pm-singular numbers and the value of a p-adic L-function at s=1 of an abelian field

メタデータ	言語: eng
	出版者:
	公開日: 2022-06-03
	キーワード (Ja):
	キーワード (En):
	作成者: 山下, 浩, Yakashita, Hiroshi
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/00065610

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

p^m -singular Numbbers and the Value of a p-adic L-Function at s=1 of an Abelian Field

Hiroshi YAMASHITA (1994, 10, 20 受理)

1. Introduction Let p be an odd prime and K be an Abelian field containing a primitive p-th root of unity. Let k be the maxiaml real subfield of K. We suppose that the conductor of K is not divisible by p^2 and that the extension degree of K is prime to p. Denote by G (resp. g) the Galois group of K (resp. k) over the field Q of rational numbers. Put $g = \sharp g$. Let Q_p be the field of p-adic numbers and Z_p be the valuation ring of Q_p . Let C_p be the completion of an algebraic closure of Q_p with the valuation. Denote by v_p the normalized valuation of C_p such that $v_p(p) = 1$. Let \hat{g} be the set of C_p -irreducible characters of g and G be the ring of values: $Z_p[\chi(\sigma); \chi \in \hat{g}, \sigma \in g]$. For $\chi \in \hat{g}$, denote by $\bar{\chi}$ the character defined by $\bar{\chi}(\sigma) = \chi(\sigma^{-1})$. Let e_χ denote the idempotent associated with χ :

$$e_{\chi} \; = \; rac{1}{\mathfrak{g}} \sum_{\sigma \in \mathfrak{g}} ar{\chi}(\sigma) \sigma \in \mathcal{O} \mathfrak{g} \, ,$$

where $\mathcal{O}\mathfrak{g}$ is the group ring of \mathfrak{g} with coefficients \mathcal{O} .

Let $B_k(p^m)$ be the subgroup of $k^{\times}/k^{\times p^m}$ generated by p^m -singular number with respect to the set S of every places of k lying above p defined in [3]. Namely, it is a set of numbers which is locally p^m -th power at every place lying over p and which is contained in a p^m -th power of an ideal of k: there is an ideal \mathfrak{a} such that $a \in \mathfrak{a}^{p^m}$. Denote by $B_k^{(1)}(p^m)$ a subgroup generated by units:

$$B_k^{(1)}(p^m) = E_k k^{\times p^m} / k^{\times p^m} \cap B_k(p^m)$$

where E_k is the group of units of k. Let

$$i_{m,n}: k^{\times}/k^{\times p^m} \longrightarrow k^{\times}/k^{\times p^m}$$

be a homomorphism defined to be $i_{m,n}(ak^{\times p^m}) = a^{p^{n-m}}k^{\times p^n}$ for natural numbers m < n. Let B_k and $B_k^{(1)}$ be the inductive limits of $B_k(p^m)$ and $B_k^{(1)}(p^m)$ with respect to $i_{m,n}$. Let A_k denote the p-Sylow subgroup of the ideal class group of k. Let $B_k^{(0)}(p^m)$ be the subgroup of A_k generated by every ideal a determined for every p^m -singular number a in the above. $B_k^{(0)}$ denotes the injective limit of $B_k^{(0)}(p^m)$ with respect to a natural inclusion $B_k^{(0)}(p^m) \subset B_k^{(0)}(p^n)$ for m < n. The exact sequence (1.1) in [3] yields the following one:

$$1 \longrightarrow B_k^{(1)} \longrightarrow B_k \longrightarrow B_k^{(0)} \longrightarrow 0.$$

By Lemma 2 in [3], we see $B_k^{(1)}$ is of finite order, and hence B_k is also. Since k is totally real, the above sequence induces an exact sequence

$$(1.1) 0 \longrightarrow B_k^{(1)} \longrightarrow B_k \longrightarrow A_k \longrightarrow 0$$

by virtue of Corollary to Theorem 6 of [3].

