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We carry out first-principle calculations on monolayer group IV–VI 2D materials. We study systems consisting of group IV (C, Si, Ge) and group VI
elements (O, S, Se, Te) and find that all the materials form buckled puckered geometries. We clarify that VI atoms tend to be located at the lower
positions in the buckled structure when the electronegativity of the VI atom is sufficiently larger than that of the IV atom, which is due to the electron
transfer from the IV atom to the VI atom. All the calculated bands are doubly degenerated on the first Brillouin zone edge and this degeneracy can
be explained based on the group theory. © 2020 The Japan Society of Applied Physics

1. Introduction

Two-dimensional materials have been stimulating scientific
and technological interests because of their novel electronic
properties. The discovery of graphene in 2004 opened the
gateway into the field of group IV based 2D monolayer
materials1,2) including silicene,3–6) germanene7) and
stanene.8) In particular, the Dirac cone in the electronic
band structures characterizes the electronic properties of
group IV materials.9)

Phosphorene was successfully synthesized from black
phosphorus in 2014.10–12) In sharp contrast to group IV 2D
materials, it was found that phosphorene has a moderate
bandgap and is a suitable field-effect transistor material.13–15)

Its bandgap is larger than that of the black phosphorus bulk
and decreases as the layer becomes thick, which was first
discovered based on a first-principles calculation.16) As
well as phosphorene, other group V materials have been
studied such as arsenene,17–20) antimonene21–23) and
bismuthene.24–27) The previous calculation showed that the
energy difference between the puckered and six-member-ring
structures is small14,28) and they are candidates for optical
device and thermoelectric materials.29)

Recently, IV–VI 2D systems have attracted scientific and
technological attention.28,30,31) The puckered structures are
more stable than the six-member-ring one in most of the
cases and monolayer systems are candidates for optical
device materials.28,32–36) Therefore, clarification of their
electronic structures is necessary.
In this paper, we systematically study the electronic

structures of monolayer puckered group IV–VI materials.
By performing first-principles density functional based cal-
culations, we first clarify the relation between the buckling
amplitudes and the electrons transfer between the IV and VI
atoms. Next we analyze the band structures based on the
group theory.

2. Method

We first explain our analysis based on the group theory. The
symmetry operation R̂i is given by:

ˆ { ˆ ∣ } ( )b t=R , 1i i i

where b̂i and
ti represent rotation and fractional translation,

respectively.37) We consider a Bloch wavefunction, ( )Y r ,k
j

given by:
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where


Gn and

k are a reciprocal lattice vector and a wave

vector in the first Brillouin zone, respectively. ( )


c Gj n is a
coefficient and the band index j is in the ascending order of
energy. N is the total number of unit cells and V is the volume
of each unit cell. The irreducible representations of wavefunc-
tions are determined by evaluating the following expression:
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where l and ( ˆ )ca Ri are the order of the group and the
character of the irreducible representation of α, respectively,
and i runs over the symmetry operations of the k group.
When ( )= =a aQ Q1 0 , the wavefunctions belong to (do not
belong to) the αth irreducible representation. By using
Eqs. (2), (3) is expressed as:
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where

k satisfies ˆ   

b = - ¢k k Gi i for a given reciprocal lattice
vector

 ¢Gi (
 ¢ =G 0i when the k point is inside the first

Brillouin zone). In the above expression, we introduce the
irreducible ray representation whose character is given by:

( ˆ ) ( ˆ ) ( )( · )
 

c c¢ =a a tR R e , 5i i
ik i

This irreducible ray representation in most cases corre-
sponds to those of the conventional irreducible representa-
tions of the point groups used in the analysis of molecules
and thus we use the Mulliken symbols to express the
representations.38,39) However, in some exceptional cases,
the irreducible ray representations do not correspond to
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conventional irreducible representations as mentioned in the
next paragraph. We implemented the above algorithm in the
first-principles calculation code PHASE/0.40)

In this work, we discuss the degeneracy of the bands based
on the group theory. In some cases of non-symmorphic
systems, the sticking of bands occurs on the first Brillouin
zone edge, i.e., only two-dimensional irreducible ray repre-
sentations are allowed on the zone boundary and their
characters are different from those of the Mulliken ones.
Another type of doubly degeneracy is induced by time-

reversal symmetry, which can be checked by calculating the
Herring sum.41)

⎧⎨⎩( ) ( )
( )

( )å c= =aS Q
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b
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6

m
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where Q̂m is a time-reversal symmetry operation which
transforms


k to ( )

