable boundary conditions, where Ω ⊂ RN is a bounded Lipschitz domain, T > 0 is

the final time, u0 denotes the initial condition, v0 is the initial velocity, and {u > 0} is the set

{(x, t) ∈ Ω× (0, T ) : u(x, t) > 0}, Du := (∇u, ut), Q is a given constant. .

We understand the first line of (0.0.1) expresses the wave equation utt−∆u = 0 in {u > 0}, the
Laplace equation ∆u = 0 a.e. t in {u < 0}. We also have the free boundary condition, it can be

formally shown that, in the energy-preserving regime, the solutions for (0.0.1) fulfill |∇u|2−u2t = Q2

on ∂{u > 0}. Formally, when we consider the case of that ut ≡ 0, then the equation (0.0.1) is

reduced the Alt–Caffarelli type free boundary problem ∆u = QH N−1⌊∂{u > 0} in Ω. Therefore,

in this sense, we call the equation (0.0.1) the hyperbolic Alt–Caffarelli type free boundary problem.

Physically, the characteristic function χ{u>0} which is the coefficient of the acceleration term,

means the locally coefficient of restitution is equal to zero. This problem is a natural prototype

for explaining phenomena involving oscillations in the presence of an obstacle, e.g., an elastic

string hitting a desk or soap bubbles moving atop the water. There are other approaches and

mathematical formulations for these phenomena e.g. Amerio and Prouse [9], Schatzman [79],

Citrini [24]. Recently, there is a review and some extension for these materials by Real and Figalli

[76].

Similar types of problems have been treated in [53], [88], [51], [37], and that the recent paper
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[74] has established a precise mathematical formulation. These papers revealed that the discrete

Morse flow (also known as minimizing movements), a method based on time-discretized functionals,

is an effective tool for this type of problem. More precisely, we consider the following functional:

In(u) :=

∫
Ω

|u− 2un−1 + un−2|2

2h2
χu>0 dx+

1

2

∫
Ω
|∇u|2 dx+

∫
Ω
f(u) dx (n = 2, 3, · · · )

on an appropriate function class K e.g. H1
0 (Ω) if zero Dirichlet boundary condition is required.

Here, h > 0 is the time discretized parameter, u1 := u0 + hv0, and the function f : R → R
corresponds the term −Q2|Du|−1H N⌊∂{u > 0} in (0.0.1). Actually, since it is not easy to

consider this measure term as a functional, in the previous researches this measure term has been

treated after some smoothing e.g. f(u) := Q2Bε(u)/2 where ε > 0 is smoothing parameter and

Bε(u) is expected that it approximates χu>0. The existence of minimizer ũn, in many cases,

can be proved by the direct method of calculus of variations. After cutting off this minimizer,

that is, defining un := max{ũn, 0}, we make two types of approximate solutions ūh and uh by

time-interpolating these cut off minimizers un. Roughly speaking, ūh is a flat type interpolating,

and uh is a zigzag type interpolating. Formally, tending h → 0+, we expect the limit function

of the approximate solution (uh) is weak solution for Problem 0.0.1 in some sense. To pass this

limit process, it is key point to get the energy estimate which gives the uniform boundedness of

∥uht (t)∥L2(Ω), ∥∇uh(t)∥L2(Ω) with respect to h.

On the other hand, the discrete Morse flow method can be used in the numerical simulation

for the hyperbolic Alt-Caffarelli type free boundary problem. For this direction, we can refer the

work by Ginder and Svadlenka [37].

We also point out that there are interesting work by Bonafini et al. [17, 18, 19]. They construct

the weak solution for the fractional wave equations and its obstacle problems by using the discrete

Morse flow method.

In this thesis, following [1], we provide the new type discrete Morse flow method by using the

following functional for the application to Problem 0.0.1 in the case Q = 0:

In(u) :=

∫
Ω

|u− 2un−1 + un−2|2

2h2
χ{u>0}∪{un−1>0}∪{un−2>0} dx+

1

4

∫
Ω
|∇u+∇un−2|2 dx.

One of the features of this type functional is to have an energy conservation property in some sense

if the absence of the free boundary, that is, the characteristic function χ{u>0}∪{un−1>0}∪{un−2>0}

does not appear in the above functional. To best our knowledge, we have never seen before such as

the applications and the mathematical and numerical analysis of such as functional to hyperbolic

free boundary problems. Moreover, this energy conservation property of this functional gives some

effect for the numerical computation for not only the problem without free boundary but the

problem with free boundary as we will see.

By using this new functional, we can get the following main result of this thesis same as the

standard discrete Morse flow method.
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THEOREM 0.0.1 (Main result 1). Let Ω be a bounded domain in R, and Q = 0. As-

sume that u0, v0 ∈ H1
0 (Ω) and u0 is non-negative. Then Problem 0.0.1 has a weak solution

u ∈ H1((0, T );L2(Ω)) ∩ L∞((0, T );H1
0 (Ω)) in the following sense:∫ T

0

∫
Ω
(−utϕt + uxϕx) dxdt−

∫
Ω
v0ϕ(x, 0)dx = 0 ∀ϕ ∈ C∞

c (Ω× [0, T ) ∩ {u > 0}),

u ≡ 0 in {u ≤ 0}.

Here, we remark that u is continuous on Ω× (0, T ) by Sobolev imbedding in one-dimension.

The third type of free boundary problems is the hyperbolic variant of moving boundary prob-

lems. One of the simple examples of this type of problem is the mean curvature accelerated flow

so-called hyperbolic mean curvature flow. Let (Γt)0≤t<T (T ∈ (0,∞]) be a family of time de-

pendent of (N − 1)-dimensional hypersurfaces in RN . Then, the hyperbolic mean curvature flow

equation is described

a = κ on Γt, (0.0.2)

where a, κ are the acceleration and the mean curvature of the surface at the point in Γt respectively.

We sometimes call this equation(0.0.2) the HMCF equation for shortly. It is implied that the

equation (0.0.2) such as the curvature dependent acceleration, is one of the mathematical models

of the motion of the soap bubbles by Kang in his thesis [49] and the melting or crystallizing of

helium crystal by Gurtin and Guidugli [40]. The feature of the equation (0.0.2) is including the

acceleration term of the surface. Here, we have to define the acceleration of the surface. One can

define it by second time derivative of the position γtt where γ(·, t) is a parametrize representation

for Γt ( [36], [49]). In this case, the equation (0.0.2) is precisely a vector type of the hyperbolic

mean curvature flow equation,

γtt = κn

where n is the unit normal vector. Similar formulation is used in [43], [61], they define the

acceleration as the time second derivative Ftt where F is a mapping on fixed hypersurfaceM times

the time interval. What they have in common is to deal with the surface as mapping. However, the

parametrize representation of surfaces gives restriction of the class of surfaces too much. It is not

convenient to consider a more general setting. More precisely, we can not take more complicated

surfaces as initial surfaces which can be considered as multi babbles in real phenomena. On the

other hand, another one can define it by the normal time derivative of the normal velocity v ([40],

[78]), which is the time derivative of the normal velocity along the normal path to the surfaces.

This notion is considered from the general principle in the motion of the surface, that is, the

normal velocity of the surface play an essential role in the motion of the surface. The notion of

the normal time derivative is introduced by Hayes [44], and Thomas [83] independently (see also

[22], [56] for mathematical formulation). We remark that this notion is defined only for the family

of hypersurfaces. The normal time derivative of the normal velocity, denote Dtv, has following

variational formula and it characterizes this notion.
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THEOREM 0.0.2 (Main result 2). Let Γt, t ∈ [0,∞) are smooth hypersurfaces in RN , and

compact for all t ≥ 0. Assume that the normal velocity v is smooth. Then, for any ϕ ∈ C1
c (RN ×

(0,∞) : R≥0), we have

d

dt

∫
Γt

vϕ dH N−1 =

∫
Γt

Dtv ϕ+ v(v∇ϕ · n+ ϕt)− ϕv2κ dH N−1.

Although the essential part of its derivation is the transport identity which gives the time

derivative of the integral quantities over the time depending surfaces, this variational formula

suggests us the weak notion of Dtv. For this reason and some expectations, we adopt the normal

time derivative of the normal velocity as the definition of the acceleration of the surface.

Next, we briefly review the previous researches for the hyperbolic mean curvature flow equation

(0.0.2). Gurtin, Guidugli firstly treated the following equation for plane curves as the mathematical

model for the melting or crystallizing of helium crystal in [40],

Dtv + cv = κ on Γt (0.0.3)

where v is the normal velocity, c is a given constant. Rotstein, Brandon, and Cohen gave the

crystalline algorithm for the same equation (4.2.2) for the closed polygonal curves in [78]. As

mention above, Kang treated the type of the equation (0.0.2) with various situations with numerical

results by the level set method [49]. In this method, however, it is not clear how the ideas can

be extended more general settings. After about twenty years of this researches, it was started to

generalize these equations in the point of view of the differential geometry by He, Kong, Liu, and

LeFloch, Smoczyk independently. First, He, Kong, and Liu prove the unique short time existence

smooth solution of (0.0.2) in [43]. LeFloch, Smoczyk start by deriving the equations by calculating

the first variation of the action containing kinetic and internal energy terms in [61]. Although

LeFloch-Smoczyk’s equation is different from (0.0.2) or (4.2.2), they give the weak solution in

the sense of graph solutions for another type of hyperbolic mean curvature flow equations with

one-dimensional setting. Another approach for the equations (0.0.2) is the numerical treatment

including the multiphase settings by two of the present authors, Ginder, Svadlenka in [36]. Their

method is called hyperbolic MBO-algorithm which is based on Merriman-Bence-Osher algorithm

for a numerical scheme of mean curvature flow equations via level set approach developed in [65].

They provided formal justification and the error estimate in the case of a circle for the hyperbolic

MBO-algorithm. At the almost same time, the another numerical simulation for the another

type of relativistic hyperbolic mean curvature flow equation which is related to the motion of the

relativistic string,

Dtv = (1− v2)κ,

is treated by Bonafini [16]. We can also find the study of the weak Lipschitz evolution from square

in the plane by Bellettini et al. [13].

There are two purposes for this part. The first one is to establish the hyperbolic mean curvature

flow with some variational property for a larger class of surfaces. By the analogy of the relationship

between the mean curvature flow equation v = κ and the heat equation ut = ∆u, it is expected that
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the hyperbolic mean curvature flow equation has some relations with the wave equation utt = ∆u.

One of the famous properties of the wave equation is energy conservation. In the wave equation,

the energy is defined by
1

2

∫
Ω
|∇u|2 dL N +

1

2

∫
Ω
(ut)

2 dL N

for functions u : Ω× [0,∞) → R, Ω ⊂ RN , where L N denotes N -dimensional Lebesgue measure,

and the solution of the wave equation conserves this energy under the zero Dirichlet boundary

condition. Similarly, we define the notion of an energy of surface Γt, denoted by E(t) as follows;

E(t) := H N−1(Γt) +
1

2

∫
Γt

v2 dH N−1 (0.0.4)

which is expected to be conserved for the solution of the equation(0.0.2), where H N−1 denotes

(N − 1)-dimensional Hausdorff measure (see [80] for the definition). The quantity E(t) is the sum

of surface area and the normal kinetic energy. Usually, kinetic energy is defined by also a mass,

that is surface density, but, in this stage, we do not consider the distribution of mass on a surface.

This means that we consider only the case of constant of surface density, especially, we take the

unity as surface density. It is known that this is appropriate when we consider the modeling of the

motion of soap bubbles and films. Recalling that the normal velocity plays an important role in

the evolving surfaces, the quantity E(t) is corresponding the energy for the wave equation in this

sense, and we call E(t) the surface evolution energy. We also give another physical motivation of

the surface evolution energy by using the phenomenon of the shifting acrylic rod by soap film.

However, if we take the time derivative—strictly, the normal time derivative denoted by Dt,

see section 4.1—of the normal velocity v as the acceleration a, that is, a = Dtv, the solution of the

equation (0.0.2) dose not conserve the energy E(t) in general. To derive the governing equation, we

usually calculate the first variation of the action integral corresponding the energy E(t). When all

Γt is parametrized, that is Γt = {γ(ϑ, t) : ϑ ∈ RN−1}, in the same spirit of LeFloch and Smoczyk’s

work [61], we can calculate the first variation of the following action integral:

J(γ) :=

∫ T

0

∫
γ(·,t)

( |γ|2
2

− 1
)
ds dt.

Moreover, under the assumption that the tangential velocity is equivalently equal to zero, we get

the equation of motion for closed curve:

γtt · ñ−
(1
2
|γt|2 + 1

)
κ̃ = 0,

here κ̃ = κ̃(ϑ, t) is the mean curvature. As we will see in Section 6.1, the solution of this equation

has the energy conservation property (Proposition 6.1.1). To extend the notion of a solution of this

equation, we need to rearrange its formulation. One way to realize it, is the use of the framework

of the moving hypersurface (see Section 4). Since the time derivative of the normal velocity ṽ

in parametrize presentation can be translated the normal time derivative of the normal velocity

v which is a function of the position on the hypersurface, we can rearrange the above governing
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equation as follows:

Dtv

1 + 1
2v

2
= κ (0.0.5)

By using the first variation of the surface evolution energy (Proposition 5.3.1), since the solution

of this equation, if exists, conserves the surface evolution energy E(t), we call this equation the

energy conserving hyperbolic mean curvature flow (shortly, E-HMCF) equation. That is, as second

part of this thesis, we treat the following initial problem for the equation (0.0.5).

Problem 0.0.2 (Energy conserving HMCF). Let Γ0 be a given (N − 1)-dimensional hyper-

surface in RN , v0 be a given C1 function on Γ0, and T ∈ (0,∞] be a given. Find a moving

hypersurface in RN , M :=
∪

0≤t<T (Γt × {t}) such that

Dtv

e
= κ on Γt. 0 < t < T,

v(·, 0) = v0(·) on Γ0,

where e := 1 + 1
2v

2.

Our second purpose is to analyze an initial problem for the energy conserving hyperbolic mean

curvature flow equation (0.0.5). One of our ultimate goal is to give the weak solution of this

equation (0.0.5) with no restriction to the class of surfaces as much as possible. When the surfaces

are represented by the graph of function, we get the graph representation of the energy conserving

hyperbolic mean curvature flow equation (0.0.5) as follows:

wtt√
1 + |∇w|2

+
wt∇w

(1 + |∇w|)3/2
·
(wt∇2w∇w
1 + |∇w|2

− 2∇wt

)
=

(
1 +

w2
t

2(1 + |∇w|2)

)
div

( ∇w√
1 + |∇w|2

)
.

(0.0.6)

The equation (6.3.3) coincides the following LeFloch-Smoczyk’s equation which appears in [61,

Section 5] up to the coefficient of mean curvature part. LeFloch and Smoczyk showed that, in

one dimensional setting, the global existence of weak solution in the sense of distribution with the

entropy condition in [61]. For also the equation (6.3.3), it can be expected to get the same results

by using the method in [61]. We will check about this in Section 6.4. However, it still remains the

restriction of the class of surfaces, and it seem to be difficult to extend to higher dimension because

their methods relied on the speciality of one dimension. Although, unfortunately, we do not reach

either the definition or the existence of a weak solution for the equation (0.0.5) we believe that our

formulation, and the variational formula for acceleration (Main Theorem 0.0.2) has the potential

to weakly formulate the equation (0.0.5).

We conclude this introduction with the organization in this thesis. This thesis is consisted

of the main two parts, named Part I, and Part II. Part I provide the hyperbolic Alt–Caffarelli

type free boundary problems, which is divided into three sections. Section 1, we will provide

some preliminaries for the hyperbolic Alt–Caffarelli type free boundary problems including its

previous researches. It also includes the review of the regularity theory for elliptic equations by

Ladyzhenskaya and the discrete Morse Flow. From section 2 to Section 3, we will deal with the new
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type of discrete Morse flow method by using the new functional for constructing a weak solution

of the hyperbolic Alt–Caffarelli type free boundary problem, based on our paper. We will show

the numerical results in sections 3.2 and 3.3. Part II provides the mean curvature accelerated flow,

which is also divided into three sections. Section 4, we will prepare some notations and review

previous researches of the mean curvature accelerated flow. In section 5, we will consider the

acceleration of the surfaces. The variational formula of the acceleration, this is the main theorem

in this thesis is also provided in this section. In section 6, we will provide some consideration and

progress about the energy conserving mean curvature accelerated flow including the exact solution,

graph solutions, the numerical results.

Notation

• R,Q,N means set of all real numbers, all rational numbers, all natural numbers respectively.

RN denotes N -dimensional Euclidian space, R≥0 is a set of all non-negative real number,

RN1×N2 (N1 ×N2) denotes the set of all real matrices.

• |α| (α : multiindex)...multiindex of order. That is, for a multiindex α = (α1, . . . , αN ) (αi is

non-negative integer), defined by |α| := α1 + · · ·+ αN .

• S1 \ S2...set whose elements belonging to S1 but not S2.

• χS ...characteristic function of a set S, that is, χS(x) = 1 for x ∈ S, χS(x) = 0 for x ̸∈ S.

• idS ...idenity map on a set S.

• ∂S...boundary of a point set S.

• S...closure of a point set S.

• δij (i, j ∈ N)...Kronecker’s delta, that is, δij = 1 if i = j, = 0 if i ̸= j.

• Bρ(x)...open ball in RN with radius ρ, center x. We also use BN
ρ (x) for indicating the space

dimension N . Sometime we use this notation for also closed balls if no ambiguity.

• ωN ...volunme of the unit ball in RN , πn/2

Γ(n
2
+1) . Here, Γ denotes Gamma function. We also

define ωs :=
πs/2

Γ( s
2
+1) for any positive real number s.

• L N (N ∈ N)...N -dimensional Lebesgue measure.

• H s (s ∈ R≥0)...s-dimensional Hausdorff measure.

• W ⊂⊂ U ...W,U are open sets in RN , W ⊂ U and W is compact set.

• spt f ...support of a function defined on some set X that is, {x ∈ X ; f(x) ̸= 0}

• Ω ...bounded domain in RN with Lipschitz boundary.

• |Ω|...Lebesgue measure of Ω.
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• diamΩ...diameter of Ω, defined by supx,y∈Ω |x− y|.

• QT (T ∈ (0,∞] is given)...Ω× (0, T ).

• ut...partial derivative of a function u with respect to time variable t, := ∂u
∂t .

• uxi ...partial derivative of a function u with respect to space variables xi, :=
∂u
∂xi

.

• Dαu (α = (α1, . . . , αN ) : multiindex) ... defined by ∂|α|u

∂x
α1
1 ···∂xαN

N

.

• ∇u...The gradient of a function u, that is, ∇u := (ux1 , . . . , uxN ).

• ∇2u...Hessian matrix of a function u, that is, (∇2u)ij := ( ∂2u
∂xi∂xj

).

• ∆u...Laplacian of function u, defined by trace∇2u, that is, ∆u := ∂2u
∂x2

1
+ · · ·+ ∂2u

∂x2
N
.

• C(Ω)...set of continuous function on Ω, also denoted by C0(Ω).

• Ck(Ω) (k ∈ N)...set of k-times continuously differentiable functions on Ω.

• Ck(Ω) (k ∈ N)...set of functions in Ck(Ω) all of whose derivatives of order≤ k have continuous

extension to Ω. That is, for any multiindex α with |α| ≤ k, there exists Uα : Ω → R such

that Uα is continuous on Ω and Uα|Ω = Dαu.

• C∞(Ω)...set of infinitely differentiable functions that is, :=
∩

k C
k(Ω).

• C∞
c (Ω)...set of function belonging to C∞(Ω) with compact support.

• C∞
c (Ω;RN )...set of functions u : Ω → RN , u(x) = (u1(x), . . . , uN (x)) with ui ∈ C∞

c (Ω) for

each i = 1, . . . , N .

• C∞
c (Ω × [0, T ))...set of C∞([0, T ] × Ω) functions whose support is compact in Ω × [0, T ).

Remark that the function in this space does not necesary vanish on Ω× {0}

• Lp(Ω) (p ∈ [1,∞))...space of Lebesgue measurable functions which is p-th power integrable

on Ω with norm ∥u∥Lp(Ω) := (
∫
Ω |u|p dx)1/p.

• L∞(Ω)...space of Lebesgue measurable functions which is essential bounded on Ω with norm

∥u∥L∞(Ω) := ess supΩ|u|.

• W k,p(Ω) (p ∈ [1,∞].k ∈ N)...space of functions belonging to Lp(Ω) whose all weak deriva-

tives order ≤ k belong to Lp with norm ∥u∥Wk,p(Ω) := (
∑

|α|≤k

∫
Ω |Dαu|p dx)1/p (p < ∞),

∥u∥Wk,∞(Ω) :=
∑

|α|≤k ess supΩ|Dαu|.

• Hk(Ω) (k ∈ N)...other notation for W k,2(Ω).

• H1
0 (Ω) ...closure of C∞

c (Ω) with respect to W 1,2(Ω).

• Lp(0, T ;X ) ...space of measurable functions u : [0, T ] → X ((X , ∥ · ∥X ) : Banach space)

with ∥u∥Lp(0,T ;X ) := ∥∥u∥X ∥Lp((0,T )) <∞.
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• W k,p(0, T ;X ) ...space of Lp(0, T ; X ) functions such that the weak derivative ut belongs to

Lp(0, T ; X ).

• X ∗...Dual space of Banach space (X , ∥ · ∥X ), that is, a set of bounded linear functional on

(X , ∥ · ∥X ).

• Lp(X,µ) (p ∈ [1,∞))...A set of µ-measurable functions on a measure space function (X,Σ, µ)

which are p-th power µ-integrable.

• Sometimes we omit the parentheses for denoting the functional space in the one dimensional

settings e.g. C∞[a, b) := C∞([a, b)), Lp(a, b) := Lp((a, b)) etc..

• ∥∇u∥L2(Ω) means ∥|∇u|∥L2(Ω).



Part I

Hyperbolic Alt–Caffarelli type free

boundary problems
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Chapter 1

Preliminaries I

1.1 Regularity theory for elliptic equations

In this section, we will review the regularity theory for elliptic equations with focus on Hölder

regularity which is developed by O. Ladyzhenskaya and N. Uraltseva according to [59]. This

theory will be used in the justification for the first variation of the minimizing functional with free

boundary in Section 1.3. More precisely, when we tale the first variation of the functional with free

boundary, to get the equation in the positive part of minimizer, i.e. {u > 0} := {x ∈ Ω : u(x) > 0},
we should take the support of a test function to be in {u > 0}. To do this, we have to ensure the

set {u > 0} is an open set in RN , and the regularity of minimizer is needed.

Throughout this section, we assume that Ω ⊂ RN is a bounded domain with Lipschitz boundary.

First of all, we recall the definition of Hölder continuity.

DEFINITION 1.1.1 (Hölder continuity). Let 0 < γ ≤ 1. We say a function u : Ω → R is

Hölder continuous in Ω with exponent γ if there exists a constant C such that

|u(x)− u(y)| ≤ C|x− y|γ (x, y ∈ Ω).

In particular, we say u is Lipschitz continuous in the case γ = 1. We denote the set of functions

which is Hölder continuous in Ω with exponent γ by C0,γ(Ω). We also use the notation C0,γ
loc (Ω)

which is the set of locally Hölder continuous functions, that is, u ∈ C0,γ
loc (Ω) if u ∈ C0,γ(Ω′) for any

Ω′ ⊂⊂ Ω.

Since we now assume that Ω is bounded, it holds that C0,γ′
(Ω) ⊂ C0,γ(Ω) if 0 < γ < γ′ ≤ 1.

Indeed, for any u ∈ C0,γ′
(Ω), we have

|u(x)− u(y)| ≤ C|x− y|γ′
= C|x− y|γ |x− y|γ′−γ ≤ C(diamΩ)γ

′−γ |x− y|γ

provided x ̸= y. The final inequality holds also for x = y. Thus, u ∈ C0,γ(Ω).