We denote by $t_p(M)$ the p-primary torsion subgroup for an Abelian group M. $\mathcal{O}M$ denotes the extension of coefficients over \mathbb{Z} when the order of M is finite and dose that over \mathbb{Z}_p when M is a \mathbb{Z}_p -module. Let U_k be the direct product of the groups of local units of k at places lying over p: $U_k = \prod_{\mathfrak{p}|p} U_{\mathfrak{p}}$ where $U_{\mathfrak{p}}$ is a subgroup of $u \in k_{\mathfrak{p}}^{\times}$ such that $v_p(u) = 0$. Let E_k be the group of units of k and C_k be a subgroup of E_K consisting of cyclotomic units of k in the sence of [2]. E_k is embedded into U_k . Denote by \overline{E}_k and \overline{C}_k the (topological) closure in U_k of E_k and C_k , respectively. By virtue of Lemma 2 in [3], we obtain an exact sequence

$$0 \longrightarrow t_p(\overline{E}_k/\overline{C}_k) \longrightarrow t_p(U_k/\overline{C}_kt_p(U_k)) \longrightarrow B_k^{(1)} \longrightarrow 0$$

Since the extension degree of k over \mathbf{Q} is prime to p, we have the order of $t_p(\overline{E}_k/\overline{C}_k)$ equals that of A_k , (see [2]). Therefore, by comparing (1.1) with this exact sequence, we obtain

$$|B_k| = |t_p(U_k/\overline{C}_k t_p(U_k))|.$$

This equlity is a motivation of presenting this article.

Let m be the order of the residue field of a prime lying above p. Since U_k^{m-1} is a \mathbb{Z}_p -module, we abbreviate $\mathcal{O}U_k^{m-1}$, $\mathcal{O}\overline{E}_k^{m-1}$, $\mathcal{O}\overline{C}_k^{m-1}$ to $\mathcal{O}U_k$, $\mathcal{O}\overline{E}_k$, $\mathcal{O}\overline{C}_k$, respectively. We have the following exact sequences:

$$(1.2) 0 \longrightarrow e_{\chi} \mathcal{O}B_{k}^{(1)} \longrightarrow e_{\chi} \mathcal{O}B_{k} \longrightarrow e_{\chi} \mathcal{O}A_{k} \longrightarrow 0,$$
$$0 \longrightarrow e_{\chi} \mathcal{O}\overline{E}_{k} / \mathcal{O}\overline{C}_{k} \longrightarrow e_{\chi} \mathcal{O}U_{k} / \left(\mathcal{O}\overline{C}_{k} + \mathcal{O}t_{p}(U_{k})\right) \longrightarrow e_{\chi} \mathcal{O}B_{k}^{(1)} \longrightarrow 0.$$

We observe the central terms in these sequences are of the same order.

Let $L_p(s,\chi)$ denote the p-adic L-function associated with $\chi \in \hat{\mathfrak{g}}$. Then, we have the following theorem:

THEOREM. Let \mathfrak{h} be the decomposition group of the place (p) of Q in k/Q. For each $\chi \in \hat{\mathfrak{g}}$, we have:

- (1) $v_p(L_p(1,\chi)) = v_p(|e_\chi \mathcal{O} B_k|) \text{ if } e_\chi \mathcal{O} \mathfrak{g}/\mathfrak{h} = 0.$
- (2) $v_p(L_p(1,\chi)) = v_p(|e_\chi \mathcal{O} U_k/\mathcal{O} \overline{C}_k|).$
- (3) $|e_{\chi}\mathcal{O}A_k| = |e_{\chi}\mathcal{O}\overline{E}_k/e_{\chi}\overline{C}_k| \text{ if } e_{\chi}\mathfrak{g}/\mathfrak{h} = 0.$

Note the staement (3) follows from those of (1) and (2), directly.

2. The order of $e_{\chi}\mathcal{O}B_k$ — the Proof of (1)

Let μ_n be a group of every p^n th root of unity and put $K_n = K(\mu_n)$. Denote by A_n the ideal class group of K_n . Let D_n be a subgroup of A_n generated by ideals dividing the principal ideal (p). Let T be the Tate module. Namely a projective limit of finite groups μ_m with respect to canonical maps $\mu_n \to \mu_m$ for m < n. T affords a character ω of G taking values in \mathbb{Z}_p . Denote by χ^* the reflection $\omega \bar{\chi}$ of χ . We abbreviate $B_{K_n}(p^m)$ to $B_n(p^m)$. In [3], a non-degenerate pairing

$$e_{\chi^*}A_n/A_n^{p^n}D_n \times e_{\chi}B_n(p^n) \to \mu_n$$

is defined. Denote by Γ_n the Galois group of K_n/K . By Theorem 10 of [3], we have

$$B_n(p^n)^{\Gamma_n} \cong B_K(p^n).$$

By the defineition of p^m -singular numbers, we observe $e_\chi \mathcal{O}B_K(p^n) \cong e_\chi \mathcal{O}B_k(p^n)$ for $\chi \in \hat{\mathfrak{g}}$. Let γ_n be a generator of Γ_n and κ be a p-adic integer such that $\zeta^{\gamma_n} = \zeta^{\kappa_n}$ for every $\zeta \in \mu_n$. Put $\gamma_n^* = \gamma_n - \kappa_n$.

