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On a Refined Formula of the Relative Class Number of a CM-Field "’

Hiroshi YAMASHITAZ!

Abstract

We will try to generalize the result in [10] to a CM-fleld in this article. Let p be an odd
prime number. Let F be a CM-field which is an abelian extension of a totally real subficld
k. We suppose F' and k are Galois extensions over . Let p be the complex conjupgate
map. Let e be an idempotent clement of the group ring of the Galois group of F/k over
Zp such that pe = —e. Our aim is to prove the following formula holds:

vp(leZp, @ Clp)y = Y wup(L(0, X))} + b - vplwr),
x(e)s#0

where Clp is the ideal class group of F' and where the symbol &, takes value 1 if w(e) # 0 for
the Teichimiillar character w, otherwise it takes value 0. We shall generalize the argument
in {10] directly. To achieve this aim, the most crucial obstruction is that we do not have
a good analogue of the Stickelberger theorem and a p-adic analogue of Stark’s conjecture
in a special case, c¢.f. Theorem 3.2 in §17, [3]. This problewm is not studied here.

Keywords: CM-field, relative class number fermula, Iwasawa theory

Introduction
The relative class number i of a CM-field is described by the value at O of the L-function of a totally

real number field k. Namely, if F is an abelian extension of k with degree m over the field @ of rational
numbers, we have a formula

- L, x
hp = +Qrwp || "%,
x:Odd

where wr is the number of roots of unity and Qp is the unit index. Let G be the Galois group of F' over k.
It contains a unique complex conjugation map p. A character x of G is called odd if x(p) = —1.

We denote by p an odd prime number in this article. We focus our thoughts on the p-part of hr.
Let v, be the p-adic valuation normalized by v,(p) = 1. We take an algebraic closure of the field @, of
p-adic numbers and denote by C,, the completion of an algebraic closure of @, by the norm defined by the
valuation. We extend v, on C,. Let Z, be the ring of p-adic integers. We have an idempotent element

e~ = (1—p)/2 in the group ring of Z,G of G over Z,. Then, the above formula is transformed into a p-adic
formula:

'Up(hg) = Up(wF) + Z Up(L(O:X))u
x{e~)#£0

where the sum is taken with respect to characters y such that x{e™) = (1 — x(p))/2 # 0.
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Our aim is to refine this formula relative to an arbitrary idempotent element e contained in e~ Z,G.
Namely, we expect the following formula holds:

Up(uzp ® CIF) = Z U,’O(L(O’ X)) + 6)( ! vp(wF))
x(e)#0

where Clr is the ideal class group of ¥ and where the symbol §, takes value 1 if w(e) # 0 for the Teichimiillar
character w, otherwise it takes value 0. In [10], we showed this formula holds if F is an imaginary abelian
extension of @ and if p is unramified.

In the present paper, we try to extend and apply the method there to the CM-field. We shall make
it clear that what problem is remained at this point to achieve our goal. To this purpose, it is crucial to
define an analogue of Gauss sums of an imaginary abelian case. Well-behaved analogue is needed so that it
represent the value of L(0, x) and the value at 0 of the higher derivatives of p-adic L-functions, which are to
be a generalizations of the Stickelberger theorem and Theorem 3.2 in §17, [3] in an imaginary abelian field,
respectively. We do not study this problem.

We define lattices obtained by p-adic maps of Z,®F* is §1. In §2, we recall the x-parts formula of a finite
module. In §3-5, we generalize the results in [10} to fit a CM-field . This will be done in a quite natural
way with compared to the imaginary abelian case. In these argument, we suppose the Gross conjecture is
valid for F' and p. We shall be confronted with a new problem for p-invariants, because vanishing of it is
an open problem for CM-fields thought it was proved for abelian extensions of Q.

1. p-adic maps
We shall generalize the p-adic maps which are defined in [2]. Let F be a finite Galois extension of Q with
a Galois group ®. Suppose the prime number p is decomposed into 7 prime factors. We choose one of them
and fixed it once for all as a base point. Denote by P the base point. Let g be an embedding which defines
the prime ideal 8. Namely, the inverse image of the valuation ideal of C, is the prime ideal. Let 9 be the
decomposition group of P and let
’ B =U_08 oc=1
be the decomposition into right cosets. The set of conjugate prime ideals of 9 is {¢;B}i=1,..». Anembedding

toyp = tp 0 07!

is the defining embedding of a conjugate prime ;3. Since F is a Galois field, the images of every ty,q's
coincide with Im up. Let Z be the decomposition field of ¢ and 6 be the Galois group of F//Z. Denote by F
the composition of Im gy and Q,, in Cp. We identify the Galois group of F with § through the embedding cq;.
From the arithmetical point of view, we discriminate between the composite fields 15,5 (F)Q,, i = 1,...,7.
We call ¢5,8(F')Q,, the completion of F' at o;8. We write this completion as

top - F = Foup

Hence, the symbol ¢;;9 - F means a right one-dimensional F-vector space on the base ¢y, We restrict
the prime ideal ¥ and the corresponding embedding uy onto Z and denote by p and ¢, respectively. The
conjugate ideal of p is the prime ideal o;p of the subfield o,Z of F, which the embedding

_ -1 _
logp = po0; =1

0B Z

defines. Let A/ be the norm map with respect to the extension F/ Q. We have the following two commutative
rectangles:

oy bo;
Fo— Loy * F F — Loy - F
NF'/aZJ' lN inclusionT Tinclusion
O'-I'Z L—} Lop* Q,’O’ CfiZ L—} bap * Q]’J‘

aip aip
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The field F is a simple Q-algebra. By extension of the ground field, the simple algebra is decomposed
into a direct sum of r simple Q,-algebras:

QeeF=) iop F=]]Fuy.

i=1

Denote by Ap the direct sum of these simple @ -algebras. The extension of the ground field inherits the
Galois module structure from F. We give a Q,8-module structure on A g as an induced structure from the
Qpﬁ-module vp - F.