It has been important problem to show Hölder continuity of the weak solutions of elliptic partial

differential equations. One of the famous criterion to get Hölder continuity is to show that the

function belongs to the next class of functions, that is, De Giorgi class.

14
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DEFINITION 1.1.2 (De Giorgi class Bp(Ω,M, γ, d, 1q ) ([59, Section 2.6])). Let M,γ, d be

arbitrary positive numbers, and p ∈ (1, N ] and q > N ≥ 2. We say a function u ∈W 1,p(Ω) belongs

to the class Bp(Ω,M, γ, δ, 1q ) if u satisfies the following conditions.

(i) supΩ |u| ≤M .

(ii) For w = ±u, ∫
Ak,r−σr

|∇w|p dx ≤ γ
[ 1

(σr)
p(1−N

q
)
sup
Br

(w − k)p + 1
]
|Ak,r|1−

N
q

for all σ ∈ (0, 1), Br ⊂ Ω, and k with k ≥ maxBr w − d, where Ak,r := {x ∈ Br;w(x) > k},
and Br is a ball of radius r.

In this definition, we also include the case q = ∞. Then, we shall write simply Bp(Ω,M, γ, d)

and the inequality in the above definition (ii) becomes∫
Ak,r−σr

|∇w|p dx ≤ γ
[ 1

(σr)p
sup
Br

(w − k)p + 1
]
|Ak,r|.

Especially, in the case of p = 2, and setting ρ := r − σr, we can also rewrite∫
Ak,ρ

|∇w|2 dx ≤ γ
[ 1

(r − ρ)2
sup
Br

(w − k)2 + 1
]
|Ak,r|.

The important theorem by O. Ladyzhenskaya and N. Uraltseva (called by also De Girorgi’s

embedding theorem) is described as follows:

THEOREM 1.1.1 (De Girorgi’s embedding theorem ([59, Section 2, Theorem 6.1])).

For any u ∈ Bp(Ω,M, γ, d, 1q ), and for any Bρ0(x0) ⊂ Ω with ρ0 ≤ 1, the following statement holds.

For any Bρ(x0) with ρ ≤ ρ0,

osc
Bρ(x0)

u ≤ c
( ρ
ρ0

)α
(1.1.1)

where c and α depend only N,M, γ, d, q.

Theorem 1.1.1 tell us that a function belonging to the class Bp(Ω,M, γ, d, 1q ) is locally Hölder

continuous. Indeed, for fixed x0 ∈ Ω, we chose ρ0 := 3−1min{ dist (x0, ∂Ω), 1}. Now we have only

to show that for any ρ ≤ ρ0, we have u is Hölder continuous on Bρ(x0). Fix x, y ∈ Bρ(x0), we have

|u(x)− u(y)| ≤ osc
B|x−y|(x)

u ≤ c
( |x− y|

2ρ

)α
.

Here, in the last inequality, we applied Theorem 1.1.1 for B|x−y|(x). It is valid because B|x−y|(x) ⊂
B2ρ(x) ⊂ B3ρ(x0) ⊂ Ω.

REMARK 1.1.1 (Other definition for De Giorgi’s class). In the original De Giorgi’s work

([25]) or other material (e.g. [34]), we see a slightly different definition for De Giorgi’s class. Main

difference with Ladyzhenskaya’s method is that the boundedness of function is not required. More
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precisely, we say, the function u ∈ W 1,2(Ω) belongs to the class DG(Ω) if there exists a constant

c such that for any x0 ∈ Ω, and 0 < ρ < r < dist (x0, ∂Ω), the following inequality holds∫
Ak,ρ

|∇u|2 dx ≤ c

(r − ρ)2

∫
Ak,r

|u− k|2 dx

for any k ∈ R where Ak,r := {x ∈ Br;u(x) > k}. In this case, if both of u and −u belong to

the class DG(Ω), we get similar result with Theorem 1.1.1([34, Theorem 8.13] for precise claim).

Roughly speaking, it appears as multiplier in the right hand side of (1.1.1) that the oscillation of

u in the ball with radius ρ0. In the end, we have Hölder continuity of u ∈ DG(Ω).

Finally, the following lemma will be need.

LEMMA 1.1.1 ([33, V. Lemma 3.1]). Let f = f(t) be a nonnegative bounded function defined

in [r0, r1], r0 ≥ 0. Suppose that for r0 ≤ t < s ≤ r1 we have

f(t) ≤ {A(s− t)−α +B}+ θf(s)

where A,B, α, θ are nonnegative constants with θ ∈ [0, 1). Then, for all ρ,R ∈ [r0, r1] with ρ < R,

we have

f(ρ) ≤ c{A(R− ρ)−α +B}

where c is a constant depending on α, θ.

1.2 Discrete Morse flow

In this section, we see a review for the discrete Morse flow method, sometimes write DMF. This

is a spacial case of the minimizing movement method, but there are many applications for various

evolution equations. The minimizing movement method, is developed by E. De Giorgi [26] for the

constructing solution for the following evolution equation, so called a gradient flow equation ;

u′(t) = −∇F (u(t)) (t > 0) (1.2.1)

where u(t) belongs to some class K ⊂ X, X is a Banach space, F : X → R is a given smooth

functional, ∇ denotes the Gâteaux differential, or we also call the first variation, that is,

⟨∇F (u), φ⟩ := d

dε
F (u+ εφ)

∣∣∣
ε=0

for any φ ∈ X,

where ⟨·, ·, ⟩ denotes a dual pair, that is, ∇F (u) is defined as a bounded linear functional on X.

For the resent development and more general setting in gradient flow and minimizing movement

method, refer to [7, 27]. One of the motivation of the study for these type equation, is to find

a stationary point of F on X. The method which is to find the stationary point of F by taking

the limit t → ∞ in the solution of (1.2.1) is called the gradient flow method or Morse semi flow

method.
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The prototype of the discrete Morse flow method, has been developed by K. Rektorys [77] for

constructing the solution of the parabolic equations. In 1991, N. Kikuchi [54] rediscovered this

method and suggested that this method, that is, the discretize version of the gradient flow method

could be applied for many evolutional equations.

Let us explain the basic idea of the discrete Morse flow method. We consider the following

minimization problem:

Minimize
∥u− un−1∥2X

2h
+ F (u) among all u ∈ K

where the notations F,K, X are same. ∥ · ∥X denotes a norm in X, un−1 is given, n ∈ N, and
h > 0 is time discretization parameter. The first term of this functional corresponds the time

discretization part. This time discretization part can be changed by the problem settings. The

formal calculation tell us that the minimizer of this functional if exists, say un satisfies the following

equation:
un − un−1

h
= −∇F (un). (1.2.2)

The equation (1.2.2) can be regarded as the time discretized version of the gradient flow equation

(1.2.1), for this reason, (un)n∈N is called the discrete Morse flow. Although the term discrete Morse

semiflow has been used in other materials, we omit the term ’semi’ for short. Now, we define two

types of the approximate solutions ūh and uh for (1.2.1) by time interpolating minimizers as follows.

ūh(t) :=

u0, t = 0

un, t ∈ ((n− 1)h, nh], n = 1, · · ·
(1.2.3)

uh(t) :=

u0, t = 0

t− (n− 1)h

h
un +

nh− t

h
un−1, t ∈ ((n− 1)h, nh], n = 1, · · ·

(1.2.4)

The first type is the flat type approximate solution, and the second type is the zigzag type ap-

proximate solution. By using these notations, we can rewrite the equation (1.2.2). If we get some

convergence results about uht and ūh with respect to h→ 0, we can construct the solution for the

equation (1.2.1). To get the convergence results, it is a key point that the energy estimate which

gives the bounds for ∥uht (t)∥X , ∥F (ūh(t))∥X with respect to h.

The discrete Morse flow method has many application e.g. the construction the gradient flow

for the harmonic maps by Bethuel et al. [12], and the analysis of Alt–Caffarelli type free boundary

problems by Omata and Nagasawa [69, 70], the evolutional problem corresponding to elastic-

plastic energy by Zhou [89], the evolutional problem corresponding to free discontinuity problem

by Yamaura [87]. The last two materials are related on the theory of the functions of bounded

variation.

The discrete Morse flow method can be also applied for the hyperbolic equations. In this case,

we consider the following minimization problem:

Minimize
∥u− 2un−1 + un−2∥2X

2h2
+ F (u) among all u ∈ K, n ≥ 2
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for constructing the solution for the following initial value problem of the second order equation,
u′′(t) = −∇F (u), t > 0,

u′(0) = v0,

u(0) = u0.

(1.2.5)

In the above setting, we set u1 := u0 + hv0, and assume u0, u1 ∈ K. We will explain briefly the

discrete Morse flow method for this type equations under the setting convex set K ⊂ L2(Ω) where

Ω is bounded domain in RN . It then turns out to consider the following functional.

In(u) :=

∫
Ω

|u− 2un−1 + un−2|2

2h2
dx+ I(u)

where we changed the notation for the second part of the functional. A minimizer of In, denoted

by un, satisfies the following equation

un − 2un−1 + un−2

h2
= −∇I(un),

and the energy estimate∫
Ω

|un − un−1|
2h2

dx+ I(un) ≤
1

2

∫
Ω
|v0|2 dx+ I(u0). (1.2.6)

Let us give laugh explanation for second inequality(1.2.6). By convexity of K, the function

θum + (1− θ)um−1 is also in K where θ ∈ [0, 1), therefore, by the minimality of um, we have

Im(um) ≤ Im(θum + (1− θ)um−1)

≤
∫
Ω

{θ(um − um−1) + um−1 − 2um−1 + um−2}2

2h2
dx+ I(θum + (1− θ)um−1)

≤
∫
Ω

{θ(um − um−1)− um−1 + um−2}2

2h2
dx+ θI(um) + (1− θ)I(um−1).

Here we use the convexity of the functional I in the last inequality. After arranging the last

inequality, we have

θ

∫
Ω

|um − um−1|2

2h2
dx+ I(um) ≤

∫
Ω

|um−1 − um−2|2

2h2
dx+ I(um−1).

To conclude this, after letting θ ↑ 1, we have only to sum this inequality from m = 2 to n.

If the functional J has appropriate properties (e.g. convexity), we can get the convergence

results for the approximate solution uh and ūh with respect to h → 0, and construct the weak

solution for the problem (1.2.5). We now explain the details for the wave equation as example.
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EXAMPLE 1.2.1 (Discrete Morse flow method for wave equation). We consider the

initial boundary value problem for the following wave equation.

utt(x, t) = ∆u(x, t), (x, t) ∈ QT := Ω× (0, T ),

ut(x, 0) = v0(x), x ∈ Ω,

u(x, 0) = u0(x), x ∈ Ω,

u(·, t) = 0, on ∂Ω× (0, T )

(1.2.7)

where Ω ⊂ RN is bounded domain with smooth boundary. We set the initial conditions u0, v0 ∈
H1

0 (Ω). We construct the weak solution of this problem by using the discrete Morse flow. Firstly,

we define the weak solution for (1.2.7). We say a function u ∈ H1(QT ) is the weak solution for the

problem 1.2.7 if it satisfies that for any φ ∈ C∞
c (Ω× [0, T )),∫ T

0

∫
Ω
(−utφt +∇u · ∇φ) dx dt−

∫
Ω
v0φ(x, 0) dx = 0. (1.2.8)

Strictly, although we have to also require that initial and boundary conditions, we omit this since

we want to focus finding function satisfying (1.2.8).

Next, to apply the discrete Morse flow, we consider the functionalsIn(u) :=

∫
Ω

|u− 2un−1 + un−2|2

2h2
dx+

1

2

∫
Ω
|∇u|2 dx,

(
I(u) :=

1

2

∫
Ω
|∇u|2 dx

)
on K := H1

0 (Ω),

for any n = 2, · · ·n0. Here, the natural number n0 is decided by T = n0h. These functional, since

the first part is continuous in L2(Ω), and the second part is lower semi continuous with respect to

weak convergence in H1(Ω), there exists minimizer of In, we name un. Since un is a minimizer of

In, the first variation of In at un is equal to zero. That is, for any φ ∈ H1
0 (Ω)

0 =
d

dε
In(un + εφ)

∣∣∣
ε=0

= lim
ε→0

In(un + εφ)− In(un)

ε
,

continuing the calculation of the right hand side,

= lim
ε→0

∫
Ω

(2un + εφ− 4un−1 + 2un−2)φ

2h2
dx+ lim

ε→0

1

2

∫
Ω
(2∇un · ∇φ+ ε|∇φ|2) dx

=

∫
Ω

un − 2un−1 + un−2

h2
φdx+

∫
Ω
∇un · ∇φdx.

Now we define the approximate solution from these minimizers same as (1.2.3), (1.2.4). Then, we

can rewrite the above first variation formula by using these notation (1.2.3), (1.2.4) as follows.∫
Ω

[uht (t)− uht (t− h)

h
φ+∇ūh(t) · ∇φ

]
dx = 0 a.e.t ∈ (0, T ) ∀φ ∈ H1

0 (Ω).
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Since this relation holds for any function belonging to L2((0, T ) : H1
0 (Ω)), we have∫ T

h

∫
Ω

[uht (t)− uht (t− h)

h
φ(t) +∇ūh(t) · ∇φ(t)

]
dx dt = 0 ∀φ ∈ L2((0, T ) : H1

0 (Ω)). (1.2.9)

Now, we want to tend h → 0+ in (1.2.9) to reach (1.2.8). To do so, we need more estimates

regarding to approximate solutions. Fortunately by general theory as we mentioned before, we

have the energy estimate (1.2.6),∫
Ω

|un − un−1|
2h2

dx+ I(un) ≤
1

2

∫
Ω
|v0|2 dx+ I(u0),

rewriting this inequality by using the notions uh, ūh,

∥uht (t)∥L2(Ω) + ∥∇ūh(t)∥L2(Ω) ≤ CE a.e. t ∈ (0, T ) (1.2.10)

where the constant CE is depend only Ω, u0, v0. By virtue of (1.2.10), direct calculation leads the

following results.

∥ūh(t)− uh(t)∥L2(Ω) ≤ CEh for a.e. t ∈ (0, T ), (1.2.11)

∥uh∥2L2(QT ) ≤ ∥ūh∥2L2(QT ) +
h

2
∥u0∥2L2(Ω), (1.2.12)

∥∇uh∥2L2(QT ) ≤ ∥∇ūh∥2L2(QT ) +
h

2
∥∇u0∥2L2(Ω), (1.2.13)

For 1.2.11, we have only to keep in mind that uh(t) − ūh(t) = nh−t
h (un − un−1) and the energy

estimate (1.2.10). For 1.2.12 and 1.2.13, we have only to calculate the difference the left hand

side and the first term of the right hand side respectively. Moreover, since uh(t) ∈ H1
0 (Ω) for

any t ∈ (0, T ), Poincaré’s inequality and its integration of the both sides over (0, T ) lead the next

inequality :

∥uh∥L2(QT ) ≤ CP ∥∇uh∥L2(QT ) (1.2.14)

where the constant CP depends only the space dimension N and Ω. Thanks to the estimates

1.2.11, 1.2.13, and 1.2.14, up to extracting subsequences, there exists u ∈ H1(QT ) such that

ūh → u strongly in L2(QT ), (1.2.15)

∇ūh ⇀ ∇u weakly in (L2(QT ))
N , (1.2.16)

uht ⇀ ut weakly in L2(QT ), (1.2.17)

as h→ 0+. We are now position of the limit process h→ 0+ in (1.2.9),∫ T

h

∫
Ω

[uht (t)− uht (t− h)

h
φ+∇ūh · ∇φ

]
dx dt = 0
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with restriction φ ∈ C∞
c (Ω × [0, T )) to fit our definition of the weak solution(1.2.8). Indeed, for

the gradient term, by 1.2.16, we have∫ T

h

∫
Ω
∇ūh · ∇φdx dt =

∫ T

0

∫
Ω
∇ūh · ∇φdx dt−

∫ h

0

∫
Ω
∇ūh · ∇φdx dt

→
∫ T

0

∫
Ω
∇u · ∇φdx dt,

here we remark that the second term vanishes tending h → 0+ by the boundedness of ∇ūh with

respect to h. For the time discrete part, we calculate as follows.∫ T

h

∫
Ω

uht (t)− uht (t− h)

h
φdx dt =

∫ T

h

∫
Ω

uht (t)

h
φ(·, t) dx dt+

∫ T

h

∫
Ω

−uht (t− h)

h
φ(·, t) dx dt

=

∫ T

h

∫
Ω

uht (t)

h
φ(·, t) dx dt+

∫ T−h

0

∫
Ω

−uht (t)
h

φ(·, t+ h) dx dt

=

∫ T

0

∫
Ω

uht (t)

h
φ(·, t) dx dt−

∫ h

0

∫
Ω

uht (t)

h
φ(·, t) dx dt

+

∫ T

0

∫
Ω

−uht (t)
h

φ(·, t+ h) dx dt+

∫ T

T−h

∫
Ω

−uht (t)
h

φ(·, t+ h) dx dt

=

∫ T

0

∫
Ω
−uht (t)

φ(·, t+ h)− φ(·, t)
h

dx dt

+

∫ h

0

∫
Ω

uht (t)

h
φ(·, t) dx dt+

∫ T

T−h

∫
Ω

−uht (t)
h

φ(·, t+ h) dx dt

→
∫ T

0

∫
Ω
−utφt dx dt−

∫
Ω
v0φ(·, 0) dx h→ 0+,

where we use three facts in the limit process h→ 0+. For the first term, uht converges ut weakly in

L2(Ω) and (φ(·, t+ h)− φ(·, t))/h converges φt strongly in L2(Ω). For the second term follows by

uht (t) = (u1−u0)/h = v0 for t ∈ (0, h). For the final term, we use φ(·, t+h) = 0 for t ∈ (T −h, T ).
In this end, we construct the weak solution in the sense of (1.2.8) for the wave equation (1.2.7) by

using the discrete Morse flow method.

The first application of the discrete Morse flow method to the hyperbolic equations was given by

Tachikawa [81] to construct the weak solution for the system of the following hyperbolic equations:

utt −∆u+ |u|p−2u = 0 (p > 1).

One of the advantage of the discrete Morse flow method is to be able to deal well with more

complicated problem e.g. volume constrain problems and free boundary problems. Here, we

would like to mention the application to the volume constrain problem of the wave equation by

Svadlenka and Omata [85]. They constructed the weak solution for the following wave equation

with the volume preservation:

utt(x, t) = ∆u(x, t) + λu(t) (x, t) ∈ Ω× (0, T ) (1.2.18)
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under the suitable initial and boundary conditions. The real number λu(t) corresponds the volume

preservation and has the following expression:

λu(t) :=
1

V

∫
Ω
(utt(·, t)u(·, t) + |∇u(·, t)|2) dx,

where V is a given positive number. One can check a solution u for 1.2.18 preserves the volume of

the graph of u, that is, ∫
Ω
u(·, t) dx = V for any t ∈ (0, T ).

For this problem, Svadlenka and Omata applied the discrete Morse Flow method by using the

following functional .
In(u) :=

∫
Ω

|u− 2un−1 + un−2|2

2h2
dx+

1

2

∫
Ω
|∇u|2 dx,

on K :=
{
u ∈ H1(Ω) : u|∂Ω = g,

∫
Ω
u dx = V

}
,

where g is a given function belonging to L2(∂Ω). The functional itself is exactly same as the

simple wave equation which we explain in Example 1.2.1. We do not have to add the extra term

for the functional, have only to add the volume preserving condition to the admissible space.

Although we need some little modifications, we can same results as Example 1.2.1 for this volume

preserving problem. We also point out that there is an interesting applications the discrete Morse

flow method to the contact problem of the elasticity by Y. Akagawa et. al [2], they gives the

extension the discrete Morse flow method to the vector valued functions. For the applications to

the hyperbolic free boundary problems, we will review in Sections 1.4.

1.3 Formulation of hyperbolic Alt–Caffarelli type free boundary

problems

Here we will introduce a hyperbolic variant of Alt–Caffarelli type free boundary problem according

to [1] . To derive the equation, we calculate the first variation of the following action integral:

J(u) :=

∫ T

0

∫
Ω

(
(ut)

2χ{u>0} − |∇u|2 −Q2χ{u>0}

)
dx dt

where Q is a constant which expresses an adhesion force. When energy is conserved, i.e., when

the function u does not change its value from positive to zero as time passes, we can, under ap-

propriate assumptions, calculate the first variation, as well as the inner variation, of the functional

J . However, if energy is not conserved, we can calculate neither the first variation nor the inner

variation due to the presence of the Q2-term containing the characteristic function. To overcome

this difficulty, we consider a smoothing of the characteristic function within the adhesion term by a

function Bε defined by Bε(u) =
∫ u
−1 βε(s) ds, where βε(u) :=

1
εβ(

u
ε ), and β : R → [0, 1] is a smooth

function satisfying β = 0 outside [−1, 1],
∫
R β(s) ds = 1, and B(0) = 1

2 . After smoothing, we can
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calculate the first variation to obtain an expression for the following problem:

(Pε)



χ{u>0} utt = ∆u− 1
2Q

2βε(u) in Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

ut(x, 0) = v0(x) in Ω,

u(x, t)|∂Ω = ψ(x, t) with ψ(x, 0) = u0 on ∂Ω,

where u0, v0 are the same as in Problem 1.1, and ψ is a given function. Now, we set the following

hypotheses:

(H1) The existence of a solution uε to (Pε).

(H2) The existence of a function u : Ω× (0, T ) → R such that uε → u in an appropriate topology

as ε ↓ 0 and such that the following holds:

(H2.1) utt −∆u = 0 in Ω× (0, T ) ∩ {u > 0}.

(H2.2) The free boundary ∂{u > 0} is regular, H N (D ∩ ∂{u > 0}) < ∞ for any D ⊂⊂
Ω × (0, T ) ⊂ RN × (0, T ), and |Du| ̸= 0 on Ω × (0, T ) ∩ ∂{u > 0}. Here, Du =

(ux1 , ..., uxN , ut), and H N is the N -dimensional Hausdorff measure.

(H2.3) u is a subsolution in the following sense:∫ T

0

∫
Ω

(
χ{u>0} utt ζ +∇u · ∇ζ

)
dx dt ≤ 0

for arbitrary nonnegative ζ ∈ C∞
c (Ω× (0, T )).

Starting from (Pε), and employing (H1), (H2.1) and (H2.2), we can show that the limit function

u satisfies the following free boundary condition as in [74]:

|∇u|2 − u2t = Q2 on Ω× (0, T ) ∩ ∂{u > 0}. (1.3.1)

Now, for any D ⊂⊂ Ω × (0, T ), we define a linear functional f on C∞
c (D) corresponding to

∆u− χ{u>0} utt as follows:

f(ζ) := −
∫
D

(
χ{u>0} utt ζ +∇u · ∇ζ

)
dx dt.

Since f is a positive linear functional on C∞
c (D) by (H2.3), f can be extended to a positive linear

functional on C0(D). Riesz’s representation theorem asserts there exists a unique positive Radon

measure µf on D such that

f(ζ) =

∫
D
ζ dµf . (1.3.2)

In this sense, we can say that ∆u− χ{u>0} utt is a positive Radon measure on D.

On the other hand, we can calculate the value of f(ζ) from (1.3.1). By splitting the integral

domain into four parts, D ∩ {u > 0}, D ∩ ∂{u > 0}, D ∩ ∂{u = 0}◦, D ∩ {u = 0}◦, noting that all
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terms vanish except for D ∩ ∂{u > 0} by the integration by parts, and χ{u>0} = 1 on ∂{u > 0},
we can calculate∫

D

(
χ{u>0} uttζ +∇u · ∇ζ

)
dx dt =

∫
D

(
−(χ{u>0} ζ)tut +∇u · ∇ζ

)
dx dt

=

∫
D∩∂{u>0}

(
−χ{u>0} ζ · ut ·

−ut
|Du|

+ ζ∇u · −∇u
|Du|

)
dH N

=

∫
D∩∂{u>0}

u2t − |∇u|2

|Du|
ζ dH N

=

∫
D∩∂{u>0}

−Q2

|Du|
ζ dH N (by (1.3.1)).