LEMMA 1. Suppose $B_k^{p^n} = \{1\}$. Then $e_\chi \mathcal{O}B_k$ and $e_\chi \cdot \mathcal{O}A_n/(p^n \mathcal{O}A_n + \gamma_n^* \mathcal{O}A_n)$ are dual to each other relative to the pairing (2.1).

We see every prime of K_n lying above p is totally ramified in K_n/K . Let H be a decomposition group of p in K/\mathbb{Q} . Let \mathbb{Q}_n is the maximal p-extension over \mathbb{Q} in $\mathbb{Q}(\mu_n)$. H is also consided the decomposition group of a prime of K_n lying over p by identifying G with $\mathrm{Gal}(K_n/\mathbb{Q}_n)$. Let $\{\sigma_i|i=1,\cdots,r\}$ be a complete set of representaives of G/H such that $\sigma_1=1$. Let I_n is a free Abelian group over the set of prims of K_n lying over p. D_n is the subgroup of A_n generated by I_n . I_n is a \mathbb{Z}_pG -modules by extending \mathbb{Z}_p -linearly of a permutation on the primes induced by each element of G. This module structure yields a \mathbb{Z}_pG -isomomorphism between \mathbb{Z}_pG/H and \mathbb{Z}_pI_n . Thus we have a surjection $I_n \to \mathbb{Z}_pD_n$. This means $e_{\chi^*}\mathcal{O}D_n = 0$ if there is $\sigma \in H$ such that $\chi^*(\sigma) \neq 1$.

We abbreviate U_{K_n} to U_n . Let \mathfrak{p} be a prime of K lying above p. Denote by \mathfrak{P} a prime of K_n dividing the enlargement of \mathfrak{p} . Let $U_{\mathfrak{p}}$ (resp. $U_{\mathfrak{P}}$) be the unit group of the completion of K (resp. K_n) at \mathfrak{p} (resp. \mathfrak{P}). Since U_n is isomorphic to the induced module $\mathbf{Z}G \otimes_{\mathbf{Z}H} U_{\mathfrak{P}}$, U_1/N_nU_n is also the induced module of $U_{\mathfrak{p}}/N_nU_{\mathfrak{P}}$, where N_n is the norm map of $K_{n,\mathfrak{P}}/K_{\mathfrak{p}}$. Note H is acts on $U_{\mathfrak{p}}/N_nU_{\mathfrak{P}}$ trivially. Thus $e_{\chi^*}\mathcal{O}U_1/N_nU_n=0$ if $e_{\chi^*}\mathcal{O}G/H=0$. Set $w_m=\gamma_n^{p^{m-1}}-1$ for m< n. By arguing similarly as the proof of Lemma 11 in [4], we have an isomorphism:

$$(2.2) e_{\chi^{\bullet}} \mathcal{O} A_m \cong e_{\chi^{\bullet}} \mathcal{O} A_n / A_n^{w_m}$$

if $e_{\chi}^* \mathcal{O}G/H = 0$. Let H_{∞} be the projective limit with respect to norm maps. Let Γ be the Galois group of $\bigcup_n K_n$ over K. This group is a projective limit of Γ_n . Denote by γ and κ the limits of γ_n

and κ_n in Γ and \mathbf{Z}_p , respectively. Put $\gamma^* = \gamma - \kappa$.

