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Two-dimensional hexagonal materials such as graphene and silicene have high symmetric crystal structures

and Dirac-cones at the K point which induce novel electronic properties appear. In this report, we calculate

their electronic structures by using the density functional theory and analyze their band structures based

on the group theory. Dirac cones frequently appear when the symmetry at the K point is high so that

two-dimensional irreducible representations are included. We discuss the relation between symmetry and

appearance of the Dirac cone.

1. Introduction

After the discovery of monolayer graphene, electronic structures of graphene have been

extensively studied.1) Carbon atoms form honeycomb structure and novel electronic

structure of graphene is characterized by the Dirac cone, which is expected to induce

useful electronic properties.2–7) Because of its electronic characteristics, graphene is

expected to be applied to nanoscale applications.8–10) As well as graphene, silicene forms

a hexagonal structure. The neighboring silicon atoms are buckled unlike graphene and

thus the symmetry is lowered. In spite of this symmetry difference, the Dirac cone also

appears at the K point in silicene.11–14)

Furthermore, the two-dimensional hexagonal materials such as germanene and

stanene have been synthesized.15,16) Moreover V-element forms two-dimensional hexag-

onal sheet; phosphorene has been recently achieved.17) Bi also forms ultrathin films

having the hexagonal structures.18) Therefore, understanding of electronic structures of

these two-dimensional hexagonal materials attracts scientific interests. In particular, it

is important to clarify which hexagonal materials induce Dirac cones. It should be no-

ticed that high space symmetry including two-dimensional irreducible representations

at the K point induces the Dirac cones since two bands are degenerated at the Dirac

point. It is possible that other mechanisms induce Dirac cones beside the high space

symmetry induced mechanism. Accidental degeneracies might induce Dirac cones19,20)
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and the Dirac cones can be induced in time-reversal systems affected by spin-orbit

interaction.21,22) However, the above-mentioned high space symmetry induced Dirac

cones are expected to be common for the two-dimensional hexagonal materials such as

graphene and silecene. We therefore focus on this mechanism in this paper.

From the view point of the group theory, the two-dimensional hexagonal sheets

form hexagonal or trigonal lattices, then the group theoretical analysis of these lattices

is expected to give insight into the appearance of Dirac cones.23,24)

In this paper, we study monolayer and bilayer of graphene and silicene. We perform

first-principles band structure calculation and examine the appearance of the Dirac

cone. The calculation results are analyzed based on the group theory and we discuss

the relation between the appearance of the Dirac cone and space symmetry.

2. Method

The symmetry operation R̂ is given by

R̂ = {Θ|τ} (1)

where Θ and τ represent rotation and translation, respectively.25,26) We consider the

Bloch wavefunction, ψk
i (r), where k is the wavevector in the first Brillouin zone and i is

the band index, which is in ascending order of the energy. When R̂ operates the Bloch

wave function, we obtain

R̂ψk
i (r) = ψk

i (Θ
−1r −Θ−1τ) (2)

The projection operator is introduced here,

P̂ l
k =

1

h

∑
R̂

χl
k(R̂)R̂ (3)

where h is the order of the k group and χl
k(R̂) is the character in the irreducible

representation. The summation in eq.(3) runs over the symmetry operations which in

the k group. By evaluationg the following expression, we can identify the irreducible

representations of the wavefunctions of n-th degeneracy.

Q =
n∑
i

∫
drψk

i (r)
∗P̂ l

kψ
k
i (r) (4)

When Q = 1, (Q = 0), the wavefunctions (do not) belong to the l-th irreducible repre-

sentation. We here introduce the irreducible ray representation27)

χ́l
k = exp(ikτ )χl

k (5)
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The characters of the irreducible ray representation in most of cases correspond to

those of point groups of Mulliken notation, which is used in analysis of molecules. In

particular, the characters in all the systems in the present study can be denoted by

using Mulliken notations. Therefore, we use the ray representation in this study and we

simply refer to it as ”representation” hereafter.