Here, we assume that the regularity of χ{u>0} with respect to t. From the above and the definition

of f , we observe that

f(ζ) =

∫
D

Q2

|Du|
ζ dH N⌊∂{u > 0}. (1.3.3)

By (1.3.2), (1.3.3), we have

µf =
Q2

|Du|
H N⌊∂{u > 0}. (1.3.4)

In this sense, the positive Radon measure ∆u − χ{u>0} utt has its support in the free boundary

∂{u > 0}. Formally, we can rewrite (1.3.4) as follows:

χ{u>0} utt −∆u = − Q2

|Du|
H N⌊∂{u > 0}. (1.3.5)

Summarizing the above, starting from the smoothed problem (Pε), under the hypotheses (H1)-

(H2), we formally derive a hyperbolic degenerate equation with adhesion force. This equation

(1.3.5) includes all information about the hyperbolic free boundary problem, that is, the wave

equation utt − ∆u = 0 in the set {u > 0}, the free boundary condition |∇u|2 − u2t = Q2 on

Ω× (0, T ) ∩ ∂{u > 0}, and the Laplace equation ∆u = 0 in the set {u < 0} a.e. t ∈ (0, T ).

1.4 Previous researches of hyperbolic Alt–Caffarelli type free bound-

ary problems

In this section, we will review the following hyperbolic Alt–Caffarelli type free boundary problems.

Problem 1.4.1. Find u : Ω× [0, T ) → R such that
χ{u>0} utt −∆u = − Q2

|Du|
H N⌊∂{u > 0} in Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

ut(x, 0) = v0(x) in Ω,

(1.4.1)

under suitable boundary conditions, where Ω ⊂ RN is a bounded Lipschitz domain, T > 0 is

the final time, u0 denotes the initial condition, v0 is the initial velocity, and {u > 0} is the set
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{(x, t) ∈ Ω× (0, T ) : u(x, t) > 0}.

We now summarize the history of such type problems. Firstly, K. Kikuchi and S. Omata [53]

studied this problem in the one-dimensional domain Ω = (0,∞). The problem which they treated

is described as follows. utt − uxx = 0 in Ω× (0,∞) ∩ {u > 0},

(ux)
2 − (ut)

2 = Q2 on Ω× (0,∞) ∩ ∂{u > 0}.
(1.4.2)

Above equations (1.4.2) comes from the calculation of the first variation and inner variation of the

following functional.

J(u) :=

∫ T

0

∫
Ω

{1

2
(ut)

2χ{u>0} −
1

2
(ux)

2 −Q2χu>0

}
dx dt, (u ∈W 1,2(Ω× (0, T ))).

This functional is well known as the action integral of Lagrangian corresponding to the tape peeling

problem. We can refer [73] for the physical background and the derivation for this functional. For

this problem (1.4.2), they constructed the strong solution u ∈ C2(Ω × (0,∞) ∩ {u > 0}). Quite

roughly said, their method can be explained as follows. First, considering changing variables

t = 1
2(ξ + η), x = 1

2(ξ − η), we get the equation for new variables ξ, η, uξη = 0 in {u > 0},

−4uξuη = Q2 on ∂{u > 0}.

Second, for this equation, putting u = ϕ(η) + ψ(η), construct ϕ and ψ from the initial conditions

and boundary conditions. They also the regularity of its free boundary ∂{u > 0} and the well-

posedness of the problem under suitable compatibility conditions.

On the other hand, H.Imai et. al. [47] studied the numerical analysis for the problem (1.4.2)

by the fixed domain method. Under the assumption that the free boundary is consisted of only

one point, and its position is denoted by ℓ(t), by using the mapping y = 2x/ℓ(t) − 1, we change

the domain (0, ℓ(t))× (0, T ) to (−1, 1)× (0, t) and get the new system of equations.
utt −

4− ((y + 1)ℓ′(t))2

ℓ(t)2
uyy − 2(y + 1)

ℓ′(t)

ℓ(t)
uty − (y + 1)

ℓ(t)ℓ′′(t)− 2(ℓ′(t))2

ℓ(t)2
uy = 0,

ℓ′(t) =

√
1−

( Qℓ(t)

2uy(1, t)

)
.

By discretizing the space [−1, 1], we have the system of ordinary differential equations whose

unknowns are ui, vi := (ui)t, ℓ. Then, we adopt 4-th order Runge-Kutta method for numerical

computation.

Yoshiuchi et al. [88] addressed a similar problem to Problem in the case Q = 0 including a

damping term αut. The word ’similar’ means there is a difference in the acceleration term with

the previous researches and our treating problem. More precisely, in the previous researches, the
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main part problem is described the following equation.

χ{u>0} utt + αut −∆u = 0, (1.4.3)

where we assume that Q = 0 for simplicity. This equation comes from the consideration in the

point of view of the mathematical modeling for the phenomena of the film motion with obstacle

since the equation (1.4.2) is not sufficient to express this motion. In 2017, S. Omata [74] suggested

that the term of acceleration should be replaced by χ{u>0}utt to include the all information for

this type problems, and modified the equation to current version (1.4). More precisely, if we adopt

the equation (1.4.3), we could not get the free boundary condition even though under the formal

calculation. Therefore, reader should read with replacing to χ{u>0}utt of the acceleration term of

the main equation in the previous researches before 2017 related these type problems.

We now go back to the reviews of the work by Yoshiuchi et. al [88]. Using the discrete Morse

flow method, they derived an energy estimate for approximate solutions, and provided numerical

results. The functional which they used is as follows.∫
Ω

|u− 2un−1 + un−2|2

2h2
χ{u>0}∪{un−1>0} dx+ α

∫
Ω

|u− un−1|2

2h
dx+

1

2

∫
Ω
|∇u|2 dx,

among all u ∈ K ⊂ H1(Ω). After minimizing this functional, put minimizer ũn, we cut off this

minimizer, un := max{ũn, 0}. Then, do same procedure to construct the approximate solutions.

The method how to time-interpolate is same as the discrete Morse flow method for the wave equa-

tion. The important feature of this functional is appearing the previous time step function un−1

in the characteristic function. By this trick, they could get the energy estimate for approximate

solutions.

Moreover, the discrete Morse flow method can be applied the following hyperbolic free boundary

problems with volume preservation.

χ{u>0}utt −∆u = λu(t)χ{u>0}.

where λu(t) is the Lagrange multiplier corresponding to the volume preserving condition
∫
Ω u dx =

V , V is a given positive real number, that is,

λu(t) :=
1

V

∫
Ω
(uttu+ |∇u|2) dx.

E. Ginder and K. Svadlenka [37] constructed a weak solution for this problem in the one dimensional

setting, again using the discrete Morse flow method with the following functional including two

penalty terms.∫
Ω

|u− 2un−1 + un−2|2

2h2
dx+

1

2

∫
Ω
|∇u|2 dx+Ψ1(u) + Ψ2(u) on H1

0 (Ω)
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where Ψ1,Ψ2 are functionals H1(Ω) → {0,∞} defined

Ψ1(u) :=

 0, if u ≥ 0 a.e. in Ω

∞, otherwise

Ψ2(u) :=

 0, if
∫
Ω u dx = V

∞, otherwise.

Moreover, the following problem, stated here without initial and boundary conditions, has been

treated by K.Kikuchi in [51]: 
utt − uxx ≥ 0 in (0, 1)× (0,∞),

spt (utt − uxx) ⊂ {u = 0},

u(x, t) ≥ 0 L2-a.e..

He constructed a weak solution to this problem using a minimizing method in the spirit of the

discrete Morse flow. This equation is corresponding to the problem treated by M.Schatzman in

[79].

Finally, we conclude the interesting application and extension of the discrete Morse flow from

resent work by Akagawa et. al.[2]. They consider the following functional to numerical simulation

for the rolling contact problem of elasticity.

1

2

∫
Ω

|ξ − 2ξn−1 + ξn−2|2

2h2
dx+

1

2

∫
Ω

(1
2
σ[ξ] + σ[ξn−2]

)
: ϵ[ξ] dx,

among all ξ ∈ W 1,2(Ω ; R2) with some conditions with respect to the boundary conditions and

obstacle. Here, σ, ϵ are well known the notions in the theory of elasticity, the stress tensor and

strain tensor respectively, and A : B means the sum of the product of each components of two

same size matrix, also we omit the term corresponding outer force. They gave the extension of the

discrete Morse flow method to vector valued functions. Another important feature of the above

functional is the presence of the previous two time step function ξn−2 in the gradient term in the

functional, which can be said a kind of the Crank-Nicolson scheme.

In this thesis work, will be starting from the next section, it is main idea that the including

the previous two time step functions to the characteristic function in the time discretization term

which is a kind of extension of the work by Yoshiuchi et. al. [88] and the gradient term which is

analogous of the work by Akagawa et. al. [2].
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Crank-Nicolson minimization scheme

I

From this chapter to the next chapter, we consider the following hyperbolic obstacle problem in

accordance with [1]:

Problem 2.0.1. Find u : Ω× [0, T ) → R such that

χ{u>0} utt −∆u = 0 in Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

ut(x, 0) = v0(x) in Ω,

u(·, t) = u0(·) on ∂Ω t ≥ 0,

(2.0.1)

where Ω ⊂ RN is a bounded Lipschitz domain, T > 0 is the final time, u0 ∈ H1(Ω)∩C0(Ω)∩C0,α
loc (Ω)

denotes given the initial condition, v0 ∈ H1
0 (Ω) is also given the initial velocity, and {u > 0} is the

set {(x, t) ∈ Ω× (0, T ) : u(x, t) > 0}.

For this problem, we will construct the weak solution by a new minimization scheme. Although

this is essentially same with the discrete Morse flow method, we use the following functional.

Jm(u) =

∫
Ω∩Sm(u)

|u− 2um−1 + um−2|2

2h2
dx+

1

4

∫
Ω
|∇u+∇um−2|2 dx, (2.0.2)

on K := {u ∈ H1(Ω) : u = u0 on ∂Ω}. Here the set Sm(u) is defined by Sm(u) := {u >

0}∪ {um−1 > 0}∪ {um−2 > 0}, {u > 0} := {x ∈ Ω : u(x) > 0}, {ui > 0} := {x ∈ Ω : ui(x) > 0}
(i = m− 1,m− 2), and m ≥ 2 is integer. Remark that although their domain is different, we use

same notations for the positive part of function as the statement of Problem 2.0.1. In this chapter,

we will study the properties of this functional.

28
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2.1 Energy conservation property

In this section, we derive the energy preserving property of the Crank-Nicolson type functional,

which has not been achieved in previous research. To this end, let us consider the following

modified functional:

Im(u) :=

∫
Ω

|u− 2um−1 + um−2|2

2h2
dx+

1

4

∫
Ω
|∇u+∇um−2|2 dx, (2.1.1)

on the set K. This functional can be regarded as the no-free boundary version of Jm. We note

that a unique minimizer exists for each Im whenever Im(u0) < ∞ since the functional is convex

and lower semicontinuous with respect to weak convergence in L2.

THEOREM 2.1.1 (Energy conservation). Minimizers uk of Ik conserve the energy

Ek :=
∥∥∥uk − uk−1

h

∥∥∥2
L2(Ω)

+
1

2

(
∥∇uk∥2L2(Ω) + ∥∇uk−1∥2L2(Ω)

)
, (2.1.2)

in the sense that Ek is independent of k ≥ 1.

Proof. For m ≥ 2, the function (1− λ)um + λum−2 = um + λ(um−2 − um) is admissible for every

λ ∈ [0, 1], which justifies
d

dλ
Im(um + λ(um−2 − um))

∣∣∣∣
λ=0

= 0.

Computing this derivative, we have

0 =
d

dλ

∫
Ω

[ |um + λ(um−2 − um)− 2um−1 + um−2|2

2h2

+
1

4
|∇(um + λ(um−2 − um)) +∇um−2|2

]∣∣∣∣
λ=0

dx

=

∫
Ω

[(um−2 − um)(um − 2um−1 + um−2)

h2
+

1

2
∇(um−2 − um) · ∇(um + um−2)

]
dx

=

∫
Ω

[(um−1 − um−2)
2 − (um − um−1)

2

h2
+

1

2
|∇um−2|2 −

1

2
|∇um|2

]
dx.

Summing over m = 2, ..., k, we arrive at∫
Ω

[ 1

h2
(u1 − u0)

2 − 1

h2
(uk − uk−1)

2 +
1

2
|∇u0|2 +

1

2
|∇u1|2 −

1

2
|∇uk−1|2 −

1

2
|∇uk|2

]
dx = 0,

which means

E1 =

∫
Ω

[ 1

h2
(u1 − u0)

2 +
1

2
|∇u0|2 +

1

2
|∇u1|2

]
dx

=

∫
Ω

[ 1

h2
(uk − uk−1)

2 +
1

2
|∇uk−1|2 +

1

2
|∇uk|2

]
dx

= Ek,

and the proof is complete.
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2.2 Minimizing method

For any integer m ≥ 2, we introduce the following functional:

Jm(u) =

∫
Ω∩Sm(u)

|u− 2um−1 + um−2|2

2h2
dx+

1

4

∫
Ω
|∇u+∇um−2|2 dx, (2.2.1)

where Sm(u) := {u > 0} ∪ {um−1 > 0} ∪ {um−2 > 0}.
We determine a sequence of functions {um} iteratively by taking u0 ∈ K and u1 = u0+hv0 ∈ K,

defining ũm as a minimizer of Jm in K, and setting um := max{ũm, 0}.
We now study the existence and regularity of minimizers which guarantees the possibility of

applying the first variation formula to Jm.

THEOREM 2.2.1 (Existence). If Jm(u0) < ∞, then there exists a minimizer ũm ∈ K of the

functional Jm.

Proof. Given um−1, um−2, we show the existence of ũm. Since the infimum of Jm is non-negative,

we can take the minimizing sequence {uj} ⊂ K such that Jm(uj) → infu∈K Jm(u) as j → ∞.

Now, since the sequence {uj − u0} ⊂ H1
0 (Ω) and {χSm(uj)} are bounded in H1(Ω) and L∞(Ω)

respectively, there exist ũ ∈ H1
0 (Ω) and γ ∈ L∞(Ω) such that, up to extracting a subsequence,

uj − u0 → ũ strongly in L2(Ω),

∇(uj − u0)⇀ ∇ũ weakly in L2(Ω), (2.2.2)

χSm(uj)
∗
⇀ γ weakly * in L∞(Ω),

where the existence of the limit function γ follows from Banach-Alaoglu’s theorem([31, Theorem

5.12]). Moreover, by the weak * convergence and L2-strongly convergence, we have 0 ≤ γ ≤ 1 a.e.

on Ω, and γ = 1 a.e. on Sm(u) where u := ũ + u0 ∈ K. Indeed, by the weak * convergence, we

have

0 ≤
∫
Ω
χSm(uj)φdx ≤

∫
Ω
φdx

for any φ ∈ C∞
c (Ω) with φ ≥ 0, and tending j → ∞ in this inequality leads for the inequality

0 ≤ γ ≤ 1 a.e. on Ω. For the equality γ = 1 a.e. on Sm(u), remark that the use of L2-strongly

convergence of uj to u, up to extracting subsequence, we have χSm(uj)(x) → 1 for a.e. x ∈ Sm(u)

as j → ∞. This fact leads that χSm(uj)(x)φ(x) → φ(x) for a.e. x ∈ Sm(u) as j → ∞ for any

φ ∈ C∞
c (Ω). Moreover, combining with |χSm(uj)(x)φ(x)| ≤ |φ(x)| for any j and x ∈ Sm(u), the

Dominated convergence theorem leads

lim
j→∞

∫
Ω
χSm(uj)χSm(u)φdx = lim

j→∞

∫
Sm(u)

χSm(uj)φdx =

∫
Sm(u)

φdx.

On the other hand, by the weak * convergence of χSm(uj) to γ,

lim
j→∞

∫
Ω
χSm(uj)χSm(u)φdx =

∫
Ω
γχSm(u)φdx =

∫
Sm(u)

γφ dx for any φ ∈ C∞
c (Ω).
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Thus, we get ∫
Sm(u)

γφ dx =

∫
Sm(u)

φdx,

which implies the equality γ = 1 a.e. on Sm(u).

Therefore, we get

Jm(u) =

∫
Ω

|u− 2um−1 + um−2|2

2h2
χSm(u) dx+

1

4

∫
Ω
|∇u+∇um−2|2 dx

≤
∫
Ω

|u− 2um−1 + um−2|2

2h2
γ dx+

1

4

∫
Ω
|∇u+∇um−2|2 dx

≤ lim inf
j→∞

Jm(uj) = inf
u∈K

Jm(u),

where the first inequality follows from γ = 1 a.e. on Sm(u), and the second inequality follows from

(2.2.2), this shows the function u is a minimizer of Jm(u).

The minimizers of Jm have the following subsolution property which we will use to show the

regularity of minimizers.

PROPOSITION 2.2.1 (Subsolution). Any minimizer u of Jm satisfies the following inequality

for arbitrary nonnegative ζ ∈ H1
0 (Ω):∫

Ω∩Sm(u)

u− 2um−1 + um−2

h2
ζ dx+

∫
Ω
∇u+ um−2

2
· ∇ζ dx ≤ 0. (2.2.3)

Proof. Fixing ζ ∈ C∞
c (Ω) with ζ ≥ 0, and ε > 0, we have

0 ≤ Jm(u− εζ)− Jm(u) (by the minimality of u)

=

∫
Ω

|(u− εζ)− 2um−1 + um−2|2

2h2
χSm(u−εζ) dx+

1

4

∫
Ω
|∇(u− εζ) +∇um−2|2 dx

−
(∫

Ω

|u− 2um−1 + um−2|2

2h2
χSm(u) dx+

1

4

∫
Ω
|∇u+∇um−2|2 dx

)
. (2.2.4)

Noting that

χSm(u−εζ) − χSm(u) ≤ 0,

|(u− εζ)− 2um−1 + um−2|2 − |u− 2um−1 + um−2|2 = −2εζ(u− 2um−1 + um−2) + ε2ζ2,

|∇(u− εζ) +∇um−2|2 − |∇u+∇um−2|2 = −2ε(∇u+∇um−2) · ∇ζ + ε2|∇ζ|2,

we continue the estimate as

(2.2.4) ≤
∫
Ω
{−2εζ(u− 2um−1 + um−2) + ε2ζ2} × 1

2h2
χSm(u) dx

+
1

4

∫
Ω
{−2ε(∇u+∇um−2) · ∇ζ + ε2|∇ζ|2} dx.

Dividing by ε, letting ε decrease to zero from above, and applying a density argument concludes

the proof.
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We now derive an energy estimate satisfied by the minimizers of Jm.

THEOREM 2.2.2 (Energy estimate). For any integer k ≥ 1, we have∥∥∥uk − uk−1

h

∥∥∥2
L2(Ω)

+
1

2
∥∇uk∥2L2(Ω) ≤ ∥v0∥2L2(Ω) +

1

2
∥∇u0∥2L2(Ω) +

1

2
∥∇u1∥2L2(Ω). (2.2.5)

Proof. Since the function (1−λ)ũm+λum−2 = ũm+λ(um−2− ũm) belongs to K for any λ ∈ [0, 1],

by the minimality property, we have Jm(ũm) ≤ Jm(ũm + λ(um−2 − ũm)), and thus,

lim
λ→0+

1

λ

(
Jm(ũm + λ(um−2 − ũm))− Jm(ũm)

)
≥ 0. (2.2.6)

Let Am denote the set

Am := Ω ∩ ({ũm > 0} ∪ {um−1 > 0} ∪ {um−2 > 0}).

We investigate the behavior of the individual terms in (2.2.6). For the gradient term we get

lim
λ→0+

1

4λ

(
|∇(ũm + λ(um−2 − ũm) + um−2)|2 − |∇(ũm + um−2)|2

)
=

1

2
∇(ũm + um−2) · ∇(um−2 − ũm) dx

=
1

2
|∇um−2|2 −

1

2
|∇ũm|2

≤ 1

2
|∇um−2|2 −

1

2
|∇um|2. (2.2.7)

For the time-discretized term, consider the set

Bm(λ) := {ũm + λ(um−2 − ũm) > 0} ∪ {um−1 > 0} ∪ {um−2 > 0}.

Then Bm(λ) is contained in the set Am for any λ ∈ [0, 1]. It is obvious for Bm(0), Bm(1). For fixed

λ ∈ (0, 1), x ∈ Bm(λ), we have only to consider the case of that x ∈ {ũm + λ(um−2 − ũm) > 0} =

{(1−λ)ũm+λum−2 > 0}. If x ∈ {um−2 > 0}, we have done. Otherwise, that is, if x ∈ {um−2 = 0},
x ∈ {(1− λ)ũm + λum−2 > 0} = {(1− λ)ũm > 0}, then x ∈ {ũm > 0} ⊂ Am.

Therefore, we find that

1

2h2

∫
Ω

(
|ũm + λ(um−2 − ũm)− 2um−1 + um−2|2χBm(λ) − |ũm − 2um−1 + um−2|2χAm

)
dx

≤ 1

2h2

∫
Ω

(
|ũm + λ(um−2 − ũm)− 2um−1 + um−2|2 − |ũm − 2um−1 + um−2|2

)
χAmdx.



CHAPTER 2. CRANK-NICOLSON MINIMIZATION SCHEME I 33

Then we have

lim
λ→0+

1

2h2λ

∫
Ω

(
|ũm + λ(um−2 − ũm)− 2um−1 + um−2|2 − |ũm − 2um−1 + um−2|2

)
χAmdx

= lim
λ→0+

1

2h2λ

∫
Am

λ(um−2 − ũm)(2ũm + λ(um−2 − ũm)− 4um−1 + 2um−2)dx

=
1

h2

∫
Am

(um−2 − ũm)(ũm − 2um−1 + um−2)dx

=
1

h2

∫
Am

[(um−1 − um−2)
2 − (um−1 − ũm)2]dx. (2.2.8)

Now,
∫
Am

(um−1 − um−2)
2 dx ≤

∫
Ω(um−1 − um−2)

2 dx since the integrand is non-negative.

Moreover, um = max{ũm, 0} and um−1 ≥ 0 imply (um−1 − ũm)2 ≥ (um−1 − um)2, therefore

−
∫
Am

(um−1 − ũm)2 dx ≤ −
∫
Am

(um−1 − um)2 dx.

Noting that, outside of Am, both um and um−1 vanish, we get

−
∫
Am

(um−1 − um)2 dx = −
∫
Ω
(um−1 − um)2 dx.

Returning to (2.2.8), we get the estimate for the time discretized term:

the right hand side of (2.2.8) ≤ 1

h2

∫
Ω
[(um−1 − um−2)

2 − (um−1 − um)2]dx.

Combining this result and the gradient term estimate (2.2.7), we obtain∫
Ω

[ 1

h2
(um−1 − um−2)

2 − 1

h2
(um−1 − um)2 +

1

2
|∇um−2|2 −

1

2
|∇um|2

]
dx ≥ 0.

Summing over m = 2, ..., k, we arrive at∫
Ω

[ 1

h2
(u1 − u0)

2 − 1

h2
(uk − uk−1)

2 +
1

2
|∇u0|2 +

1

2
|∇u1|2 −

1

2
|∇uk−1|2 −

1

2
|∇uk|2

]
dx ≥ 0,

which, after omitting the term |∇uk−1|2 ≥ 0, yields the desired estimate.

The following theorem is obtained by a standard argument from elliptic regularity theory. For

the sake of completeness, we shall briefly demonstrate it.