LEMMA 2. If $e_{x^*}OG/H = 0$, we have the following isomorphism:

$$e_{\chi}\mathcal{O}B_{k} \cong e_{\chi^{*}}\mathcal{O}H_{\infty}/\gamma^{*}\mathcal{O}H_{\infty}.$$

Proof. Observe $e_{\chi}\mathcal{O}B_K \cong e_{\chi}\mathcal{O}B_k$. Since $e_{\chi} \cdot \mathcal{O}D_m = 0$, we have

$$e_{\chi}\mathcal{O}B_k \cong e_{\chi^*}\mathcal{O}A_m/(p^m\mathcal{O}A_m + \gamma^*\mathcal{O}A_m)$$

for sufficiently large integer m. By the isomorphism (2.2), we obtain

$$e_{\chi}\mathcal{O}B_k \cong e_{\chi^*}\mathcal{O}A_n/(p^m\mathcal{O}A_n + w_m\mathcal{O}A_n + \gamma^*A_n)$$

for n > m. Since the canonical map $\mathcal{O}H_{\infty} \to \mathcal{O}A_n$ is surjective, this isomorphism induces the following one:

$$e_{\chi}\mathcal{O}B_{k} \cong e_{\chi^{*}}\mathcal{O}H_{\infty}/(p^{m}\mathcal{O}H_{\infty} + w_{m}\mathcal{O}H_{\infty} + \gamma^{*}\mathcal{O}H_{\infty}).$$

By letting $m \to \infty$, we obtain the isomorphism to be proved. q.e.d. .

Recall we suppose $p \not\mid g$ and $\chi \neq 1$. We suppose $\chi \in \hat{\mathfrak{g}}$ additionally. Let q be the least common multiple of p and the conductor of χ . Select γ so that $\kappa = 1 + q$. Let $\Lambda = \mathcal{O}[[T]]$ be the ring of formal power series on indeterminant T. The action of Λ on $\mathcal{O}H_{\infty}$ defined by $Tx = (\gamma - 1)x$ makes this module a compact Λ -module. Since K is Abelian over \mathbb{Q} , we have an elementary Λ -module E_{χ^*} where $e_{\chi^*}\mathcal{O}H_{\infty}$ injects with finite cokernel. The characteristic polynomial h of $e_{\chi^*}\mathcal{O}H_{\infty}$ is a product of distinguished polynomials h_i such that E_{χ^*} is isomorphic to $\prod \Lambda/h_i$. Then, by virtue of the main theorem of Iwasawa theory (see [1]), there is $u \in \Lambda^{\times}$ such that

$$L_n(s,\chi) = h((1+q)^s - 1)u((1+q)^s - 1).$$

Substituting 1 for s, we have

(2.3)
$$h(\kappa - 1) = L_p(1, \chi)u(\kappa - 1)^{-1}.$$

Note $h(\kappa - 1) \neq 0$ follows from (2.2). Let π be an element of Λ being prime to h. By virtue of Lemma 7 and 8 in [4], we have

$$|e_{\chi^*} H_{\infty} / \pi e_{\chi^*} H_{\infty}| = |E_{\chi^*} / \pi E_{\chi^*}|$$
$$= |\Lambda / (h, \pi)|.$$

Since $h(\kappa - 1) \neq 0$ implies h is prime to $T + 1 - \kappa$, we set $\pi = T + 1 - \kappa$. We have $\Lambda/(h, \pi) \cong \mathcal{O}/h(\kappa - 1)\mathcal{O}$. By Lemma 2 and (2.3), we obtain

$$v_p(|e_{\chi}\mathcal{O}B_k|) = v_p(|e_{\chi^*}\mathcal{O}H_{\infty}/\pi e_{\chi^*}\mathcal{O}H_{\infty}|)$$

$$= v_p(h(\kappa - 1))$$

$$= v_p(L_p(1, \chi)).$$

The statemeent (1) of the theorem follows.

3. Computation of the order of $OU_k/O\overline{C}_k$ — the proof of (2)

Let e be the ramification index of p in k/\mathbb{Q} and s be the number of primes of k lying above p. We have a decomposition of ideals:

$$(p) = (\mathfrak{p}_1 \cdots \mathfrak{p}_s)^e.$$

Note $e \mid p-1$ and e < p-1. Let $\iota_i : k \to \mathbf{C}_p$ be an embedding which determines \mathfrak{p}_i . Let $\tilde{k}^{(i)}$ be the completion of k at \mathfrak{p}_i . $\tilde{k}^{(i)}$ is the composite of $\operatorname{Im} \iota_i$ and \mathbf{Q}_p . Let $\tilde{\mathcal{O}}^{(i)}$ and $\tilde{\mathfrak{p}}^{(i)}$ be the valuation ring of $\tilde{k}^{(i)}$ and its maximal ideal. We abbreviate $\tilde{k}^{(1)}$, $\tilde{\mathcal{O}}^{(1)}$ and $\tilde{\mathfrak{p}}^{(1)}$ to \tilde{k} , $\tilde{\mathcal{O}}$ and $\tilde{\mathfrak{p}}$, respectively. Since $\tilde{k} = \tilde{k}^{(i)}$, we see $\tilde{\mathcal{O}} = \tilde{\mathcal{O}}^{(i)}$ and $\tilde{\mathfrak{p}} = \tilde{\mathfrak{p}}^{(i)}$. We embed k into the sth-ply product $\tilde{k}^s = \tilde{k} \times \cdots \times \tilde{k}$ by $\iota = \iota_1 \times \cdots \times \iota_s$. This embedding gives an isomorphism $U_k \cong \tilde{\mathcal{O}}^\times \times \cdots \times \tilde{\mathcal{O}}^\times$. We select each ι_i once for all and consider this embedding and isomorphism canonical. We abuse notation and denote by U_k the \mathbf{Z}_p -module $(1 + \tilde{\mathfrak{p}})^s$. Put $V_k = \tilde{\mathcal{O}}^s = \tilde{\mathcal{O}} \times \cdots \times \mathcal{O}$.

Let $\log_p x$ be the p-adic log function defined on C_p . $x \to \log_p x$ induces a surjection

$$1 + \tilde{\mathfrak{p}} \cong \tilde{\mathfrak{p}}$$

whose kernel is $t_p(1+\tilde{\mathfrak{p}})$. Hence, $(x_1,\dots,x_s)\to (\log_p x_1,\dots,\log_p x_s)$ defines a \mathbb{Z}_p -homomorphism into V_k . Denote by the symbol \log_p this homomorphism, we have an exact sequence

$$0 \longrightarrow t_p(U_k) \longrightarrow U_k \stackrel{\mathrm{Log}_p}{\longrightarrow} V_k.$$

Let α be an integer of k which generates a principal ideal

$$(\alpha) = \mathfrak{p}_1 \cdots \mathfrak{p}_s \mathfrak{a}, \quad (\mathfrak{a}, p) = 1.$$

 αV_k is the image of Log_p : $\alpha V_k = \text{Log}_p(U_k)$.

Let \mathcal{O}_k be the ring of integers of k and $\mathcal{O}_{k,p}$ be the localization with respect to a multiplicatively closed subset $\{x \in \mathcal{O}^{\times} | (p,x) = 1\}$. An isomorphism $\mathbf{Q}_p \otimes_{\mathbf{Q}} k \cong \prod \tilde{k}^{(i)}$ induces

$$\mathbf{Z}_p \otimes_{\mathbf{Z}_{(p)}} \mathcal{O}_k \cong \prod \tilde{\mathcal{O}}^{(i)} = V_k,$$

where $\mathbf{Z}_{(p)}$ is the localization of \mathbf{Z} at p. Since $\mathbf{Z}_p \otimes_{\mathbf{Z}} \mathcal{O}_k \to \mathbf{Z}_p \otimes_{\mathbf{Z}_{(p)}} \mathcal{O}_{k,p}$ is surjective and since the \mathbf{Z}_p -ranks of both modules are equal, this surjection is isomorphic. We identify these two modules. Let \mathfrak{h} be the decomposition group of \mathfrak{p}_1 in k/\mathbf{Q} . Since V_k is an induced module of $\mathbf{Z}_p\mathfrak{h}$ -module $\tilde{\mathcal{O}}$, we have

$$\mathcal{O} \otimes_{\mathbf{Z}_{p}} \mathcal{O}_{k} \xrightarrow{1 \otimes \iota} \mathcal{O}V_{k} = \operatorname{Ind} \mathcal{O} \otimes_{\mathbf{Z}_{p}} \tilde{\mathcal{O}}$$
$$= \mathcal{O} \otimes_{\mathbf{Z}_{p}} \operatorname{Ind} \tilde{\mathcal{O}}.$$

Let ξ be a root of unity such that $\mathcal{O} = \mathbf{Z}_p[\xi]$. Let $g \in \mathbf{Q}_p[X]$ be the minimal polynomial of ξ . Suppose g is decomposed into a product of irreducible polynomials g_i , $i = 1, \dots, r$ in $\tilde{k}[X]$. Let ξ_i be a root of an algebraic equation $g_i = 0$ and suppose $\xi_1 = \xi$. We have

$$\mathcal{O}V_k = \mathcal{O} \otimes_{\mathbf{Z}_p} \tilde{\mathcal{O}} \cong \tilde{\mathcal{O}}[X]/g \cong \prod_{i=1}^r \tilde{\mathcal{O}}[\xi_i].$$

Denote by pr the composite of these isomorphisms and the projection of the direct product onto the first factor $\tilde{\mathcal{O}}[\xi]$.