F1%=Q,6®q,5 F.
Similarly, we have decomposition by extension of the ground field to Z:
.oy r
QB Z = Zi:ﬁ""p @y = H Zow = Qp 1= Q6 29,5 @y
i=1

The global field I (resp. Z) is embedded into Ar (resp. Az} with the set of embeddings {vs,;} (resp.
{tc,p}), diagonally:

r T
T — Z Lo b (), (rcsp. T — Z Laip * ng.p(g:)) .

i=1 i=1
The norm map Np,z of the multiplicative group A into A% is defined to be

T T

Npyz(D tog @) = Y toyp - N ().

i=1 i=1
By Proposition 2.2 in Chap. IV, [5], we have the following commutative rectangle:
X —— Ap
Ngpz l lN FizZ
ZX —— A

Let @, o be the cyclotomic Zp-extension of Q,. We suppose it satisfies
Assump. 1  Q,  NF =Q,.

The cyclotomic Z-extension Q,, ., is union of intermediate fields @y, , which are unique cyclic extension of
degree p™. Denote by NOC,Q;,< a subgroup of the multiplicative group Q;‘ defined to be

o0
NeoQX = Ng, ./0,(Qpn).

n=1

This subgroup is a closed subgroup by which the quotient is isomorphic to the Galois group by the norm
residue symbol of local class field theory:

Let log, be the p-adic logarithm on Q;‘. The subgroup NOOQ; coincides with the kernel. Thus, we have a
sequence of isomorphisms of topological groups:

o o
Gal(Q) 00/ Qp) ¢ : Q) INuQ) —— Z.
norm residue maps 3 log,,
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There is a similar sequence for the cyclotomic Zp-extension F. We define a closed subgroup of the
multiplicative group F*:

o0
NeoF* = (1) N£, #(F%).
n=1

By local class field theory, the quotient 7™ /Ny F™ is isomorphic to @ /NeQ; by the norm map A from
the assumption 1. Hence, we obtain

FX [N FX %, Q /N QX % Z,.
P P

By the induced module structure, we can convert this local correspondence to that between Ap and Ag.
Let NooAx be closed subgroup of AX defined to be

T

NoA% = Z__IL,ir_p - NpoF*.

We also define .

NoAz =3 o NeoQy.

We see the following commutative diagram is constructed:
F* —— AZ/NGAR

Npiz l Npsz l
"

Z* —— AE/NooA; —Q ZLU{P ' Zp = (“P ’ ZP) T® -
Denote by i the induced module in the right. The isomorphism of A} /Ny A onto I is defined by

1
P i = Zagip cx; = mep . I—Jlogp(:ri).
The diagram yields maps g : F* = If and ¢ : Z% — I{. These two maps have a relation

Yr =1 o Ngz.

Since the image of Z* into A} is dense, we have a surjective map if we extend 9 onto Z, ® Z*. We denote
this extension by the same symbol ¢. The map % is also extended to a surjective Zp-homomorphism of
Z,® F* onto i{. The actions of ® on the modules appeared in the above diagram are compatible with
these maps 9 and ¥p. They are Z,®-homomorphisms. Let E) g be the group of p-units of F. Denote by
Wp the image of Z, ® E1 r by ¥F.

Let Lr be the maximal unramified p-decomposed abelian extension of F. We call an extension is
p-decomposed if every prime divisors of p are completely decomposed there. Let Foo be the cyclotomic
Z,-extension. Denote by Ly the maximal unramified p-decomposed abelian pro-p-extension of Fuo. It is
union of the maximal unramified p-decomposed abelian extension of the nth layers of the Z -extension:

oo
Le, =] Lr,.
n=0

Proposition 1.1. Let LT, = be the mazimal abelian extension of F contained in Lr,,. We have Gal(Lr,, /L) =
U[Wr.
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‘Proof: Let E1 p be the topological closure of the image of B p into AZ. Let N, be a subgroup

.7
Np = Zizlba;m : N.?"H/T(f:)

of AX. Note NoA} = Ny>1N,. By class field theory, the quotient group A}/E; N, is isomorphic to
the Galois group of the maximal abelian subfield contained in Lr, over F. By the assumption 1, we have
AL/N, =U JUP" holds. Hence, this quotient group is mapped onto

U/Wp +p"U

by %’ o Np/z, isomorphically. Taking the inverse limit, we have U/Wr 2 Gal(L%, _/Lr). g.e.d.

Let U be afree Z-module on a basis {o;p}i=1,...,. This module has a Z,®-module structure, canonically.
We have i 2 U as Z,®-modules. Each element of Z* is mapped into U by

z = > vplin(oi(2)))oib.
i=1

We extend this map onto Z, ® Z*. Denote by  this Z,®-homomorphism of Z, ® Z* onto U. We define
a homomorphism ¢r of Z, @ F'* by

wr =poNpz.

This map is not surjective in general. Let fr/g be the degree of the prime 8 in F/Q. Since F is a Galois
extension, the degree of every conjugate ideal is equal to fr/g. Let Ur be the image of . We have

UF = fF/QU =

Denote by Wr the image of Z, ® By r by ¢p. Let Lr be the maximal unramified abelian extension of F.
By class field theory, we have

(1) UF/WF%’GQE(EF/LF).

Since Ly is a finite abelian extension of F, we see Ur and Wy has the same Z,-rank. On the contrary, the
Zy-rank of Wr is less than that of i/, because L}m contains the cyclotomic Z,-extension of Lr. Let Lr,, be
the maximal unramified abelian pro-p-extension of F,,. Denote by E}m the maximal abelian extension of ¥

contained in L. We have a similar isomorphism of the Galois group Gal(f,}.nm /L) as that of Proposition
1.1. Let i, be the unit group of the local field F,,. We define a subgroup of the unit group of F:

Noolh = () Ny, /5 (th)-

n=1

By the assumption 1, the quotient of the unit group i of F by this subgroup is isomorphic to a subgroup
F*[NooF* of finite index. Denote by i, the unit group of Fy,p. We have an injective homomorphism

r
[T o/ Voot > A3/ Nao A
ge=1

of finite cokernel. Let Ey r be the unit group of F. The image of Ey s into A% is contained in J]il,mp.
Denote by Eg r the topological closure of the image. We have injection

T T
11800/ Bo,r [ | Noollosp = AF/Eo,pNeo A

i=1 i=1
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of finite cokernel. By class field theory, the quotient of []isp by EorNe [, 3 is isomorphic to the
Galois group of L over Lr. Denote by £ the image of Z,® Eyr by pp. Let U’ be the image of [] Uy
into U by ¥ o NF/Z We have

U'[Er = Gal(Ly, /Lr).
By comparing this with the isomorphism of Proposition 1.1, we obtain

rankz, Wr/Ep = rankg, Gal(Lh_/L}.).
Proposition 1.2. If F is p-decomposed over Q, then Wp and Er have the same Z,-rank.