THEOREM 2.2.3 (Regularity). Assume, in addition, that u0, u1 ∈ L∞(Ω)∩C0,α0

loc (Ω) for some

α0 ∈ (0, 1), where u1 := u0 + hv0, and u0 are non-negative. For every Ω̃ ⊂⊂ Ω, there exists a

positive constant α ∈ (0, 1) independent of m, such that the minimizers ũm + um−2 belong to

C0,α(Ω̃).

To prove this, we prepare two lemmas.

LEMMA 2.2.1. ũm + um−2 ∈ L∞(Ω) for every m ≥ 2.
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Proof. We use mathematical induction for m ≥ 2 to prove that ũm ∈ L∞(Ω) for every m ≥
2, and we get the boundedness of ũm + um−2 ∈ L∞(Ω) as a by-product. For m = 2, setting

ψδ(u) := u − δ(u + u0 − k)+ ∈ K, where u := ũ2, (u + u0 − k)+ := max{u + u0 − k, 0}, δ > 0,

k ≥ max{2max∂Ω u0, 1}, we calculate the quantity J2(ψδ(u)) − J2(u), which is non-negative by

the minimality of u. Noting that Sm(ψδ(u)) ⊂ Sm(u), we have

0 ≤ J2(ψδ(u))− J2(u)

≤
∫
Ω

( |ψδ(u)− 2u1 + u0|2

2h2
− |u− 2u1 + u0|2

2h2

)
χS2(u) dx

+
1

4

∫
Ω

(
|∇ψδ(u) +∇u0|2 − |∇u+∇u0|2

)
dx.

Dividing by δ, letting δ → 0+, and setting Ak := {u+ u0 > k}, we get

0 ≤ −
∫
Ak∩S2(u)

u− 2u1 + u0
h2

(u+ u0 − k) dx− 1

2

∫
Ak

|∇u+∇u0|2 dx

≤
∫
Ak∩S2(u)

2u1
h2

(u+ u0 − k) dx− 1

2

∫
Ak

|∇u+∇u0|2 dx

≤ C

h2

(1
2

∫
Ak

(u+ u0 − k)2 dx+
1

2
|Ak|

)
− 1

2

∫
Ak

|∇u+∇u0|2 dx,

where we have used Young’s inequality at the last line. Since k ≥ 1, we get∫
Ak

|∇u+∇u0|2 dx ≤ C
(∫

Ak

(u+ u0 − k)2 dx+ k2|Ak|
)
.

Therefore, by [59, Theorem 2.5.1] which ensures the boundedness of the function, we find that

u+ u0 ∈ L∞(Ω) and hence u = ũ2 ∈ L∞(Ω).

Next, we assume that ũk ∈ L∞(Ω) for all k = 2, ...,m− 1. Since uk = max{ũk, 0} ∈ L∞(Ω) for

all k = 2, ...,m− 1, by repeating the above argument with ũ2, u1, u0 replaced by ũm, um−1, um−2,

respectively, we get ũm + um−2 ∈ L∞(Ω) for m ≥ 2. Therefore, ũm ∈ L∞(Ω).

The lemma and our setting implies that there is a µ > 0, which depends only on Ω, u0, u1, h

but not on m, such that supΩ |ũm + um−2| ≤ µ. Indeed, for fixed h, we can determine the number

M = M(h), such that T = Mh. Recall that, we use only the information about ũ1, ..., ũM

in our minimizing step. By above lemma, the minimizers ũ2, ũ3, ..., ũM has essential supremum

respectively, that is µm := supΩ |ũm + um−2| < ∞. Then, setting µ := maxµ1, ...., µM , we get

supΩ |ũm + um−2| ≤ µ for every m = 2, ...,M .

LEMMA 2.2.2. Fix d > 0. There exists γ = γ(Ω, µ, d, h) > 0 such that for U = ±(ũm + um−2),∫
Ak,r−σr

|∇U |2 dx ≤ γ
[ 1

(σr)2
sup
Br

(U − k)2 + 1
]
|Ak,r|

for all σ ∈ (0, 1), Br ⊂ Ω, and k with k ≥ maxBr U − d, where Ak,r := {x ∈ Br;U(x) > k}, and
Br is a ball of radius r.

Proof. For fixed m ≥ 2, first we show the statement for U = ũm+um−2. We set ζ = η2max{u+
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um−2−k, 0} in Proposition 3.2, where u := ũm, k is a real number with k ≥ maxBr(u+um−2)−d,
η is smooth function with spt η ⊂ Br, 0 ≤ η ≤ 1, η ≡ 1 on Bs, |∇η| ≤ 2/(r − s) in Br \ Bs, and

s = r − σr ∈ (0, r), σ ∈ (0, 1). Then, using the boundedness of u, um−1, um−2, we get

0 ≤ −
∫
Ak,r∩Sm(u)

u− 2um−1 + um−2

h2
η2(u+ um−2 − k) dx

− 1

2

∫
Ak,r

(∇u+∇um−2) · (2η)∇η(u+ um−2 − k) dx− 1

2

∫
Ak,r

|∇u+∇um−2|2η2 dx

≤ C|Ak,r|+
1

2

(1
2

∫
Ak,r

|∇(u+ um−2)|2η2 dx+ 2

∫
Ak,r

|∇η|2(u+ um−2 − k)2 dx
)

− 1

2

∫
Ak,r

|∇u+∇um−2|2η2 dx

≤ C
[
1 +

1

(σr)2
sup
Br

(u+ um−2 − k)2
]
|Ak,r| −

1

4

∫
Ak,s

|∇(u+ um−2)|2 dx,

where the constant C depends only on h, µ, d,Ω.

Next, we prove the same inequality for U = −(ũm + um−2). Note that −ũm is a minimizer of

the following functional:

J−
m(w) :=

∫
Ω∩S−

m(w)

|w + 2um−1 − um−2|2

2h2
dx+

1

4

∫
Ω
|∇w −∇um−2|2 dx.

in the set K− :=
{
w ∈ H1(Ω); w = −u0 on ∂Ω

}
,

where S−
m(w) is defined to be the set {w < 0} ∪ {um−1 > 0} ∪ {um−2 > 0}.

Now, for w := −ũm, we set φ := w − ζ ∈ K− where ζ := ηmax{w − um−2 − k, 0}, k is a real

number with k ≥ maxBr(w − um−2) − d, and η is a smooth function chosen in the same way as

above. Then, by the minimality of w,

0 ≤ J−
m(φ)− J−

m(w)

≤
∫
Ω∩S−

m(φ)

(−2(w + 2um−1 − um−2)

2h2
ζ +

|ζ|2

2h2

)
dx

+

∫
Ω

|w + 2um−1 − um−2|2

2h2

(
χS−

m(φ) − χS−
m(w)

)
dx

+
1

4

∫
Ω
|∇φ−∇um−2|2 dx− 1

4

∫
Ω
|∇w −∇um−2|2 dx. (2.2.9)

Note that the term in the third line is less than or equal to 1
2h2

∫
spt ζ |w + 2um−1 − um−2|2 dx,

since χS−
m(φ) − χS−

m(w) is positive only for x satisfying 0 ≤ w(x) < ζ(x). Therefore, noting that

spt ζ ⊂ Ak,r, the first two terms on the right-hand side of (2.2.9) are less than or equal to C|Ak,r|,
where C is a constant depending only Ω, µ, d, h. Indeed, we consider the following term:∫

Ω∩S−
m(φ)

(−2(w + 2um−1 − um−2)

2h2
ζ +

|ζ|2

2h2

)
dx+

1

2h2

∫
spt ζ

|w + 2um−1 − um−2|2 dx (2.2.10)
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The second term of (2.2.10): since spt ζ ⊂ Ak,r, by the boundedness of w, um−1, um−2,

1

2h2

∫
spt ζ

|w + 2um−1 − um−2|2 dx ≤ C(Ω,M, h)| spt ζ| ≤ C(Ω,M, h)|Ak,r|

hereafter Ak,r := {x ∈ Br : w(x)− um−2(x) > k}.
The first term of (2.2.10): noting that this term is zero outside of Ak,r, we calculate: On Ak,r,

−2(w + 2um−1 − um−2)

2h2
ζ +

|ζ|2

2h2
=

(−2w − 4um−1 + 2um−2 + ζ)ζ

2h2

=
ζ

2h2
{−2w − 4um−1 + 2um−2 + η(w − um−2 − k)}

=
ζ

h2

{(1
2
η − 1

)
w − 2um−1 +

(
1− 1

2
η
)
um−2 −

1

2
kη

}
.

Now, by the choice of k, and definition of Ak,r, we have

max
Br

(w − um−2)− d ≤ k < w − um−2 on Ak,r

Since Ak,r ⊂ Br, the right hand side, is estimated:

≤ max
Br

(w − um−2) < max
Br

(w − um−2) + d

Thus, we have |k−maxBr(w−um−2)| < d. Since w−um−2 is bounded, |maxBr(w−um−2)| ≤M .

So, we have:

|k| ≤ d+ |max
Br

(w − um−2)| < d+M. (2.2.11)

Then, we get ∫
Ω
ζ dx =

∫
Ak,r

ζ dx

=

∫
Ak,r

η(w − um−2 − k) dx ≤
∫
Ak,r

η(|w|+ |um−2|+ |k|) dx

≤ C(Ω,M, d)|Ak,r|. (by (2.2.11))
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Therefore, we have:

(The first term of (2.2.10)) ≤
∣∣∣ ∫

Ω∩S−
m(φ)

(−2(w + 2um−1 − um−2)

2h2
ζ +

|ζ|2

2h2

)
dx

∣∣∣
≤

∫
Ω∩S−

m(φ)

∣∣∣−2(w + 2um−1 − um−2)

2h2
ζ +

|ζ|2

2h2

∣∣∣ dx
≤

∫
Ak,r

∣∣∣−2(w + 2um−1 − um−2)

2h2
ζ +

|ζ|2

2h2

∣∣∣ dx
≤

∫
Ak,r

ζ

h2

{∣∣∣1
2
η − 1

∣∣∣|w|+ 2|um−1|+
(
1− 1

2
η
)
|um−2|+

1

2
|k|η

}
dx

≤ C(Ω,M, d, h)

∫
Ak,r

ζ dx (by (1.2) and boundedness of w etc. )

≤ C(Ω,M, d, h)|Ak,r|.

In the end, we have the estimate for (2.2.10) from above:

(2.2.10) ≤ C(Ω,M, d, h)|Ak,r|.

Then, we continue the estimate (2.2.9) as follows:

0 ≤ C|Ak,r|+
1

2

∫
Ak,r

(1− η)2|∇w −∇um−2|2 dx+
1

2

∫
Ak,r

(w − um−2 − k)2|∇η|2 dx

− 1

4

∫
Ak,r

|∇w −∇um−2|2 dx

≤ C|Ak,r|+
1

2

∫
Ak,r

|∇(w − um−2)|2 dx+
2

(σr)2

∫
Ak,r

(w − um−2 − k)2 dx

− 3

4

∫
Ak,s

|∇(w − um−2)|2 dx.

The last inequality, we use the following argument. Since (1− η)2 ≤ 1− η,

1

2

∫
Ak,r

(1− η)2|∇w −∇um−2|2 dx ≤ 1

2

∫
Ak,r

(1− η)|∇w −∇um−2|2 dx

=
1

2

∫
Ak,r

|∇w −∇um−2|2 dx− 1

2

∫
Ak,r

−η|∇w −∇um−2|2 dx

≤ 1

2

∫
Ak,r

|∇w −∇um−2|2 dx− 1

2

∫
Ak,s

|∇w −∇um−2|2 dx

where we use the fact η ≡ 1 on Ak,s and Ak,s ⊂ Ak,r in the last inequality.

Therefore, we get∫
Ak,s

|∇(w − um−2)|2 dx ≤ C|Ak,r|+ θ

∫
Ak,r

|∇(w − um−2)|2 dx+
8

3

1

(σr)2

∫
Ak,r

(w − um−2 − k)2 dx,
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where θ = 2
3 < 1. By Lemma V. 3.1 in [33], we obtain∫

Ak,s

|∇(w − um−2)|2 dx ≤ C|Ak,r|+
8

3

1

(σr)2

∫
Ak,r

(w − um−2 − k)2 dx,

which is the desired estimate for −(ũm + um−2).

Proof of Theorem 2.2.3 Lemmas 2.2.1 and 2.2.2 imply that ũ := ũm + um−2 (m ≥ 2) belongs

to the De Giorgi class B2(Ω, µ, γ, d). Thus, by De Giorgi’s embedding theorem ([59, Section 2.6]),

ũm + um−2 ∈ C0,α̃(Ω̃) for some α̃ ∈ (0, 1) which is independent of m.

The above theorem tell us that the minimizer ũm is continuous on Ω because ũm + um−2

is locally Hölder continuous, and um−2 is continuous. Thus, we can choose the support of test

functions within the open set {ũm > 0}, which leads to the following first variation formula for

Jm.

PROPOSITION 2.2.2 (First variation formula). Any minimizer u of Jm, m = 2, 3, . . . ,M ,

satisfies the following equation:∫
Ω

(
u− 2um−1 + um−2

h2
ϕ+∇u+ um−2

2
· ∇ϕ

)
dx = 0 (2.2.12)

for all ϕ ∈ C∞
c (Ω ∩ {u > 0}).

Proof. Since {u > 0} is an open set by Theorem 2.2.3, we can calculate the first variation of Jm

using u+ εϕ with ϕ ∈ C∞
c (Ω ∩ {u > 0}) as a test function. Indeed,

Jm(u+ εφ)− Jm(u) =

∫
Ω

|(u+ εφ)− 2um−1 + um−2|2

2h2
χSm(u+εφ) +

1

4

∫
Ω
|∇(u+ εφ) +∇um−2|2

−
(∫

Ω

|u− 2um−1 + um−2|2

2h2
χSm(u) +

1

4

∫
Ω
|∇u+∇um−2|2

)
=

∫
Ω

2εφ(u− 2um−1 + um−2)

2h2
dx+

1

4

∫
Ω
2ε(∇u+∇um−2) · ∇φdx+O(ε2),

where O(ε2) denotes (Constant)×ε2, and we use the fact there exists ε0 > 0 such that χSm(u+εϕ) =

χSm(u) for |ε| < ε0. Thus,

0 = lim
ε↓0

Jm(u+ εφ)− Jm(u)

ε

=

∫
Ω

(
u− 2um−1 + um−2

h2
ϕ+∇u+ um−2

2
· ∇ϕ

)
dx
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Crank-Nicolson minimization scheme

II

3.1 Existence of weak solution

In this section, we will construct weak solutions to Problem 1.1 in the one dimensional setting.

First, we state the definition.

DEFINITION 3.1.1 (Weak solution). For a given T > 0, a weak solution is defined as a

function u ∈ H1((0, T );L2(Ω)) ∩ L∞((0, T );H1
0 (Ω)) satisfying the following equality, for all test

functions ϕ ∈ C∞
c (Ω× [0, T ) ∩ {u > 0}):∫ T

0

∫
Ω
(−utϕt +∇u · ∇ϕ) dxdt−

∫
Ω
v0ϕ(x, 0)dx = 0. (3.1.1)

Moreover, we require that u ≡ 0 is satisfied outside of {u > 0}, and that u(0, x) = u0(x) in Ω in

the sense of traces.

REMARK 3.1.1. This weak solution contains two pieces of information, namely, the wave equa-

tion on the positive part {u > 0}, and harmonicity on the interior of the complement. If we assume

the above weak solution preserves energy and has a regular free boundary, we can formally derive

a free boundary condition solely from the definition of the weak solution. If we consider more

general settings, such as including an adhesion term, the problem becomes more complicated and

requires a different notion of a weak solution.

REMARK 3.1.2. If we consider the one dimensional case, that is, Ω ⊂ R is bounded open

interval, the function u ∈ H1((0, T );L2(Ω)) ∩ L∞((0, T );H1
0 (Ω)) is continuous on Ω× (0, T ), thus

we can take the test function ϕ with its support in {u > 0}. The continuity of u follows from the

following inequality:

|u(x, t)− u(y, s)| ≤ C1∥u∥L∞((0,T );H1
0 (Ω))|x− y|

1
2 + C2∥u∥L∞((0,T );H1

0 (Ω))∥u∥H1((0,T );L2(Ω))|t− s|
1
2

a.e. (x, t), (y, s) ∈ Ω× (0, T ), where u(x, t) := [u(t)](x).

39
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In constructing our weak solution, we carry out interpolation in time of the cut-off minimizers

{um} of Jm, and introduce the notion of approximate weak solutions. In particular, we define ūh

and uh as the maps (0, T ) → H1(Ω) by

ūh(t) = um, m = 0, 1, 2, . . . ,M

uh(t) =
t− (m− 1)h

h
um +

mh− t

h
um−1, m = 1, 2, 3, . . . ,M

for t ∈ ((m − 1)h,mh]. These functions allow us to construct the following approximate solution

based on the first variation formula (Proposition 2.2.12).

DEFINITION 3.1.2 (Approximate weak solution). We call a sequence of functions {um} ⊂
K an approximate weak solution of Problem 1.1 if the functions ūh and uh defined above satisfy∫ T

h

∫
Ω

(
uht (t)− uht (t− h)

h
ϕ+∇ ūh(t) + ūh(t− 2h)

2
· ∇ϕ

)
dx dt = 0

for all ϕ ∈ C∞
c (Ω× [0, T ) ∩ {uh > 0}),

uh ≡ 0 in Ω× (0, T ) \ {uh > 0}. (3.1.2)

We further require that the initial conditions uh(0) = u0 and uh(h) = u0 + hv0 are fulfilled.

If one can pass to the limit as h→ 0, then the above approximate weak solutions are expected

to converge to a weak solution defined above. In the one-dimensional setting, that is dimΩ = 1,

by energy estimate (2.2.5) in Section 3, we obtain the following convergence result, as in [51].

LEMMA 3.1.1 (Limit of approximate weak solution). Let Ω ⊂ R be a bounded open

interval. Then, there exists a decreasing sequence {hj}∞j=1 with hj → 0+ (denoted as h again) and

u ∈ H1((0, T );L2(Ω)) ∩ L∞((0, T );H1
0 (Ω)) such that

uht ⇀ ut weakly ∗ in L∞((0, T );L2(Ω)), (3.1.3)

∇ūh ⇀ ∇u weakly ∗ in L∞((0, T );L2(Ω)), (3.1.4)

uh ⇒ u uniformly on [0, T )× Ω, (3.1.5)

where ∇ means the spatial derivative, that is, ∇ := ∂
∂x . Moreover, u is continuous on Ω× (0, T ),

and satisfies the initial condition u(x, 0) = u0(x).

Proof. Rewriting the energy estimate (2.2.5) with ūh and uh, we have

∥uht (t)∥2L2(Ω) + ∥∇ūh(t)∥2L2(Ω) ≤ C for a.e. t ∈ (0, T ), (3.1.6)

which together with the fact that uh − u0 has zero trace on ∂Ω immediately implies (3.1.3) and

(3.1.4). Regarding (3.1.5), we first prove the equicontinuity of the family {uh} using (3.1.6) and

the fact that, when Ω is an interval, for any f ∈ H1
0 (Ω), we have

∥f∥L∞(Ω) ≤ C∥f∥1/2
L2(Ω)

∥f ′∥1/2
L2(Ω)

.
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Indeed, for any t, s ∈ [0, T )

∥uh(t)− uh(s)∥2L∞(Ω) ≤ C∥uh(t)− uh(s)∥L2(Ω)∥∇uh(t)−∇uh(s)∥L2(Ω)

≤ C

∫ t

s
∥uht (τ)∥L2(Ω) dτ

≤ C|t− s|,

and thus, with setting uh(x, t) := [uh(t)](x),

|uh(x, t)− uh(y, s)| ≤ |uh(x, t)− uh(y, t)|+ |uh(y, t)− uh(y, s)|

=

∣∣∣∣∫ x

y
∇uh(ξ, t) dξ

∣∣∣∣+ |uh(y, t)− uh(y, s)|

≤ ∥∇uh∥L∞((0,T );L2(Ω))|x− y|1/2 + C|t− s|1/2.

Moreover, the uniform boundedness of the family {uh} follows as a by-product. Therefore,

invoking the Ascoli-Arzelà theorem concludes the proof of (3.1.5).

The following lemma is needed to prove the existence of weak solutions.

LEMMA 3.1.2. Under the assumption of Lemma 3.1.1, define w̄h(t) := 0 if t ∈ (0, h], and

w̄h(t) := ūh(t− 2h) when t ∈ (h, T ). Then,

∇w̄h ⇀ ∇u weakly ∗ in L∞((0, T );L2(Ω)).

Proof. In the following argument, we omit the space variable x for simplicity. We fix U ∈
L1((0, T );L2(Ω)) and extend it by zero outside of (0, T ). The extended function, denoted again

by U , belongs to L1((−∞,∞);L2(Ω)). We calculate as follows:

∣∣∣∫ T

0
⟨∇w̄h(t), U(t)⟩L2(Ω) dt−

∫ T

0
⟨∇u(t), U(t)⟩L2(Ω) dt

∣∣∣
=

∣∣∣∫ T−2h

−h
⟨∇ūh(t), U(t+ 2h)⟩L2(Ω) dt−

∫ T

0
⟨∇u(t), U(t)⟩L2(Ω) dt

∣∣∣

≤
∣∣∣∫ T−2h

0
⟨∇ūh(t), U(t+ 2h)− U(t)⟩L2(Ω) dt

∣∣∣+ ∣∣∣∫ T

0
⟨∇ūh(t)−∇u(t), U(t)⟩L2(Ω) dt

∣∣∣
+
∣∣∣∫ T

T−2h
⟨∇ūh(t)−∇u(t), U(t)⟩L2(Ω) dt

∣∣∣+ ∣∣∣∫ 0

−h
⟨∇ūh(t), U(t+ 2h)⟩L2(Ω) dt

∣∣∣
+
∣∣∣∫ T

T−2h
⟨∇u(t), U(t)⟩L2(Ω) dt

∣∣∣
≤ C

∫ ∞

−∞
∥U(t+ 2h)− U(t)∥L2(Ω) dt+

∣∣∣∫ T

0
⟨∇ūh(t)−∇u(t), U(t)⟩L2(Ω) dt

∣∣∣
+ C

∫ T

T−2h
∥U(t)∥L2(Ω) dt+ C

∫ 2h

h
∥U(t)∥L2(Ω) dt, (3.1.7)

where the constant C is independent of h. Letting h → 0+, the second term converges to 0 by
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(3.1.4), and the remaining terms vanish thanks to the integrability of U .

We now arrive at the following theorem:

THEOREM 3.1.1 (Existence weak solutions to Problem 1.1). Let Ω be a bounded domain

in R. Then Problem 1.1 has a weak solution in the sense of Definition 3.1.1.

Proof. The proof is similar to that in [85] and [37]. Without loss of generality, we can consider

Ω = (0, 1). By the definition of an approximate weak solution (3.1.2), we have

∫ T

h

∫
Ω

(
uht (t)− uht (t− h)

h
φ+∇ ūh(t) + ūh(t− 2h)

2
· ∇φ

)
dxdt = 0

∀φ ∈ C(ūh) := C∞
c (Ω× [0, T ) ∩ {ūh > 0}),

uh ≡ 0 in Ω× (0, T ) \ {uh > 0}. (3.1.8)

We fix ψ ∈ C(u), where u is obtained in Lemma 5.1. Since u is continuous on Ω × (0, T ), there

exists η > 0 such that u ≥ η on sptψ. By Lemma 3.1.1, the subsequence {uh} converges to u

uniformly, and there exists h0 > 0 such that

max
(x,t)∈Ω×(0,T )

|uh(x, t)− u(x, t)| ≤ η

2
for all h < h0.