Let f be the conductor of χ and ζ be a primitive f-th root of unity. Let k_{χ} be the intermediate field of k/\mathbb{Q} corresponding to Ker χ and \mathcal{O}_{χ} be the ring of integers of k_{χ} . Let Tr_{χ} be the trace map of k/k_{χ} . Since p is prime to $[k:k_{\chi}]$, we have

$$e_{\chi}\mathcal{O}\otimes\mathcal{O}_{\chi} = e_{\chi}\mathcal{O}\otimes\operatorname{Tr}_{\chi}\mathcal{O}_{k} = e_{\chi}\mathcal{O}\otimes\mathcal{O}_{k}.$$

Hence we suppose $k = k_{\chi}$. Denote by \mathcal{O}_f the ring of integers of $\mathbf{Q}(\zeta)$ and Tr be the trace map with respect to $\mathbf{Q}(\zeta)/k_{\chi}$.

LEMMA 3. Suppose $k = k_{\chi}$. Let $\tau(\bar{\chi})$ be the Gauss sum of $\bar{\chi}$. We have

$$\begin{split} e_\chi \mathcal{O} \otimes \mathcal{O}_k \; &\cong \; e_\chi \mathcal{O} \otimes \text{Tr} \mathcal{O}_f, \\ e_\chi \mathcal{O} \otimes \mathcal{O}_k &\cong \tilde{\mathcal{O}} \tau(\bar{\chi}). \end{split}$$

Proof. Let \mathfrak{P}_1 be an extension of \mathfrak{p}_1 onto $\mathbf{Q}(\zeta)$. The completion of $\mathbf{Q}(\zeta)$ there is $\mathbf{Q}_p(\zeta)$. Let $\tilde{\mathbf{T}}_r$ be the trace map from $\mathbf{Q}_p(\zeta)$ into \tilde{k} . Let $\tilde{\mathcal{O}}_f$ be the valuation ring of $\mathbf{Q}_p(\zeta)$. We have

$$\mathbf{Z}_p \otimes \mathrm{Tr} \mathcal{O}_f \; \cong \; \left(\tilde{\mathrm{Tr}} \tilde{\mathcal{O}}_f \right)^{\epsilon_{\mathsf{X}}} \; = \; \tilde{\mathrm{Tr}} \tilde{\mathcal{O}}_f \times \cdots \times \tilde{\mathrm{Tr}} \tilde{\mathcal{O}}_f.$$

Let \tilde{k}_I be the inertia field in $\mathbf{Q}_p(\zeta)/\tilde{k}$ and $\tilde{\mathcal{O}}_I$ be the valuation ring. Denote by Tr_1 (resp. Tr_2) the trace of $\mathbf{Q}_p(\zeta)/\tilde{k}_I$ (resp. \tilde{k}_I/\tilde{k}). Note $\tilde{\mathrm{Tr}}=\mathrm{Tr}_2\circ\mathrm{Tr}_1$. We see $\mathrm{Tr}_1(\tilde{\mathcal{O}}_I)=\tilde{\mathcal{O}}$. The assumption p^2 |f implies p dose not divide the ramification index, we have $\mathrm{Tr}_1\tilde{\mathcal{O}}_f\supset\tilde{\mathcal{O}}_I$. However, since every element of $\mathrm{Tr}_1\tilde{\mathcal{O}}_f$ is integral over \mathbf{Z}_p , we have the converse inclusion. Therefore, we obtain

$$\tilde{\operatorname{Tr}}(\tilde{\mathcal{O}}_f) = \tilde{\mathcal{O}}.$$

This proves $\mathbf{Z}_p \otimes \operatorname{Tr} \mathcal{O}_f \cong V_k$. Consequently,

$$e_{\chi}\mathcal{O}\otimes V_k \cong e_{\chi}\mathcal{O}\otimes \mathrm{Tr}\mathcal{O}_f$$
.

Since $\mathcal{O} \otimes \mathcal{O}_k \cong \mathcal{O} \otimes V_k$, we have the first isomorphism.