Proof : An arbitrary Zp-extension of the p-decomposed field F is locally cyclotomic at every prime lying
above p. Hence, it is a subfield of L. It follows that L is a finite abelian extension of L% . Therefore,
Wr/EFr is of finite order. g.e.d.

Proposition 1.3. Suppose F is o« CM-field. Let p be the complex conjugation. Put e™ = (1 ~ p)/2. If the
Gross congecture is true for F, then we have

e_WF o E_WF = e_Zp ® ELF/EU,F‘

Proof: Fis a CM-field if and only if p is an element of the center of . Thus, e~ is a central idempotent
element of the group ring Z,&. It is obvious that e~ W is isomorphic to e~ Z, ® E) p/Epr. Since F is a
CM-field, e~ Z, ® Ey,r is the maximal torsion submodule of e~ Z, ® By p. It is contained in the kernel of
Yp. Since it follows from the Gross conjecture that e~Gal (L% /F) is of finite order, we have e"Wp has
the same rank as e™i/. Hence, e"Wr and e~ Wp has also of same rank. This implies e~ Z, @ E1 r/Ey F is
mapped onto e~ Wp by tF, isomorphically. g.e.d.

2. x-parts _
Let G be a finite group. Let K be a decomposition field of G contained in C), which is a finite extension of
Q,- Let O be the valuation ring. If M is a Z,-free module, we denote by XM (resp. OM) the extension
of coefficients to K (resp. O KM = K ®z, M (resp. OM = O ®z, M). If G is abelian, the x-part
of M defined for each irreducible K-character of G is a submodule MX of OM consisting of elements m
satisfying om = x(o)m for every ¢ € G. A Z,G-module M is called a ZpG-lattice if it is Z,-free. If M is
a ZpG-lattice, we proposed another definition of x-part in §1, [10]. An element

x =X S (oo

agcl;

of the group ring KG is a central primitive idempotent, c.f. Proposition 9.17 in [1]. Let Irrc(G) be the set
of all of irreducible K-characters of G. The sum of every idempotents ey is the identity element of KG:

Z ey =L
xElrre(G)
Thus, the set {ey} of idempotents decomposes a. XG-module into a direct sum of submodules:
KM= @ ekM
x€lrr(G)

The direct factors are x-eigen spaces of the K-vector space KXM. Their K-dimension is described by a
non-degenerate symmetric scalar product on the K-subspace generated on the basis Irri(G) in the space
of K-valued K-linear maps on the group ring XG, which is defined to be

G |GI > (e

o€
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for characters ¢ and 5. If ¢ is the character afforded by KM, we have the dimension formula
dimg KMy = (¢, X) -

Since QM is a submodule of KM, we define the x-part of the Z,G-lattice M to be the image into the eigen
space e, KM by the projection:
M, = e, OM.

The x-part M, is an OG-lattice whose O-rank is equal to the dimension of e, LM . If G is abelian, we have
the following relation:

My D MX S |G|M,.

Let M be the direct sum of M, in KM. It is an OG-free module containing @M. Since the rank is equal to
dimy XM and since the sum of dimk e, XM equals the dimension of XM, we have M /OM is of finite order.
Denote by p'r')’é’r the projection of OM onto Mx- If N be a quotient of a Z,G-lattice M by a sublattice L,
we define the x-part Ny to be ' :

Ny =M, /Ly

and N* to be the outer direct sum of Ny for x € Irrg(G).
Suppose N is also a Z,G-lattice. We have the following commutative diagram with exact rows:

0 —s OL — OM —"% ON —— 0
pri‘l prfl pr{?’l
0 — e,KL —2 e, KM —— e, KN —— 0

This diagram yields a long exact sequence of @G-modules:

0 — Ker pri‘ — Ker pr)‘}’1r — Ker prQr % Coker pr)[c‘ — Coker pri” — Coker pr?r — 0.
The homomorphism § is given by

1M -1, N
ty opry on” :Kerpry — exCL/Ly.

If 7(m) € Kerpry for m € OM, we see 13" o pr} o a7 (|G[r(m)) € Ly, because e,|G|m € OL. It follows
that Im ¢ is an abelian group whose exponent divides the order of G. We have a commutative diagram

0 —— Kerprf{’ — Kerpi'“;c"1r — Kerd —— 0

! | !

66— 0L —8 OM — ON — 0

By taking cokernels of the vertical homomorphisms, the following short exact sequence arises:
0— L, = M, » ON/Keré — 0.

We have .
Ny = ON/Keré.
Since Kerd is a submodule of the kernel of priv , there is a canonical surjection Ny onto Ny. Denote by

Ty (M; L) the kernel of this surjection. We have an isomorphism

N} & Ny © Ty(M; L)

of O-modules, because N, is O-free. Note T},(M; L) is isomorphic to Im 4.



254 SIRFFEAFRE R - 430 - N3 - BARFE] 5% (2007)

We shall give a x-part formula. Suppose IV is of finite order. Let o (resp. 8) be the canonical map of L
(resp. M) into L (resp. M). We have the following commutative diagram with exact rows:

0O— 0L —— O0M —— ON —— 0
« 2|
0 ——» I —s M —s N* —— 0.

By the commutativity of the left square, there is an OG-homomorphism vy : ON — N*. Thus, we have a
long exact sequence

0 — Kery — Coker @ — Coker 3 — Cokery — 0.

Further, since IV is of finite order, we have

¢N™) — ¢({ON) = ¢(Cokery) — £(Ker).
Namely, the following formula is obtained:

N*) — ¢(N) = ¢(M/OM) — ¢(L/OL).
We define A(X;Y) for two Zp®-lattices X and Y to be

A(X;Y) =¢X/]OX) - Y /OY).

We have the following y-part formula:

(2) UANY= Y &Ny~ A(M;L),
xelrre(G)

We notice that A(M; L) = 0 if the order of G is prime to p or if M = L.