Therefore, we have uh ≥ u − |uh − u| ≥ η/2 on spt ψ for any h ∈ (0, h0). Note that ūh(x, t) =

uh(x, kh) for any t ∈ ((k − 1)h, kh], and ūh ≥ η/2 > 0 on spt ψ for any h ∈ (0, h0). This implies

that (3.1.8) holds for any test function φ ∈ C(u) whenever h < h0. The time-discretized term can

be rearranged as∫ T

h

uht (t)− uht (t− h)

h
φ(t) dt

=

∫ T

0
uht (t)

φ(t)− φ(t+ h)

h
dt− 1

h

∫ h

0
uht (t)φ(t+ h) dt+

1

h

∫ T

T−h
uht (t)φ(t+ h) dt.

Hence, using Lemma 3.1.1 and Lemma 3.1.2, and passing to h→ 0+ in (3.1.8), we obtain∫ T

0

∫
Ω
(−utφt +∇u · ∇φ) dxdt−

∫
Ω
v0φ(x, 0)dx = 0 ∀φ ∈ C(u),

which was our goal. Moreover, by the construction, u ≡ 0 is satisfied outside of {u > 0}, and that

u(0, x) = u0(x) in Ω.

3.2 Numerical results for the one-dimensional problem

In this section, we present several numerical results for the equation

χ{u>0}utt −∆u = 0. (3.2.1)
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The numerical computation in this section is due to Professor Yoshiho Akagawa of National Insti-

tute of Technology, Gifu collage. Main purpose in this section comparing the minimization of the

Crank-Nicolson type functional

Jm(u) :=

∫
Ω∩({u>0}∪{um−1>0}∪{um−2>0})

|u− 2um−1 + um−2|2

2h2
dx+

1

4

∫
Ω
|∇u+∇um−2|2 dx.

and the original discrete Morse flow method of [73], which uses the functional

J̃m(u) :=

∫
Ω∩({u>0}∪{um−1>0})

|u− 2um−1 + um−2|2

2h2
dx+

1

2

∫
Ω
|∇u|2 dx.

In the numerical calculation, we simply use the functional Im without the restriction of the inte-

gration domain and the corresponding functional Ĩm for the original discrete Morse flow method.

Subsequently, for a minimizer ũm, m ≥ 2, of Im or Ĩm, we define

um := max{ũm, 0}.

We regard um as a numerical solution at time level t = mh. The minimization problems are

discretized by the finite element method, where the approximate minimizer is a continuous function

over the domain and piece-wise linear over each element.

In the one-dimensional case, equation (3.2.1) has been employed in describing the dynamics

of a string hitting a plane with zero reflection constant. In two dimensions, the graph of the

solution may be considered as representing a soap film touching a water surface. Another important

application of this model is the volume constrained problem describing the motion of scalar droplets

over a flat surface (see, e.g., [37], and next section).

Having in mind the model of a string hitting an obstacle, let us first consider problem (3.2.1)

in the open interval Ω = (0, 1), with the initial condition

u0(x) :=

4x+ 0.2 if 0 ≤ x < 1/4,

− 4

3
(x− 1) + 0.2 otherwise ,

and v0 ≡ 0. Figure 3.1 shows the behavior of the numerical solution for both methods. For the

Crank-Nicolson method, the corners in the graph of the solution are kept, even as time progresses.

This is not the case for the discrete Morse flow method, where corners are smoothed.
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Figure 3.1: Numerical solution at four distinct times for the Crank-Nicolson method (blue) and

the original discrete Morse flow method (red). The time step size is h = 1.0×10−4 and the spacial

mesh size is ∆x = h.

Figure 3.2 shows that the free boundary condition u2x − u2t = 0 on Ω × (0, T ) ∩ ∂{u > 0} is

satisfied when the string peels off the obstacle.

 0

 1

 0  1  2  3  4  5

x

t

Crank-Nicolson Discrete Morse flow

Figure 3.2: The free boundary {(t, x);u(x, t) = 0} corresponding to the motion in Fig. 1.

Figure 3.3 shows that the energy is lost when the string touches the obstacle, while the energy is

preserved before and after the contact of the string with the obstacle. For the sake of comparison,

we note that the energy of the solution obtained by discrete Morse flow decays even during the

non-contact stage.

 0
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Figure 3.3: The evolution of the energy of the numerical solution for both methods.
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To test the energy decay tendency of both methods, we solved the problem without free bound-

ary with the initial condition u0 = sin(2nπx), and v0 ≡ 0. It was found that, for the original dis-

crete Morse flow, energy decay becomes prominent with decreasing time resolution and increasing

wave frequency. On the other hand, as can be observed in Figure 3.4, the Crank-Nicolson method

preserves energy independent of the time resolution and wave frequency.
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E(T)/E(0)

Crank-Nicolson

Discrete Morse flow

�

�

E(T)/E(0)

Figure 3.4: Comparison of energy decay tendency for both methods using the initial data u0 =

sin(2nπx) and v0 ≡ 0. Here, ∆x = h is used.

Although the Crank-Nicolson method displays excellent energy-preserving properties, it ap-

pears to include an incorrect phase-shift, as is the case with the original discrete Morse flow. We

summarize the features of both methods in Table 3.1.

C-N DMF

energy conserved decays

free boundary condition holds holds

high harmonic wave preserved decays

including constraints possible possible

phase shift occurs occurs

Table 3.1: Main features of the two methods compared in this section.

3.3 Numerical results for higher dimensions and more general

problems

In this section, we investigate the energy preservation properties of the proposed scheme in the

two dimensional setting. In particular, the functional (2.1.1) is used to approximate a solution

of the wave equation with initial conditions u0(x, y) = sin(πx) sin(πy), v0(x, y) = 0 and Dirichlet

zero boundary condition, where the domain Ω = (0, 1)× (0, 1). The numerical computation in this

section is due to Professor Elliott Ginder of Meiji University.
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The functional value corresponding to a given function u is approximated using P1 finite ele-

ments, We triangulate the domain Ω into a finite number of elements Ω = ∪N
j ej , where each ej is

a triangular subdomain of Ω. The approximation is as follows:

Im(u) ≈
N∑
j=1

∫
ej

( |û− 2ûm−1 + ûm−2|2

2h2
+

|∇û+∇ûm−2|2

4

)
dx

where the notation û refers to the P1 approximation of u restricted to an arbitrary element e. and

the functional minimization is performed using a steepest descent algorithm. Here Ω has been

uniformly partitioned into N = 5684 elements. (as shown in Figure 3.5).
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<latexit sha1_base64="UrOAIvAC/fu1A+3sAjBc5swQhOQ=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjRfsBbSib7aRdu9mE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8c2s3n5CpXksH8wkQT+iQ8lDzqix1j32H/vlilt15yKr4OVQgVyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF2Lkkao/Wy+6pScWWdAwljZJw2Zu78nMhppPYkC2xlRM9LLtZn5X62bmvDKz7hMUoOSLT4KU0FMTGZ3kwFXyIyYWKBMcbsrYSOqKDM2nZINwVs+eRVaF1XP8t1lpX6dx1GEEziFc/CgBnW4hQY0gcEQnuEV3hzhvDjvzseiteDkM8fwR87nD0UkjcY=</latexit><latexit sha1_base64="UrOAIvAC/fu1A+3sAjBc5swQhOQ=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjRfsBbSib7aRdu9mE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8c2s3n5CpXksH8wkQT+iQ8lDzqix1j32H/vlilt15yKr4OVQgVyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF2Lkkao/Wy+6pScWWdAwljZJw2Zu78nMhppPYkC2xlRM9LLtZn5X62bmvDKz7hMUoOSLT4KU0FMTGZ3kwFXyIyYWKBMcbsrYSOqKDM2nZINwVs+eRVaF1XP8t1lpX6dx1GEEziFc/CgBnW4hQY0gcEQnuEV3hzhvDjvzseiteDkM8fwR87nD0UkjcY=</latexit><latexit sha1_base64="UrOAIvAC/fu1A+3sAjBc5swQhOQ=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjRfsBbSib7aRdu9mE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8c2s3n5CpXksH8wkQT+iQ8lDzqix1j32H/vlilt15yKr4OVQgVyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF2Lkkao/Wy+6pScWWdAwljZJw2Zu78nMhppPYkC2xlRM9LLtZn5X62bmvDKz7hMUoOSLT4KU0FMTGZ3kwFXyIyYWKBMcbsrYSOqKDM2nZINwVs+eRVaF1XP8t1lpX6dx1GEEziFc/CgBnW4hQY0gcEQnuEV3hzhvDjvzseiteDkM8fwR87nD0UkjcY=</latexit><latexit sha1_base64="UrOAIvAC/fu1A+3sAjBc5swQhOQ=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjRfsBbSib7aRdu9mE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8c2s3n5CpXksH8wkQT+iQ8lDzqix1j32H/vlilt15yKr4OVQgVyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF2Lkkao/Wy+6pScWWdAwljZJw2Zu78nMhppPYkC2xlRM9LLtZn5X62bmvDKz7hMUoOSLT4KU0FMTGZ3kwFXyIyYWKBMcbsrYSOqKDM2nZINwVs+eRVaF1XP8t1lpX6dx1GEEziFc/CgBnW4hQY0gcEQnuEV3hzhvDjvzseiteDkM8fwR87nD0UkjcY=</latexit>

(x1, y1)
<latexit sha1_base64="54GjtyatOeRwn/7CkOaMuk8hRm0=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EiVJAyI4Iui25cVrAXaYchk2ba0CQzJBmxDH0KNy4UcevjuPNtTNtZaOsPgY//nEPO+cOEM21c99sprKyurW8UN0tb2zu7e+X9g5aOU0Vok8Q8Vp0Qa8qZpE3DDKedRFEsQk7b4ehmWm8/UqVZLO/NOKG+wAPJIkawsdZD9SnwzsaBdxqUK27NnQktg5dDBXI1gvJXrx+TVFBpCMdadz03MX6GlWGE00mpl2qaYDLCA9q1KLGg2s9mC0/QiXX6KIqVfdKgmft7IsNC67EIbafAZqgXa1Pzv1o3NdGVnzGZpIZKMv8oSjkyMZpej/pMUWL42AImitldERlihYmxGZVsCN7iycvQOq95lu8uKvXrPI4iHMExVMGDS6jDLTSgCQQEPMMrvDnKeXHenY95a8HJZw7hj5zPH0H3j2I=</latexit><latexit sha1_base64="54GjtyatOeRwn/7CkOaMuk8hRm0=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EiVJAyI4Iui25cVrAXaYchk2ba0CQzJBmxDH0KNy4UcevjuPNtTNtZaOsPgY//nEPO+cOEM21c99sprKyurW8UN0tb2zu7e+X9g5aOU0Vok8Q8Vp0Qa8qZpE3DDKedRFEsQk7b4ehmWm8/UqVZLO/NOKG+wAPJIkawsdZD9SnwzsaBdxqUK27NnQktg5dDBXI1gvJXrx+TVFBpCMdadz03MX6GlWGE00mpl2qaYDLCA9q1KLGg2s9mC0/QiXX6KIqVfdKgmft7IsNC67EIbafAZqgXa1Pzv1o3NdGVnzGZpIZKMv8oSjkyMZpej/pMUWL42AImitldERlihYmxGZVsCN7iycvQOq95lu8uKvXrPI4iHMExVMGDS6jDLTSgCQQEPMMrvDnKeXHenY95a8HJZw7hj5zPH0H3j2I=</latexit><latexit sha1_base64="54GjtyatOeRwn/7CkOaMuk8hRm0=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EiVJAyI4Iui25cVrAXaYchk2ba0CQzJBmxDH0KNy4UcevjuPNtTNtZaOsPgY//nEPO+cOEM21c99sprKyurW8UN0tb2zu7e+X9g5aOU0Vok8Q8Vp0Qa8qZpE3DDKedRFEsQk7b4ehmWm8/UqVZLO/NOKG+wAPJIkawsdZD9SnwzsaBdxqUK27NnQktg5dDBXI1gvJXrx+TVFBpCMdadz03MX6GlWGE00mpl2qaYDLCA9q1KLGg2s9mC0/QiXX6KIqVfdKgmft7IsNC67EIbafAZqgXa1Pzv1o3NdGVnzGZpIZKMv8oSjkyMZpej/pMUWL42AImitldERlihYmxGZVsCN7iycvQOq95lu8uKvXrPI4iHMExVMGDS6jDLTSgCQQEPMMrvDnKeXHenY95a8HJZw7hj5zPH0H3j2I=</latexit><latexit sha1_base64="54GjtyatOeRwn/7CkOaMuk8hRm0=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EiVJAyI4Iui25cVrAXaYchk2ba0CQzJBmxDH0KNy4UcevjuPNtTNtZaOsPgY//nEPO+cOEM21c99sprKyurW8UN0tb2zu7e+X9g5aOU0Vok8Q8Vp0Qa8qZpE3DDKedRFEsQk7b4ehmWm8/UqVZLO/NOKG+wAPJIkawsdZD9SnwzsaBdxqUK27NnQktg5dDBXI1gvJXrx+TVFBpCMdadz03MX6GlWGE00mpl2qaYDLCA9q1KLGg2s9mC0/QiXX6KIqVfdKgmft7IsNC67EIbafAZqgXa1Pzv1o3NdGVnzGZpIZKMv8oSjkyMZpej/pMUWL42AImitldERlihYmxGZVsCN7iycvQOq95lu8uKvXrPI4iHMExVMGDS6jDLTSgCQQEPMMrvDnKeXHenY95a8HJZw7hj5zPH0H3j2I=</latexit>

(x2, y2)
<latexit sha1_base64="DoB1XwK8izxXguu3YIPrhMudKfc=">AAAB8HicbZDLSgMxFIbPeK31VnXpJliEClJmiqDLohuXFexF2mHIpJk2NMkMSUYsQ5/CjQtF3Po47nwb03YW2vpD4OM/55Bz/jDhTBvX/XZWVtfWNzYLW8Xtnd29/dLBYUvHqSK0SWIeq06INeVM0qZhhtNOoigWIaftcHQzrbcfqdIslvdmnFBf4IFkESPYWOuh8hTUzsdB7Swold2qOxNaBi+HMuRqBKWvXj8mqaDSEI617npuYvwMK8MIp5NiL9U0wWSEB7RrUWJBtZ/NFp6gU+v0URQr+6RBM/f3RIaF1mMR2k6BzVAv1qbmf7VuaqIrP2MySQ2VZP5RlHJkYjS9HvWZosTwsQVMFLO7IjLEChNjMyraELzFk5ehVat6lu8uyvXrPI4CHMMJVMCDS6jDLTSgCQQEPMMrvDnKeXHenY9564qTzxzBHzmfP0UFj2Q=</latexit><latexit sha1_base64="DoB1XwK8izxXguu3YIPrhMudKfc=">AAAB8HicbZDLSgMxFIbPeK31VnXpJliEClJmiqDLohuXFexF2mHIpJk2NMkMSUYsQ5/CjQtF3Po47nwb03YW2vpD4OM/55Bz/jDhTBvX/XZWVtfWNzYLW8Xtnd29/dLBYUvHqSK0SWIeq06INeVM0qZhhtNOoigWIaftcHQzrbcfqdIslvdmnFBf4IFkESPYWOuh8hTUzsdB7Swold2qOxNaBi+HMuRqBKWvXj8mqaDSEI617npuYvwMK8MIp5NiL9U0wWSEB7RrUWJBtZ/NFp6gU+v0URQr+6RBM/f3RIaF1mMR2k6BzVAv1qbmf7VuaqIrP2MySQ2VZP5RlHJkYjS9HvWZosTwsQVMFLO7IjLEChNjMyraELzFk5ehVat6lu8uyvXrPI4CHMMJVMCDS6jDLTSgCQQEPMMrvDnKeXHenY9564qTzxzBHzmfP0UFj2Q=</latexit><latexit sha1_base64="DoB1XwK8izxXguu3YIPrhMudKfc=">AAAB8HicbZDLSgMxFIbPeK31VnXpJliEClJmiqDLohuXFexF2mHIpJk2NMkMSUYsQ5/CjQtF3Po47nwb03YW2vpD4OM/55Bz/jDhTBvX/XZWVtfWNzYLW8Xtnd29/dLBYUvHqSK0SWIeq06INeVM0qZhhtNOoigWIaftcHQzrbcfqdIslvdmnFBf4IFkESPYWOuh8hTUzsdB7Swold2qOxNaBi+HMuRqBKWvXj8mqaDSEI617npuYvwMK8MIp5NiL9U0wWSEB7RrUWJBtZ/NFp6gU+v0URQr+6RBM/f3RIaF1mMR2k6BzVAv1qbmf7VuaqIrP2MySQ2VZP5RlHJkYjS9HvWZosTwsQVMFLO7IjLEChNjMyraELzFk5ehVat6lu8uyvXrPI4CHMMJVMCDS6jDLTSgCQQEPMMrvDnKeXHenY9564qTzxzBHzmfP0UFj2Q=</latexit><latexit sha1_base64="DoB1XwK8izxXguu3YIPrhMudKfc=">AAAB8HicbZDLSgMxFIbPeK31VnXpJliEClJmiqDLohuXFexF2mHIpJk2NMkMSUYsQ5/CjQtF3Po47nwb03YW2vpD4OM/55Bz/jDhTBvX/XZWVtfWNzYLW8Xtnd29/dLBYUvHqSK0SWIeq06INeVM0qZhhtNOoigWIaftcHQzrbcfqdIslvdmnFBf4IFkESPYWOuh8hTUzsdB7Swold2qOxNaBi+HMuRqBKWvXj8mqaDSEI617npuYvwMK8MIp5NiL9U0wWSEB7RrUWJBtZ/NFp6gU+v0URQr+6RBM/f3RIaF1mMR2k6BzVAv1qbmf7VuaqIrP2MySQ2VZP5RlHJkYjS9HvWZosTwsQVMFLO7IjLEChNjMyraELzFk5ehVat6lu8uyvXrPI4CHMMJVMCDS6jDLTSgCQQEPMMrvDnKeXHenY9564qTzxzBHzmfP0UFj2Q=</latexit>

(x3, y3)
<latexit sha1_base64="FSFq4Z52BX04k/rk5eltWnVvAqM=">AAAB8HicbZDLSsNAFIZP6q3WW9Wlm8EiVJCSWEGXRTcuK9iLtCFMppN26GQSZiZiCH0KNy4UcevjuPNtnLZZaOsPAx//OYc55/djzpS27W+rsLK6tr5R3Cxtbe/s7pX3D9oqSiShLRLxSHZ9rChngrY005x2Y0lx6HPa8cc303rnkUrFInGv05i6IR4KFjCCtbEeqk9e/Sz16qdeuWLX7JnQMjg5VCBX0yt/9QcRSUIqNOFYqZ5jx9rNsNSMcDop9RNFY0zGeEh7BgUOqXKz2cITdGKcAQoiaZ7QaOb+nshwqFQa+qYzxHqkFmtT879aL9HBlZsxESeaCjL/KEg40hGaXo8GTFKieWoAE8nMroiMsMREm4xKJgRn8eRlaJ/XHMN3F5XGdR5HEY7gGKrgwCU04Baa0AICITzDK7xZ0nqx3q2PeWvBymcO4Y+szx9IE49m</latexit><latexit sha1_base64="FSFq4Z52BX04k/rk5eltWnVvAqM=">AAAB8HicbZDLSsNAFIZP6q3WW9Wlm8EiVJCSWEGXRTcuK9iLtCFMppN26GQSZiZiCH0KNy4UcevjuPNtnLZZaOsPAx//OYc55/djzpS27W+rsLK6tr5R3Cxtbe/s7pX3D9oqSiShLRLxSHZ9rChngrY005x2Y0lx6HPa8cc303rnkUrFInGv05i6IR4KFjCCtbEeqk9e/Sz16qdeuWLX7JnQMjg5VCBX0yt/9QcRSUIqNOFYqZ5jx9rNsNSMcDop9RNFY0zGeEh7BgUOqXKz2cITdGKcAQoiaZ7QaOb+nshwqFQa+qYzxHqkFmtT879aL9HBlZsxESeaCjL/KEg40hGaXo8GTFKieWoAE8nMroiMsMREm4xKJgRn8eRlaJ/XHMN3F5XGdR5HEY7gGKrgwCU04Baa0AICITzDK7xZ0nqx3q2PeWvBymcO4Y+szx9IE49m</latexit><latexit sha1_base64="FSFq4Z52BX04k/rk5eltWnVvAqM=">AAAB8HicbZDLSsNAFIZP6q3WW9Wlm8EiVJCSWEGXRTcuK9iLtCFMppN26GQSZiZiCH0KNy4UcevjuPNtnLZZaOsPAx//OYc55/djzpS27W+rsLK6tr5R3Cxtbe/s7pX3D9oqSiShLRLxSHZ9rChngrY005x2Y0lx6HPa8cc303rnkUrFInGv05i6IR4KFjCCtbEeqk9e/Sz16qdeuWLX7JnQMjg5VCBX0yt/9QcRSUIqNOFYqZ5jx9rNsNSMcDop9RNFY0zGeEh7BgUOqXKz2cITdGKcAQoiaZ7QaOb+nshwqFQa+qYzxHqkFmtT879aL9HBlZsxESeaCjL/KEg40hGaXo8GTFKieWoAE8nMroiMsMREm4xKJgRn8eRlaJ/XHMN3F5XGdR5HEY7gGKrgwCU04Baa0AICITzDK7xZ0nqx3q2PeWvBymcO4Y+szx9IE49m</latexit><latexit sha1_base64="FSFq4Z52BX04k/rk5eltWnVvAqM=">AAAB8HicbZDLSsNAFIZP6q3WW9Wlm8EiVJCSWEGXRTcuK9iLtCFMppN26GQSZiZiCH0KNy4UcevjuPNtnLZZaOsPAx//OYc55/djzpS27W+rsLK6tr5R3Cxtbe/s7pX3D9oqSiShLRLxSHZ9rChngrY005x2Y0lx6HPa8cc303rnkUrFInGv05i6IR4KFjCCtbEeqk9e/Sz16qdeuWLX7JnQMjg5VCBX0yt/9QcRSUIqNOFYqZ5jx9rNsNSMcDop9RNFY0zGeEh7BgUOqXKz2cITdGKcAQoiaZ7QaOb+nshwqFQa+qYzxHqkFmtT879aL9HBlZsxESeaCjL/KEg40hGaXo8GTFKieWoAE8nMroiMsMREm4xKJgRn8eRlaJ/XHMN3F5XGdR5HEY7gGKrgwCU04Baa0AICITzDK7xZ0nqx3q2PeWvBymcO4Y+szx9IE49m</latexit>

x
<latexit sha1_base64="IArQpDG4Gw7Ax+5Wri9CZWKD4Bo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3Y1YQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5EpXks780kQT+iQ8lDzqixVuOpX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJr/2MyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu1mzyOIpzAKZyDB1dQgzuoQxMYIDzDK7w5D86L8+58LFoLTj5zDH/kfP4A5juM/A==</latexit><latexit sha1_base64="IArQpDG4Gw7Ax+5Wri9CZWKD4Bo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3Y1YQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5EpXks780kQT+iQ8lDzqixVuOpX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJr/2MyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu1mzyOIpzAKZyDB1dQgzuoQxMYIDzDK7w5D86L8+58LFoLTj5zDH/kfP4A5juM/A==</latexit><latexit sha1_base64="IArQpDG4Gw7Ax+5Wri9CZWKD4Bo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3Y1YQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5EpXks780kQT+iQ8lDzqixVuOpX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJr/2MyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu1mzyOIpzAKZyDB1dQgzuoQxMYIDzDK7w5D86L8+58LFoLTj5zDH/kfP4A5juM/A==</latexit><latexit sha1_base64="IArQpDG4Gw7Ax+5Wri9CZWKD4Bo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3Y1YQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5EpXks780kQT+iQ8lDzqixVuOpX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJr/2MyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu1mzyOIpzAKZyDB1dQgzuoQxMYIDzDK7w5D86L8+58LFoLTj5zDH/kfP4A5juM/A==</latexit>