We define $\chi(t)$ for $t \in \mathbf{Z}$ such that (t, f) = 1 to be $\chi(t) = \chi(\sigma_t)$, where σ_t is restriction of an automorphism of $\mathbf{Q}(\zeta)$ sending ζ onto ζ^t . $e_{\chi}\mathcal{O}\otimes \mathrm{Tr}\mathcal{O}_f$ is generated by $\{e_{\chi}1\otimes \mathrm{Tr}(\zeta^t)|t=0,\cdots,f-1\}$,

where

$$e_{\chi} 1 \otimes \operatorname{Tr} \zeta^{t} = \begin{cases} 0 & \text{if } (t, f) \neq 1, \\ \chi(t) \frac{1}{g} \sum_{\sigma \in \mathfrak{g}} \bar{\chi}(\sigma) \otimes \operatorname{Tr} \zeta^{\sigma} & \text{otherwise.} \end{cases}$$

Since $e_{\chi}\mathcal{O}\otimes\mathcal{O}_k$ is a free \mathcal{O} -module of rank 1, it must be generated by $\sum \bar{\chi}(\sigma)\otimes \mathrm{Tr}\zeta^{\sigma}$. Simultaneously, the image of $e_{\chi}\mathcal{O}\otimes\mathcal{O}_k$ with pr is a free \mathcal{O} -module whose rank is 1 or 0. Let N_f be the norm map from $\mathbf{Q}(\zeta)$ to k. We have

$$pr\left(\sum_{\sigma\in\mathfrak{g}}\bar{\chi}(\sigma)\otimes N_f\zeta^\sigma\right) = \tau(\bar{\chi}) \neq 0.$$

Hence $e_{\chi}\mathcal{O}\otimes\mathcal{O}_k\cong\mathcal{O}\tau(\bar{\chi})$. q.e.d.

LEMMA 4. Suppose $k = k_x$. We have

$$e_{\chi}\mathcal{O}\alpha V_{k} \; = \; \left\{ egin{array}{ll} pe_{\chi}\mathcal{O}V_{k} & ext{if} & \chi(p)
eq 0 \ e_{\chi}\mathcal{O}V_{k} & ext{othereise}. \end{array}
ight.$$

Proof. If $\chi(p) \neq 0$, the prime ideal (p) is not ramified in k. Hence we are able to choose $\alpha = p$. Assume $\chi(p) = 0$. Let F be the residue field of $\tilde{\mathcal{O}}$. We have the following exact sequence:

$$0 \, \longrightarrow \, e_\chi \mathcal{O} \otimes \alpha V_k \, \longrightarrow \, e_\chi \mathcal{O} \otimes V_k \, \longrightarrow \, e_\chi \mathcal{O} \otimes F^s \, \longrightarrow \, 0.$$

Recall h is the inertia group of p in k/\mathbb{Q} . This group acts on F trivially. F^s in the right term of the above sequence is an induced module of F:

$$F^s \cong \mathbf{Z}_p \mathfrak{g} \otimes_{\mathbf{Z}_p \mathfrak{h}} F.$$

 $\chi(p) = 0$ menas χ is not trivial on the inertia group. Hence

$$e_{\chi}\mathcal{O}\otimes \mathbf{Z}_{p}\mathfrak{g}\otimes_{\mathbf{Z}_{p}\mathfrak{h}}^{\cdot}F=0.$$

We have $e_{\chi} \mathcal{O} \alpha V_k = e_{\chi} \mathcal{O} V_k$ from the above exact sequence. q.e.d. .

LEMMA 5. Suppose $k = k_{\chi}$ and set $\eta(\bar{\chi}) = \sum_{a=1}^{f-1} \bar{\chi}(a) \log_p(1-\zeta^a)$. Then

$$pr \circ \operatorname{Log}_p(e_{\chi} \mathcal{O}\overline{C}_k) = \mathcal{O}\eta(\bar{\chi}).$$

Proof. Let D_k be a subgroup of k^{\times} generated by $d_n = N_n(1-\zeta_n)$ for $n \geq 3$, where ζ_n is a primitive *n*-th root of unity and N_n is the norm map from $\mathbf{Q}(\zeta_n)$ to k. Recall $C_k = D_k \cap E_k$. Let D be a subgroup of $\mathcal{O} \otimes D_k$ generated by d_f as a $\mathcal{O}\mathfrak{g}$ -module. Suppose (n, f) < f. Since there is

 $\sigma \in \mathfrak{g}$ such that $\sigma d_n = d_n$, we have $e_{\chi} 1 \otimes d_n = 0$. When f|n and n > f, we have $e_{\chi} 1 \otimes d_n \in e_{\chi} D$. Hence $e_{\chi} D = e_{\chi} \mathcal{O} \otimes D_k$ is generated by $e_{\chi} 1 \otimes d_f$.

