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On the Number of Generators of p-Class Groups
as Galois Modules A
of p"th Cyclotomic Extensions of Abelian Fields

Hiroshi YAMASHITA

1. Introduction

We obtain a formula which gives the number of generators of a p-class group as a Galois
module of an algebraic number field with finite degree. We will investigate this number for a
certain type of a finite abelian extension of the field @ of rational numbers. We take a prime
number p to be odd to avoid complicated arguments. Let M be a finite abelian extension
of Q containing a primitive pth root of unity. We suppose p|[M : Q]. The Galois group
G = Gal(M/Q) is a direct product of the p-Sylow subgroup G, and a subgroup g such that
pfg. Let C be the p-class group of M. It is a finite Z,[g]-module, where Z, denotes the
ring of p-adic integers and Z,[g] dose the group ring of g over Z,,.

Let J be the Jacobson radical of the group ring Z,[g]. Z,[g]/J is isomorphic to the group
ring Fy[g], where F, is the finite field of p-elements, ¢f. Lemma 1 of [Ya]. Hence, if a finitely
generated Zp[gl-module Y is given, the quotient module Y/Y7 is an F,[g]-module. For
each Fy[gl-module, there is a corresponding Q,{gl-module, where @, is the field of fractions
of Z, and Q,[g] is the group ring of g over Q,. Qo] is a semi-simple ring, and hence it
decomposed into a direct sum of simple subrings R; :

Q,ls] = D R;
i=1
Let e; be identity element of R;. We have 1 = Y e;. Since pflig, every e; is an element of
Z,[g]. By means of the canonical map Z, — F,, every Fy[gl-module is a Z,[g]-module
canonically. We have the following decompositions of a Zp[g]-module Y and an Fp[g]-module
Y/vY:
Y = Pey, Y/Y) = esfy/Y7).
i

Denote by 7;(¥') the number of minimal generators of ;Y/Y” as an F,[g]-module. Since
G is abelian, e;Y is generated with r;(Y) elements as a Z,[g]-module, and dose not with
ri(Y) — 1 elements . The number of elements of a set of minimal generators of ¥ as a
Zy[g]-module is equal to max; ;(Y).

The main object for consideration in the present paper is a quantity r;(C). A formula

describing this value is proposed in [Ya]. We will determine the value concretely in case that
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M is a p"th cyclotomic extension of K = M %>, because the value of a, is closely related to
the structure of the Iwasawa module of the cyclotomic Z,-extension of K. We shall show
that this problem is reduced to compute the rank of p-class group of K = M%» by virtue
of the Frobenius reciprocity law and the genus theory. However, we do not consider the
problem of computing the rank, here.

2. Characters of representations of g

We suppose every Q,[g]-modules {(resp. Z,[g]-modules, resp. Fy[g]-modules) is finitely
generated. We recall correspondence between Q,[gl-modules, Z,-free Z,[g]-modules and
Fylgl-modules. Let X be a finitely generated @, [gl-module. For each X, there is a finitely
generated Zp-free Zy[g]-module Y such that X = Q, ®z, Y. We obtain an F,[g]-module
Z=Y[/Y? = F,®z, Y. The correspondence X — Y — Z is funclorial and is determined
up to isomorphisms in categories of @,[g]-modules, Z,[g]-modules, and F{g]-modules, re-
spectively. Since p [ig, there is converse correspondence Z — Y — X. This means that
we know the structure of Z or ¥ from that of X. Q,[g] is a commutative ring, and hence
each R; is a field. We see a finitely generated Q, [g]-module X is a direct sum of a finite

dimensional R;-vector space ¢; X. Observe Q, ®z, ;Y = ¢;X. Thus, we have
dimR,. e,vX = 'I'i(Y) = T,-(Z).

;(Z) is also equal to the dimension of ; Z over the residue field of B;. If Y is a Z,[g]-module,
we define r;(Y) to be »(F, ® Y).

