On the number of generators of p-class groups as Galois modules of pnth cyclotomic extension of abelian fields

メタデータ	言語: eng
	出版者:
	公開日: 2022-05-12
	キーワード (Ja):
	キーワード (En):
	作成者: 山下, 浩, Yakashita, Hiroshi
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/00065606

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

On the Number of Generators of p-Class Groups as Galois Modules

of p^n th Cyclotomic Extensions of Abelian Fields

Hiroshi Yamashita

1. Introduction

We obtain a formula which gives the number of generators of a p-class group as a Galois module of an algebraic number field with finite degree. We will investigate this number for a certain type of a finite abelian extension of the field Q of rational numbers. We take a prime number p to be odd to avoid complicated arguments. Let M be a finite abelian extension of Q containing a primitive pth root of unity. We suppose p|[M:Q]. The Galois group G = Gal(M/Q) is a direct product of the p-Sylow subgroup G_p and a subgroup g such that $p \not| g$. Let G be the g-class group of g. It is a finite g-gg-module, where g-g denotes the ring of g-adic integers and g-gg dose the group ring of g over g-g.

Let J be the Jacobson radical of the group ring $Z_p[\mathfrak{g}]$. $Z_p[\mathfrak{g}]/J$ is isomorphic to the group ring $F_p[\mathfrak{g}]$, where F_p is the finite field of p-elements, cf. Lemma 1 of [Ya]. Hence, if a finitely generated $Z_p[\mathfrak{g}]$ -module Y is given, the quotient module Y/Y^J is an $F_p[\mathfrak{g}]$ -module. For each $F_p[\mathfrak{g}]$ -module, there is a corresponding $Q_p[\mathfrak{g}]$ -module, where Q_p is the field of fractions of Z_p and $Q_p[\mathfrak{g}]$ is the group ring of \mathfrak{g} over Q_p . $Q_p[\mathfrak{g}]$ is a semi-simple ring, and hence it decomposed into a direct sum of simple subrings R_i :

$$Q_p[\mathfrak{g}] = \bigoplus_{i=1}^r R_i$$

Let e_i be identity element of R_i . We have $1 = \sum e_i$. Since $p/\!\!|\mathfrak{g}|$, every e_i is an element of $Z_p[\mathfrak{g}]$. By means of the canonical map $Z_p \to F_p$, every $F_p[\mathfrak{g}]$ -module is a $Z_p[\mathfrak{g}]$ -module canonically. We have the following decompositions of a $Z_p[\mathfrak{g}]$ -module Y and an $Y_p[\mathfrak{g}]$ -module Y/Y^J :

$$Y = \bigoplus e_i Y, \qquad Y/Y^J = \bigoplus_i e_i (Y/Y^J).$$

Denote by $r_i(Y)$ the number of minimal generators of e_iY/Y^J as an $F_p[\mathfrak{g}]$ -module. Since G is abelian, e_iY is generated with $r_i(Y)$ elements as a $\mathbb{Z}_p[\mathfrak{g}]$ -module, and dose not with $r_i(Y)-1$ elements. The number of elements of a set of minimal generators of Y as a $\mathbb{Z}_p[\mathfrak{g}]$ -module is equal to $\max_i r_i(Y)$.

The main object for consideration in the present paper is a quantity $r_i(C)$. A formula describing this value is proposed in [Ya]. We will determine the value concretely in case that

M is a p^n th cyclotomic extension of $K = M^{G_p}$, because the value of a_{χ} is closely related to the structure of the Iwasawa module of the cyclotomic Z_p -extension of K. We shall show that this problem is reduced to compute the rank of p-class group of $K = M^{G_p}$ by virtue of the Frobenius reciprocity law and the genus theory. However, we do not consider the problem of computing the rank, here.

2. Characters of representations of g

We suppose every $Q_p[\mathfrak{g}]$ -modules (resp. $Z_p[\mathfrak{g}]$ -modules, resp. $F_p[\mathfrak{g}]$ -modules) is finitely generated. We recall correspondence between $Q_p[\mathfrak{g}]$ -modules, Z_p -free $Z_p[\mathfrak{g}]$ -modules and $F_p[\mathfrak{g}]$ -modules. Let X be a finitely generated $Q_p[\mathfrak{g}]$ -module. For each X, there is a finitely generated Z_p -free $Z_p[\mathfrak{g}]$ -module Y such that $X = Q_p \otimes_{Z_p} Y$. We obtain an $F_p[\mathfrak{g}]$ -module $Z = Y/Y^p = F_p \otimes_{Z_p} Y$. The correspondence $X \to Y \to Z$ is functorial and is determined up to isomorphisms in categories of $Q_p[\mathfrak{g}]$ -modules, $Z_p[\mathfrak{g}]$ -modules, and $F_p[\mathfrak{g}]$ -modules, respectively. Since p/\mathfrak{g} , there is converse correspondence $Z \to Y \to X$. This means that we know the structure of Z or Y from that of X. $Q_p[\mathfrak{g}]$ is a commutative ring, and hence each R_i is a field. We see a finitely generated $Q_p[\mathfrak{g}]$ -module X is a direct sum of a finite dimensional R_i -vector space e_iX . Observe $Q_p \otimes_{Z_p} e_iY = e_iX$. Thus, we have

$$\dim_{R_i} e_i X = r_i(Y) = r_i(Z).$$

 $r_i(Z)$ is also equal to the dimension of e_iZ over the residue field of R_i . If Y is a $\mathbb{Z}_p[\mathfrak{g}]$ -module, we define $r_i(Y)$ to be $r_i(\mathbb{F}_p \otimes Y)$.

Let Φ be a representation of g. It is a homomorphism

$$\Phi: \mathfrak{g} \longrightarrow GL_m(\mathbf{Q}_n)$$

of groups, where $GL_m(Q_p)$ is a general linear group of degree m over Q_p . If m=1, we call a one-dimensional representation. The trace of Φ is called the character. It is a function of $\mathfrak g$. If Φ_1 and Φ_2 are two equivalent representations, the characters give same function of $\mathfrak g$ into Q_p . Conversely, non-equivalent representations define different characters. Hence, we denote by Φ_χ a representation having character $\chi=Tr\,\Phi_\chi$. The left regular representation on R_i is an irreducible representation, because $\mathfrak g$ is abelian. Its character χ_i is called an irreducible character. Every character is written as a linear combination of irreducible characters χ_i with coefficients of non-negative integers. If a character χ is coming from a Q_p -linear representation of a finitely generated $Q_p[\mathfrak g]$ -module X and if $\chi=\sum_k m_k \chi_{j_k}$, we have a decomposition $X=\oplus_k R_{j_k}^{m_k}$. We change suffix and write R_χ , e_χ , $r_\chi(Y)$ for R_i , e_i , $r_i(Y)$ if χ is an irreducible character χ_i .