We implemented the above algorithm in first-principles calculation code

PHASE/0.28) Therefore the identification of the representations is carried out by using

computers.

We carry out density-functional band-structure calculations to obtain the Bloch

wavefunctions, ψk
i (r). We use the exchange-correlation functional of the generalized

gradient approximation (GGA)29) for the silicene. The local density approximation

(LDA)30) is used for graphene since it is better than the GGA in the case that the Van

der Waals interaction is active.31) We use slab models for simulating two-dimensional

periodic systems. The ultra-soft32) and norm-conserving33) pseudo potentials are used

for carbon and silicon atoms, respectively. The 24× 24 and 16× 16 k sampling points

are used in the Brillouin zone integrations.

The lengths in the c-axis are 12Å and 30Å in the monolayer and bilayer graphene,

respectively. The lattice constant is 2.46Å in the cases of the monolayer and bilayer

graphene.

3. Results And Discussion

3.1 Monolayer graphene

Table I. Space group and point group of each k point in graphenes.

monolayer graphene
bilayer graphene
AA structure

bilayer graphene
AB structure

space group

P6/mmm

(191,D1
6h)

P6/mmm

(191,D1
6h)

P3m1
(164,D3

3d)

Γ D6h D6h D3d

K D3h D3h D3

M D2h D2h C2h

T C2v C2v C2

T’ C2v C2v C2

Σ C2v C2v Cs
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(a)

(b)

Fig. 1. Topview of monolayer graphene (a) and reciprocal space including the first Brilloun zone

indicated by shaded area (b). a1 and a2 are the periodic lattice vectors and b1 and b2 are the

primitive receiprocal lattice vectors.

We first study monolayer graphene whose periodic lattice vectors (a1,a2,a3) and

reciprocal lattice vectors (b1, b2, b3) are defined in Fig.1. We show the band structure

of monolayer graphene in Fig.2 and tabulate the high symmetry lines and points in

Table.I. The Dirac cone appears at the K point, i.e., two linear bands are degenerated

at the K point. The necessary condition for the emergence of the Dirac cone is that

two wavefunctions are degenerated. Therefore, they must belong to the two-dimensional

irreducible representation. Consequently, the point group at the Dirac point needs to

include two-dimensional representation. In the present case, the symmetry of the K

point is D3h (Table.I), which includes two-dimensional irreducible representations (E ′

and E ′′). The Dirac cone point belongs to E ′′.

We tabulate the irreducible representations of the wavefunctions for the k point in

Table.II. Our assignments of representations are somewhat different from those in Ref.

23 but are consistent with those in Ref. 24 (Some differences between our study and the

past one (Ref. 24) in the assignment at the M point are found but they are expected

to originate from the choice of the axes which are perpendicular to the principal axis).

We take an example of the lowest energy level at the Γ point in Fig.2. The Γ point has

the D6h symmetry and our assignment for this level is A2u, which is different from the

4/14



Jpn. J. Appl. Phys. REGULAR PAPER

Fig. 2. Band structure of monolayer graphene. The energies are measured from the Fermi energy.

Table II. Representations of in monolayer graphene. We use the Mulliken notations34) for the

representation. The band index is in the descending energy order from the Fermi level.

k-points band index representation

Γ 1 E2g

2 A2u

T 1 B2

2 A1

3 B1

K 1 E ′′

2 A′

assignment in Ref. 23 and is consistent with that in Ref. 24. It is clear from Fig.3 that

the wavefunction has the characters of A2u for all the symmetry operations in D6h.

