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pm-singular Numbbers and the Value of a p-adic L-Function
at s=1 of an Abelian Field

Hiroshi YAMASHITA
(1994, 10, 20 -S:Hi)

1. Introduction Let p be an odd prime and K be an Abelian field containing a primitive
p-th root of unity. Let k be the maxiaml real subfield of K. We suppose that the conductor of
K is not divisible by p? and that the extension degree of K is prime to p. Denote by & (resp.
g) the Galois group of K (resp. k) over the field Q of rational numbers. Put g = fg. Let Qp
be the field of p-adic numbers and Z, be the valuation ring of Q. Let Cp be the completion of
an algebraic closure of Q, with the valuation. Denote by v, the normalized valuation of C, such
that v,(p) = 1. Let g be the set of Cp-irreducible characters of g and O be the ring of values:
Z,[x(c); x € §,0 € g]. For x € g, denote by ¥ the character defined by x(¢) = x(o71). Let e,
denote the idempaotent associated with x:

ey = 122(0)06 Og,
8 oEq
where Qg is the group ring of g with coefficients 0.
Let Bg(p™) be the subgrouop of k* /k*P" generated by p™-singular number with respect to
the set § of every places of k lying above p defined in [3]. Namely, it is a set of numbers which is
locally p™-th power at every place lying over p and which is contained in a p™-th power of an ideal

of k: there is an ideal a such that @ € a?” . Denote by B,(Cl)(pm) a subgroup generated by units:
BUG™) = Bk BT 0 B(p”)
where F} is the group of units of k. Let
b KSR s B R

be a homomorphism defined to be im’n(ak"’“m) = g?" " k*P" for natural numbers m < n. Let By
and B;(cl) be the inductive limits. of Br(p™) and B;(Cl)(p’“) with respect to im n. Let A denote the
p-Sylow subgroup of the ideal class group of k. Let Bgo)(pm) be the subgroup of Ay generated by
every ideal ¢ determined for every p™-singular number a in the above. B,(CU) denotes the injective
limit of Biu)(pm) with respect to a natural inclusion cho)(pm) C Bﬁo)(p”) for m < n. The exact
sequence (1.1) in [3] yields the following one:

1 — BY — B, — BYY — 0.
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By Lemma 2 in [3], we see BE) is of finite order, and hence By is also. Since & is totally real, the
above sequence induces an exact sequence

(1.1) 0 — B — B — A, — 0

by virtue of Corollary to Theorem 6 of [3].

We denote by 1,(M) the p-primary torsion subgroup for an Abelian group M. OM denotes
the extension of coefficients over Z when the order of M is finite and dose that over Z, when M
is a Zp-module. Let Uy be the direct product of the groups of local units of k at places lying over
p: Ur = [],), Up where Uy is a subgroup of u € &y such that v,(u) = 0. Let E; be the group
of units of k£ and C}; be a subgroup of Fy consisting of cyclotomic units of k in the sence of [2].
E; is embedded into Ux. Denote by Ey and C} the (topological) closure in Uy of Ep and Cy,
respectively. By virtue of Lemma 2 in [3], we obtain an exact sequence

0 — t,(Ex/Cr) —> ,(Us/Cita(U)) — B — 0

Since the extension degree of k over Q is prime to p, we have the order of ¢,(E)/Cy) equals that
of Ag, (see [2]). Therefore, by comparing (1.1) with this exact sequence. we obtain

|Bic| = ltp(Uk/ﬁktp(Uk))l-

This eqality is a motivation of presenting this article.

Let m be the order of the residue field of a prime lying above p. Since UP*~! is a Z,-module,
we abbreviate QU !, Oﬁn_l, 06:‘_1 to OUx, OE), OC, respectively. We have the following
exact sequences:

(1.2) 0— exOB;(cl) — ey OBy — e, 04 — 0,

0 — ey OF1/OCr — €,0U/ (OCy + Oty (Us)) — ex OB — 0.

We observe the central terms in these sequences are of the same order.
Let L,(s,x) denote the p-adic L-function associated with x € g. Then, we have the following
theorem:

THEOREM. Let ) be the decomposition group of the place (p) of Q in k/Q. For each x € 4,
we have:

(1) vp(Lp(l,x)) = vp(lexOBxl} if exOg/h = 0.

) vp(Lp(1,x)) = vp(lexOUL/OTl).

(3)  |ex@Axl = lexOFEx/exCk| ifexg/h =0.

Note the staement (3) follows from those of (1) and (2), directly.
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2. The order of e, 0 B; —— the Proof of (1)

Let g be a group of every p"th root of unity and put K, = K(s). Denote by A, the ideal
class group of K,. Let D, be a subgroup of A, generated by ideals dividing the principal ideal
(p). Let T be the Tate module. Namely a projrctive limit of finite groups pim with respect to
canonical maps ptn, — fim for m < n. T affords a character w of & taking values in Z,. Denote by
x* the reflection wy of x. We abbreviate Bg, (p™) to B,(p™). In [3], a non-degenerate pairing

ey An /AR Dy % ey Ba(p™) — pn
is defined. Denote by I, the Galois group of K,/K. By Theorem 10 of {3], we have
Ba(p™)™ = Bx(p").

By the defineition of p™-singular numbers, we observe e, OBg{p"} = e, OBy (p") for x € g. Let
vn be a generator of T, and & be a p-adic integer such that (" = (*~ for every ( € pn. Put

Tn = Tn = Kn.