We introduce several characters to state the formula of $r_{\chi}(C/C^{J})$. Let $\zeta_{p^{n}}$ be a primitive p^{n} th root of unity and $\mu_{p^{n}}$ be a cyclic group generated by $\zeta_{p^{n}}$. The p^{n-m} th power map induces a surjection $\mu_{p^{n}} \to \mu_{p^{m}}$ for n > m. $\{\mu_{p^{n}}\}_{n \geq 0}$ forms a projective system with respect to these power maps. Let T be the projective limit. It is isomorphic to Z_{p} as a profinite

group. Let K be the intermediate field of M/Q corresponding to G_p . Since $K \ni \zeta_p$, $\mathfrak g$ acts on μ_p . $\mathfrak g$ also acts on μ_{p^n} through injection $Gal(Q(\zeta_p)/Q) \to Gal(Q(\zeta_{p^n})/Q)$. T becomes a $Z_p[\mathfrak g]$ -module by passing through the projective limit. Let ω be the character of $Q_p \otimes_{Z_p} T$. Since ω is a character of a one-dimensional representation, it is irreducible. Denote by ε the character of the trivial representation $\mathfrak g \to Q_p^\times$. Namely, $\varepsilon(\sigma) = 1$ for every $\sigma \in \mathfrak g$. We make a convention that a symbol χ always denotes an irreducible character which is equal neither to ω nor to ε .

If a representation $\Phi: \mathfrak{g} \to GL_m(Q_p)$ is given, we obtain another representation $\hat{\Phi}$ by $\hat{\Phi}(\sigma) = \Phi(\sigma^{-1})$. Denote by Φ^* is a representation $\hat{\Phi}\omega$: $\Phi^*(\sigma) = \Phi(\sigma)^{-1}\omega(\sigma)$. If χ is the character of Φ , we denote by $\hat{\chi}$ and χ^* the characters of $\hat{\Phi}$ and Φ^* , respectively. We see $(\chi^*)^* = \chi$. Note $\hat{\chi}$ and χ^* is irreducible if χ is irreducible, cf. Lemma 6 of [Ya].

Let q be a prime divisor of Q (possibly an infinite prime). Denote by \mathfrak{q} a prime divisor of K lying above q. Let $\mathfrak{g}_{\mathfrak{q}}$ be the decomposition group of \mathfrak{q} . When p=q, we use the symbol \mathfrak{p} to specialize the prime $\mathfrak{p}|p$. Since $\mathfrak{g}_{\mathfrak{p}}$ is a subgroup of \mathfrak{g} , T is a $Z_p[\mathfrak{g}_{\mathfrak{p}}]$ -module. To denote this module, we attach subscript \mathfrak{p} : $T_{\mathfrak{p}}$. Let $\omega_{p,\chi}$ be a quantity defined to be

$$\omega_{p,\chi} = r_{\chi}(Z_p[\mathfrak{g}] \otimes_{Z_p[\mathfrak{g}_{\mathfrak{p}}]} T_{\mathfrak{p}}).$$

Similarly, considering Z_p a trivial $Z_p[\mathfrak{g}_{\mathfrak{q}}]$ -module, we define

$$\varepsilon_{q,\chi} = r_{\chi}(Z_p[\mathfrak{g}] \otimes_{Z_p[\mathfrak{g}_0]} Z_p).$$

Note $Z_p[\mathfrak{g}] \otimes_{Z_p[\mathfrak{g}_{\mathfrak{q}}]} Z_p$ is isomorphic to $Z_p[\mathfrak{g}/\mathfrak{g}_{\mathfrak{q}}]$.

Let T be a set of prime numbers whose primes divisors in K are ramified in M/K and which are not equal to p. Let E_T be the group of T-units of K:

$$E_T = \{x \in K^{\times} : (x,q) = 1 \text{ for every prime number } q \in T\}.$$

 E_T/E_T^p is a finitely generated $F_p[\mathfrak{g}]$ -module. We abbreviate $Q_p \otimes_{Z_p} T$ to $Q_p T$. The $Q_p[\mathfrak{g}]$ -module corresponding to E_T/E_T^p is

$$\left(Q_p[\mathfrak{g}/\mathfrak{g}_{\mathfrak{p}_{\infty}}]/Q_p\right)\oplus Q_pT\oplus \left(\bigoplus_{q\in T}Q_p[\mathfrak{g}/\mathfrak{g}_{\mathfrak{q}}]\right)$$

where \mathfrak{p}_{∞} is a prime divisor of K such that $\mathfrak{p}_{\infty}|_{\infty}$. Put $\beta_{T,\chi}=r_{\chi}(E_{T}/E_{T}^{p})$.

Let D_T be the group of T-divisors of K. Namely, it is a free abelian group on the set of prime divisors of K not dividing any prime contained in T. We denote by $(x)_T$ the principal divisor generated by $x \in K^{\times}$. Let P_T be the group of principal divisors. The quotient module D_T/P_T is called the T-divisor class group of K. Let C_T be the submodule of p-torsion elements of the T-divisor class group. It is an $F_p[\mathfrak{g}]$ -module. Put $\gamma_{T,X} = r_X(C_T)$.

Let $\{\mathfrak{p}_1,\ldots,\mathfrak{p}_s\}$ be the set of every extension onto K of the prime divisor p of Q. Let $K_{\mathfrak{p}_i}$ be the completion of K at \mathfrak{p}_i . For each \mathfrak{p}_i , there is an embedding $\iota_i:K\to K_{\mathfrak{p}_i}$. These

embeddings induce a diagonal map $K \to \prod_i K_{\mathfrak{p}_i}$. Denote by ι this diagonal map. Let $U_{\mathfrak{p}_i}$ be the group of units of $K_{\mathfrak{p}_i}$. Put $U = \prod_i U_{\mathfrak{p}_i}$. Since $\iota_i(E_T) \subset U_{\mathfrak{p}_i}$, we see $\iota(E_T) \subset U$.