Let A be either ring of formal power series Z,{[T}]] or O[[T]]. To discriminate them, we denote it by
Az, or Ap, respectively. Let M be a finitely generated A-torsion module. Let My be the maximal torsion
submodule of M. Denote by M the quotient M/Mjy. There are distinguished polynomial fi, --+, fg such
that M is isomorphic to a A-submodule of

Ei=Afi x- X A/fe.

The product of f; is uniquely determined for M and is called the characteristic polynomial of M in this
article. On the other hand, the torsion submodule My is mapped into a A-module

Eo=A/p™ x---x Afp™

with a finite kernel and with a finite cokernel. The sum of m; is also determined uniquely for My and is
called the p-invariant of M. Denote by fur the characteristic polynomial of M and by pas the p-invariant.

Lemma 2.1. If M is isomorphic to o submodule of Fy x E) and if T { f, we have

€M/TM) = v5(§(0)) + pas.

Proof: T } fu implies that the multiplication by T on E) is an injective endomorphism. Since it is
also injective on Ejy, we have the multiplication by T induces injective homomorphisms on M, M, and M,
respectively. By a commutative diagram

0 y My » M y M » 0
T ]
0 » My y M y M )
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we have an exact sequence o
0— My/TMy— M/TM - M/TM — 0.

Set My or M, to M’ and Eq or E; to E, respectively. We have the following commutative diagram:

0 y M’ y B » EfJM! —— 0
|
0 y M’ y B y E/M' ~—— 0

Let o be the endomorphism of E/M' yielded by commutativity of the diagram. Since E/M' is of finite
order, we have the following equalities from the cokernel sequence of the vertical homomorphisms:

UE/TE) - yM'[TM') = £(Coker ar) — {(Ker ar) = {(E/M') — ({(E/M') = 0.
Therefore, we have

.
8(My/T Mo) = &(Eo/TEo) = > iy ¢M|TM) = U(E:/TE1) = vp(£(0)).

i=1
Hence, {(M/TM) equals vp(far(0)) + psm. g-e.d.

Lemma 2.2. Suppose a Z,G-lattice M is also a finilely generated A-forsion module and the actions of G
and T are compalible. Then, the x-part M, is o finitely generated Ap-torsion module and

{M/TM) = Z &My /T M)
x€lrr{G)
holds if T'1 far.
Proof : By the formula (2), we have
UM/TM) = > UMy/TM,) - AM;TM).
xElrre{G)

Since T'{ fur, M is isomorphic to TM. It follows A(M;TM) = 0. g.e.d.

We denote by fary the characteristic polynomial of M, in this lemma. If M is not lattice, we denote
by fu, the characteristic polynomial of M,. If G is abelian, this polynomial is also the characteristic
polynomial of MX. We also denote by p}, the p-invariant of the torsion submodule of MX in this case.

3. Z,G-lattices
F is a CM-field if and only if the complex conjugation p is contained in the center of . If p > 2, the
idempotent element e~ = {1 — p)/2 of the group ring Q,& is an element of Z,®. We suppose

Assump. 2  p > 2 and F is a CM-field satisfying the Gross conjecture for p.
Assump. 3 QN F = Q and every ;'3 dose not decomposed in the first layer F; of Fu.

By the assumption 3, we have every o;J3 is not decomposed in the cyclotomic Z,-extension Fu, and every
element o € ¢ commutes with every element of Gal(Fo/F).

Lemma 3.1. e~ Gal(Lp /LF,) is a Z,,-lattice which is isomorphic to e”Up. The Galois group of Fo/F
acts on this lattice, trivially.
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Proof: Every prime ideal ¢;%0 is extended onto F,, uniquely by the assumption 3. Denote by B, the
extension of B, We fix an extension onto F,, of an element o; of the Galois group and denote it by &;. Since
;B = 0B, we see &3, is the extension of the prime ideal o;%8. Let & be an arbitrary extension o € &,
There is h € Gal(F,/F) and j for each &; such that 5; = &;h. Thus, we have &(6;Bn) = 5;B». This
makes {5} a ®-set. Let U, be a free Z,-module on this set:

Un =3 Zp(5%).

It is a Zp®-lattice where Gal(F/F) acts trivially. Let m be an integer being less than n. By restricting
B, onto Frn, we have a prime ideal §3,,. This restriction yields an isomorphism U, 2 U,,. Let np be
the maximal integer such that P is unramified at F,,. The ramification index of B, over F' is equal to
pmax(”‘"ﬂ’”). Since F,, is a Galois extension of @, the ramification index of every 5,8, is equal to that of
0. Hence, the extension of P, onto Fy is

max(n—np,0)—max(m—ng,0)
n .

This extension yields an injective isomorphism Up — Up. Denote by eq the ramification index of 9 over
Q. Let i, be an extension onto F, of the embedding Lyt

ey, By = Ch.
The prime ideal &'B;, is determined by the embedding tp, © 07 ! Each element z € F7 is mapped into Un:

T = eq mea"(”‘""'o)vp(agpn 057 1(2))5:Pn.

This map is enlarged to a Z,®-homomorphism of Z, ® FX onto U,.

Let £ r, be the group of p-units of I},. Denote by W, the image of Z, ® E, g, into U,. By class field
theory, the Galois group of the maximal unramified abelian p-extension of F}, over the maximal p-decomposed
intermediate field is isomorphic to Uy, /Wy:

Gal(Lr, /Lr,) = Un/Wa.
We take the inverse limits :

‘The inverse limits in the right are taken relative to the norm maps. Since each norm map N, Fuf ﬁm cUn = Uy
is isomorphic when m > ng, we have ¥£n U, = NFHD/F(UHD) = p™lJy, which is mapped onto p™Ur,
isomorphically. We shall compute LiLne‘Wn. Let Eqy g, be the unit group of F,,. We have an exact sequence

02 e"Z, @ Epr, + Z,@E1 5, & e Wy, — 0.
Taking the cohomology long exact sequence, we obtain
— HHGal(Fy/F),e”Wn) = HY(Gal(Fo/F),e” Z, ® Eg 1) = HYGal(F,/F), e Z, ® Ey 1)
— HYGal(Fp/F),e”Wy) » HYGal(Fo/F),e” Z, ® Eo r,).