y
<latexit sha1_base64="kBWpEtbVW3xlz0t9EJbdPDfcZn0=">AAAB6HicbZBNS8NAEIYnftb6VfXoZbEInkoigh6LXjy2YD+gDWWznbRrN5uwuxFC6C/w4kERr/4kb/4bt20O2vrCwsM7M+zMGySCa+O6387a+sbm1nZpp7y7t39wWDk6bus4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjerd55QaR7LB5Ml6Ed0JHnIGTXWamaDStWtuXORVfAKqEKhxqDy1R/GLI1QGiao1j3PTYyfU2U4Ezgt91ONCWUTOsKeRUkj1H4+X3RKzq0zJGGs7JOGzN3fEzmNtM6iwHZG1Iz1cm1m/lfrpSa88XMuk9SgZIuPwlQQE5PZ1WTIFTIjMguUKW53JWxMFWXGZlO2IXjLJ69C+7LmWW5eVeu3RRwlOIUzuAAPrqEO99CAFjBAeIZXeHMenRfn3flYtK45xcwJ/JHz+QPnv4z9</latexit><latexit sha1_base64="kBWpEtbVW3xlz0t9EJbdPDfcZn0=">AAAB6HicbZBNS8NAEIYnftb6VfXoZbEInkoigh6LXjy2YD+gDWWznbRrN5uwuxFC6C/w4kERr/4kb/4bt20O2vrCwsM7M+zMGySCa+O6387a+sbm1nZpp7y7t39wWDk6bus4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjerd55QaR7LB5Ml6Ed0JHnIGTXWamaDStWtuXORVfAKqEKhxqDy1R/GLI1QGiao1j3PTYyfU2U4Ezgt91ONCWUTOsKeRUkj1H4+X3RKzq0zJGGs7JOGzN3fEzmNtM6iwHZG1Iz1cm1m/lfrpSa88XMuk9SgZIuPwlQQE5PZ1WTIFTIjMguUKW53JWxMFWXGZlO2IXjLJ69C+7LmWW5eVeu3RRwlOIUzuAAPrqEO99CAFjBAeIZXeHMenRfn3flYtK45xcwJ/JHz+QPnv4z9</latexit><latexit sha1_base64="kBWpEtbVW3xlz0t9EJbdPDfcZn0=">AAAB6HicbZBNS8NAEIYnftb6VfXoZbEInkoigh6LXjy2YD+gDWWznbRrN5uwuxFC6C/w4kERr/4kb/4bt20O2vrCwsM7M+zMGySCa+O6387a+sbm1nZpp7y7t39wWDk6bus4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjerd55QaR7LB5Ml6Ed0JHnIGTXWamaDStWtuXORVfAKqEKhxqDy1R/GLI1QGiao1j3PTYyfU2U4Ezgt91ONCWUTOsKeRUkj1H4+X3RKzq0zJGGs7JOGzN3fEzmNtM6iwHZG1Iz1cm1m/lfrpSa88XMuk9SgZIuPwlQQE5PZ1WTIFTIjMguUKW53JWxMFWXGZlO2IXjLJ69C+7LmWW5eVeu3RRwlOIUzuAAPrqEO99CAFjBAeIZXeHMenRfn3flYtK45xcwJ/JHz+QPnv4z9</latexit><latexit sha1_base64="kBWpEtbVW3xlz0t9EJbdPDfcZn0=">AAAB6HicbZBNS8NAEIYnftb6VfXoZbEInkoigh6LXjy2YD+gDWWznbRrN5uwuxFC6C/w4kERr/4kb/4bt20O2vrCwsM7M+zMGySCa+O6387a+sbm1nZpp7y7t39wWDk6bus4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjerd55QaR7LB5Ml6Ed0JHnIGTXWamaDStWtuXORVfAKqEKhxqDy1R/GLI1QGiao1j3PTYyfU2U4Ezgt91ONCWUTOsKeRUkj1H4+X3RKzq0zJGGs7JOGzN3fEzmNtM6iwHZG1Iz1cm1m/lfrpSa88XMuk9SgZIuPwlQQE5PZ1WTIFTIjMguUKW53JWxMFWXGZlO2IXjLJ69C+7LmWW5eVeu3RRwlOIUzuAAPrqEO99CAFjBAeIZXeHMenRfn3flYtK45xcwJ/JHz+QPnv4z9</latexit>

Figure 3.5: (Left) The triangulation of the domain Ω = (0, 1)× (0, 1). (Right) A typical element.

Using several different values of the time step h, we compared the energy of the numerical

solution obtained using the Crank-Nicolson scheme with that obtained from the standard discrete

Morse flow. The total energy is computed using the finite element method on the functional:

Eh
n(u) =

∫
Ω

(1
2

∣∣∣∣u− un−1

h

∣∣∣∣2 + |∇u|2

2

)
dx. (3.3.1)

The results are shown in Figure 3.6, where the time steps were h = 0.0005 + 0.005 × k, k =

0,1,2,3,4,5. Our results confirm the energy preservation properties of the proposed scheme.
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Figure 3.6: Comparison of the Crank-Nicolson scheme with the original discrete Morse flow. Time

is denoted by t = nh.

We have also used the proposed method to investigate the numerical solution of a more com-

plicated model equation describing droplet motions. The target equations correspond to volume

constrained formulations of the original problem. In particular, volume and non-negativity con-

straints are added to the functionals by means of indicator functions:

J i
m(u) =

1

2

∫
Ω

( |u− 2uim−1 + uim−2|2

h2
+

1

2
|∇u+∇uim−2|2+

)
dx+Ψ1(u) + Ψi,m

2 (u), (3.3.2)

where each indicator function is defined as follows:

Ψ1(u) =

0, if u(x) ≥ 0 for LN -a.e. x ∈ Ω

∞, otherwise
, Ψi,m

2 (u) =

0, if
∫
Ω u(x)dx = V i

m

∞, otherwise.

Here V i
m denotes the volume of droplet i at time step m.

By minimizing functionals J i
m for each droplet, we are able to compute approximate solutions

to the volume constrained problem. The results are shown in Figure 3.7. For each i, the initial

condition is prescribed as a spherical cap, and we observe the droplets oscillate while coalescing

into larger groups.
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Figure 3.7: Crank-Nicolson type minimizing movement approximation of droplet motion. Time is

designated by the integer values within the figure (the initial condition corresponds to number 1)

and the free boundary is illustrated as the black curves.



Part II

Mean curvature accelerated flow
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Chapter 4

Preliminaries II

4.1 Theory of moving hypersurface

We prepare some notations about the theory of moving hypersurfaces from [56]. First of all, we

recall the definitions of basic notions for Ck-class hypersuface in Euclidian space.

DEFINITION 4.1.1 (Ck-class hypersurface). Let k ∈ N. We say a subset Γ ⊂ Rd (d = N or

N + 1) is a Ck-class hypersuface in Rd if for each x ∈ Γ, there exists,
O : a nonempty bounded domain inRd

U : a nonempty bounded domain inRd−1

φ ∈ Ck(U ; Rd)

(4.1.1)

such that x ∈ O and they satisfy the following conditions:

φ : U → Γ ∩ O is bijective, and rank (∇T
ξ φ(ξ)) = d− 1 (∀ξ ∈ U). (4.1.2)

We also define the following set which can be said the set of all local embedding Ck-coordinate of

the hypersurface Γ:

Ck(Γ) := {(O,U , φ) : (O,U , φ) satisfies (4.1.1) and (4.1.2)}.

DEFINITION 4.1.2 (Cℓ-function on hypersurface). Let k ∈ N and ℓ be an integer with

0 ≤ ℓ ≤ k. For a Ck-class hypersurface Γ in Rd and a function defined on Γ, we say f is Cℓ-class

function on Γ if f ◦φ ∈ Cℓ(U) for any (O,U , φ) ∈ Ck(Γ). The set of all Cℓ-class functions on Γ is

denoted by Cℓ(Γ).

Let us consider a Ck (k ≥ 2) -class hypersurface Γ. Then, we define the mean curvature at

x ∈ Γ in the direction of the unit normal vector n(x), denoted by κ(x), and it is known that these

quantities do not depend on the local coordinate. We remark that the mean curvature is defined by

the sum of the principal curvatures, not the average of them. If we have local graph representation

for Γ, that is, Γ is locally represented by {(ξ, w(ξ)) : ξ ∈ U : some domain in RN−1} for some
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smooth function w : U → R, the unit normal vector and the mean curvature can be represented

n(x) =
(−∇ξw(ξ), 1)√
1 + |∇ξw(ξ)|2

, κ(x) = divξ

( ∇ξw(ξ)√
1 + |∇ξw(ξ)|2

)
, x = (ξ, w(ξ)),

respectively. We also use the sign convention for the mean curvature such that κ = − 1
R if Γ is a

circle with radius R.

For a given T ∈ (0,∞], we set the time interval I := [0, T ). Let (Γt)t∈I be the family of

time dependent of nonempty oriented (N − 1)-dimensional hypersurface in RN . We define moving

hypersurfaces in RN , denoted M by
∪

t∈I(Γt ×{t}) that is, (x0, t0) ∈M means that x0 ∈ Γt0 , and

M is a subset in RN × I.

Figure 4.1: Mean curvature, and Normal velocity Figure 4.2: Moving hypersurfaces

For each (x, t) ∈ M, we can consider the unit normal vector n(x, t), κ(x, t) as the unit normal

vector and the mean curvature at x ∈ Γt respectively. Hereafter, we assume that M is C1-class

N -dimensional hypersurface in RN+1 and n ∈ C1(M,RN ). We say that y is C1 trajectory on

M if y ∈ C1(I0,RN ) with y(t) ∈ Γt for t ∈ I0, where I0 is subinterval of I. Then, for each

(x, t) ∈ M, we define the normal velocity v(x, t) by y′(t) · n(x, t). Remark that v is well defined,

that is, v does not depend on trajectory y (see [56], Theorem 5.5). Also, we point out that v

does not depend on the local coordinate. By using the standard theory of ordinary differential

equations, it is known that for any (x0, t0) ∈ M, there uniquely exists C1 trajectory y such that

y′(t) = v(y(t), t)n(y(t), t) (see [56], Proposition 5.8). Such y is called the normal trajectory on M
through (x0, t0).

Next, we introduce the notion of the normal time derivative. This gives the answer for the

question that what does mean the time derivative of the functions f(x, t) on M.

DEFINITION 4.1.3 (Normal time derivative). Let f ∈ C1(M,Rk), k = 1, . . . , N + 1. For

(x0, t0) ∈ M, and the normal trajectory y on M through (x0, t0),

Dtf(x0, t0) :=
d

dt
f(y(t), t)

∣∣∣∣
t=t0

,

Dtf is called the normal time derivative of f on M.
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The normal time derivative is introduced by W. D. Hays [44] and T. Y. Thomas [83] indepen-

dently. The mathematical definition is established by E. Guritn, A.Struthers, O. Williams [42].

Remark that Dtf does not depend on trajectory because the normal trajectory is unique, and even

if a function does not depend on time variable, the normal time derivative may be not zero. For

example, for identity map on M, γ(x, t) := x ∈ RN+1, we have Dtγ = vn on M. Intuitively, this

example says that the time derivative along the normal line of the position is the normal velocity.

Also, by definition of normal time derivative and the classical chain rule, we have Dt(f
2) = 2fDtf

for any f ∈ C1(M,R). The notion of the normal time derivative can be considered the analo-

gous of the material derivative in the fluid dynamics as mentioned in [22]. It can be understood

through the following formula. For f ∈ C1(Q) where Q is an open neighbourhood of M in RN+1,

the normal time derivative can be expressed as follows:

Dtf(x, t) = ft(x, t) + v(x, t)∇f(x, t) · n(x, t) for (x, t) ∈ M. (4.1.3)

We conclude the preliminaries with following useful formula, so called the transport identity :

THEOREM 4.1.1 (Transport identity). Let f ∈ C1(M) and Γt be compact for all t ≥ 0,

then
d

dt

∫
Γt

f(x, t) dH N−1 =

∫
Γt

(Dtf − fκv) dH N−1. (4.1.4)

In particular, if f ≡ 1 we have the well-known first variation formula of the surface area,

d

dt
H N−1(Γt) = −

∫
Γt

κv dH N−1. (4.1.5)

4.2 Previous research of mean curvature accelerated flow

In this section, we will review the hyperbolic mean curvature flow equation. M.E.Gurtin and P.

Podio-Guidugli [40] firstly treated the following equation for plane curves as the mathematical

model for the melting or crystallizing of helium crystal,

ρ(θ)Dtv + β(θ)v = [ψ(θ) + ψ′′(θ)]κ− f on Γt (4.2.1)

where ρ, β, ψ is physical quantities describing the effective density, the kinetic coefficient, the

interfacial energy respectively, and f is a driving force for crystallization, and Γt is smooth, simple

closed curves in R2. In their situation, the crystal is modeled by an enclosed area by Γt. Here, θ =

θ(x) (x ∈ Γt) expresses the angle with n(x, t) = (cos θ(x), sin θ(x)), τ (x, t) = (sin θ(x),− cos θ(x)),

where n, τ are the unit normal vector, unit tangent vector respectively. Quite roughly said, θ

measures how much tilted does n to x1-axis. M.E.Gurtin and P. Podio-Guidugli derived the

equation from some balance laws, and study some simple solutions e.g. the radial solutions for the

isotropic crystal.

When we assume that ρ, β, ψ are constant, that is, the system is isotropic, and the absence

of driving force (f = 0), with appropriate rescaling with respect to t, the equation (4.2.1) can be
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reduced

Dtv + cv = κ on Γt (4.2.2)

where v is the normal velocity, c is a constant. H.G.Rotstein, S.Brandon, and A.Novick-Cohen

gave the crystalline algorithm for the equation (4.2.2) for the closed polygonal curves in [78].

On the other hand, M.Kang treated the following equation as the mathematical model for the

motion of bubbles with various situations with numerical results by the level set method [49].

µ
du

dt
= −pn− σκn+ f − µu(∇ · u− n ·Du · n)− u

dµ

dt
(4.2.3)

where u is velocity vector, d
dt denotes the material derivative, that is, d

dt :=
∂
∂t +u ·∇. The notions

µ, p, σ, f denote mass density, a factor related on the pressure, surface tension, additional sources

of momentum. We can get the vector version of the hyperbolic mean curvature flow equation
du
dt = κn as the special case of (4.2.3). In his method, however, it is not clear how the ideas can

be extended more general settings.

Over the last two decades, it was started to generalize these equations in the point of view of the

differential geometry by C.L.He, D.X.Kong, K.Liu, and P.G.LeFloch, K.Smoczyk independently.

Let us explain in the one-dimensional, that is, planner curves settings for simplicity. First, He,

Kong, and Liu prove the unique short time existence smooth solution of the following hyperbolic

mean curvature flow equation in [43].

γtt = κn (4.2.4)

here, γ : (0, ℓ) × [0, T ) → R2 is a family of smooth curves. The equation (4.2) can be interpreted

a vector version of the equation Dtv = κ which is the equaiton (4.2.2) with c = 0. LeFloch and

Smoczyk [61] stated from deriving the following equation by calculating the first variation of the

action containing kinetic and internal energy terms.

γtt = eκn−∇e (4.2.5)

where e := 1
2(|γt|

2 + 1) is the local energy density, and ∇e is defined by

∇e :=
( ∂2γ
∂s∂t

· ∂γ
∂t

)
τ .

LeFloch and Smoczyk gave the weak solution in the sense of graph solutions for another type of

hyperbolic mean curvature flow equations with one dimensional setting. Moreover, the following

type of equation, so-called hyperbolic Monge-Ampère equation is investigated in [57], [58],

γtt = κn−∇e.

On the other hand, the numerical treatment for the equation including the multiphase settings

is developed by E.Ginder, K.Svadlenka in [36]. Their method is called hyperbolic MBO-algorithm

which is based on Merriman-Bence-Osher algorithm for a numerical scheme of mean curvature

flow equations via level set approach developed in [65]. Quite roughly said, they solve the wave
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equation utt = ∆u under the suitable initial and boundary conditions up to small-time τ , define

the next time step curve γ1 as zero level set of u(·, τ). Repeat this procedure up to the final time

T . More precisely, the algorithm of hyperbolic MBO is shown as follows.

————————————————————————————————

Hyperbolic MBO algorithm for closed curves

Given : initial curve γ0, its normal velocity v0, a final time T > 0, and time discretize size

τ = T/M for the numerical E-HMCF equation (6.4.6) , N and k0 are positive integers. We will

solve the equation (6.4.6) up to t = koτ (see the following Step1, 3). Firstly we extend v0 to a

neighborhood of γ0 e.g. using the orthogonal projection on γ0.

Step 1. For t ∈ [0, k0τ ] solve the initial value problem:

utt(x, t) = ∆u(x, t), u(x, 0) = d0(x), ut(x, 0) = −v0(x)

where d0 is the signed distance function for γ0 which is defined by

d0(x) :=


dist (x, γ0) x ∈ Ω+

0

0 x ∈ γ0

−dist (x, γ0) x ∈ Ω−
0 .

here Ω−
0 is enclosed area by γ0, and Ω+

0 := R2 \ (Ω−
0 ∪ γ0).

Step 2. Define γ1 as the zero level set u(·, k0τ).

Step 3. For n = 1, ..., N − 1 repeat

Step 3.1 For t ∈ [0, k0τ ] solve the initial value problem:

utt(x, t) = 2∆u(x, t), u(x, 0) = 2dn(x)− dn−1(x), ut(x, 0) = 0

where dn is the signed distance function for γn.

Step 3.2 Define γn+1 as the zero level set u(·, k0τ).

————————————————————————————————

They provided formal justification and the error estimate in the case of the circle for the hyper-

bolic MBO-algorithm. They also treat the multiphase version of the hyperbolic MBO-algorithm.

By replacing the solving wave equation in the above Step 1, Step 3 by the minimizing movement

method e.g. discrete Morse flow method, it can treat that the volume constrains problems. See

[36], [38]. Another numerical simulation for the following hyperbolic mean curvature flow equation

which is related to the motion of the relativistic string,

Dtv = (1− v2)κ,

is treated by Bonafini [16]. Moreover, another numerical approach to access the multiphase motion

and volume-preserving problems is developed by S.Ishida et. al. [48].



Chapter 5

Acceleration and surface evolutional

energy

5.1 Properties of acceleration

We define the acceleration of the surface as the normal time derivative of the normal velocity.

That is,

DEFINITION 5.1.1 (Acceleration of surfaces). Let M be moving hypersurface in RN ,

v ∈ C1(M), Then, for (x, t) ∈ M, we define

a(x, t) := Dtv(x, t).

We remark that this acceleration capture only to motion in a normal direction. For example,

consider the rolling circle with constant speed. This circle remains the same shape, and thus the

normal velocity is equal to zero everywhere, any time, but the tangential velocity is not equal to

zero, so the normal acceleration is. Then, a ≡ 0 since v ≡ 0. Thus, in general, the acceleration

a = Dtv does not coincide with the normal acceleration. However, in the case of that the tangential

velocity is equal to zero everywhere, any time, we can regard Dtv as the normal acceleration in

the sense of the normal time derivative of the normal velocity. In the following subsections, we

investigate the properties of this acceleration and see that our observation is correct in the next

section.

Now, we derive the relation between acceleration a = Dtv and the classical acceleration which

is defined by the second time derivative of position, ẍ in the case of the closed curves in R2. Let Γt

be a closed curve, that is Γt = {γ(ϑ, t) ∈ R2 : ϑ ∈ [0, ℓ]}. We also set that ñ : [0, ℓ]× [0, T ) → R2,

τ̃ : [0, ℓ] × [0, T ) → R2, κ̃ : [0, ℓ] × [0, T ) → R be unit normal vector, unit tangent vector, mean
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curvature respectively, and

ṽ : [0, ℓ]× [0,∞) → R, ṽ := γt · ñ,

ẽ : [0, ℓ]× [0,∞) → R, ẽ := 1 +
1

2
|γt|2,

w̃ : [0, ℓ]× [0,∞) → R, w̃ := γt · τ̃

be normal velocity, energy density, tangential velocity respectively. We remark that the velocity

vector γt has the decomposition γt = ṽñ + w̃τ̃ . By directly calculation, it is easy to see that the

normal acceleration γtt · ñ satisfies the following formula,

γtt · ñ = ṽt +
1

|γ′|
ṽ′w̃ + κ̃w̃2. (5.1.1)

Although we distinguish them and the notions for moving hypersurface i.e. v, n, κ, we have

the following relations: Fixed (x0, t0) ∈ M :=
∪

t∈I(Γt × {t}), if x0 = γ(ϑ, t0) for some ϑ ∈ [0, ℓ],

then

ñ(ϑ, t0) = n(x0, t0),

κ̃(ϑ, t0) = κ(x0, t0),

ṽ(ϑ, t0) = v(x0, t0).

For the third equality follows from that we can take γ(ϑ, ·) as C1 trajectory through (x0, t0) and the

first equality. We now assume that the tangential velocity w̃ is equivalently equal to zero. Then,

since γt = ṽñ, we can take γ(ϑ, ·) as C1 normal trajectory through (x0, t0). Thus, by definition of

the normal time derivative, we get the following the relation.

Dtv(x0, t0) =
d

dt
v(γ(ϑ, t), t)

∣∣∣∣
t=t0

=
d

dt
ṽ(ϑ, t)

∣∣∣∣
t=t0

= ṽt(ϑ, t0).

Since γtt · ñ = ṽt by (5.1.1) and w̃ ≡ 0, we have

Dtv(x0, t0) = Dtv(γ(ϑ, t0), t0) = γtt(ϑ, t0) · ñ(ϑ, t0).

We can generalize this result for the parametrized surfaces. To check this, we have only to do

minor change for the above argument. Let Γt be a parametrized (N − 1)- dimensional surface,

that is Γt = {γ(ϑ, t) ∈ RN : ϑ ∈ U ⊂ RN−1}. Since Γt has (N −1) tangent vectors τ1, τ2, ..., τN−1,

we define tangential velocities w̃i : U × [0,∞) → R by w̃i := γt · τ̃i for each i = 1, ..., N − 1. As a

same above, the velocity vector γt has the decomposition γt = ṽñ+
∑N−1

i=1 w̃iτ̃i. Direct calculation

shows the normal acceleration γtt · ñ satisfies the following formula,

γtt · ñ = ṽt +
N−1∑
i=1

( 1

|γ′|
ṽ′w̃i + κ̃w̃2

i

)
.

Remaining calculation and argument are same as above.
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Graph representation

Here, we give the representation of the acceleration of surface Dtv when the surface Γt is the graph

or the zero level set of some function.