Take a prolongation \mathfrak{P}_i of \mathfrak{p}_i onto M. Let L be an unramified abelian extension of degree p over the inertia field of $M_{\mathfrak{P}_i}/K_{\mathfrak{p}_i}$. We define a submodule $V_{\mathfrak{p}_i}$ of $U_{\mathfrak{p}_i}$ to be

$$(2) V_{\mathfrak{p}_i} = (M_{\mathfrak{P}_i} L)^{\times p} \cap U_{\mathfrak{p}_i}$$

It contains $U_{\mathfrak{p}_i}^p$. Define a submodule V of U to be a direct product of $V_{\mathfrak{p}_i}$ for $i=1,\ldots,s$. U and V are \mathfrak{g} -modules. Thus, U/V is an $F_p[\mathfrak{g}]$ -module. ι induces an $F_p[\mathfrak{g}]$ -module homomorphism

$$\varphi_T: E_T/E_T^p \longrightarrow U/V$$

Denote by $B_{1,T}$ the kernel of φ_T . We have an exact sequence

(3)
$$1 \to B_{1,T} \to E_T / E_T^p \to U/V \to U/\iota(E_T)V \to 1$$

For each $c \in C_T$, we have $a \in c$ such that $a^p = (a)_T$ and (a, p) = 1. Since $\iota(a)$ is an element of U, we have $\iota(aE_T)V \in U/V$. This coset $\iota(aE_T)V$ is uniquely determined by c. Hence, an $F_p[\mathfrak{g}]$ -homomorphism $\rho_T : C_T \to U/\iota(E_T)V$ is defined to be $\rho_T(c) = \iota(aE_T)V$. Denote by $B_{0,T}$ the kernel of ρ_T . We have an exact sequence

$$(4) 1 \to B_{0,T} \to C_T \to U/\iota(E_T)V.$$

We define quantities $\alpha_{T,\chi}$, $b_{0,T,\chi}$, $b_{1,T,\chi}$ to be

$$\alpha_{T,\chi} = r_{\chi}(\operatorname{coker} \rho_{T})$$
 $b_{0,T,\chi} = r_{\chi}(B_{0,T})$
 $b_{1,T,\chi} = r_{\chi}(B_{1,T})$

respectively. The following formula obtained in [Ya] is fundamental in our arguments:

Theorem 2.1 For each irreducible character χ such that $\chi \neq \omega, \varepsilon$, we have

$$a_{\chi^*} = b_{0,T,\chi} + b_{1,T,\chi} = \alpha_{T,\chi} + \beta_{T,\chi} + \gamma_{T,\chi} + \omega_{p,\chi} - 1$$

Furthermore, if $\omega_{p,\chi} = 1$, we have $\alpha_{T,\chi} = 0$.

3. Auxiliary lemmas

Let M_0 be the fixed field with \mathfrak{g} . We have $M=M_0K$ and $Gal(M_0/\mathbf{Q})=G_p$. Let \mathfrak{g}_X be the kernel of the representation:

$$g_{\chi} = \{ \sigma \in \mathfrak{g} : \Phi(\sigma) \text{ is identity matrix} \}.$$

We can reduce Φ_X onto $\mathfrak{g}/\mathfrak{g}_X$ and denote by the same symbol Φ_X this reduction, cf. §1 of [Ya]. We also denote by χ the character of the reduced representation. Let K_X be the intermediate field of K/Q corresponding to \mathfrak{g}_X . In Lemma 4 of [Ya], we show the following reduction property holds:

Lemma 3.1 Put $M_{\chi} = M_0 K_{\chi}$. Let C_{χ} be the p-class group of M_{χ} . We have $r_{\chi}(C/C^J) = r_{\chi}(C_{\chi}/C_{\chi}^J)$.

The induced module $Q_p[\mathfrak{g}] \otimes_{Q_p[\mathfrak{g}_{\mathfrak{q}}]} Q_p$ of the trivial $Q_p[\mathfrak{g}_{\mathfrak{q}}]$ -module Q_p is isomorphic to $Q_p[\mathfrak{g}/\mathfrak{g}_{\mathfrak{q}}]$. We see $\varepsilon_{q,\chi} = \dim_{R_\chi} Q_p[\mathfrak{g}/\mathfrak{g}_{\mathfrak{q}}]$ for a prime divisor \mathfrak{q} . Sine $Q_p[\mathfrak{g}/\mathfrak{g}_{\mathfrak{q}}]$ is a homomorphic image of $Q_p[\mathfrak{g}]$, we have

$$\varepsilon_{q,\chi} = \dim_{R_{\chi}} Q_{p}[\mathfrak{g}/\mathfrak{g}_{\mathfrak{q}}] \leq 1.$$

Lemma 3.2 We have $\omega_{p,\chi} \leq 1$. $\omega_{p,\chi} = 1$ if and only if p is decomposed completely in $K_{\chi^{\bullet}}$.

Proof. We refer for the Frobenius reciprocity law to Theorem 19.2.11 and Corollary 19.2.12 in [Ka]. Let $<,>_{\mathfrak{g}}$ be the symmetric pairing of Q_p -character. The value of the pairing is defined to be

$$<\varphi,\psi>_{\mathfrak{g}} = \frac{1}{|\mathfrak{g}|} \sum_{\sigma \in \mathfrak{g}} \varphi(\sigma) \psi(\sigma^{-1}) = \frac{1}{|\mathfrak{g}|} \sum_{\sigma \in \mathfrak{g}} \varphi(\sigma^{-1}) \psi(\sigma) = <\psi,\varphi>_{\mathfrak{g}}$$

for characters φ and ψ . $r_{\chi}(Y)$ is positive if and only if $\langle \chi, \varphi_Y \rangle \neq 0$ for a character φ_Y afforded with a $Q_p[\mathfrak{g}]$ -module corresponding to Y. We have $r_{\chi}(Y) = 1$ if $\langle \chi, \varphi_Y \rangle = 1$. Similarly, we denote by $\langle \varphi, \psi \rangle_{\mathfrak{g}_p}$ the symmetric product of characters of \mathfrak{g}_p . Let $\omega_{\mathfrak{p}}$ be the character afforded with a $Q_p[\mathfrak{g}_p]$ -module Q_pT_p . The induced character of ω_p is a character afforded with a $Q_p[\mathfrak{g}]$ -module $Q_p[\mathfrak{g}]\otimes_{Q_p[\mathfrak{g}_p]}Q_pT_p$. Denote by $ind_p\omega_{\mathfrak{p}}$ this induced character. The Frobenius reciprocity law assures that an equality

$$<\chi, ind_p\omega_{\mathfrak{p}}>_{\mathfrak{g}}=<\chi_{\mathfrak{g}_{\mathfrak{p}}}, \omega_{\mathfrak{g}_{\mathfrak{p}}}>_{\mathfrak{g}_{\mathfrak{p}}}$$

holds, where $\chi_{|\mathfrak{g}_{\mathfrak{p}}}$ is restriction of χ onto $\mathfrak{g}_{\mathfrak{p}}$. Let $\varepsilon_{\mathfrak{p}}$ be the trivial character of $\mathfrak{g}_{\mathfrak{p}}$ and $ind_p\varepsilon_{\mathfrak{p}}$ be the induced character. We have

$$<\chi^*, ind_p \varepsilon_p>_g=<\chi^*_{|\mathfrak{g}_n}, \omega_{\mathfrak{g}_p}>_{\mathfrak{g}_p}.$$