Let j2 be the group of p-power roots of unity contained in F},. We see e~ Zp® Ep g, = pt. By the assumption
3, we see pp = {1} or 4 =< (pn > . In the latter case, we have H{(Gal(F,/F), 1) = 0 for i = 0,1. Thus, the
cohomology long exact sequence is reduced to the isomorphism of 0-dimensional parts:

B“Zp®El,Fg E;, e” Wy
G_Zp®Np“/F(E1!Fn) p“e_Wn‘
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Denote by e~ W} the image of e~ Z,® Fg r, into e~ Wy, by the injection of Up into Uy,. We-see Up is isomorphic
to pmax(n—mo)7j . 1t follows from the above isomorphism that e” W, = e~ W] 4 p"e~ W,. Hence,

e~ W, = e~ W,
We have a sequence of surjective homomorphisms:
e Uy e Uyfe Wy =e U/e Wy — e“Uﬂ/pmx("_n“)e_Un.,
By taking the inverse limits, we obtain
p™e Uy = e~ Gal(Lr,/Lr,,) = p™e Us.
This implies p™e~ Uy = e~ Gal{Lr,_/Lr,). Since p™e~Uy = pe~Up = e U, e“Gal(f,Fw/LFm) is a

Z,G-lattice which is isomorphic to e”Ur. g.e.d.

Lemma 3.2. e~ Gal(Lr,, /Fs) and e~ Gal(Lr, [Fu) are finitely generated Az, -torsion module and a Zp®-
module. The action of Ag, commutes with the action of 8. Moreover, an arbitrary Az, -submodule is either
trivial or of infinite order.

Proof: We fix a generator vy of Gal(F/F) as a Zp-module and take an extension ¥ onto Lr,,. It acts on
e~Gal(Lr, /Fy) and on e~ Gal(Lr, / Foo) by #z771. The action of the ring A is defined by T'(z) = ¥(z) -z,
here we write additively. By this definition, these two modules become compact and finitely generated A-
modules, c.f. [7]. By the assumption 3, we have Gal(F/Q) = Gal(Feo/F) x ®. Thus, the action of A
commutes with the action of &.

The last assertion is proved for both modules in parallel. Let Cl, be the ideal class group of Fy. Let
Cl!, be the quotient by the subgroup generated by every 6,'B’s. Put

_ | the p-Sylow subgroup of Cl,, B - 0, F s
the p-Sylow subgroup of Clj,, " EiR,.

To prove the assertion for e~ Gal(Lr, /Fa), we use the upper objects, and to do for another, we need the
lowers. In the subextension of F,/F, we have a natural map

immn : Cm — Cn

for m < n. The kernel of this homomorphism is isomorphic to a subgroup of the cohomology group
HYGal{Fn/Fm), En). Since the cohomology group is p-primary torsion and since the complex conjugation
map p is contained in the center of Gal(F,/Q), we see

e HY(Gal(Fy/Fp), By) & HYGal(Fy/Fr), EL™?) 2 HYGal(Fy/Fpn), e~ Zp ® Ey).
When E,, = Ey ,, we have H!(Gal(F,/Fy),e” Z, @ Fy 5, ) = 0. When E, = By F,, by the exact sequence,
HYGal(Fp/Fn),e” Z, ® By 1) = HY (Gal(Fo/Fr),e” Z, ® Bip,) = H(Gal(Fo/Fm),e”Wy),

we also have HY(Gal(Fn/Fm),e” Zp & E1 r,) vanishes. Therefore, im 5 is injective on €™ Cp. Let X be the
inverse limit of e~ C,; by norm maps:

e — e”Gal(Lr,, /Fx)
X =lmemCn = {e‘Gal(LFw/Foo).
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We abbreviate the norm map with respect to Fy,/Fm to Ny m. When m > ng, Ny, is a surjective map of
e”Cyp onto e”Cp,. Let X be a A-submodule of X of finite order. There is n; such that Gal{Fy/ Iy, ) acts on
Xy, trivially. Let B, be the image of X by the canonical projection of Xy C [[Cy onto Cn. Gal(Fuo/Fy,)
also acts on By, trivially. Take an arbitrary element z of X:

T = (bDabla"')'

When m > max(ng,n), we have by, = Npyn m(bm-n), and hence

z'm,m+n(b='1ﬂ.) = bf;-{—m‘

Thus, if n satisfies X2 = 1, we have by, = 1. This implies Xg = 1. g.e.d.

We shall define three Z,®-lattices which have important role in the subsequent sections. Put
X =e Gal(Lp, [Fy), Yh = e Gal{Lp_[Fs).

They are not Z,-free in general. Denote by Xpp (resp. Yro) the maximal torsion submodule of X} (resp.
Y}). We have the following Z,®-lattices:

Ap = e Gal(Fp,/Lr,), Xp=Xp/XFo, Yr = X5/ Yro.

We use additive notation for these modules. By the assumption 3, the multiplication by T on Y} is injective.
Thus, we have

0= Ap > Xp = YL 20,

3)

Xpp = Yrp,

0= Ap =2 Xrp=>Yr—=0.

4. Iwasawa theory and representations of the group &

Let {{pn}n>1 be a set of primitive root of unity satisfying (E:_m = (pm for n > m. Let T be the inverse
limit of {¢n}. It is a topological group which is isomorphic to the additive group of Z,. We suppose

Assump. 4 F iz an abelian extension over a totally real subfield ¥ which is Galois over Q.

Let G be the Galois group of F'/k. Let Z be the decomposition field of the prime ideal P in F'/k. We denote
by H the Galois group of I over the decomposition field and put g = G/H.