Let @ be a representation of g. It is a homomorphism
®:9 — GLa(Q,)

of groups, where GLn{@,) is a general linear group of degree m over Q, Ifm=1,
we call a one-dimensional representation. The trace of @ is called the character. It is a
function of g. If ®; and $, are two equivalent representations, the characters give same
function of g into Q,,. Conversely, non-equivalent representations define different characters.
Hence, we denote by ®, a representation having character y = Tr ®,,. The left regular
representation on R; is an irreducible representation, because g is abelian. Its character
x; is called an irreducible character. Every character is written as a linear combination of
irreducible characters x; with coefficients of non-negative integers. If a character x is coming
from a Q,-linear representation of a finitely generated Q,, [g}-module X and if x = >, mex;,,
we have a decomposition X = @ Rj*. We change suffix and write Ry, ey, rx(Y) for Ri,
ei, r(Y) if x is an irreducible character x;.

We introduce several characters to state the formula of 7, (C/C”). Let {y» be a primitive
p*th root of unity and gy» be a cyclic group generated by (;». The p"~™th power map
induces a surjection ytp= — prpm for n > m. {ptpn }n>o forms a projective system with respect
to these power maps. Let T be the projective limit. It is isomorphic to Z, as a profinite
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group. Let K be the intermediate field of M/@Q corresponding to G,. Since K 3 (;, g acts
on pp. g also acts on ip= through injection Gal(Q(() /@) — Gal(Q(Cpn)/Q). T becomes a
Z,[gl-module by passing through the projective limit. Let w be the character of Q, 2z, T.
Since w is a character of a one-dimensional representation, it is irreducible. Denote by £ the
character of the trivial representation g — Q.. Namely, g(o) = 1 for every o € g. We make
a convention that a symbol x always denotes an irreducible character which is equal neither
to w nor to .

If a representation ® : g — GLm(Qp) is given, we obtain another representation $ by
®(c) = ®(¢~!). Denote by ®* is a representation dw: 9*(¢) = @) 'w(a). If x is the
character of &, we denote by ¥ and x* the characters of ® and ®*, respectively. We see
{x*)* = x. Note § and x* is irreducible if x is irreducible, ¢f. Lemma 6 of [Ya).

Let ¢ be a prime divisor of Q (possibly an infinite prime). Denote by ¢ a prime divisor of
K lying above ¢. Let g, be the decomposition group of q. When p = ¢, we use the symbol
p to specialize the prime p|p. Since g, is a subgroup of g, T is a Z,[g,}-module. To denote
this module, we attach subscript p: T,. Let w, , be a quantity defined to be

wp,y = Tx(Zp[g] BDZ.[80] Tn)-

Similarly, considering Z, a trivial Z,[g,]-module, we define

Eq.x = "'x(zp[g] @ Z ,[nq] Z,).

Note Z,[g] ®z,5,) Z, is isomorphic to Z,[g/g,].
Let T" be a set of prime numbers whose primes divisors in K are ramified in M/K and
which are not equal to p. Let E7 be the group of T-units of K :

Er ={z e K* :(z,q) =1 for every prime number ¢ € T}.

Er/E] is afinitely generated F,[gl-module. We abbreviate Q,®z,T to Q,T. The Q,[g}-
module corresponding to Ep/Eh is

(1) (@,0/8:..1/Q,) 8 Q,T & | D Q,l8/4]
q€T
where po, is a prime divisor of K such that po|oo. Put gy, = ry(Er/EL).

Let Dr be the group of T-divisors of K. Namely, it is a free abelian group on the set of
prime divisors of K not dividing any prime contained in 7. We denote by {2)7 the principal
divisor generated by z € K *. Let Pr be the group of principal divisors. The quotient module
Dz /Pr is called the T-divisor class group of K. Let Cp be the submodule of p-torsion
elements of the T-divisor class group. It is an F[g]-module. Put yr, = r,(Cr).

Let {p;,...,ps} be the set of every extension onto K of the prime divisor p of Q. Let
Ky, be the completion of K at p;. For each p;, there is an embedding ¢; : K — Ky,. These
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embeddings induce a diagonal map K — []; Kp;. Denote by ¢ this diagonal map. Let U,
be the group of units of Kp,. Put U = []; Uy,. Since ¢;(Er) C Up,, we see 1(Er) C U.