Since $\omega_{\mathfrak{p}} = \omega_{|\mathfrak{g}_{\mathfrak{p}}}$, we have $\chi_{|\mathfrak{g}_{\mathfrak{p}}}^* = \hat{\chi}_{|\mathfrak{g}_{\mathfrak{p}}} \omega_{\mathfrak{g}_{\mathfrak{p}}}$. Thus, we have

$$<\chi_{|\mathfrak{g}_{\mathfrak{p}}}^{*},\varepsilon_{\mathfrak{p}}>_{\mathfrak{g}_{\mathfrak{p}}}=<\omega_{\mathfrak{p}},\chi_{|\mathfrak{g}_{\mathfrak{p}}}\varepsilon_{\mathfrak{p}}>_{\mathfrak{g}_{\mathfrak{p}}}=<\omega_{\mathfrak{p}},\chi_{|\mathfrak{g}_{\mathfrak{p}}}>_{\mathfrak{g}_{\mathfrak{p}}}.$$

By virtue of the Frobenius reciprocity law, we obtain

$$<\chi, ind_p\omega_p>_q=<\chi^*, ind_p\varepsilon_p>_q$$

Since $ind_p \varepsilon_p$ is the character afforded with $Q_p[\mathfrak{g}/\mathfrak{g}_p]$, we have

$$<\chi^*, ind_p\varepsilon_{\mathfrak{p}}>_{\mathfrak{g}}\leq 1$$

and the value of the symmetric pairing is not equal to 0 if and only if $\Phi_{\chi^{\bullet}}(\sigma) = \Phi_{\chi^{\bullet}}(1)$ for every $\sigma \in \mathfrak{g}_{\mathfrak{p}}$. This implies p is completely decomposed in $K_{\chi^{\bullet}}$, i.e. $\mathfrak{g}_{\mathfrak{p}} \subset \mathfrak{g}_{\chi}$. q.e.d.

Lemma 3.3 Suppose $\omega_{p,\chi} = 0$. Then, we have $r_{\chi}(U/U^p) = 1$. Hence, if $e_{\chi}(\iota(E_T)V/V) \neq 0$, we have $\alpha_{T,\chi} = 0$.

Proof. From (3.5) of §3, [Ya], the $Q_p[\mathfrak{g}]$ -module corresponding to U/U^p is

$$Q_p[\mathfrak{g}] \oplus \left(Q_p[\mathfrak{g}] \otimes_{Q_p[\mathfrak{g}_\mathfrak{p}]} Q_p T_\mathfrak{p}\right).$$

Thus, if $\omega_{p,\chi}=0$, we have $r_\chi(U/U^p)=r_\chi(\mathbf{F}_p[\mathfrak{g}])=1$. Moreover, if $e_\chi(\iota(E_T)V/V)\neq 0$, we have $e_\chi(\iota(E_T)V/V)=e_\chi(U/U^p)$, because of $r_\chi(U/V)\leq r_\chi(U/U^p)=1$. Hence, $e_\chi(U/\iota(E_T)V)=0$. $\alpha_{T,\chi}=0$ follows from the definition. q.e.d.

Let τ_{∞} be a generator of \mathfrak{g}_{∞} . We call χ is real (resp. imaginary) if $\Phi_{\chi}(\tau_{\infty}) = \Phi_{\chi}(1)$ (resp. $\Phi_{\chi}(\tau_{\infty}) = -\Phi_{\chi}(1)$). By (1), we see $\beta_{\chi} = 1 + \sum_{q \in T} \varepsilon_{q,\chi}$ if χ is real and $\beta_{\chi} = \sum_{q \in T} \varepsilon_{q,\chi}$ if χ is imaginary.

Lemma 3.4 If $\omega_{p,\chi} = 1$, or if $\omega_{p,\chi} = 0$ and $\beta_{T,\chi} \neq b_{1,T,\chi}$, we have $\alpha_{T,\chi} = 0$.

Proof. If $\omega_{p,\chi} = 1$, we have $\alpha_{T,\chi} = 0$ from Theorem 2.1. Suppose $\omega_{p,\chi} = 0$ and $\beta_{T,\chi} \neq b_{1,T,\chi}$. By the exact sequence (3), we have

$$r_{\chi}(U/\iota(E_T)V) = r_{\chi}(U/V) - r_{\chi}(E_T/E_T^p) + r_{\chi}(B_{1,T}) \le 1 - (\beta_{T,\chi} - b_{1,T,\chi}).$$

since $\beta_{T,\chi} > b_{1,T,\chi}$, we conclude $r_{\chi}(U/\iota(E_T)V) = 0$, and hence $\alpha_{T,\chi} = 0$. q.e.d.

The proof of Theorem 2.1 given in [Ya] is based on an equality

$$a_\chi = r_\chi(\operatorname{Gal}(H^{ab}/K)) = r_\chi(\operatorname{Gal}(H^{ab}/M)),$$

where H^{ab} is the maximal abelian subfield of M/K. Let \tilde{H} be the Hilbert class field and \tilde{H}^{ab} be the maximal abelian subfield of \tilde{H}/K . Since M/K is abelian, \tilde{H}^{ab} is the genus field. For an arbitrary finite abelian group, we denote by A' the p-Sylow subgroup. By means of this convention, we have $Gal(\tilde{H}^{ab}/K)' = Gal(H^{ab}/K)$.

Let J_K (resp. J_M) be the idele group of K (resp. M). Let U_K (resp. U_M) be the unit group of the idele group. By class field theory, we have

$$Gal(\tilde{H}^{ab}/K) \cong J_K/N_{M/K}(U_M)K^{\times}.$$

Since $J_K/N_{M/K}(J_M)K^{\times} \cong G_p$ is a trivial g-module, we have $e_{\chi}(J_K/N_{M/K}(J_M)K^{\times}) = 1$. Thus,

$$r_{\chi}(Gal(H^{ab}/M)) = r_{\chi}((N_{M/K}(J_M)K^{\times}/N_{M/K}(U_M)K^{\times})').$$

Denote by E_K the unit group of K: $E_K = E_{\emptyset}$. Put

$$\mathfrak{G}_1 = U_K / N_{M/K}(U_K) E_K,$$
 $\mathfrak{G}_0 = (N_{M/K}(J_M) / N_{M/K}(U_M) K^{\times})'.$