Under the assumption 4, Foc((p) is an abelian extension over k and its Galois group acts on T. By
the assumption 3, this representation of Gal(Fu((,)/k) afforded by T is decomposed into a product of the
representation of the finite abelian group Gal(#((;)/k) and that of Gal(Fe/F). Let w be the character of
the representation of Gal(F((p)/k). Let G = Hom(G, K*) be the group of characters of G. We call x € &
an odd character if x(p) = ~1 holds. Denote by G(—1) the set of all odd characters contained in G. We
have the following formula

(4) p(Lp(0, X)) = vp(L(0, X)) + > _ wp(1 — x{p))
plp

for each x € G{—1), where we denote by p a prime ideal of &, c.f. (1.1} in [6]. The value x{p) is 0 if the
prime ideal is ramified in the fixed field by Ker ), which is denoted by F) . If p is unramified, the value x{p)
is equal to the value at the Frobenius automorphism of ¥, over k. Thus, x(p) = 1 is equivalent to that the



YAMASHITA © On a Refined Formula of the Relative Class Number of a CM-Field 259

prirhe is completely decomposed in F, /k. Let p be restriction of the prime ideal P onto k. Let s be the
degree of the decomposition field Zp in £/Q. Let

Gal(k/Q) = | _ 0:Gal(k/2)

be a disjoint union of right cosets. The set of conjugate ideals of p is {oip}iz1, . s-
We make the Z,®-lattice Ap a Z,G-lattice by restriction: Ap |¢. If x € G(—1) dose not belong to the
character group g, we have ey CAp = 0. Thus, Apy = 0. Put

(5) ay = dimg e, KAF
for ¥ € G. This value is equal to the @-rank of A Fox-
Lemma 4.1. ay = #{0: : x{o:p) = 1}.

Proof: The Z,®-module Ap is isomorphic to the induced module from the trivial Z,$-module Z,,.
Let £, be the trivial character of § and €5, 1% be the induced character. We have

G'X = (EfJ Tw*LG’ X)G‘

Furthermore, by Mackey’s subgroup theorem, c.f. Theorem 19.6 in {1], we have

5
B _ G
ey T la= Zsama;l YosortngT

i=1

Since & is a normal subgroup of &, we have
aif)a,i_l NG =g;(HN G)a;l = aiHcrt-_l

Thus, we have

O’X_Z(Ea Hoo ! T ’X Z(Eo’ Ha; X 'LO',HG' ),,-‘. a1
=1 =1 !
because the restriction of ¢ si5e-) Onto o Ho, 1 is the trivial character of o;H o; ! oH a; ! is contained in
Gal(F/F,) if and only if

(EaiHJi—lg Xigngi_ >0;Hcr_1 = ],

In the sequel, ay equals the number of completely decomposed o;p in Fy /F. g.e.d.

Lemma 4.2. Let e be an idempotent element conteind in e~ Z,G. Let fr be the relative degree of the
prime ideal P in the extension F/k. We have

S w1 = x(oi)) = vl fry) dimx eKg.
x{e)#0
x(oip)#L

Proof: Since k is a Galois field, the relative degree of an arbitrary conjugate prime of p equals fp/k.
Since the proof of the formula for 7 > 1 is similar as that of 7 = 1, we show the formula for p. If p is ramified
in Fy, we have x(p) = 0. Such character is excluded. Hence, we suppose x(p) # 0. Let Fo be the inertia
field of p in F/k. Since Fyy contains the decomposition field Z, it is sufficient to prove the formula under the
d.ssumptlon that p is unramified in F'. Since the abelian group G is a direct product of the p-Sylow subgroup
G, and a p'-subgroup Gy, every character x is a product of a character x; € G and a character xop € Go.
Thus x € G(~1) is equivalent to that xo € Go(—1). Denote by g, the p- Sylow subgroup of g. Moreover,
X ¢ @ is equivalent to that it satisfies either condition of
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B x0 €98 (i) xo € §and xp € 0p.
If x € G(~1) satisfies the condition (i}, we see x{p} is not any p-power root of 1. Thus, v,{1 — x(p)) =
0. Suppose x satisfies the condition (ii). H is a cyclic group of order fp;; generated by the Frobenius
automorphism. Hence, the p-Sylow subgroup Hy is also cyclic. Let o be a generator of H, and let 1 be a
generator of the character group. Put d = v,(fr/). Note ¢ = ¥(o) is a primitive p¢th root of unity. We
have an exact sequence of character groups of p-Sylow subgroups:

1—>@P—>Gp—>Hp—>1.

Let 3 be an inverse image of 4 in G’p. Let x be a character satisfying the condition (ii) in the above. There
are 1 € §(—1) and an integer i snch that 1 <4 < p? and x = y1%*. Note x{¢) # 0 if and only if y1(e) # 0.
Since x{o) = (¥, we have

pi-1
Soomlexe) = > Yo w(-¢)
X(p)#1 g !
x(e)#0 x(e)#0
= p{xed:xe #O}Z o w1t -¢l)
1<j<p’
(wi)=1
d
= #{xed:xle) #0} ) 1=d-dimgeky ge.d.

i=1
Lemma 4.3. Put g; = G/o;Ho['. We have

8
Z dimg e” Kg; = dimge” K&/ H.

i=1
Proof: Let £~ be the K-character afforded by K G-module e~ KG. We have

dime e™KS/5 = (eg 19,7 1%), = {65 1%1ce7)

s

— G - _ G -

- <Z Ecr,j'jcr;l l’a.?)a;lﬁGT € )G - Z<Eoif-lai'1 T =
i=1

i=1

o

Zdim,c e Kg; g.e.d.
=1

Lemma 4.4. ay = 0 if and only if Xp, = Yp,.

Proof: We see a, =0 if and only if Ap, = 0. We have an exact sequence of X-parts:
0= Ary = Xpx = Y5, = 0.

fAp, =0, Y}x 1s isomorphic to Xy, and hence torsion free. Thus, Y;X = Yry. Conversely, suppose
Ny = Yry. It follows that the homomorphism of KXF, onto KYFy is isomorphic. Hence, e KXp &

exXYp. We have e, CAp = 0. It follows Apy = 0. g.e.d.
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Lemma 4.5. Let I be a totally imaginary intermediate field of F/k. Let x be an odd character which is
trivial on Gal{F/K). Then, we have X, is isomorphic to o sublattice of Xy with finite indez.

Proof: Let Lap be the maximal abelian extension of K contained in L F.. Let Leent be the maximal
central subextension of Lr with respect t0 Fac/Koo- Leens is a finite abelian extension of Loy We shall
show Lab/LK F is also a finite extension. Let L be a finite abelian extension of LK F contained in Lgp.
There is a finite abelian extension L' of an nth layer I, of the Z,-extension Ko such that L = L’L;( F
and such that L' O Lg, Fn. Let Uy, be the group of unit ideles of Kn and U, be the group of those of Fy,.
By genus number formula, we have

(LI : E](',,Fn)

|Uvn : 1\"‘;;*" K (Un) l
Since the number of prime factors in Ko of an arbitrary prime number is finite, there is the maximum of
the indexes |Un : Np, sp¢, (Un)] -
a = max Un « N, jic, (UR -
We have
(L : L](OOF)K_U : L](nFn)ta.