Take a prolongation %; of p; onto M. Let L be an unramified abelian extension of degree
p over the inertia field of My, /Kp,. We define a submodule ¥y, of Uy, to be

(2) Vo, = (M%L)xanp.-

It contains D_rp,.. Define a submodule V of U to be a direct product of Vp, fori =1,...,s.
U and V are g-modules. Thus, U/V is an Fy[g]-module. ¢ induces an Fp[g]-module homo-
morphism

or: Br/Eh — UV
Denote by By p the kernel of ¢r. We have an exact sequence
(3) 1 Big = Bp/Eb = UV = UJe(Br)V = 1

For each ¢ € Cr, we have a € ¢ such that ¢® = (a)7 and (a,p) = 1. Since ¢(a) is an
element of U, we have aEr)V € UJ/V. This coset (aEr)V is uniquely determined by c.
~ Hence, an Fp[g)-homomorphism py : Cr = U/u(Er)V is defined to be pr(c) = t(aEr)V.
Denote by By the kernel of py. We have an exact sequence

(4) 1— Bo,‘r — CT - U/L(ET)V

We define quantities ar y, bo,y, 01,7, t0 be

ary, = ry{cokerpr)
boryx = rx(Bor)
blsTrx = TX(BLT)

respectively. The following formula obtained in [Ya] is fundamental in our arguments:

Theorem 2.1 For each irreducible character x such that x 3 w, €, we have

aye =bopx +b17x = omy + Py 9T FWpx — ]

Furthermore, if wp , = 1, we have ap, = 0.

3. Auxiliary lemmmas

Let My be the fixed field with g. We have M = MoK and Gal{My/Q) = Gp. Let gy be
the kernel of the representation:

gy = {0 €g: ®(v) is identity matriz}.
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We can reduce @, onto g/g, and denote by the same symbol @, this reduction, cf. §1 of
[Ya]. We also denote by x the character of the reduced representation. Let K, be the
intermediate field of K/Q corresponding to g,. In Lemma 4 of [Ya], we show the following
reduction property holds:

Lemma 3.1 Put M, = MyK,. Let Cy be the p-class group of M,. We have r,(C/C7) =
re(Ci/Cy).

The induced module Q,[g] ®qQ,[9q) @p of the trivial @,[gq]-module Q, is isomorphic
to Qp[g/84]. We see eq = dimp, @,[8/g,] for a prime divisor q. Sine @Q,[p/g,] is a
homomorphic image of Q,[g], we have
€q,x = dimp, Qp[G/Qq] <1l

Lemma 3.2 We havewy y < 1. wpy =1 if and only if p is decomposed completely in K-.

Proof. We refer for the Frobenius reciprocity law to Theorem 19.2.11 and Corollary 19.2.12

in [Ka]. Let <,>; be the symmetric pairing of @Q,-character. The value of the pairing is
defined to be

< >g= ﬁ 3 p(o)b(o™Y) = szw(a-w(a) —< o >,

cEQ TEG

for characters ¢ and 9. r,(Y) is positive if and only if < x,@y >3 0 for a character ¢y
afforded with a Q,[g}l-module corresponding to Y. We have r(Y) = 1if < x,py >= L
Similarly, we denote by < @, % > g, the symmetric product of characters of g,. Let w, be the
character afforded with a @, {gy]-module @, T',. The induced character of wy, is a character
afforded with a @, [gl-module Q,[8]®q,1s,] @, Tp- Denote by indyw, this induced character.
The Frobenius reciprocity law assures that an equality

< X, indpwp >p=< Xlosr Won > oy

holds, where /4, is Testriction of x onto g,. Let &, be the trivial character of g, and ind,e;
be the induced character. We have

< X' indpey >9=< Xy, Wg, gy -
Since wy = w|y,, we have xi“gp = X|g,Ws,- Thus, we have
< X[, 1 Ep >, = < Wp, x|gl,,ap S5, =< Wp, Xp, Zap -
By virtue of the Frobenius reciprocity law, we obtain

< x,indpwp >e=< X", indyey; >y
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Since indyéey is the character afforded with Q,[a/gp], we have
< x" indpey >9< 1

and the value of the symmetric pairing is not equal to 0 if and only if @y.(a) = @y- (1) for
every o € gp. This implies p is completely decomposed in Ky, iegp C oy ged

Lemma 3.3 Supposew, , = 0. Then, we have ry (U/UP) = 1. Hence, ifes (s(ET)V/V) # 0,
we have o, = 0.