Let p^e be the exponent of G_p : the least positive integer such that $G_p^{p^e} = 1$ holds. we have the following three exact sequences

$$(5) 1 \to e_{\chi} \mathfrak{G}_1 \to e_{\chi} \mathfrak{G}_0 \to e_{\chi} Cl_K \to 1,$$

(6)
$$1 \to e_{\chi} \frac{E_K}{E_K \cap N_{M/K}(U_M)} \to e_{\chi} \frac{U_K}{N_{M/K}(U_M)} \to e_{\chi} \mathfrak{G}_1 \to 1,$$
$$1 \to e_{\chi} \frac{E_K \cap N_{M/K}(U_M)}{E_K^{p^e}} \to e_{\chi} \frac{E_K}{E_K^{p^e}} \to e_{\chi} \frac{E_K}{E_K \cap N_{M/K}(U_M)} \to 1,$$

where Cl_K is the *p*-class group of K. Another formula of a_{χ} is obtained from these sequence. Since $\gamma_{\emptyset,\chi} = r_{\chi}(Cl_K)$ and $a_{\chi} = r_{\chi}(\mathfrak{G}_0)$, we have :

(7)
$$a_{\chi} = \gamma_{\emptyset,\chi} + r_{\chi}(U_K/N_{M/K}(U_M)) - \beta_{\emptyset,\chi} + r_{\chi}(E_K \cap N_{M/K}(U_M)/E_K^{p^e}) - g_{\chi},$$

where g_{χ} is defined to be $g_{\chi} = g_0 - g_1 + g_2$ for

$$g_{0} = r_{\chi}(\operatorname{coker}\left(\operatorname{Tor}(\boldsymbol{F}_{p}, e_{\chi}\boldsymbol{\mathfrak{G}}_{0}) \to \operatorname{Tor}(\boldsymbol{F}_{p}, e_{\chi}\operatorname{Cl}_{K})\right)),$$

$$g_{1} = r_{\chi}(\operatorname{coker}\left(\operatorname{Tor}(\boldsymbol{F}_{p}, e_{\chi}U_{K}/N_{M/K}(U_{M})) \to \operatorname{Tor}(\boldsymbol{F}_{p}, e_{\chi}\boldsymbol{\mathfrak{G}}_{1})\right)),$$

$$g_{2} = r_{\chi}(\operatorname{coker}\left(\operatorname{Tor}(\boldsymbol{F}_{p}, e_{\chi}E_{K}/E_{K}^{p^{*}}) \to \operatorname{Tor}(\boldsymbol{F}_{p}, e_{\chi}E_{K}/E_{K} \cap N_{M/K}(U_{M}))\right)).$$

Note $\beta_{\emptyset,\chi} = \varepsilon_{\infty,\chi}$. Let $\mathfrak{t}_{\mathfrak{q}}$ be an inertia group of a prime \mathfrak{q} of K. Set T_0 be the set of every prime number whose prime divisor in K is ramified in M/K. We see $T_0 \subset T \cup \{p\}$. By local class field theory, we have

(8)
$$U_K/N_{M/K}(U_M) \cong \bigoplus_{q \in T_0} \bigoplus_{q \mid q} \mathfrak{t}_q.$$

Put $\mathfrak{t}_q = \bigoplus_{\mathfrak{q}|q} \mathfrak{t}_{\mathfrak{q}}$. This $Z_p[\mathfrak{g}]$ -module is isomorphic to $Z_p[\mathfrak{g}] \otimes_{Z_p[\mathfrak{g}_{\mathfrak{q}}]} \mathfrak{t}_{\mathfrak{q}}$. Since \mathfrak{g} is abelian, $\mathfrak{t}_{\mathfrak{q}}$ is a trivial $\mathfrak{g}_{\mathfrak{q}}$ -module. Thus, the $Q_p[\mathfrak{g}]$ -module corresponding to $\mathfrak{t}_q/\mathfrak{t}_q^p$ is the induced module $Q_p[\mathfrak{g}] \otimes_{Q_p[\mathfrak{g}_{\mathfrak{q}}]} Q_p$. We rewrite the above formula (7) and obtain,

Lemma 3.5 Let T_0 be the set of every prime number whose prime divisor in K is ramified in M. We have

$$a_{\chi} = \gamma_{\emptyset,\chi} + \sum_{q \in T_0} \varepsilon_{q,\chi} - \varepsilon_{\infty,\chi} + r_{\chi}(E_K \cap N_{M/N}(U_M)/E_K^{p^e}) - g_{\chi}.$$

Comparing the formulas of a_x^* of Theorem 2.1 with that of Lemma 3.5, we observe

$$\gamma_{\emptyset,\chi^{\bullet}} + \sum_{q \in T_0} \varepsilon_{q,\chi^{\bullet}} - \varepsilon_{\infty,\chi^{\bullet}} + r_{\chi^{\bullet}} (E_K \cap N_{M/K}(U_M)/E_K^{p^e}) - g_{\chi^{\bullet}} = \alpha_{T,\chi} + \varepsilon_{\infty,\chi} + \sum_{q \in T} \varepsilon_{q,\chi} + \gamma_{T,\chi} + \omega_{p,\chi} - 1.$$

Since $\varepsilon_{\infty,\chi^*} + \varepsilon_{\infty,\chi} = 1$, we have

Lemma 3.6 Define $\varepsilon'_{p,\chi^{\bullet}} = \varepsilon_{p,\chi^{\bullet}}$ if $p \in T_0$ and $\varepsilon'_{p,\chi^{\bullet}} = 0$ if $p \notin T_0$. Then, we have

$$\gamma_{\emptyset,\chi^{\bullet}} - \gamma_{T,\chi} = \alpha_{T,\chi} + \sum_{q \in T} (\varepsilon_{q,\chi} - \varepsilon_{q,\chi^{\bullet}}) - \varepsilon'_{p,\chi} + \omega_{p,\chi} - r_{\chi^{\bullet}} (E_K \cap N_{M/K}(U_M)/E_K^p) + g_{\chi^{\bullet}}.$$

Lemma 3.7 We have $a_{\chi} \geq \gamma_{\emptyset,\chi}$.

Proof. Let H_K be the p-Hilbert class field of K. We have

$$1 \to e_{\chi}Gal(H_K \cap M/K) \to e_{\chi}Gal(H_K/K) \to e_{\chi}Gal(H_K M/M) \to 1$$

Since $e_{\chi}Gal(H_{\cap}M/K) = 1$, we obtain $e_{\chi}Gal(H_{K}/K) = e_{\chi}Gal(H_{K}M/M)$. $a_{\chi} \geq \gamma_{\emptyset,\chi}$ follows from $H^{ab} \supset H_{K}M$. q.e.d.