This implies the degree of L’s over L k. I is bounded. Therefore, Lg is a finite extension of L k. It
follows that Le.en¢ is also finite over Ly F'.

Let I be the ideal of the group ring Z,G generated by {¢ — 1 : ¢ € Gal(F/I)}. We have
Gal(Leent/ Foo) = X3/ T+ X

Put M' = ¢~ Gal(Lp, /L., Fyand Zf = e~ Gal(Ly/Lk., NFx). Zj is a submodule of X} with finite
index. Since [ - Xi. = e~ Gal (L,w /me) there is a commutative diagram comprising exact rows

0 M- X, — X XE 7 — 0

g 1 1

0 —— E_Gal(ieent/ij(wF) —_— e*Gal(Ecem/Fm) e e*Gal(f,KwF/Foo) —— [

Denote by Zy the quotient of Zj, by the maximal torsion submodule. Since e ~Gal( Cem/L,r(mF) is of finite

order, the quotient of X% /I - X} by its maximal torsion submodule is isomorphic to Zx. By taking the
homology long exact sequence on a short exact sequence:

0—>XF’0—>X}—>XF — 0,

we have
— H{Gul(F/K), Xp) = XF’O/I-XF,U — J\F/I 1- = Xp/l-Xp— 0.

Hence, the quotient of XT./7- X by its maximal torsion submodule is isomorphic to the quotient of Xp/I- X g
by its torsions. Denote by X* a submodule of Xp such that X”/I - X is the torsion module. Since Xr is

a Z,-free module of finite rank, X”/I - Xr is of finite order. We have a commutative diagram with exact
rows:
0 —— X'+1-Xp —— X — VA — 0

! ! !

0 —— GXI-KXF E— eX;'CXF E— EXJ'CX]( — 0

Since e, ] - KG = 0, we see e, ] - KXp = 0. This implies (X" + I+ Xp)y = 0. It follows Xpy = (Zx);. We
have XF-X = ZK=X' q.e.d.
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5. The main result
We shall approach the problem to generalize the formula in [9} to the CM-field. We shall study the factor

> (1 - x(p)

plp
in the formula (4). We suppose every character x € G(—1) satisfies
Assump.. 5 If x(o;p) = 1 holds for one of o;’s, then every o;’s satisfies x(o;p) = 1.
This assumption holds if the decomposition field Z is a Galois extension over Q.

Lemma 5.1. the assumption § holds if F' i3 a cyclic extension of k.

Proof: In a cyclic extension, there is a unique intermediate field of a given degree. Since k is a Galois
field, the degree of ;2 over & is equal to that of Z. Hence, Z = g;Z. It follows that Z is a Galois extension
over (. g.e.d.

Let uF (resp. p%) be the p-invariant of X f,i‘ (resp. X fzx) The main theorem of Iwasawa theory, we have
(6) Up(Lp(O:WX_l)) = vp(frx (0)) + PJJ}E‘

if x # w. We consider the case of y # w. We could realize that the argument is easily modified to adapt it
for this excluded case from the formula

Up(L(O: £)) = vp{frw(0)) + Up(wF)a

where wr be the number of roots of unity contained in F, c.f the formula (1.3) and Theorem 1.2 in [6].
Let e be an idempotent element contained in e~ Z,G such that w(e) = 0. Put

Oe={xcG(-1):x(e) £0}, ¥, =N\
We set M' = e~ Gal{Lr,_/Lz_F). We have an exact sequence of Galois groups:
0= M —eYp —e Yy —0.

Since the characteristic polynomial of eY}, and €Y} are not divisible by 7" by the assumption 2. We have a
commutative diagram with exact rows;

0 — eM'/TeM' —— Y /TeYp ——  eY}/TeY), —— 0
) l l l
0 —— eGal(LE, [Ly F) —— eGel(Ly [Fo} —— eGal(L} [Zs) ——— 0.

Let gy be the characteristic polynomial of Yg,. Since edp is a trivial A-module by Lemma 3.1, its char-
acteristic polynomial is 7*x from (5). Hence, the characteristic polynomial of Xp, is g,T%. If x € §, we
see ay = 0 by Lemma 4.1. It follows that g, is also the characteristic polynomial of Xy from Lemma
44. Namely, fy = gy. Note Xz, = Yz, = 0, because e, XXz and e, KYz vanish. If x € §(—1), the
characteristic polynomial fz, of Xz is equal to that of Ary by Lemma 4.5. Namely, fz, = g,7%*. Since

Gy = dim;c Bx}CAF = dim,»c ex}CAz

by Lemma 4.1, the characteristic polynomial of Yz, is equal to g, = fz,/T%.
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Let gr (resp. gz) be the characteristic polynomial of eYr (resp. eYz). We have

(8) gr = [ ox resp. 9z= ]| 9

xed, xCP.Np

Let pp (resp. pz) be the p-invariant of e¥p (resp. eY}). By (3), ur (resp. pz) is also the p-invariant of
eXp {resp. eX}).

Theorem 5.2. We have the following formula

€eGal(Ly,, /Ly, F)) = 9 vp(L(0,X™")) +vp(frye) - rankz,eAr + (ur — ) 1) — nz-
xE€P, x€d.

Proof: By the assumption 3, we have Lz_ N Py = Zo. Hence,
L(eGal(Ly._ /Ly _F)) = (Y /TeYy) — l(eYz/TeYy).
By Lemma 2.1, the value in the right equals

vp(gr(0)) — vplgz(0)) + pr — pz.