3.2 Bilayer graphenes

We perform LDA calculations and find that the layer distances are 3.37Å and 3.16

Å for the AA and AB stackings, respectively, and the energy in the AB stacking is

6.35×10−3eV/atom lower than that of the AA stacking according to our calculation

results. In the case of the AA stacking, the symmetry of the K point is D3h, which is

the same as that in the monolayer graphene. Among the six irreducible representations,
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(a) (b)

Fig. 3. Isosurface of wave functions of the lowest energy level at the Γ point in Fig.2. The vertical

and horisontal views are showin in (a) and (b), respectively. The red and blue colors indicate plus

and minus values.

there are two-dimensional irreducible representations (E ′ and E ′′). Near the Fermi level,

two degenerated levels E ′ and E ′′ appear. On the other hand, in the case of the AB

stacking, the symmetry of the K point is D3, which is lower than that in the AA

stacking. As a result, only one representation is two-dimensional (E), among the six

representations in the D3 symmetry. The degenerated level E appears at the Fermi

level and two levels are located near the Fermi level. i.e., the A2 (A1) levels appear

above (below) the Fermi level. The above-mentioned difference between the electronic

structures near the Fermi energy is attributed to the high and low symmetries in the

AA and AB stacking, respectively.

3.3 Monolayer silicene

We next study monolayer silicene. The two atoms in the unit cell are buckled as shown in

Fig.5 and we tabulate the high symmetry lines and points in Table.III. In the optimized

structure, the magnitude of the buckling is 0.41 Å according to the present calculation.

Because of the buckling, the symmetry is D3d, which is lower than D6h of the non-

buckled monolayer graphene. As a result, the symmetry of the K point is D3d, which

is lower than that of monolayer graphene (D3h). The Dirac cone appears at the Fermi

level and the representations are two-dimensional (E) as Fig.6 shows.

Overall the band structure of the silicene is similar to that of monolayer graphene.

However, the some bands are crossing in the case of monolayer graphene whereas corre-
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(a) (b)

Fig. 4. Band structures of bilayer graphenes whose stackings are AA (a) and AB (b).

Table III. Space groups and the point groups of each k point in mono and bilayer silicenes.
monolayer
silicene

bilayer silicene
AA1 structure

bilayer silicene
AA2 structure

bilayer silicene
AB1 structure

bilayer silicene
AB2 structure

space group
P3m1

(164,D3
3d)

P3m1
(164,D3

3d)
P6m2

(187,D1
3d)

P3m1
(164,D3

3d)
P3m1

(156,C3
3v)

Γ D3d D3d D3h D3d C3v

K D3 D3 C3h D3 C3

M C2h C2h C2v C2h Cs

T C2 C2 Cs C2 C1

T’ C2 C2 Cs C2 C1

Σ Cs Cs C2v Cs Cs

sponding bands are not crossed in the case of silicene. This non-crossing is due to that

two bands belongs to the same representation because the symmetries are lower than

those of monolayer graphene. For example, in the Γ-K line, the symmetry of silicene is

C2 (Fig.6) whereas the symmetry is C2v in the case of monolayer graphene (Fig.2). The

three bands (indicated by green characters in Fig.6) which near the Γ point and below

the Fermi level belong to representations of A, B and B in the descending energy order

from the Fermi level. On the other hand, the corresponding representations are A1, B1
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(a)

(b)

Fig. 5. Atomic structure (a) and the reciprocal space (b) in silicene. The blue and yellow balls are

not in the same plane in (a). The shaded area indicates the first-Brillouin zone in (b).

Fig. 6. Band structure of monolayer silicene. The energies are measured from the Fermi level.

and B2 in the case of monolayer graphene (Fig.2). Consequently, the second and third

bands cross each other in the case of graphene whereas these two bands don’t cross

each other in the case of silicene (Fig.6).
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3.4 Bilayer silicenes

(a) (b)

(c) (d)

Fig. 7. Atomic structure of bilayer silicenes. They are distinguished by the stacking of atoms and

the buckled structures of the layers and named AA1(a), AA2(b), AB1(c), AB2(d) structures.