 
- +k Gm for a given reciprocal lattice

vector


Gm and p is the number of time-reversal symmetry
operations. In the case of b, two levels belonging to different
irreducible representations have the same energy.41) On the
other hand, this pairing does not occur in the case of a.
To simulate two-dimensional materials, we use slab

models; the lattice constant for the c-axis is taken to be so
large that the interaction between neighboring slabs along the
c-axis is negligible. In the present study, the lattice constant
for the c-axis is taken to be 20 Å (Fig. 1). We carry out
density functional band structure calculations to obtain the
Bloch wavefunctions, ( )Y r .k

j We use the exchange-correla-
tion function of the generalized gradient approximation.42,43)

The ultrasoft44) and norm-conserving45) pseudopotentials are
used for carbon, oxygen, and tellurium and for silicon, sulfur,
germanium, and selenium atoms, respectively. We use

´ ´15 15 1 k sampling points in the Brillouin zone integra-
tions.

3. Results and discussion

3.1. Optimized structures and stability monolayers
We first optimize the lattice constants and internal coordi-
nates of the atoms (Table I). We find that the two top atoms

are buckled in the optimized structures (Fig. 1) and thus
systems belong to the space group ( )Pmn C2 v1 2

7 as well as the
group V buckled puckered systems.28,30,34) Since this
space group is non-symmorphic, some symmetry operations
have fractional translations as discussed later. Table I
shows the optimized structural parameters, which are close
to previous calculational and experimental values.28,30–36)

We define the buckling amplitude (h) which is positive
when the group VI atoms are located at the lower positions
(Fig. 1). We find that as the difference in the electronegativity
ξB− ξA becomes large, h tends to increase (Fig. 2 and
Table II), where ξA and ξB are the electronegativities of the
group IV and VI atoms, respectively. When ξB− ξA is
sufficiently large (SiO, SiS, SiSe, GeO and GeS), i.e.,
ξB− ξA > 0.54, the VI atoms are located at the lower
positions and thus h is positive. In contrast, when ξB− ξA
is negative (CTe), the VI atoms are located at the higher
positions and h is negative. We also find that h is negative
when ξB− ξA is positively small (CSe, SiTe, GeSe and
GeTe), i.e., 0< ξB− ξA < 0.54.
Here we discuss the reason why the group VI atoms are

located at the lower positions when ξB− ξA is large.
Electrons substantially transfer from the IV atom to VI
atom when ξB− ξA is large. In this case, the VI atoms are
expected to be located at the lower positions because as

Fig. 1. (Color online) Top (a) and side (b) views of the buckled puckered structure and the first Brillouin zone (c). Blue and yellow balls represent group IV
and group VI atoms, respectively.

Table I. Calculated structural parameters (a, b, R1, R2 and d) which are
defined in Fig. 1.

a b R1 R2 d
AB (Å) (Å) (Å) (Å) (Å)

CSe 4.07 3.03 1.96 2.01 1.84
CTe 4.36 4.25 2.16 2.18 2.08
SiO 4.53 2.68 1.83 1.83 1.31
SiS 4.82 3.33 2.26 2.33 2.17
SiSe 4.69 3.67 2.50 2.47 2.38
SiTe 4.36 4.25 2.62 2.76 2.72
GeO 4.45 3.06 1.99 2.00 2.00
GeS 4.67 3.61 2.44 2.44 2.35
GeSe 4.33 3.95 2.55 2.66 2.53
GeTe 4.36 4.25 2.73 2.88 2.72
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Table II shows, the lower position atoms have larger bond
angles and thus their orbitals are energetically stabilized as a
consequence of large s component. As discussed in a
previous paper,14,16) this electron transfer from the higher
position atom to the lower position atom also occurs even
when the two atoms are of the same kind; this type of
electron transfer occurs in the case of the buckled puckered
structure of group V two-dimensional systems.14)

To check the validity of the above argument, we take GeS
as an example and calculate the electron density for the
valence band top (VBT) and conduction band bottom (CBB)
(Fig. 3). The electronegativity of S is sufficiently larger than
that of Ge (ξB− ξA = 0.57) and the Ge and S atoms are
located at the higher and the lower positions, respectively. As
Fig. 3 shows, VBT and CBB mainly consist of S and Ge
orbitals, respectively, which indicates that electrons transfer
from Ge to S. Since the bond angle of S is larger than that of
Ge, the orbitals of S include large s components, which
stabilizes the orbitals (Fig. 3).
3.2. Band structures of the monolayer analyzed
based on the group theory
We calculate the band structures of the monolayer systems.
In most parts of the Brillouin zone, wavefunctions belong to
conventional irreducible representations. In this case, we use
Mulliken symbols in Fig. 4.38,39) In the other cases, we use
the numerical notations.
We clarify that all the bands are doubly degenerated on the

zone edge (Fig. 4). First, we discuss the degeneracy on the
S–C–Y line where the k group has the symmetry of C v2