Proof. From (3.5) of §3, [Ya], the @, [g]-module corresponding to U/UP is

Qyl0)® (@l ©a,15,1 @5 T5) -

Thus, if wyy = 0, we have ry (U/UP) = ry(F,lg}) = 1. Moreover, if e (L(Br)V/V) #
0, we have ey (¢(ET)V/V) = ex(U/UP), because of ry(U/V) < r(U/UP) = 1. Hence,
ex (U/e(Er)V) = 0. apy = 0 follows from the definition. g.e.d.

Let 7., be a generator of ge,. We call x is real (resp. imaginary) if @\ (7o) = Oy(1)

(resp. @, (Too) = —®y(1)). By (1), wesee By = 1+ gy Eq,x if X is real and By =2 er Eax
if y is imaginary.

Lemma 3.4 Ifw,, =1, or ff w, , =0 and fr # b1y, we have apy =0,

Proof. If wp, = 1, we have apy = 0 from Theorem 2.1. Suppose wp = 0 and fry #
bi1y. By the exact sequence (3), we have

r(U/UEBT)V) = 1y (U/V) = r(Er[ER) + ry(Bir) £ 1= (Brx = bimix)-

since B, > by 7,y, we conclude ry(U/{Er)V) = 0, and hence ay,, = 0. g.e.d.

The proof of Theorem 2.1 given in [Ya] is based on an equality
ay, = 1y (Gal(H®/K)) = r (Gal(H* /M),

where H is the maximal abelian subfield of M/K. Let H be the Hilbert class field and
7% be the maximal abelian subfield of /K. Since M/K is abelian, 7 is the genus field.
For an arbitrary finite abelian group, we denote by A’ the p-Sylow subgroup. By means of
this convention, we have Gal{ H®®/K)' = Gal(H*/K).

Let Jx (resp. Jar) be the idele group of K (resp. M). Let Ug (resp. Upr) be the unit
group of the idele group. By class field theory, we have

Gal(H®/K) = Jx [Nyyx (Un) K.
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Since Jr /Nyx (Ja)K* = G, is a trivial g-module, we have ex(Jx /Ny () K*) = 1.
Thus,

ro(Gal{H® M) = r (Narpze (Tar) K Nag s (Unt ) K )).
Denote by Eg the unit group of K: Ex = Fy. Put

&1 = Uk /Ny k(Ui ) Ek Go = (Nayic (Tar) /Nagyc (Ung) K2

Let p® be the exponent of G, : the least positive integer such that Gge = 1 holds. we have
the foliowing three exact sequences

(5) 1= e,®; = e, By = e, Clg — 1,
Eb( Lﬁ(
6 I—=e —e e B — 1,
(©) XEx NNy (Unr) * Nagi (Un) X
Ex O Npgyx (Unr) Eg By
1—e L 6y —c € =1,
X ¥ X ER X Eg N Nagyi (Unr)

where Clk is the p-class group of K. Another formula of a,, is obtained from these sequence.
Since vg,, = 7y (Clx) and ay = r,(Gg), we have :

(7) ay = Yox + Uk /Nayx (Un)) — Box + vy (Ex N NM/K(UM)/E{?:) - 9%

where g, is defined to be g, = go — g1 + g2 for

go = ry(coker (Tor(F,, e,®p) — Tor{F,,e,Clg))),
g1 = ry(coker (Tor(Fp,exUk [Npyx (Un)) = Tor{Fy,e,,$1))),
gz = ry(coker (Tor(F,, exE'K/E}';) = Tor(Fp,ex Exe [ Ex 0 Nagyge (Unr))))-

Note B3, = €c0,x. Let tg be an inertia group of a prime q of K. Set Ty be the set of every
prime number whose prime divisor in K is ramified in M/K. We see Ty C T'U {p}. By local
class field theory, we have