4. p^n th cyclotomic extensions

We apply the general results obtained in the previous section to the special case that M is a p^n th cyclotomic extension of K. However, problems of computing the rank of p-class group of K and determining values of $\alpha_{T,\chi}$ are still remained. Set $M = K(\zeta_{p^n})$ for $n \geq 2$. We have $T = \emptyset$ from Lemma 10 in §4 of [Ya].

Lemma 4.1 The value of a_{χ} dose not depend on n for $n \geq 2$. In other words, its value for every $n \geq 2$ is equal to that for n = 2.

Proof. $V_{\mathfrak{p}_i}$ is defined as in (2). L is an unramified abelian extension of degree p over the inertia field of $M_{\mathfrak{P}_i}/K_{\mathfrak{p}_i}$. L is cyclic over $K_{\mathfrak{p}_i}$. Put $N=LM_{\mathfrak{P}_i}$. Let L^* be a subfield such that $Gal(L^*/K_{\mathfrak{p}_i})\cong \mathbb{Z}/p\mathbb{Z}\times \mathbb{Z}/p\mathbb{Z}$. L^* is a Kummer extension of $K_{\mathfrak{p}}$. It contains a ramified extension $K_{\mathfrak{p}}(\zeta_{\mathfrak{p}^2})$ and an unramified extension over $K_{\mathfrak{p}_i}$. Hence, $L^*=K_{\mathfrak{p}_i}(\zeta_{\mathfrak{p}^2},\sqrt[p]{x})$ for $x\in U_{\mathfrak{p}_i}$ such that $K_{\mathfrak{p}_i}(\sqrt[p]{x})/K_{\mathfrak{p}_i}$ is unramified. The Kummer radical of $L^*/K_{\mathfrak{p}_i}$ is

$$(L^*)^{\times p} \cap K_{\mathfrak{p}_i}^{\times}/K_{\mathfrak{p}_i}^{\times p} = ((L^*)^{\times p} \cap U_{\mathfrak{p}_i})K_{\mathfrak{p}_i}^{\times p}/K_{\mathfrak{p}_i}^{\times p} = V_{\mathfrak{p}_i}K_{\mathfrak{p}_i}^{\times p}/K_{\mathfrak{p}_i}^{\times p}$$

This shows that $V_{\mathfrak{p}_i}$ for every $n \geq 2$ coincides with a unique subgroup of $U_{\mathfrak{p}_i}$. Since $\alpha_{\emptyset,\chi} = r_{\chi}(\operatorname{coker} \rho_T)$, it dose not depend on n. Hence, by the formula of Theorem 2.1, the value of a_{χ} dose not depend on n. q.e.d.

Lemma 4.2 If $M = K(\zeta_{p^2})$ and if p is completely decomposed in K_{χ} . Then, we have

$$e_{\chi}U_{K}/N_{M/K}(U_{M}) \cong e_{\chi}U/U^{p}$$

 $e_{\chi}U_{K}/E_{K}N_{M/K}(U_{M}) \cong e_{\chi}U/\iota(E_{\emptyset})U^{p}$

are induced from the projection $U_K \to U$.

Proof. We write U(K) for U to denote the field K for which U is defined. Note $[K:K_\chi]=N_{K/K_\chi}\circ e_\chi=e_\chi\circ N_{K/K_\chi}$ holds, because we identify χ with its restriction onto $\mathfrak{g}/\mathfrak{g}_\chi$. The norm map N_{K/K_χ} induces a homomorphism $U_K/N_{M/K}(U_M)\to U_{K_\chi}/N_{M_\chi/K_\chi}(U_{M_\chi})$. Since p dose not divide $[U_{K_\chi}:N_{K/K_\chi}(U_K)]$ and $[N_{M_\chi/K_\chi}(U_{M_\chi}):M_{M/K_\chi}(U_M)]$, restriction of this homomorphism onto e_χ -component is an isomorphism. Thus, an isomorphism

$$e_{\chi}U_K/N_{M/K}(U_M) \cong e_{\chi}U_{K_{\chi}}/N_{M_{\chi}/K_{\chi}}(U_{M_{\chi}})$$

is defined to be $xN_{M/K}(U_M) \to N_{K/K_X}(x)N_{M_X/K_X}(U_{M_X})$. Let $\pi_\chi: U_{K_X} \to U(K_\chi)$ is the projection map. Since p is decomposed completely in K_χ , we have $\pi_\chi(N_{M_X/K_X}(U_{M_X})) = U(K_\chi)^p$. Thus, π_χ induces an isomorphism $U_{K_X}/N_{M_X/K_X}(U_{M_X}) \cong U(K_\chi)/U(K_\chi)^p$. This proves the first isomorphism. The second one is obtained by a similar argument as in the above. We can show an isomorphism

$$e_X U(K)/U(K)^p \cong e_X U(K_X)/U(K_X)^p$$

and hence, $e_{\chi}U_K/N_{M/K}(U_M) \cong e_{\chi}U(K)/U(K)^p$ follows. Since $e_{\chi}E_KU(K)^p/U(K)^p$ is isomorphic to $e_{\chi}\iota_{\chi}(E_{K_{\chi}})U(K_{\chi})^p/U(K_{\chi})^p$ by this isomorphism, where ι_{χ} is a diagonal map $E_{K_{\chi}} \to U(K_{\chi})$, we obtain $e_{\chi}U_K/E_KN_{M/K}(U_M) \cong e_{\chi}U(K)/\iota(E_K)U(K)^p$. q.e.d.

When $M=K(\zeta_p)$, we observe $(U_K/N_{M/K}(U_M))^p=1$ and e=1. This implies $g_1=g_2=0$. We have $g_\chi=g_0$. There is a relation between $\alpha_{\emptyset,\chi}$ and g_χ . If $\varepsilon_{p,\chi}=0$, we have $r_\chi(U_K/N_{M/K}(U_M))=0$ from (8), and hence, $r_\chi(\mathfrak{G}_1)=0$ from (6). Thus, $r_\chi(\mathfrak{G}_0)=r_\chi(Cl_K)$ from (5). We see $g_\chi=0$ and $a_\chi=\gamma_{\chi,\emptyset}$.

Lemma 4.3 Suppose $M = K(\zeta_{p^2})$ and $\varepsilon_{p,\chi} = 1$. Then, $g_{\chi} = 0$ if and only if $\alpha_{\emptyset,\chi} = 1$.

Proof. From the proof of Lemma 3.2, we observe $\varepsilon_{p,\chi}=1$ is equivalent to $\omega_{p,\chi^{\bullet}}=1$. In particular, we have $\omega_{p,\chi}=0$ if $\varepsilon_{p,\chi}=1$. Hence, by (3.7) of [Ya], we have $e_{\chi}U/V\cong e_{\chi}U/U^{p}$. Thus,

$$e_{\chi}U/\iota(E_{\emptyset})V \cong e_{\chi}U/\iota(E_{\emptyset})U^{p}$$
.