Table IV. Total energies, the minimum atomic distances between the two layers, buckling

distances and the minimum atomic distance between the two layers. Their total energies are

measured from that of monolayer silicene.
bilayer silicene
AA1 structure

bilayer silicene
AA2 structure

bilayer silicene
AB1 structure

bilayer silicene
AB2 structure

Total energy[eV/Atom] -0.125 -0.0176 -0.142 -0.0309
The minimum atomic distance
between the two layers [Å] 2.74 3.62 2.53 3.41

Buckling distance[Å] 0.81 0.53 0.65 0.51

Bond Length[Å] 2.38 2.30 2.33 2.29

We consider bilayer silicene. The minimum35,36) and larger unit cells37,38) were used

in the past studies. It was recently reported that the most stable structure has a large
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unit cell.38) However, we focus on the minimum cell since the main purpose of this paper

is to clarify the condition that induces the Dirac cone.

We study the AA and AB stackings. We consider the two types of the AA stacking

structures, i.e. AA1 and AA2. In the case of the AA1 (AA2) structure, the top and

bottom layers have the same (inverted) buckling order (Fig.7). We also consider the

two types of AB stacking structures. In the AB1 (AB2) structures, the top and bottom

layers have the same (inverted) buckling order (Fig.7). We assume that the lattice

constant of the bilayer is the same as that of the monolayer. We show the total energies

and geometry parameters of their structures in Table.IV.

Table V. Character table of the K point in bilayer silicenes. ε = ei
2
3π.

E C3(z) C2
3(z) S3 σh S5

3

C3 E e 1 ε ε∗

e∗ 1 ε∗ ε

C3h E ′ e′ 1 ε ε∗ ε∗ 1 ε

e′∗ 1 ε∗ ε ε 1 ε∗

E ′′ e′′ 1 ε ε∗ −ε∗ −1 −ε
e′′∗ 1 ε∗ ε −ε −1 −ε∗

We show the band structures of bilayer silicenes in Fig.8. The AA1 and AB1 struc-

tures have the symmetry of D3d at the Γ point. As a result, the symmetry of the K

point of these strucutres is D3. Since D3 includes the two-dimensional representation

E , some two bands cross each other at the K point. In particular, the Dirac cone at the

Fermi level arises in the AB1 structure. On the other hand, the AA2 and AB2 structures

have symmetries of C3h and C3, respectively. Since these symmetries are lower than D3,

the symmetries include no two-dimensional representation. It should be noticed that

the Mulliken notations include representations of E ′ and E ′′ in the C3h symmetry34)

and these are not two-dimensional representation. Therefore, we use e and e∗ insted

of E because these (e and e∗) are one-dimensional representation (Table.V). As shown

in Fig.8, there are no degenerate bands at the K point in the case of AA2 and AB2

structures.
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(a) (b)

(c) (d)

Fig. 8. Band structures of bilayer silicenes forming (a)AA1, (b)AA2, (c)AB1 and (d)AB2 stacking

structures.
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3.5 Discussion

So far, we discussed the relation between appearance of Dirac cones and space symmetry.

When symmetry is high enough to include two-dimensional representations, Dirac cones

may appear and they do not appear when the symmetry does not include any two-

dimensional representation.

The two-dimensional hexagonal systems have hexagonal and trigonal structures and

the symmetries of them are C6h, C3h, C6v, C3v, C6, C3, S6, D6h,D6, D3h, D3d and D3.

The symmetries at K point for these structures are C3v, C3h, C3, D3h and D3. Among

them, both C3h and C3 do not have two-dimensional representations though they include

E -type representations in the Mulliken notation. Therefore Dirac cones are expected

not to appear in the cases of C3h and C3.

4. Conclusion

We carry out first-principles calculation of the structures of free-standing mono- and

bi-layer graphenes and silicenes and analyze electronic structures based on the group

theory. When the point group at the K point is high enough to include two-dimensional

representations, the Dirac cone may appear and when the group does not include two-

dimensional representations, the Dirac cone does not appear. Among the symmetries

(C3v, C3h, C3,D3h andD3) at the K point in the hexagonal and trigonal two-dimensional

structures, C3h and C3 do not include two-dimensional representations and therefore

Dirac cones do not appear.
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