(8) Uk [Naj(Un) = Bger, Bqlq ta-

Put 1, = @q)tq. This Z,[gl-module is isomorphic to Z,[g] ©z,[g,] tq- Since g is abelian, t
is a trivial gq-module. Thus, the @, [g]-module carresponding to t,/t! is the induced module
Q,[8] @, (5, @, We rewrite the above formula (7) and obtain,

Lemma 3.5 Let Ty be the set of every prime number whose prime divisor in K is ramified
wn M. We have

Gy = Yo + D Eqx — Ecox + tx(Bx O Nagyn(Unt) /B ) — g
¢€Tp
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Comparing the formulas of a} of Theorem 2.1 with that of Lemma 3.5, we observe
Tox+t Z Equx® —Eooxr Ty (BxNNaryx (UM)/Ef;)“gx' = C“T.x+5w.x+z Eqx 1T xFp x—1-
q€To qeT
Since €q0,y+ -+ €co,x = 1, we have
Lemma 3.6 Define g, 0 =€px+ tf pE€ Ty and gy oo =0 if p  To. Then, we have
_'Yﬂ,x' —Yrx = OT,x + E(qux - EQ‘,X') - EL.X + Wp oy — Ty (EK 0 NM/K(UM)/E%—) +gxo .
qeT

Lemma 3.7 We have ay > g -
Proof. Let Hg be the p-Hilbert class field of K. We have
1> e, Gal(Hgk NM/K) — e, Gal(Hg [K) — e Gal(Hg M{M) — 1

Since e, Gal(HaM/K) = 1, we obtain e, Gel(Hy [ K) = e, Gal(Hg M/M). ay > g, follows
from H 5 Hx M. g.e.d.

4, p"th cyclotomic extensions

We apply the general results obtained in the previous section to the special case that M
is a p™th cyclotomic extension of K. However, problems of computing the rank of p-class
group of K and determining values of o, are still remained. Set M = K (Cpn) for n > 2.
We have T = @} from Lemma 10 in §4 of [Yal].

Lemma 4.1 The value of a, dose not depend on n for n > 2. In other words, its value for
every n > 2 is equal to that forn = 2.

Proof. V,,, is defined as in (2). L is an unramified abelian extension of degree p over the
inertia field of Mg, /Kp,. L is cyclic over Kp,. Put N = LMy, Let L* be a subfield
such that Gal(L*/K,,) = Z/pZ x Z/pZ. L* is a Kummer extension of K. It contains a
ramified extension Ky ((,2) and an unramified extension over Kj,. Hence, L* = Ky, ((p2, &/z)
for z € U, such that K, {¢/z)/K,, is unramified. The Kummer radical of L* /K, is

(LY N KL KSR = (L) U JKRPJEYXP = Vo KXF [KP.

This shows that V;, for every n > 2 coincides with a unique subgroup of Uy,. Since ap y =
ry(coker pr), it dose not depend on n. Hence, by the formula of Theorem 2.1, the value of
ay dose not depend on n. gq.e.d.

Lemma 4.2 If M = K({,2) and if p is completely decomposed in K. Then, we have

exUs /Nagsic(Un) ey U/U?
3XUK/EKNM/K(UM) = eXU/L(E@)Up

are induced from the projection Ug = U.
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Proof. We write U(K) for U to denote the field X for which U is defined. Note [K : K,] =
Ny, © ey = ex o Ngyg, holds, because we identify x with its restriction onto g/gy. The
norm map Ny, g, induces a homomorphism Uk /Nyssx (Uns) = Uk, /Nar 5, (Unt, ). Since
p dose not divide [Ux, : Nx/k, (Uk)] and [Ny, s, (Un, ) : Magyic, (Ung)), restriction of this

homomorphism onto e,-component is an isomorphism. Thus, an isomorphism
exUk /Nuyx(Un) = ex Uk, [Nag, 6, (Uns,)