Furthermore, by Lemma 2.2 and (8), we see

Up(QF(O))”"'Up(QZ(O}) = Zvﬁ(gx(o))— Z Up(gx(o))

= Y vox(0).

xe®l

Since f, = gy for x € @, we have
x = Ix e

S uplo @)+ Y i =D vp(Ly(0,x7w))

x€®, x€DL XED,

from (6). By virtue of the formula {4) and Lemma 4.2, we can transform the sum of v,(L,(0, x 'w))’s in
the right hand side of this equality into a sum relative to values L-functions:

> up(Lp(0,x7 W) = DT wpL0,xT)) A+ D0 Y Sl x7THR)

x€d!, xev XEDL plp
= Y v(L{0,x7")) + s vp(fryi) dimg e
XEDL

Put

ip=pr— Y uk
XEPL

As a consequence, we obtain a formula

UeGal(Lh [L3 F)) = Y vy(L0,x™") + s - vp(Fpy) dimg eKg + fir = pz.
XEDPL

Here, by Lemma 3.1 and 4.3, we see s dimg eKg = dimg eK&/H = rankz eAp. g.e.d.
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Let Z’ be the decomposition field of P in F/Q and friq be the degree over Q of the prime . Z' is a
subfield of the decomposition field Z in F/k. We recall the p-adic maps:

op=@oNpyz, wz=9oNgm, Yrp=1%oNpz, Yz=10Ngy.

The relative degree [z (resp. fzyz:) the prime ideal P (resp. 'Piz) in F/Z' (resp. Z/2') is equal to the
degree over Q. Namely, fr/z = fr/q and fg;z = f7;q. We recall

Ur = frigU, Uz = fz;qU = fryqU,
where fi;q is the degree of the prime |, over Q. Let M be a subgroup of E; z such that
e Zp @Bz e Zp® M| < o0

and such that it is stable by the action of G. Denote by Vi (resp. Vz) the image of e=Z, ® M by ¢r
(resp. wz). Similarly, we denote by Vg {resp. Vz ) the image of e~ Z, @M by ¥p (resp. 1z). Since M is a
subgroup of the multiplicative group Z* and since (F': Z) = fFik, we see

Ve = friVz, Vi = frpVz.

If a well-behaved such subgroup M is selected, we could have the refined formula of the relative class number
formula. We start the following equations:

elUp/eVr) = elz/eVz) — f(eUz/fp/keUz) +€(eVz/ frieVz)
= eUsz/eVz) + (vo(frk) — vp(frys)) rankz, elz.
Eed/eVr) = Leld/eVz) +UeVz/frVz)
= fleld/eVz) + vp(fryi)rankz eld.

By Proposition 1.1, the isomorphism {1) and Proposition 1.3, we have

LleUr/feVr) — l(eld/eVr) = L(eUp/eWr) — £(eld [eWr)
0(eGal(Lp/Lp)) - €(eGal{Ly_/Lr))
(eGal(Lp/F)) — t{eGal(Ly,_[F)).

Since eGal(Ly_ /F) is isomorphic to eY}./TeY}, the following formula is obtained:

(9} L(eGal(Lp/F)) = l(eVh/TeYE) + tlelz/eVy) — Eleld eV ) - (g )rank g elz.
By setting F' = Z, we have the following result from Lemma 2.1 and 2.2:

Theorem 5.3. We have the following formula:

UeGal(Lz/2Z)) = t(eUz/eVz) — bleld feV2) + > vp(gx(0)) + puz.

xEiNd.

The difference of £(eY . /T'eY}.) from £(eY; /TeY}) is given in Theorem 5.2. By (9), we have an interesting
formula.

Corollary 5.4.

UeGal(Lp/F)) = 6(eGal(Lz/Z)) + > wp(L{0,x™)) + fir — piz.
: XEP!
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Proof: By (7), (9) and Theorem 5.2, 5.3, we have
LeGal(Lp/F)) = (L(eYy/TeYy) + t(eM' [TeM'}) + £(eUz/[eVz) — (el [eVz) — vp(frpx)rank z edp

= {lleYy[/TeYy) + L(eUz/eVz) — €leld/eVz) + Z vp(L{O,x‘l)) e Y
XEP,

= UeGal(Lz(Z)) + ) va(L(0,X™")) + for — piz,
x€%,

g.e.d.

By this corollary, our task is divided into two parts. One of them is to prove fip = 0 holds for F* and
the second to prove the refined formula for the decomposition field Z. A little progress is obtained by the
following proposition:

Proposition 5.5. Let x be a character belonging to g(—1)\{w}. Put m, = p% = p%. Then, we have
my + vp{gx(0)) = UP{L.&E)‘)(O: X" 'w)) - ay — vp{ay!).

Proof: We select the generator v of Gal(F/F) so that ;”n = gj,’;” holds for every n. By the main
theorem of Iwasawa theory,

Lo(1 = 5,7) = P fy (0(T) i (2T D |1 ppot
where u, is a unit power series and
o(Ty=(1+p)1+T) -1
e.f. {1.3), Theorem 1.2 and Theorem 1.4 in {6]. Put

__ 1 d
~ log,(1+p)ds’

Since fy = g, T, we have

D L,(1—s, x tw)

-1 B () -1
S T AN
s=1 (logp(1+p)> D ( 1 X LU‘):

D% fy(o((1+p)° — D)uxle((1+p)° 1))| | = ax'gx(0)ux(0).

.-
Hence,

wp (L™ (0, X7 w)) — ay = my + vp(ax!) 4 vp{gx(0)).
g.e.d.

At the conclusion of this article, we will discuss what questions are needed to settle to take steps forward
more concretely. If the formula

UeGal(Lp/F)) = > v(L(0,x71)
x(e)#0

held, we would have

>_ w(L0,x™Y) = 8eGal(lz/Z)) + fir ~ pz
x€PeNG
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from Corollary 5.4. Furthermore, by Theorem 5.3 and Proposition 5.5, the value of the sum in the left would
equal

t(eUz/eVz) — tell/eVz) + Z (UP(LJ(JQX)(QX_IW)) — oy — vplay!) - mx) +uz-

x€dNP
Hence, we would have
(10)
UeUz/eVa)~tetd[eVa) = 3 LX)~ Y (@ (0,x7 1)) = ay = plax))+ 3 my—puz.
x&e®Ng XE€PNG XEDL

At this point, we remain the following problems unsolved:

(i) to verify that the y-invariant satisfies ip = 0 and uz = 2oy, My

(if) to construct a subgroup M which has a good arithmetical property and to prove a relation (10) holds.
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