Suppose $\alpha_{\emptyset,\chi} = 1$. We have $e_{\chi}B_{0,\emptyset} \cong e_{\chi}C_{\emptyset}$ (= $e_{\chi}Tor(F_p,Cl_K)$). There is an ideal $\mathfrak{a} \in c$ for each $c \in e_{\chi}C_{\emptyset}$ such that $(\mathfrak{a},p)=1$. Denote by $\tilde{\mathfrak{a}}$ an idele which represents $\mathfrak{a}: \mathfrak{a} = \tilde{\mathfrak{a}}U_K$ in the divisor group J_K/U_K . Let x be an element of K^{\times} such that $\mathfrak{a}^p = (x)_{\emptyset}$. We have $u \in U_K$ such that $\tilde{\mathfrak{a}}^p = ux$. Let y be an element of $J_K/N_{M/K}(U_M)K^{\times}$ generated by $\tilde{\mathfrak{a}}$. Since $e_{\chi}c = c$, we can select \mathfrak{a} and $\tilde{\mathfrak{a}}$ so that $y \in e_{\chi}\mathfrak{G}_0$. $\iota(x) \in \iota(E_{\emptyset})V$ follows from $c \in e_{\chi}B_{0,\emptyset}$. By Lemma 4.2 and by the above isomorphism, we have

$$e_{\chi}U_K/E_KN_{M/K}(U_M)\cong e_{\chi}U/\iota(E_{\emptyset})U^p\cong e_{\chi}U/\iota(E_{\emptyset})V.$$

Hence, $e_{\chi}\iota(x) = 1$ in $e_{\chi}U/\iota(E_{\emptyset})U^{p}$. Further, this implies $e_{\chi}x = 1$ in $e_{\chi}U_{K}/E_{K}N_{M/K}(U_{M})$. Therefore, $y^{p} = 1$. Since $e_{\chi}y$ is a p-torsion element mapped onto c, we obtain $g_{\chi} = 0$.

Suppose $g_{\chi} = 0$. We have an exact sequence

$$1 \to Tor(\mathbf{F}_p, e_{\chi} \mathfrak{G}_1) \to Tor(\mathbf{F}_p, e_{\chi} \mathfrak{G}_0) \to e_{\chi} C_{\emptyset} \to 1.$$

Let c be an element of $e_{\chi}C_{\emptyset}$. Let $y=\mathfrak{a}N_{M/K}(U_M)K^{\times}$ $(\mathfrak{a}\in J_K)$ be an inverse image into $e_{\chi}\mathfrak{G}_0$ of c such that $y^p=1$. We may suppose $(\mathfrak{a},p)=1$. We see $\mathfrak{a}^p=ux$ for $u\in N_{M/K}(U_M)$ and $x\in K$. Since $N_{K/K_{\chi}}(u)=u_1^pu_2$ for $u_1\in U(K_{\chi})$ and $u_2\in \prod_{\mathfrak{p}_{\chi}} \bigwedge_{p} U_{\mathfrak{p}_{\chi}}$, we observe $\iota_{\chi}(N_{K/K_{\chi}}(x))\in \iota_{\chi}(E_{K_{\chi}})U(K_{\chi})^p$. Hence, $c\in e_{\chi}B_{0,\emptyset}$. Thus, $e_{\chi}B_{0,\emptyset}\cong e_{\chi}C_{\emptyset}$. q.e.d.

Proposition 4.4 Suppose $M = K(\zeta_{p^2})$.

(1) If p is decomposed completely in K_{χ} , we have

$$a_{\chi} = \gamma_{\emptyset,\chi} + b_{1,\emptyset,\chi} + 1 - \varepsilon_{\infty,\chi} - g_{\chi} = \varepsilon_{\infty,\chi^*} + \gamma_{\emptyset,\chi^*}.$$

(2) If p is not decomposed in K_{χ} , we have $a_{\chi} = \gamma_{\emptyset,\chi}$ and $g_{\chi} = 0$.

Proof. We have the following exact sequence which presents $E_K/E_K \cap N_{M/K}(U_M)E_K^p$:

$$1 \to E_K \cap N_{M/K}(U_M)/E_K^p \to E_K/E_K^p \to E_K/E_K \cap N_{M/K}(U_M)E_K^p \to 1.$$

Hence, $r_{\chi}(E_K/E_K \cap N_{M/K}(U_M)E_K^p) = \varepsilon_{\infty,\chi} - r_{\chi}(E_K \cap N_{M/K}(U_M)/E_K^p)$. By Lemma 4.2, we observe $e_{\chi}E_K \cap N_{M/K}(U_M)/E_K^p$ is isomorphic to the kernel of $e_{\chi}E_K/E_K^p \rightarrow e_{\chi}U/U^p$. Thus, $b_{1,\emptyset,\chi}$ is equal to $r_{\chi}(E_K \cap N_{M/K}(U_M)/E_K^p)$. We obtain the formula of (1) from Lemma 3.5 and Theorem 2.1.

We apply the reduction property. Since p is not decomposed in K_{χ} , the product of inertial groups is $\{1\}$. We have $e_{\chi}U_{K_{\chi}}/N_{M_{\chi}/K_{\chi}}(U_{M_{\chi}})=1$. By (5), we see $e_{\chi}\mathfrak{G}_{0}\cong e_{\chi}Cl_{K}$. Thus, $g_{\chi}=0$ and $a_{\chi}=\gamma_{\emptyset,\chi}$. We obtain (2). q.e.d.

Let U_{χ} be a direct product of $U_{\mathfrak{p}_{\chi}}$ of the completion at prime \mathfrak{p}_{χ} of K_{χ} lying above p: $U_{\chi} = \prod_{\mathfrak{p}_{\chi}|p} U_{\mathfrak{p}_{\chi}}$. Suppose $\ell = [K_{\chi} : Q]$ is a prime dividing p-1. We observe χ and χ^* are one-dimensional. We consider χ and ω Diriclet characters. Put $m = (p-1)/\ell$. There is χ_0 such that $\chi = \chi_0 \omega^{am}$ and whose conductor is prime to p. Put $b = ord \chi_0$. Suppose $\ell \neq p-1$. Note $\chi^* = \chi_0^{-1} \omega^{1-am}$. The order of ω^{1-am} is (p-1)/(1-am,p-1). Hence, if p is not decomposed in K_{χ_0} or if p divides (p-1)/(1-am,p-1), p is not decomposed in K_{χ_0} .