is defined to be eNarji (Un) = Ny, (2)Nag i, (Uns,). Let my : Ug, — U(Ky) is the
projection map. Since p is decomposed completely in K, we have 7 (Na sk, (Unmy)) =
U(Ky)?. Thus, m, induces an isomorphism Uk, /Nu x, (Unt,) = U(Ky)/U(Ky)?. This
proves the first isomorphism. The second one is obtained by a similar argument as in the

above. We can show an isomorphism
exU(K)/U(K)? = e U(Ky)/U(Ky )P

and hence, e, Ux [Nagy (Unr) = e, U{K)/U(K)? follows. Since e, ExU(K)P/U(K)P is iso-
morphic to ey (Ex, JU(Ky)?/U{Ky)? by this isomorphism, where ¢, is a diagonal map
Ex, - U(Ky), we obtain exUx /Ex Nt/ (Us) = ex U (K) /il Ex)U(K)P. q.e.d.

When M = K((,), we observe (UK/NM/K(UM))P =1 and e = 1. This implies g1 =
g2 = 0. We have g, = go. There is a relation between ag, and g,. If €,, = 0, we have
(U /Nyrpc(Unr)) = 0 from (8), and hence, 7, (&) = 0 from (6). Thus, r, (&) = r,(Clk)
from (5). We see gy = 0 and ay = 7, ¢.

Lemma 4.3 Suppose M = K((p2) and ¢y, = 1. Then, g, = 0 if and only if ap , = 1.

Proof. From the proof of Lemma 3.2, we observe e, , = 1 is equivalent to wyy+ = 1. In
particular, we have wp , = 0if £, , = 1. Hence, by (3.7) of [Ya], we have e, U/V =2 ¢, U/U?.
Thus,

ex U/ Eg)V = e, U/u(Ep)UP.

Suppose ap, = 1. We have e, By g = e,Cy (= ¢, Tor(F,, Clx)). There is an ideal a € ¢
for each ¢ € e, Cp such that (a,p) = 1. Denote by @ an idele which represents a :a = al/k
in the divisor group Jg/Uk. Let = be an element of K* such that a® = (z)y. We have
u € Uy such that a® = uz. Let y be an element of Ji /Ny (Upr) K> generated by &. Since
exC = ¢, we can sclect a and d so that y € e, &, 1(x) € 1(Ep)V follows from ¢ € e, Byg. By
Lemma 4.2 and by the above isomorphism, we have

exUk [ Ex Nayic(Unt) 2 e UJ1{Eg)UT = e, U/ft(Ep)V.

Hence, eye(z) = 1 in e, U/t(Ey)UP. Further, this implies eyz = 1 in e, Uk /Ex Nprye (Unt).
Therefore, y? = 1. Since eyy is a p-torsion element mapped onto ¢, we obtain g, = 0.
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Suppose g, = 0. We have an exact sequence
1 = Tor(Fy,ex®1) = Tor(Fp,exBg) — ex,Cp — 1.

Let ¢ be an element of e,Cyp. Let y = aNpyyx (Um)}K* (a € Ji) be an inverse image into
ex®g of ¢ such that y* = 1. We may suppose (a,p) = 1. Weseea” = uzforu e Narrre (Unr)
and ¢ € K. Since Nk, (u) = ujus for vy € U(Ky) and vz € HPx)fP Up,, we observe
i (Ni/x, (8)) € 1x(Ex, JU(Ky)?. Hence, ¢ € e, Bgg. Thus, ey Bog = ¢, Cp. g.e.d.

Proposition 4.4 Suppose M = K ((p2).

(1) If p is decomposed completely in K,,, we have
ty =Yox T 010x+ 1= €oox — Ix = Ecox* + Tox"-
(2) Ifp is not decomposed in K,, wé have ay = v, and gy = 0.
Proof. We have the following exact sequence which presents Ex /Ex N Nagsx (Ut ) B
1 - Ex N Nag/x(Um)/ Bl = Exc/EY — Bie/Exc 0 Nayxe(Unt) B — 1.