We assume that

Γt = {(ξ, w(ξ, t)) : ξ ∈ U ⊂ RN−1}

for some sufficiently smooth function w : U × (0, T ) → R. Then, the normal derivative v, the unit

normal vector are given by

v(x, t) =
wt(ξ, t)√

1 + |∇ξw(ξ, t)|2
, n(x, t) =

(−∇ξw(ξ, t), 1)√
1 + |∇ξw(ξ, t)|2

, (5.1.2)

for x = (ξ, w(ξ, t)) ∈ Γt. We calculate the Dtv(x0, t0) for x0 ∈ Γt0 . By the definition of the time

normal derivative,

Dtv(x0, t0) =
d

dt
v(y(t), t)

∣∣∣
t=t0

(5.1.3)

where y is the normal trajectory through (x0, t0) i.e. y
′(t) = v(y(t), t)n(y(t), t). Remark that when

we put y(t) = (η(t), w(η(t), t)), from the normality of y, we get

η′(t) =
−1

1 + |∇ξw(η(t), t)|2
(wt(η(t), t)∇ξw(η(t), t)). (5.1.4)

Then we can calculate

d

dt
v(y(t), t) =

d

dt

wt(η(t), t)√
1 + |∇ξw(η(t), t)|2

=
1

1 + |∇ξw(η(t), t)|2
( d
dt
(wt(η(t), t))

√
1 + |∇ξw(η(t), t)|2

− wt(η(t), t)
d

dt

√
1 + |∇ξw(η(t), t)|2

)
=

1√
1 + |∇ξw(η(t), t)|2

( d
dt
(wt(η(t), t))

)
− 1

1 + |∇ξw(η(t), t)|2
(
wt(η(t), t)

d

dt

√
1 + |∇ξw(η(t), t)|2

)
(5.1.5)

Before continue to a calculation after (5.1.5), we will calculate the following:

d

dt
(wt(η(t), t)) = ∇ξwt(η(t), t) · η′(t) + wtt(η(t), t)

=
−wt(η(t), t)∇ξw(η(t), t) · ∇ξwt(η(t), t)

1 + |∇ξw(η(t), t)|2
+ wtt(η(t), t), (5.1.6)
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d

dt

√
1 + |∇ξw(η(t), t)|2 =

1√
1 + |∇ξw(η(t), t)|2

{
∇ξw(η(t), t) ·

d

dt
(∇ξw(η(t), t))

}
=

1√
1 + |∇ξw(η(t), t)|2

×{
∇w(η(t), t) · (∇2

ξw(η(t), t)η
′(t) +∇ξwt(η(t), t))

}
=

∇ξw(η(t), t) · (∇2
ξw(η(t), t)η

′(t))√
1 + |∇ξw(η(t), t)|2

+
∇ξw(η(t), t) · ∇ξwt(η(t), t)√

1 + |∇ξw(η(t), t)|2

=
−wt(η(t), t)∇ξw(η(t), t) · (∇2

ξw(η(t), t)∇ξw(η(t), t))

(1 + |∇ξw(η(t), t)|2)
√

1 + |∇ξw(η(t), t)|2

+
∇ξw(η(t), t) · ∇ξwt(η(t), t)√

1 + |∇ξw(η(t), t)|2
(5.1.7)

where ∇2
ξw denotes the Hessian matrix of w and we used (5.1.4). Since

x0 = y(t0) = (η(t0), w(η(t0), t0)) = (ξ0, w(ξ0, t0)),

by combining (5.1.3), (5.1.6), (5.1.7), we get

Dtv =
wtt√

1 + |∇w|2
+

wt∇w
(1 + |∇w|)3/2

·
(wt∇2w∇w
1 + |∇w|2

− 2∇wt

)
(5.1.8)

where we omitted the variables (x0, t0) in the left hand side, and (ξ0, t0) in the right hand side.

Level set representation

Next, let Γt be a zero level set of some sufficiently smooth function u : RN × [0, T ) → R, that is

Γt = {x ∈ RN : u(x, t) = 0}.

At first, concerning the normal velocity v and the normal vector by the standard theory of the

level set method, we have

v(x, t) =
ut(x, t)

|∇u(x, t)|
, n(x, t) = − ∇u(x, t)

|∇u(x, t)|
, (5.1.9)

for x ∈ Γt. We can calculate the Dtv(x0, t0) for x0 ∈ Γt0 in the same spirit of the previous section.

By the definition of the time normal derivative and the first identity of (6.4.1),

Dtv(x0, t0) =
d

dt
v(y(t), t)

∣∣∣
t=t0

(5.1.10)
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where y is the normal trajectory through (x0, t0) i.e. y
′(t) = v(y(t), t)n(y(t), t). We then calculate

d

dt
v(y(t), t) =

d

dt

ut(y(t), t)

|∇u(y(t), t)|

=
1

|∇u(y(t), t)|2
( d
dt
(ut(y(t), t))|∇u(y(t), t)| − ut(y(t), t)

d

dt
|∇u(y(t), t)|

)
=

1

|∇u(y(t), t)|

( d
dt
(ut(y(t), t))

)
− 1

|∇u(y(t), t)|2
(
ut(y(t), t)

d

dt
|∇u(y(t), t)|

)
(5.1.11)

Before continue to a calculation after (5.1.11), we will calculate the following:

d

dt
(ut(y(t), t)) = ∇ut(y(t), t) · y′(t) + utt(y(t), t), (5.1.12)

d

dt
|∇u(y(t), t)| = 1

|∇u(y(t), t)|

{
∇u(y(t), t) · d

dt
(∇u(y(t), t))

}
=

1

|∇u(y(t), t)|

{
∇u(y(t), t) · (∇2u(y(t), t)y′(t) +∇ut(y(t), t))

}
=

∇u(y(t), t) · (∇2u(y(t), t)y′(t))

|∇u(y(t), t)|
+

∇u(y(t), t) · ∇ut(y(t), t)
|∇u(y(t), t)|

, (5.1.13)

where ∇2u denotes the Hessian matrix of u. By combining (5.1.11), (5.1.12) and (5.1.13), we get

d

dt
v(y(t), t) =

1

|∇u(y(t), t)|

(
∇ut(y(t), t) · y′(t) + utt(y(t), t)

)
− 1

|∇u(y(t), t)|2
{
ut(y(t), t)

(∇u(y(t), t) · (∇2u(y(t), t)y′(t))

|∇u(y(t), t)|
+

∇u(y(t), t) · ∇ut(y(t), t)
|∇u(y(t), t)|

)}
=

utt(y(t), t)

|∇u(y(t), t)|
− ut(y(t), t)∇u(y(t), t) · (∇2u(y(t), t)y′(t))

|∇u(y(t), t)|3
− 2ut(y(t), t)∇u(y(t), t) · ∇ut(y(t), t)

|∇u(y(t), t)|3

=
utt(y(t), t)

|∇u(y(t), t)|
+
ut(y(t), t)

2∇u(y(t), t) · (∇2u(y(t), t)∇u(y(t), t))
|∇u(y(t), t)|5

− 2ut(y(t), t))∇u(y(t), t) · ∇ut(y(t), t)
|∇u(y(t), t)|3

(5.1.14)

The second, and last equality follows from the normality of y, that is y′(t) = v(y(t), t)n(y(t), t)

and (6.4.1). By (5.1.10), (5.1.14), we have:

Dtv(x0, t0) =
utt(x0, t0)

|∇u(x0, t0)|
+
ut(x0, t0)

2∇u(x0, t0) · (∇2u(x0, t0)∇u(x0, t0))
|∇u(x0, t0)|5

− 2ut(x0, t0))∇u(x0, t0) · ∇ut(x0, t0)
|∇u(x0, t0)|3

Omitting the variables (x0, t0),

Dtv =
utt
|∇u|

+
u2t∇u · (∇2u∇u)

|∇u|5
− 2ut∇u · ∇ut

|∇u|3
(5.1.15)
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5.2 Variational formula of acceleration

We consider the weak formulation of the acceleration Dtv. For the purpose, firstly we recall that

the normal velocity is characterized via the variation of weighted surface area, that is,

d

dt

∫
Γt

ϕdH N−1 =

∫
Γt

v(∇ϕ · n) + ϕt − ϕvκ dH N−1,

for ϕ ∈ C1
c (RN × (0,∞)) under the assumption that Γt is compact for all t ≥ 0. This is one char-

acterization of the normal velocity given by Brakke [20]. We can find other characterization based

on the distribution for the sets of finite perimeter by Luckhaus–Sturzenhecker [63] and Mugnai–

Seis–Spadaro [66]. Here, following Brakke’s idea, we will try to characterize the acceleration via

the time derivative of the integral quantity on the surface.

We now consider the time derivative of∫
Γt

v ϕ dH N−1 for ϕ ∈ C1
c (RN × (0,∞) : R≥0).

This quantity can be regarded as the weighted normal momentum of Γt. To un-change the sign of

this quantity, we restrict the codomain of the test function ϕ to the set of the non-negative number

R≥0. Then, we can get the following variational identity.

PROPOSITION 5.2.1 (Variational identity for acceleration). Let M =
∪

t∈I Γt × {t} be

a moving hypersurface in RN . Assume that Γt is compact for all t ≥ 0, v ∈ C1(M), put a := Dtv.

Then, for ϕ ∈ C1
c (RN × (0, T ) : R≥0),

d

dt

∫
Γt

vϕ dH N−1 =

∫
Γt

aϕ+ v(v∇ϕ · n+ ϕt)− ϕv2κ dH N−1,

or equivalently,∫
Γt

vϕ dH N−1

∣∣∣∣t2
t=t1

=

∫ t2

t1

∫
Γt

aϕ+ v(v∇ϕ · n+ ϕt)− ϕv2κ dH N−1 dt, (5.2.1)

for t1, t2 ∈ [0, T ) with t1 ≤ t2.

Proof By extending ϕ with ϕ(·, t) := 0 for t ∈ (−∞, 0]∪ [T,∞), we have ϕ ∈ C1(RN+1), especially

ϕ ∈ C1(M). Thus, we can apply the transport identity (4.1.4) for vϕ ∈ C1(M) and the derivative

formula (4.1.3) to conclude the proof.

Observing the equality (5.2.1) in Proposition 5.2.1, for this equality (5.2.1) to be meaningful,

it is sufficient that the normal velocity and the mean curvature are locally 3-th power integrable

with respect to H N−1⌊Γt×dt. Here, we say that the function f = f(x, t) (x, t) ∈ M, is locally

p-th power integrable with respect to H N−1⌊Γt×dt if for any compact set K ⊂ RN+1,∫
K∩M

|f |p dH N−1 dt <∞.
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In fact, if so, by applying Hölder inequality with p = 3/2. q = 3, to get∫ t2

t1

∫
Γt

ϕv2κ dH N−1 dt ≤ L

∫
spt ϕ∩M

|v2κ| dH N−1 dt

≤ L
(∫

spt ϕ∩M
|v2|p dH N−1 dt

) 1
p
(∫

spt ϕ∩M
|κ|q dH N−1 dt

) 1
q

= L
(∫

spt ϕ∩M
|v|3 dH N−1 dt

) 2
3
(∫

spt ϕ∩M
|κ|3 dH N−1 dt

) 1
3
,

where L := supRN×[0,T ) |ϕ| <∞. Also, other quantities

∫ t2

t1

∫
Γt

v a ϕ dH N−1 dt,

∫ t2

t1

∫
Γt

v(v∇ϕ · n+ ϕt) dH
N−1 dt

are finite under these assumptions and additional assumption, a = Dtv is locally integrable.

By using this formula (5.2.1), we can characterize the acceleration Dtv in the following sense.

Suppose that a function ã : M → R satisfies the following identity,∫
Γt

vϕ dH N−1

∣∣∣∣t2
t=t1

=

∫ t2

t1

∫
Γt

ã ϕ+ v(v∇ϕ · n+ ϕt)− ϕv2κ dH N−1 dt,

by combining with (5.2.1), we have∫ t2

t1

∫
Γt

(ã−Dtv)ϕdH
N−1 dt = 0

for all test functions ϕ ∈ C1
c (RN × (0, T ) : R≥0). Then, we can get

ã = Dtv H N−1 × L 1-a.e. on M.

5.3 Surface evolution energy and its first variation

In this section, we introduce the surface evolution energy and derive its first variation formula. It

directly follows from the calculation of the time derivative of the surface evolution energy. Before

deriving this, we define the surface evolution energy for time-dependent surfaces Γt.

DEFINITION 5.3.1 (Surface evolution energy). Let M =
∪

t∈I(Γt × {t}) be a moving

hypersurface in RN . We define the surface evolution energy E(t) by a sum of the surface area and

the normal kinetic energy, that is,

E(t) := H N−1(Γt) +
1

2

∫
Γt

v(·, t)2 dH N−1. (5.3.1)

In this stage, we simply consider the surface density as a positive function which means a mass

per unit surface area, and consider the case of the constant surface density ρ, especially ρ ≡ 1 for
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simplicity. This quantity (5.3.1) is a corresponding the energy for the wave equation with zero

Dirichlet boundary condition, that is,

1

2

∫
Ω
|∇u|2 dx+

1

2

∫
Ω
|ut|2 dx,

for function u : Ω × I → R, Ω ⊂ RN . In the following remark, we see the another physical

interpretation of the surface evolution energy.

REMARK 5.3.1 (Physical interpretation of surface evolution energy). We would like to

give another physical meaning of the surface evolution energy. Consider the phenomena of shifting

acrylic rod by surface tension of a soap film (see Figure 5.1). We set physical parameters, σ > 0

is a constant surface tension, m is the line density of the acrylic rod, that is, mass per unit length

of the acrylic rod. For simplicity, we consider reducing to one dimension setting (Figure 5.2). Set

ℓ(t) as the position of the acrylic rod with the initial conditions ℓ(0) = ℓ0, ℓ
′(0) = 0. By Newton’s

second law, we have

mℓ′′(t) = −σ. (5.3.2)

Now, we consider the following energy:

ED(t) := σH 1(Γt) +
1

2

∫
Γt

ρv2 dH 1 +
1

2
mℓ′(t)2.

If σ = 1, this quantity ED(t) is exact the surface evolution energy E(t) except the last term, that

is boundary term ∂Γt. We can regard ED(t) as the surface evolution energy for Dirichlet boundary

condition.

Figure 5.1: Shifting acrylic rod

Figure 5.2: One dimension version

Since ℓ′(t) = −(σ/m)t < 0 for t > 0 by (5.3.2), the area energy σH 1(Γt) = σℓ(t) is decreasing.

On the other hand, noting that the normal velocity v ≡ 0, we then calculate the time derivative

of ED as follows:

d

dt
ED(t) =

d

dt

(
σℓ(t) +

1

2
mℓ′(t)2

)
= σℓ′(t) +mℓ′(t)ℓ′′(t) = σℓ′(t)− σℓ′(t) (by (5.3.2))

= 0
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Therefore, the energy ED(t) is conserved. This real phenomenon shows that the decreasing of area

energy is changed to the increasing of kinetic energy on the boundary.

Next, we calculate the first variation formula for the surface evolution energy in the case of

compact surfaces.

PROPOSITION 5.3.1 (First variation formula for the surface evolution energy). Let

M =
∪

t∈I Γt × {t} be a moving hypersurface in RN . Assume that Γt is compact for all t ∈ I,
v ∈ C1(M), put a := Dtv. Then, we have:

d

dt

(
H N−1(Γt) +

1

2

∫
Γt

v2 dH N−1
)
=

∫
Γt

v(a− κe) dH N−1 (5.3.3)

where

e(x, t) := 1 +
1

2
v(x, t)2.

Proof. Apply the transport identity (4.1.4) for v2 to get

d

dt

∫
Γt

v2 dH N−1 =

∫
Γt

(2vDtv − ρκv3) dH N−1 (5.3.4)

where we used Dt(v
2) = 2vDtv. Combining (4.1.5), (5.3.4), we have

d

dt
E(t) =

d

dt

(
H N−1(Γt) +

1

2

∫
Γt

v2 dH N−1
)

= −
∫
Γt

κv dH N−1 +
1

2

∫
Γt

(2vDtv − κv3) dH N−1

=

∫
Γt

v
(
−κ+Dtv −

1

2
κv2

)
dH N−1 =

∫
Γt

v
{
Dtv −

(
1 +

1

2
v2
)
κ
}
dH N−1,

by recalling the definition of a and e, this concludes the proof.

Moreover, we can generalize this identity by considering the weighted energy as follows.

PROPOSITION 5.3.2 (First variation formula for weighted energy). Under the same

assumptions as in Proposition 2.2, for any f ∈ C1(M), we have:

d

dt

(∫
Γt

f dH N−1 +
1

2

∫
Γt

fv2 dH N−1
)
=

∫
Γt

eDtf + fv(a− κe) dH N−1. (5.3.5)

Proof Applying the transport identity (4.1.4) for fv2 ∈ C1(M) to get

d

dt

∫
Γt

fv2 dH N−1 =

∫
Γt

Dt(fv
2)− (fv2)κv dH N−1 =

∫
Γt

v2Dtf + 2fvDtv − fκv3 dH N−1.

After direct calculation, we attain the identity (5.3.5).



Chapter 6

Energy conserving mean curvature

accelerated flow

From this chapter, we consider the following the initial value problem for the energy conserving

hyperbolic mean curvature flow equation.

Problem 6.0.1 (Energy conserving mean curvature accelerated flow equation). Let Γ0

be a given (N − 1)-dimensional hypersurface in RN , and v0 be a given C1 function on Γ0. Find a

moving surface in RN , M :=
∪

t∈I(Γt × {t}) such that

Dtv

1 + 1
2v

2
= κ on Γt, (6.0.1)

v(·, 0) = v0(·) on Γ0. (6.0.2)

Firstly, we consider the motivation for this equation from the motion of planner curves.

6.1 Motivation

The motion for planer curves

For the time-dependent planer curves, we can derive the governing equation by calculating the first

variation of the action integral up to finite time T > 0. We use the notion of section5.1. Define

the action integral for γ : (0, ℓ)× (0, T ) by

J(γ) := JK(γ)− JI(γ)

where

JK(γ) :=

∫ T

0

∫
γ(·,t)

|γt|2

2
ds dt, JI(γ) :=

∫ T

0

∫
γ(·,t)

ds dt.

For any the test function φ ∈ C∞
c ((0, ℓ) × (0, T ) : R2), we can calculate the first variations of JI

and JK as follows,
d

dε
JI(γ + εφ)

∣∣∣∣
ε=0

=

∫ T

0

∫
γ(·,t)

κ̃(φ · ñ)dsdt (6.1.1)

64
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d

dε
JK(γ + εφ)

∣∣∣∣
ε=0

= −
∫ T

0

∫
γ(·,t)

{
γtt +

w̃′

|γ′|
γt − κ̃ṽγt +

ẽ′

|γ′|
τ̃ + (ẽ− 1)κ̃ñ

}
· φdsdt (6.1.2)

where τ̃ is the unit tangent vector, the notion of prime ′ means the spatial derivative. For (6.1.1),

it follows from the direct and simple calculation. Let us explain the derivation for (6.1.2) since

this calculation is also direct, but complicated a little. Now, we calculate as follows.

d

dε
JK(γ + εφ)

∣∣∣∣
ε=0

=
d

dε

∫ T

0

∫
γ(·,t)

1

2
|γt + εφt|2 ds dt

∣∣∣∣∣
ε=0

=
d

dε

∫ T

0

∫ ℓ

0

1

2
|γt + εφt|2|γ′ + εφ′| dϑ dt

∣∣∣∣
ε=0

=

∫ T

0

∫ ℓ

0
γt · φt|γ′|+

1

2
|γt|2

γ′ · φ′

|γ′|
dϑ dt

= −
∫ T

0

∫ ℓ

0
(|γ′|γt)t · φ+

{1

2
|γt|2

γ′

|γ′|

}′
· φdϑ dt

where the last term follows from the integration by parts. By noting that 1
2 |γt|

2 γ′

|γ′| = (ẽ− 1)τ̃ , we

continue the calculation.

= −
∫ T

0

∫ ℓ

0

{
|γ′|γtt +

γ′ · γ′t
|γ′|

γt + {(ẽ− 1)τ̃}′
}
· φdϑ dt

= −
∫ T

0

∫ ℓ

0

{
γtt +

w̃′ − κ̃|γ′|ṽ
|γ′|

γt +
1

|γ′|

(
ẽ′τ + (ẽ− 1)κ̃|γ′|ñ

)}
· φ|γ′| dϑ dt

= −
∫ T

0

∫
γ(·,t)

(
γtt +

w̃′

|γ′|
γt − κ̃ṽγt +

ẽ′

|γ′|
τ̃ + (ẽ− 1)κ̃ñ

)
· φds dt.

Therefore, by (6.1.1), (6.1.2),

d

dε
J(γ + εφ)

∣∣∣∣
ε=0

= −
∫ T

0

∫
γ(·,t)

{
γtt +

( w̃′

|γ′|
− κ̃ṽ

)
γt +

ẽ′

|γ′|
τ̃ + (ẽ− 2)κ̃ñ

}
· φds dt. (6.1.3)

Thus, since the desired curve γ holds by (6.1.3)

d

dε
J(γ + εφ)

∣∣∣∣
ε=0

= 0,

for any φ ∈ C∞
c ((0, ℓ)× (0, T ) : R2), we have

γtt +
( w̃′

|γ′|
− κ̃ṽ

)
γt +

ẽ′

|γ′|
τ̃ + (ẽ− 2)κ̃ñ = 0.
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Recalling γt = ṽñ+ w̃τ̃ , ẽ = 1
2 |γ|

2 + 1, and if we consider the normal flow, that is, w̃ ≡ 0, we have

more simple equation

γtt − ẽκ̃ñ+
ẽ′

|γ′|
τ̃ = 0. (6.1.4)

When we consider this equation for closed curves, we have the following the proposition.

PROPOSITION 6.1.1 (HMCF equation for the closed curves). Let γ : (0, ℓ)× [0, T ) → R2

be a closed curves with zero tangential velocity and a solution of the equation

γtt − ẽκ̃ñ+
ẽ′

|γ′|
τ̃ = 0. (6.1.5)

Then, we have the following.

(i) A solution of the equation(6.1.5) conserves the following quantity,∫
γ(·,t)

ds+
1

2

∫
γ(·,t)

|γt|2 ds.

This quantity is exactly the surface evolution energy E(t), which is defined in Section 5.3

(ii) Let M =
∪

t∈[0,T ) γ(·, t)×{t}, then M is a solution of the equation of the following equation:

Dtv

e
= κ.

Proof. By multiplying the unit normal vector ñ to both side of the equation (6.1.5), the solution

of the equation (6.1.5) satisfies

γtt · ñ− ẽκ̃ = 0. (6.1.6)

(i) Since
d

dt

∫
γ(·,t)

ẽ ds =

∫
γ(·,t)

(ẽds)t,

we have only to show (ẽds)t = 0. By the assumption w̃ ≡ 0 and (6.1.6), we have

ẽt =
d

dts

(1
2
|γ|2

)
= γt · γtt = (ṽñ) · γtt = ṽ(γtt · ñ) = ṽκ̃ẽ.

Noting that (ds)t = |γ′|−1(w̃′ − κ̃ṽ|γ′|)ds, to gat

(ẽds)t = ẽtds+ ẽ(ds)t = (ṽκ̃ẽ)ds+ ẽ(−κ̃ṽ)ds = 0.

(ii) Since w̃ ≡ 0, we saw that Dtv(γ(ϑ, t), t) = γtt(ϑ, t) as in Section 5.1. Also, by e(γ(ϑ, t), t) =

ẽ(ϑ, t), and κ(γ(ϑ, t), t) = κ̃(ϑ, t), (6.1.6), the conclusion follows.

Representation of the equation for the moving hypersurfaces

In the previous section, we derive the governing equation for the motion of closed curves in R2

by the calculate the first variation of the acton integral corresponding the energy E(t). As a
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result, if the tangential velocity is vanished, the solution of the equation (6.1.6) conserves the

surface evolution energy E(t). We point out that these argument is almost directly extended to

parametrized hypersurface Γt = {γ(ϑ, t) : ϑ ∈ RN−1}.
However, the parametrize expression of the surface gives restriction of the class of surfaces

to much, and it is difficult to directly extend to more general surfaces. Thus, let us rewrite the

equation (6.1.6) by using the notion of the moving hypersurface. By Proposition 3.1 (ii), we can

rearrange as follows:
Dtv

e
= κ on M (6.1.7)

here, e := 1+ 1
2v

2, can be regard as the energy density for E(t) and M is the moving hypersurace

consisted by the closed curves, that is, M =
∪

t∈I γ(·, t)× {t}.
Now, we consider this equation (6.1.7) for general moving hypersurface M in RN . Let M =∪

t∈I Γt×{t} be a solution of this equation (6.1.7) and we assume that all Γt are compact. We can

check that the solution M conserves the surface evolution energy E(t). In fact, by Proposition

2.2., we know that the following first variation formula for the surface evolution energy E(t):

d

dt
E(t) =

d

dt

(
H N−1(Γt) +

1

2

∫
Γt

v2 dH N−1
)
=

∫
Γt

v
{
Dtv−

(
1 +

1

2
v2
)
κ
}
dH N−1 (6.1.8)

Observing (6.1.8), it is easy to see that the solution of the equation (6.1.7) conserves the surface

evolution energy E(t). On the other hand, the notions of v, κ,Dtv can be defined for also not com-

pact surface. Motivated these facts, we call this equation (6.1.7) the energy conserving hyperbolic

mean curvature flow equation, the energy conserving mean curvature accelerated flow equation, or

E-HMCF for shortly.