Theorem 4.5 If p = 3 and χ is a quadratic character, the value of a_{χ} is determined from the rank $\gamma_{\emptyset,\chi}$ and $\gamma_{\emptyset,\chi^*}$. If p > 3 and $[K_{\chi} : Q]$ is a prime dividing p - 1, we have

(1) If p is decomposed in K_{χ} , we have $\omega_{p,\chi} = 0$, $\omega_{p,\chi^*} = 1$, $\alpha_{\chi^*} = 0$ and

$$\begin{array}{rcl} a_{\chi} & = & \varepsilon_{\infty,\chi^{\bullet}} + \gamma_{\emptyset,\chi^{\bullet}} = \gamma_{\emptyset,\chi} + b_{1,\emptyset,\chi} + 1 - \varepsilon_{\infty,\chi} - g_{\chi}, \\ a_{\chi^{\bullet}} & = & \alpha_{\chi} + \varepsilon_{\infty,\chi} + \gamma_{\emptyset,\chi} - 1 = \gamma_{\emptyset,\chi^{\bullet}}. \end{array}$$

(2) If p is not decomposed in K_{χ^*} and K_{χ} , we have $g_{\chi}=g_{\chi^*}=0$ and $\alpha_{\emptyset,\chi}+\alpha_{\emptyset,\chi^*}=1$.

Proof. If p=3, we see χ^* is also quadratic. If p is decomposed completely in K_{χ} , it is not decomposed in K_{χ^*} . We have $a_{\chi}=\varepsilon_{\infty,\chi^*}+\gamma_{\emptyset,\chi^*}$ and $a_{\chi^*}=\gamma_{\emptyset,\chi^*}$ from Proposition 4.4. If p is not decomposed in K_{χ} and K_{χ^*} , we have $a_{\chi}=\gamma_{\emptyset,\chi}$ and $a_{\chi^*}=\gamma_{\emptyset,\chi^*}$.

Suppose p > 3 and the degree of K_{χ} is a prime dividing p-1. If p is decomposed in K_{χ} , we have (1) from Proposition 4.4. If p is not decomposed in K_{χ} and K_{χ^*} , we may assume χ^* is imaginary. We see $\varepsilon_{\infty,\chi^*} = 0$. By virtue of Theorem 2.1 and Proposition 4.4, we have

$$a_{\chi} = \alpha_{\emptyset,\chi^{\bullet}} + \gamma_{\emptyset,\chi^{\bullet}} - 1 = \gamma_{\emptyset,\chi}$$

$$a_{\chi^{\bullet}} = \alpha_{\emptyset,\chi} + \gamma_{\emptyset,\chi} = \gamma_{\emptyset,\chi^{\bullet}}.$$

We observe $\alpha_{\emptyset,\chi} + \alpha_{\emptyset,\chi^*} = 1$. q.e.d.

Corollary 4.6 In case (1) of the above theorem, we have

$$\gamma_{\emptyset,\chi^*} - \gamma_{\emptyset,\chi} = b_{1,\emptyset,\chi} - g_{\chi}.$$

Proof. By computing $a_{\chi} - a_{\chi^{\bullet}}$, we obtain

$$\varepsilon_{\infty,\chi^*} = b_{1,\emptyset,\chi} + 2(1 - \varepsilon_{\infty,\chi}) - (g_{\chi} + \alpha_{\emptyset,\chi}).$$

By the formula of $a_{Y^{\bullet}}$, we also have

$$\gamma_{\emptyset,\chi^*} - \gamma_{\emptyset,\chi} = \alpha_{\emptyset,\chi} + \varepsilon_{\infty,\chi} - 1.$$

If χ is real, we have $0 = b_{1,\emptyset,\chi} - (g_\chi + \alpha_{\emptyset,\chi})$ and $\gamma_{\emptyset,\chi^*} - \gamma_{\emptyset,\chi} = \alpha_{\emptyset,\chi}$. If χ is imaginary, we have $b_{1,\emptyset,\chi} = 0$ and $1 = g_\chi + \alpha_{\emptyset,\chi}$, $\gamma_{\emptyset,\chi^*} - \gamma_{\emptyset,\chi} = \alpha_{\emptyset,\chi} - 1$. Form these relations, we obtain $\gamma_{\emptyset,\chi^*} - \gamma_{\emptyset,\chi} = b_{1,\emptyset,\chi} - g_\chi$. q.e.d.

Remark 4.7 When p is not decomposed in K_{χ} and is not decomposed completely in $K_{\chi^{\bullet}}$, p is decomposed in $K_{\chi_0^d}$ for $d = \operatorname{ord} \omega^{1-am}$ and $K_{\chi_0^d} \neq Q$.

We remark the connection between a_{χ} and Iwasawa's λ -invariant. Denote by C_n the p-class group of $K(\zeta_{p^n})$. Let C_{∞} be the projective limit of $\{C_n\}$ with respect to norm maps. C_{∞} is called the Iwasawa module of K. It is a $\mathbf{Z}_p[\mathfrak{g}]$ -module. If χ is imaginary, $e_{\chi}C_{\infty}$ is a \mathbf{Z}_p -free module of finite rank. This rank λ_{χ} is called the Iwasawa λ -invariant. Put $M = K(\zeta_{p^n})$. The value of $a_{\chi} = r_{\chi}(C_n/C_n^J) = r_{\chi}(C_2/C_2^J)$.

Lemma 4.8 Let χ be an imaginary character. If $\lambda_{\chi} \neq 0$, we have $a_{\chi} \geq 1$. Moreover, if $\lambda_{\chi} \leq 1$, we have $a_{\chi} = \lambda_{\chi}$.

Remark 4.9 If χ is real, $\lambda_{\chi^{\bullet}}$ is computed by virtue of the Iwasawa construction of p-adic L-functions, cf. [Wa]. When K is a composite of quadratic field $Q(\sqrt{m})$ and $Q(\zeta_p)$, where m is a square free integer, we compute a_{χ} and $a_{\chi^{\bullet}}$ numerically for the quadratic character for χ of K.

References

- [C-R] C. W. Curtis and I. Reiner, Methods of representation theory with applications to finite group and orders I, John Wily & Sons Inc., 1981.
- [Ka] G. Karpilovsky, Group representations Vol. 1, Part B: Introduction to group representations, North-Holland Math. Studies 175, North-Holland, 1992.
- [Wa] L. C. Washington, Introduction to cyclotomic fields 2ns edition, G.T.M.83, Springer, 1996.
- [Ya] H. Yamashita, On the rank of the first radical layer of a p-class group of an algebraic number field, to appear in Nagoya Math. J.

(1998, 10, 15受理)