(Table IV) and symmetry operations { ( )∣ }tC x2 and { ∣ }s txy

include the fractional translation
  
t = +a b ,1

2

1

2
where


a and

b are primitive lattice vectors in the x and y directions,
respectively. When { ( ˆ )· }

 
¹b t-e 1i ki i for an operation { ˆ ∣ }b t ,i i

the wavefunctions do not belong to the conventional irredu-
cible representation.46) We find that { ( ( ) )· }

 
= = -t-D e 1i C x k2

(Table IV) and therefore the wavefunctions do not belong to
conventional irreducible representations; only one irreducible
ray representation G1 whose characters are shown in Table III
is allowed. Since G1 is two-dimensional, the sticking of bands
occurs on the S–C–Y line, i.e., all the bands are doubly
degenerated.
On the other hand, on the X–D line, the wavefunctions

belong to conventional irreducible representations denoted by
Mulliken symbols because of D= 1. We find that all the
bands belong to a one-dimensional representation since the
symmetry is not high (C v2 and Cs) as Fig. 4 shows. However,
we find that all the bands are paired because of the time-
reversal symmetry.47) We evaluate the Herring sum in Eq. (6)
and find that the sum equals to 0, indicating that two different
irreducible representations are paired (Table IV). As Table IV
shows, A1 and B1 (A2 and B2) are paired at the X point where
the symmetry isC .v2 ¢A and A are paired on the D line where
the symmetry is C .s
Based on the argument mentioned above, we conclude that

the degeneracy on the first Brillouin zone edge is due to the
symmetry of this system. The degeneracy on the S–C–Y line
occurs due to the sticking of the bands on the first Brillouin
zone edge. Meanwhile, for the X–D line, the degeneracy is
caused by the time-reversal symmetry. The above-mentioned
degeneracy on the Brillouin zone edge is expected to be
detected by some experiments such as photoelectron spectro-
scopy. This degenerated bands may split when we include the
spin-orbit coupling.48)

4. Conclusion

We have carried out first-principles calculations of group IV–
VI two-dimensional monolayer materials. The systems form
buckled geometries and thus the space group is ( )Pmn C2 .v1 2

7

We conclude that when the electronegativity difference
(ξB− ξA) is large, the group VI atoms are located at the
lower positions. This is because electrons transfer from
the higher position atom to the lower position atom. On the
contrary, if the difference is positively small or negative,

Fig. 2. (Color online) Relationship between the buckling height, h, and the
difference of electronegativities, ξB − ξA.

Table II. Geometrical parameters and the difference of the electronega-
tivities, ξB − ξA, which are determined by the Pauling scale.30) The buckling
amplitude, h, and the bond angles, θ2 and θ3, are defined in Fig. 1.

θ2 θ3 θ3 − θ2 h ξB − ξA

CSe 110.9 98.2 −12.7 −0.23 0.00
CTe 109.3 90.1 −19.2 −0.37 −0.45
SiO 94.2 132.5 38.3 0.77 1.54
SiS 96.3 111.1 14.8 0.3 0.68
SiSe 97.0 101.5 4.5 0.1 0.65
SiTe 100.3 87.8 −12.5 −0.29 0.20
GeO 91.3 126.5 35.2 0.69 1.43
GeS 94.9 106.2 11.3 0.21 0.57
GeSe 96.8 92.4 −4.4 −0.08 0.54
GeTe 99.9 87.3 −12.6 −0.27 0.09

Fig. 3. (Color online) Electron density for the VBT (left-hand side) and
CBB (right-hand side) of GeS. We integrate the electron densities over the
energy width of 0.2 eV to the VBT (a) and from the CBB (b).
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(b)(a)

(d)(c)

(f)(e)

(h)(g)

(j)(i)

Fig. 4. (Color online) Band structures of buckled puckered structures of (a) CSe (b) CTe (c) SiO (d) SiS (e) SiSe (f) SiTe (g) GeO (h) GeS (i) GeSe (j) GeTe.
We use Mulliken symbols for one-dimensional irreducible representations (A1,A2,B1,B2) for Γ, Ʃ, X line and ¢ A A, for the D line. We denote G1 by 1 on the
S–C–Y line in the figures.
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group VI atom is located at the higher positions. We find that
all the bands are doubly degenerated on the first Brillouin
zone edge and clarify that this degeneracy is explained based
on the group theory.
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