6.2 Exact solutions

Let us consider some exact solution to Problem 6.0.1. The first non-trivial example is the case of

that M consisted from the (N − 1)-dimensional sphere (N ≥ 2). That is,

M =
∪
t∈I

(Γt × {t}), Γt = {x ∈ RN : |x| = R(t)},

where R ∈ C2(I : R≥0) with initial conditions R(0) = r0(> 0), Ṙ(0) = v0. Then since

Dtv = R̈, κ = −N − 1

R(t)
,

we can deduce the equation (6.3.1) to the following second order nonlinear ordinary differential

equation: (
1 +

1

2
Ṙ(t)2

)−1
R̈(t) = −N − 1

R(t)
(6.2.1)
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For simplicity, we only consider the cace of N = 2 in the following. Then the equation (6.2.1)

becomes

R̈(t) = −
(
1 +

1

2
Ṙ(t)2

) 1

R(t)
. (6.2.2)

This equation(6.2.2) can be reduced to the Bernoulli type ordinary differential equation by consid-

ering the change of variables ν(R) := Ṙ. After solving this the Bernoulli type ordinary differential

equation, we get the following first order ordinary differential equation.

Ṙ(t) = ±

√
2{r0(1 + 1

2v
2
0)−R(t)}

R(t)
(6.2.3)

Since now we consider Ṙ is a real value, the range of R(t) should be 0 ≤ R(t) ≤ r0(1+
1
2v

2
0). We

also point out that the equation (6.2.3) can be solved by separation of variables. More precisely,

after rewriting
RdR√

R{r0(1 + 1
2v

2
0)−R}

= ±
√
2dt, (6.2.4)

we get

F (R(t)) =


√
2t+ C1 if Ṙ(t) ≥ 0

−
√
2t+ C2 if Ṙ(t) < 0

where F is the antiderivative of the left hand side of (6.2.4), and C1, C2 is a constant, that is

F (R) =

∫
R√

R{c−R}
dR = c tan−1

( R√
R(c−R)

)
−
√
R(c−R).

where c := r0(1 +
1
2v

2
0). Thus, we have the following information about the function F.

(I1) F is a differentiable function defined on [0, r0(1 +
1
2v

2
0)), F (0) = 0.

(I2) F (R) → r0(1 +
1
2v

2
0)

π
2 as R ↑ r0(1 + 1

2v
2
0). We define F (r0(1 +

1
2v

2
0)) := r0(1 +

1
2v

2
0)

π
2 .

(I3) F is monotone increasing.

In especially, F has the inverse function F−1 from (I1), (I3). Now, we can investigate each

case. Remark that Ṙ(t) is decreasing function because R̈(t) is always negative from the original

equation(6.2.2).

Case I (v0 > 0). Since v0 = Ṙ(0) > 0 and Ṙ is decreasing, there exists t1 > 0 such that Ṙ(t) > 0

for t < t1, Ṙ(t1) = 0, and Ṙ(t) < 0 for t > t1. The function R(t) attains the maximum

r0(1 +
1
2v

2
0) at t = t1. Thus, the solution R(t) has the following the implicit expression.

F (R(t)) =


√
2t+ C1 if t ∈ [0, t1]

−
√
2t+ C2 if t ≥ t1

Since F (r0) = F (R(0)) = C1 and t1 = (
√
2)−1(F (R(t1))− F (r0)), C2 =

√
2t1 + F (R(t1)) =
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2F (R(t1))− F (r0) ≥ 0. We also remark that R is vanishes at t = t0 where

t0 :=
2F (R(t1))− F (r0)√

2
=

2F (r0(1 +
1
2v

2
0))− F (r0)√
2

.

Now, recalling that F−1 exists, the exact solution is as follows.

R(t) =

F−1(
√
2t+ F (r0)) if t ∈ [0, t1]

F−1(−
√
2t+ 2F (R(t1))− F (r0)) if t ∈ [t1, t0]

Figure 6.1: R(t) in the case of v0 > 0

Case II. (v0 ≤ 0) Since v0 = Ṙ(0) ≤ 0, Ṙ is decreasing, Ṙ(t) < 0 for t > 0. Thus, the solution

R(t) has the following the implicit expression.

F (R(t)) = −
√
2t+ C2

Since C2 = F (R(0)) = F (r0), R(t) vanishes at t = t0 := (
√
2)−1F (r0), the exact solution is

as follows.

R(t) = F−1(−
√
2t+ F (r0)) t ∈ [0, t0]

Figure 6.2: R(t) in the case of v0 = 0 Figure 6.3: R(t) in the case of v0 < 0

In each of the cases, the circle Γt finally shrink to a point at the finite time t0, which is

depending only on the initial data r0 and v0, even if the surface evolution energy E(t) conserves.
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As the second example, we can also consider an another exact solution in the case of the axially

symmetric solution for Problem 6.0.1. Let Γt be a infinitely long cylinder (see Figure 6.4), that is,

Γt = {(R(t) cosα,R(t) sinα, ρ) ∈ R3 : α ∈ [0, 2π], ρ ∈ R}.

Since the mean curvature of this Γt is equal to − 1
R(t) , the equation (6.3.1) can be reduced the same

equation with (6.2.2). Therefore, The cylinder Γt shrink to a line as Figure 6.5.

Figure 6.4: The cylinder in R3 with arbitrary
length ρ0 > 0

Figure 6.5: Shrink to line with length ρ0

We also remark that these solutions are only time local solution for Problem 6.0.1, that is, we

have to restrict the final time T > 0 to finite, that is, T = t0. In the next subsection, we will

compare with the E-HMCF equation and the original HMCF equation Dtv = κ in the case of a

circle.

Comparing with the original HMCF equation

In this subsection, we compare with the E-HMCF equation (1 + 1
2v

2)−1Dtv = κ and the original

HMCF equation Dtv = κ in the case of circle from some viewpoints. Throughout this subsection,

we consider the zero initial velocity i.e. v0 = 0. At first, we compare the extinction time for two

equations. In the case of circle, that is Γt = {x ∈ R2 : |x| = R(t)}, the initial value problem for

the original HMCF equation Dtv = κ is rewritten by

R̈(t) = − 1

R(t)
, R(0) = r0, R′(0) = v0 = 0 (6.2.5)

The exact solution for (6.2.5) is calculated in [36] as follows:

R(t) = r0 exp
[
−
{
erf−1

(√π

2

t

r0

)}2]
where erf is the error function. Since erf−1(x) → ∞ as x → 1−, we can calculate the extinction

time te1 of the solution for the equation (6.2.5), that is, te1 := r0
√
π/2. On the other hand, in

the case of E-HMCF equation (6.2.2), as calculated in Section 4.1, the extinction time te2 (= t0 in
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Section 4.1) is as follows:

te2 = r0
π

2
√
2
.

By the inequality 2
√
x > x for x ∈ (0, 4), we have

te2 = r0
π

2
√
2
< r0

√
π

2
= te1 .

Thus, in the case o the circle, the solution of E-HMCF vanishes faster than of HMCF. We can also

observe this fact by the graph of two solutions(Figure 6.6).

Figure 6.6: Comparison the exact solutions of E-HMCF equation and HMCF equation in the case
of circle with r0 = 1.

Next, we see the behavior of the surface evolution energy. Here, the surface evolution energy

for the circles is,

E(t) := H 1(Γt) +
1

2

∫
Γt

v2 dH 1 = 2πR(t) + πR(t)Ṙ(t).

By the structure of the equations, the both of two cases, we have R̈ < 0, thus Ṙ is decreasing

function with R(t) < 0 for t > 0 since Ṙ(0) = 0. In the case of the original HMCF equation,

d

dt
E(t) = 2πṘ(t) + π(Ṙ(t)3 + 2R(t)Ṙ(t)R̈(t)) = πṘ(t)3 (by (6.2.5))

< 0 (by Ṙ(t) < 0)

So, the surface evolution energy decreases in the original HMCF. On the other hand, as mention

in Section 4.1, in the E-HMCF, the surface evolution energy E(t) is preserved.
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6.3 Graph expression

We consider the graph solution of the following energy conserving hyperbolic mean curvature flow

equation:
Dtv

1 + 1
2v

2
= κ on Γt (6.3.1)

where Γt is the time depending hypersurface in RN , v is the normal velocity, Dtv is the normal

time derivative of v, κ is the mean curvature. Assume that Γt is represented

Γt = {(ξ, w(ξ, t)) : ξ ∈ U ⊂ RN−1}

for some function w : U × (0, T ) → R. Then, the normal derivative v, the unit normal vector and

the mean curvature are given by

v(x, t) =
wt(ξ, t)√

1 + |∇ξw(ξ, t)|2
, n(x, t) =

(−∇ξw(ξ, t), 1)√
1 + |∇ξw(ξ, t)|2

, κ(x, t) = divξ

( ∇ξw(ξ, t)√
1 + |∇ξw(ξ, t)|2

)
,

(6.3.2)

for x = (ξ, u(ξ, t)) ∈ Γt. On the other hand, we know the graph representation for Dtv(x0, t0) for

x0 ∈ Γt0 by (5.1.8) in Section 5.1.

Dtv =
wtt√

1 + |∇w|2
+

wt∇w
(1 + |∇w|)3/2

·
(wt∇2w∇w
1 + |∇w|2

− 2∇wt

)
where we omitted the variables (ξ, t0). Therefore, the graph representation of E-HMCF equation

(6.3.1) becomes

wtt√
1 + |∇w|2

+
wt∇w

(1 + |∇w|)3/2
·
(wt∇2w∇w
1 + |∇w|2

− 2∇wt

)
=

(
1 +

w2
t

2(1 + |∇w|2)

)
div

( ∇w√
1 + |∇w|2

)
.

(6.3.3)

We remark that the equation (6.3.3) coincides with the following LeFloch, and Smoczyk’s

equation which appears in [61, Section 5], up to the coefficient of mean curvature part.

wtt√
1 + |∇w|2

+
wt∇w

(1 + |∇w|)3/2
·
(wt∇2w∇w
1 + |∇w|2

−2∇wt

)
=

(N − 1

2
+

w2
t

2(1 + |∇w|2)

)
div

( ∇w√
1 + |∇w|2

)
.

The equation (6.3.3) can be also derived by calculating the first variation of the following action

integral: ∫ T

0

∫
U

( w2
t

2
√
1 + |∇w|2

−
√
1 + |∇w|2

)
dx dt.

In particular, for one-dimension i.e. U ⊂ R, the equation (6.3.3) becomes

wtt =
1

2

(
2 +

w2
t

1 + w2
x

) wxx

1 + w2
x

+
2wxwtwxt

1 + w2
x

− w2
xw

2
twxx

(1 + w2
x)

2
. (6.3.4)
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Let us check that the equation (6.3.4) is hyperbolic. Because, rearranging the equation (6.3.4),

wtt =
2(1 + w2

x) + w2
t − 2w2

xw
2
t

2(1 + w2
x)

wxx + 2
wxwt

1 + w2
x

wxt, (6.3.5)

from this form, we have

det

 −1
wxwt

1 + w2
x

wxwt

1 + w2
x

2(1 + w2
x) + w2

t − 2w2
xw

2
t

2(1 + w2
x)

 =
−2(1 + w2

x)− w2
t

2(1 + w2
x)

2
=

−
(
1 +

w2
t

2(1 + w2
x)

)
1 + w2

x

< 0.

Now, we define the weak solution of the equation (6.3.4) in the sense of distribution.

DEFINITION 6.3.1 (weak solution for 1-dimension graph). A Lipschitz function w :

U × [0, T ) → R is called a weak solution of (6.3.4), if and only if for any φ ∈ C∞
c (U × [0, T )),∫ T

0

∫
U

(
wtφt −

1

2

( w2
t

1 + w2
x

+ 2
)
wxφx

) 1√
1 + w2

x

dx dt = 0

For whole domain, that is, U = R, we expect the following the existence result of weak solution

by using the general theory of the systems of conservation laws (see [46]) as in [61]: There exists

a constant δ0 > 0 such that given any initial data w0, w1 : R → R such that

TV (w0,x) + TV (w1) < δ0,

where TV is the total variation, then the initial value problem for (6.3.4) admits a weak solution

w = w(x, t) in the sense of Definition 2.1.

To apply the theory of [46], we transform the equation (6.3.4) to the system of conservation

laws. For the purpose, we introduce two variables a and b as follows:

a :=
wt√
1 + w2

x

, b := wx.

Then, by using the equation (6.3.5), the direct calculation allow us to find that two functions a, b

are the conservative quantities, that is, these are solution for the system of the conservation laws:

at =
( (2 + a2)b

2
√
1 + b2

)
x

bt = (a
√
1 + b2)x

6.4 Numerical approach

In this subsection, we consider the numerical approach for Problem 6.0.1 by using the hyperbolic

Meriiman-Bence-Osher (we call the hyperbolic MBO shortly) algorithm. In general, the MBO

algorithm is based on the level set method, that is, we express the hypersurface as the level set of

some function, and we solve the partial differential equation, so-called the level set equation, which
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corresponds to the original surface evolution equation. So, firstly we need the level set equation

for the energy conserving hyperbolic mean curvature flow equation (6.3.1).

Level set equation for E-HMCF

Let us rewrite the energy conserving hyperbolic mean curvature flow equation (6.3.1) by using the

level set function. Let Γt be a zero level set of some sufficiently smooth function u : RN × [0,∞) →
R, that is

Γt = {x ∈ RN : u(x, t) = 0}.

We recall that

v(x, t) =
ut(x, t)

|∇u(x, t)|
, n(x, t) = − ∇u(x, t)

|∇u(x, t)|
, κ(x, t) = div

( ∇u(x, t)
|∇u(x, t)|

)
, (6.4.1)

for x ∈ Γt. By the representation of Dtv as (5.1.15) in section 2.3, we have the level set equation

of the hyperbolic mean curvature flow equation (6.3.1) as follows:

utt
|∇u|

+
u2t∇u · (∇2u∇u)

|∇u|5
− 2ut∇u · ∇ut

|∇u|3
=

(
1 +

1

2

u2t
|∇u|2

)
div

( ∇u
|∇u|

)
(6.4.2)

Since the divergence term can be calculated:

div
( ∇u
|∇u|

)
=

Tr (∇2u)|∇u|2 − (∇2u∇u) · ∇u
|∇u|3

,

where Tr denotes a trace of a matrix, we can combine two terms of u2t , then we have:

utt +
1

2

(3ut(∇2u∇u) · ∇u
|∇u|2

− utTr (∇2u)− 4∇u · ∇ut
) ut
|∇u|2

= |∇u| div
( ∇u
|∇u|

)
(6.4.3)

Unfortunately, it is hopeless to treat numerically this equation (6.4.3) because of the compli-

cated structure of the equation. Therefore, we would like to change our strategy for this equation

to treat numerically.

Numerical treatment for E-HMCF

We consider numerical treatment for the energy conserving hyperbolic mean curvature equation

(6.3.1) by the level set method. Our purpose in this subsection is to apply the hyperbolic MBO

algorithm which is introduced by Ginder and Svadlenka [36] to the energy conserving mean cur-

vature flow equation (6.3.1). In the MBO algorithm, the surfaces are expressed by the zero-level

set of the signed distance function. At first, let us recall a signed distance function for a closed

surface.

DEFINITION 6.4.1 (Signed distance function). Let Γ be (N−1)-dimensional closed surface

in RN . We assume that there exists two open set Ω+,Ω− ⊂ RN such that RN = Ω+ ∪Ω− ∪Γ, and
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Ω+ ∩ Ω− = ∅. Then, we define a function d : RN → R by

d(x) :=


dist (x,Γ) x ∈ Ω+

0 x ∈ Γ

−dist (x,Γ) x ∈ Ω−

where dist (x,Γ) := infy∈Γ |x− y|, the function d is called signed distance function.

The one of the important properties of the singed distance function d, is differentiable almost

everywhere, and |∇d| = 1 where d is differentiable. For time dependent surface Γt, we can define

d(x, t) in same way. In the BMO algorithm, since we expect u = d we shall consider that

|∇u(x, t)| = 1 for x ∈ RN , t ≥ 0. (6.4.4)

The point is, this x does not depend on time. Now, differentiating this relation (6.4.4) with respect

to time variable t, we get

∇u(x, t) · ∇ut(x, t) =
∇u(x, t) · ∇ut(x, t)

|∇u(x, t)|
= 0 (6.4.5)

Then, by using (6.4.4) and (6.4.5), recalling the normality of trajectory y, we can calculate the

time normal derivative of the normal velocity Dtv as follows:

Dtv =
d

dt
v(y(t), t) =

d

dt

( ut(y(t), t)

|∇u(y(t), t)|

)
=

d

dt

(
ut(y(t), t)

)
= utt(y(t), t) +∇ut(y(t), t) · y′(t)

= utt(y(t), t)−∇ut(y(t), t) ·
ut(y(t), t)∇u(y(t), t)

|∇u(y(t), t)|2
= utt(y(t), t)

Recalling that (6.4.1), (6.4.5) again, we get the numerical E-HMCF equation (6.3.1) as follows:

utt = ∆u+
u2t
2

∆u =
(
1 +

u2t
2

)
∆u. (6.4.6)

Now, the hyperbolic MBO algorithm for approximate solution {Γn}Mn=0 of the E-HMCF equa-

tion is as follows.

———————————————————————————————–

HMBO algorithm for E-HMCF

Given : initial hypersurface Γ0, its normal velocity v0, a final time T > 0, and time discretize

size τ = T/M for the numerical E-HMCF equation (6.4.6) , N and k0 are positive integers. We

will solve the equation (6.4.6) up to t = koτ (see the following Step1, 3). Firstly we extend v0 to

a neighborhood of Γ0 e.g. using the orthogonal projection on Γ0.

Step 1. For t ∈ [0, k0τ ] solve the initial value problem:

utt(x, t) =
(
1 +

1

2
u2t (x, t)

)
∆u(x, t), u(x, 0) = d0(x), ut(x, 0) = −v0(x)
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where d0 is the signed distance function for Γ0.

Step 2. Define Γ1 as the zero level set u(·, k0τ).

Step 3. For n = 1, ..., N − 1 repeat

Step 3.1 For t ∈ [0, k0τ ] solve the initial value problem:

utt(x, t) =
(
1 +

1

2
u2t (x, t)

)
∆u(x, t), u(x, 0) = dn(x), ut(x, 0) =

dn(x)− dn−1(x)

k0τ

where dn is the signed distance function for Γn.

Step 3.2 Define Γn+1 as the zero level set u(·, k0τ).

————————————————————————————————

In the next subsection, we show some numerical results by using the hyperbolic BMO algorithm

for the energy conserving mean curvature flow equation.

Numerical results

We show some numerical examples for Problem 0.0.2 and check that the hyperbolic BMO algorithm

works for also the energy conserving mean curvature flow equation(6.3.1). When we discretize the

equation (6.4.6), we use central finite difference scheme for utt,∆u as usual, and backward finite

difference scheme for ut. We set the space discretize size h = 1/100, and the time discretize size

τ = 0.5h for the wave equation, and we choose k0 = 4. In the Case I and Case II, time is from

outside to inside.

Case I. (A family of circles) r0 = 0.5, v0 = 0. Figure 6.7 shows circles is shrinking. This

result seem to coincide the exact solution which we calculated in Section 4.1.

Case II. (A family of smoothed squares) v0 = 0. Initial shape is given as the zero level set

of the function u(x, y) = x10 + y10 − 0.5. Figure 6.8 shows that curve part becomes flat, and

flat part becomes the curve part, finally smoothed squares shrink.

Figure 6.7: Shrinking circles Figure 6.8: Shrinking smoothed squares
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Above two examples, we can not observe the oscillation of the interface. Now, we consider

non-convex closed curve, so-called, gourd-shaped as the initial shape.

Case III. (Gourd-shape) v0 = 0. Initial shape is given as the zero level set of the function

u(x, y) = 13(x2 + y2)2 − 8x2 − 0.05. Comparing with the mean curvature flow motion v = κ,

we can observe the oscillation of the interface.

Figure 6.9: Evolution of gourd-shape by E-HMCF. Time is designated by the integer values within
the figure (the initial condition corresponds to number 1).

In so far as these numerical results go, unfortunately, it can not be observed the difference

between the E-HMCF and the original HMCF even though the circle case. Our numerical method

is based on the hyperbolic MBO algorithm developed by Ginder–Svadlenka. In the hyperbolic MBO

algorithm for the original HMCF equation, they decided the coefficient and the initial value of the

wave equation in each threshold steps very carefully by using the asymptotic analysis. To improve

our numerical method and results, it might be helpful to study the equation utt = (1 + 1
2u

2
t )∆u.



Conclusion

The present thesis is devoted to the following two types of hyperbolic free boundary problems.

[1] Hyperbolic Alt-Caffarelli type free boundary problems.

The existence of weak solutions is proved by minimizing a Crank-Nicolson type functional in

the one-dimensional setting. This new functional was shown to preserve the energy correctly both

on continuous and discrete levels, which is of significance in numerical simulations. Future tasks

include extending our result to higher dimensions and to developing computational methods for

investigating the numerical properties of the free boundary problem.

[2] Mean curvature accelerated flow

The acceleration for the moving surface is established by using the notion of the normal time

derivative. The variational formula for this acceleration, which is expected the generalization of

the notion of acceleration, is also proved by the transport identity. Next, by analogous of the

wave equation, the surface evolution energy is introduced as the sum of the surface area and the

normal kinetic energy. By using the notion of this acceleration, the energy conserving hyperbolic

mean curvature flow equation is derived and its solution preserves the surface evolution energy.

Also, some exact solutions, comparison with the original hyperbolic mean curvature flow, and the

graph solution of the energy conserving hyperbolic mean curvature flow equation is considered.

The hyperbolic MBO algorithm, that is the level set approach, is effective for also the energy

conserving hyperbolic mean curvature flow equation in numerical computation for some cases.

The future works include the more mathematical and numerical analysis of the energy conserving

HMCF equation, and with the volume-preserving condition.
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[8] L. Amerio, Su un problema di vincoli unilaterali per l’equazione non omogenea della corda

vibrante, Pubbl IACD 190 (1976) : 3-11.

[9] L. Amerio, G. Prouse, Study of the motion of a string vibrating against an obstacle., Rend

Mat 8(1975) : 563-585.

[10] A. F. Andreev and A. Ya. Parshin, Equilibrium shape and oscillations of the surface of quan-

tum crystals, Sov. Phys. JETP 48(4), 1978

[11] H. Berestycki, L. A. Caffarelli, L. Nirenberg, Uniform estimates for regularization of free

boundary problems, in Analysis and Partial Differential Equation, Marcel Dekker, New York,

1990.

[12] F. Bethuel, JM. Coron, JM. Ghidaglia, A. Soyeur, Heat Flows and Relaxed Energies for

Harmonic Maps, in: Lloyd N.G., Ni W.M., Peletier L.A., Serrin J. (eds) Nonlinear Diffusion

Equations and Their Equilibrium States, 3. Progress in Nonlinear Differential Equations and

Their Applications, vol 7. Birkhäuser, Boston, MA (1992).
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