When f is not a power of a prime, we have $e_{\chi}\mathcal{O}\otimes C_k=e_{\chi}\mathcal{O}\otimes D_k$. Suppose f is a power of prime: $f=q^e$. We have the following exact sequence:

$$0 \, \longrightarrow \, e_{\chi} \mathcal{O} \otimes C_k \, \longrightarrow \, e_{\chi} \mathcal{O} \otimes D_k \, \longrightarrow \, e_{\chi} \mathcal{O} \otimes I_q$$

where I_q is the subgroup of the ideal group of k generated by ideals dividing q. Since q is totally ramified in k/\mathbb{Q} , \mathfrak{g} acts on I_q trivially, and hence $e_\chi \mathcal{O} \otimes I_q = 0$. We have $e_\chi \mathcal{O} \otimes C_k = \mathcal{O} \otimes D_k$.

Since $\mathcal{O} \otimes C_k \cong \mathcal{O} \otimes \overline{C}_k$, we have $e_{\chi} \mathcal{O} \overline{C}_k$ is generated by $e_{\chi} 1 \otimes d_f$. We comput $pr \circ \text{Log}_p(e_{\chi} 1 \otimes d_f)$:

$$pr \circ \operatorname{Log}_{p}(e_{\chi}1 \otimes d_{f}) = pr \left(\left(\frac{1}{g} \sum_{\sigma} \bar{\chi}(\sigma) \otimes \operatorname{log}_{p}(\iota_{i}(N_{f}(1-\zeta))) \right)_{1 \geq i \geq s} \right)$$

$$= \frac{1}{g} \sum_{\sigma} \bar{\chi}(\sigma) \sum_{\substack{1 \leq b < f \\ \chi(b) = 1}} \operatorname{log}_{p}(1-\zeta^{b})$$

$$= \frac{1}{g} \eta(\bar{\chi}).$$

Since $\eta(\bar{\chi}) \neq 0$ and $e_{\chi}\mathcal{O}\overline{C}_k$ is a free \mathcal{O} -module of rank 1, we have $e_{\chi}\mathcal{O}\overline{C}_k \cong \mathcal{O}\eta(\bar{\chi})$. q.e.d.

Now, we shall prove the statement (2) of the theorem. Set $\beta = p$ when $\chi(p) \neq 0$ and $\beta = \alpha$ in otherwise. By Lemma 3, 4 and 5, we have isomorphisms

$$\frac{e_{\chi}\mathcal{O}U_{k}}{e_{\chi}\mathcal{O}\overline{C}_{k}} \cong \frac{e_{\chi}\mathrm{Log}_{p}(\mathcal{O}U_{k})}{e_{\chi}\mathrm{Log}_{p}(\mathcal{O}\overline{C}_{k})} \cong \frac{\beta\mathcal{O}\tau(\bar{\chi})}{\mathcal{O}\eta(\bar{\chi})}.$$

Since $\tau(\chi)\tau(\bar{\chi}) = \chi(-1)f$, we have

$$[\beta \mathcal{O}\tau(\bar{\chi}): \mathcal{O}\eta(\bar{\chi})] = [\mathcal{O}: \mathcal{O}\eta(\bar{\chi})\tau(\chi)f^{-1}\beta^{-1}].$$

Since

$$L_p(1,\chi) = \left(1 - \frac{\chi(p)}{p}\right) \frac{\tau(\chi)}{f} \sum_{a=1}^{f-1} \log_p(1-\zeta^a),$$

the above equality proves (2).

References

- [1] B. Mazur and A. Wiles; Class field of abelian extensions of Q. Invent. math., 76(1984),179-320
- [2] W. Sinnott; On the Stickelberger ideal and circular units of an abelian field. Invent math., 63(1980),181-234

- [3] H. Yamashita; A note on some properties of p^m -singular numbers of algebraic number fields. J. Kanazawa Women's Univ., 7(1993),13-25
- [4] _____; A note on Stickelberger ideals of abelian fields. Bull. Kanazawa Women's College, 35(1993),85-95