Hence, 7y (Ex/Ex 0 Nagrsx (Usr) E) = €cox — T (Ex N Nagjx (Unr)/ER). By Lemma 4.2,
we observe ey Ex N Ny (Unsr)/E% is isomorphic to the kernel of ex By By — e UJUP.
Thus, b, ¢ , is equal to 7y (Ex NNagyx (Une)/EY ). We obtain the formula of {1} from Lemma
3.5 and Theorem 2.1.

We apply the reduction property. Since p is not decomposed in K, the product of inertia
groups is {1}. We have e, Uk /Ny sk, (Um,) = 1. By (5), we see e,®g = exClg. Thus,
gy =0 and a, =7 ,. We obtain (2). g.e.d.

Let U, be a direct product of Up_ of the completion at prime p, of Ky lying above p:
U, = prh, Uy, Suppose £ = [K, : Q] is a prime dividing p — 1. We observe x and x*
are one-dimensional. We consider y and w Diriclet characters. Put m = (p — 1)/£. There
is yo such that ¥ = yow®™ and whose conductor is prime to p. Put b = ord xo. Suppose
£# p—1. Note x* = x5 'w'~*™. The order of w!=*™ is {p — 1)/(1 — am,p — 1). Hence, if
p 1s not decomposed in K,, or if & divides (p — 1}/(1 — am,p — 1}, p is not decomposed in
Ky,

Theorem 4.5 If p = 3 and x is a quadratic character, the value of a, is determined from
the rank vp  and vp y+. If p > 3 and [K, : Q] is a prime dividing p — 1, we have

(1) Ifp is decomposed in K,, we have wpy =0, wpye =1, ay» =0 and

Gy = Efoox T Yoyt = Yot bl.@-x +1—€oox — 9xi

Ty oy teox + Yox — 1= Yox+-
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(2) If p is not decomposed in Ky+ and Ky, we have gy = g,» = 0 and ap , + gy = L.

Proof. 1f p = 3, we see x* is also quadratic. If p is decomposed completely in K,, it is not
decomposed in Ky.. We have a, = €0 4+ + ¥p,y+ and a,» = 7+ {rom Proposition 4.4. If
p 1s not decomposed in Ky and K., we have a, = g, and ay. = vp - .

Suppose p > 3 and the degree of K, is a prime dividing p — 1. If p is decomposed in K,

we have (1) from Proposition 4.4. If p is not decomposed in K, and K., we may assume
*

x" Is imaginary. We see € ,+ = 0. By virtue of Theorem 2.1 and Proposition 4.4, we have
@y = oyt — 1= Yo
axs = Oy T Tox = Vot

We observe ag, + ag,» = 1. ge.d

Corollary 4.6 In case (1) of the above theorem, we have

Tox- —Vox = drox—Ix-

Proof. By computing a, — ay., we obtain

€oo,x* = b1, + 21 — €co,x) — (g -+ ag,x )-

By the formula of ., we also have

Vext — Yox = ¥,x FEeox — L.

If x is real, we have 0 = by, — (g5 + ap,} and g - — Yo, = 0. If x is imaginary, we
have b9, =0 and 1 =g, + gy, Yo+ — W0,x = @5 — 1. Form these relations, we obtain
Yo = Yox =brox —Ix- ged

Remark 4.7 When p is not decomposed in K, and is not decomposed completely in K-,
p is decomposed in K¢ for d = ord w!™*™ and K4 # Q.

We remark the connection between @, and Iwasawa’s X-invariant. Denote by C, the
p-class group of K((yn)}. Let C, be the projective limit of {C,,} with respect to norm maps.
Cos is called the Iwasawa module of K. It is a Zp[g]-module. If x is imaginary, e,Ce
1s a Zp-free module of finite rank. This rank A, is called the Iwasawa A-invariant. Put
M = K{(y»). The value of ay = 7, (C,/C) = ry(C2/CY).

Lemma 4.8 Let x be an imaginary character. If A, # 0, we have ay, > 1. Moreover, if
Ay <1, we have ay = A,.

Remark 4.9 If x is real, A,- is computed by virtue of the Iwasawa construction of p-adic
L-functions, cf. (Wa]. When K is a composite of quadratic field Q(/m) and Q((,), where
m is a square free infeger, we compule a, and ay+ numerically for the quadratic character
for x of K.
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