LEMMA 1. Suppose Bﬁn = {1}. Then eyOB; and ey OA,[/(p"OAn + i OALY are dual
to each other relaiive to the pairing (2.1).

We see every prime of K, lying above p is totally ramified in K, /K. Let H be a decomposition
group of p in K/Q. Let Qy is the maximal p-extension over Q in Q(u,). H is also consided
the decomposition group of a prime of i, lying over p by identifying G with Gal(K,/Q,). Let
{e;]li = 1,---,7} be a complete set of representaives of G/H such that oy = 1. Let I, is a free
Abelian group over the set of prims of K, lying over p. D, is the subgroup of A, generated by
In. I is a Z,G-modules by extending Zp-linearly of a permutation on the primes induced by each
element of G. This module structure yields a Z,G-isomomorphism between Z,G/H and ZpI,.
Thus we have a surjection I, — Z,D,. This means e¢,«OD, = 0 if there is 0 € H such that
x"(o) # 1.

We abbreviate Uk, to U,. Let p be a prime of K lying above p. Denote by B a prime of
K, dividing the enlargement of p. Let U, (resp. Uyp) be the unit group of the completion of K
(resp. K,) at p (resp. P ). Since U, is isomorphic to the induced module ZG ®zx Uy, U1/NuUn
is also the induced module of U,/N,Usp, where N, is the norm map of K, u//;. Note H is acts
on U, /N,Ug trivially. Thus ey OUy/NoyUp = 0if ¢« OG/H = 0. Set wp, = 2" —1form < n.
By arguing similarly as the proof of Lemma 11 in [4], we have an isomorphism:

(2.2) eye QA = eyeO A, [AY™

if eOG/H = 0. Let He, be the projective limit with respect to norm maps. Let T be the Galois
group of U, K, over K. This group is a projective limit of I';,. Denote by v and & the limits of 1,
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and &, in [ and Z,, respectively. Put v~ =y — &.

LEMMA 2. Ifey-OG/H =0, we have the following isomorphism:

exOBr = ey OHo [y OH.

Proof. Observe e, OBy = e, (0 By. Since ey-OD,, = 0, we have
exOBy = ey-OAn/(p"OAR + 7" 0AR)
for sufficiently large integer m. By the isomorphism (2.2), we obtain
exOBy 2 ey-OAL/(p"OAn + wrnOAn + 7" An)

for n > m. Since the canonical map @H, — A, is surjective, this isomorphism induces the
following one:

e,OB; 22 ey OHoy/ (p"OH + wmOHop +7v"OH) .

By letting m — oo, we obtain the isomorphism to be proved. g.e.d. .

Recall we suppose p Jj and x # 1. We suppose x € g additionally. Let g be the least common
multiple of 7 and the conductor of . Select v so that K = 1+ ¢. Let A = O[[T7]] be the ring of
formal power series on indeterminant 7". The action of A on OH, defined by Tz = (y— 1) makes
this module a compact A-module. Since K is Abelian over Q, we have an elementary A-module
E,+ where ¢y« OH, injects with finite cokernel. The characteristic polynomial b of e, OH,, is a
product of distinguished polynomials h; such that E,. is isomorphic to [ A/h;. Then, by virtue

of the main theorem of Iwasawa theory (see [1]), there is u € A* such that
Lp(s:x) = h((1+a)° = Du((1 +g)* ~1).

Substituting 1 for s, we have

(2.3) Rk —1) = Ly(1,x)u(c = 1) .

Note h(k — 1} # 0 follows from (2.2). Let 7 be an element of A being prime to h. By virtue of
Lemma 7 and 8 in [4], we have

lexs Hoo [Teye Hoo| = |Eye [T By
[A/ (R, T

Since h(x — 1) # 0 implies & is prime to T+ 1 — %, we set ¥ = T+ 1 — k. We have A/(h,7) =
O/h(k —1)Q. By Lemma 2 and (2.3), we obtain

vp(lexOBi|) = vp(lex= OHoo [meyr OHol)
up(h(k — 1))
vP(LP(IJX))‘
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The statemeent (1) of the theorem follows.

3. Computation of the order of OU)/OC); — the proof of (2)
Let e be the ramification index of p in k/Q and s be the number of primes of k lying above p.
‘We have a decomposition of ideals:

Note e|p—1and e < p—1. Let ¢; : k — C, be an embedding which determines p;. Let k() be the
completion of k at p;. k() is the composite of Im s; and Q. Let O and p (&) be the valuation ring
of #®) and its maximal ideal. We abbreviate 51, @™ and s to k, @ and b, respectively. Since
E =k we see O =00 and p = E(i). We embed k into the sth-ply product Bokx--xk
by ¢ = ¢; X -+« X t;. This embedding gives an isomorphism Uy = O% x ... x O*. We select each
«; once for all and consider this embedding and isomorphism canonical. We abuse notation and
denote by Uy the Zp-module (1 +};)’. Put o, =@ =0 x---x0.
Let log, 2 be the p-adic log function defined on Cp. 2 — log, = induces a surjection

14p =3

whose kernel is t,,(l—H;). Hence, (z1,--+, %5} — (log, z1,--,log, ;) defines a Zp-homomorphism
into V. Denote by the symbol Log, this homomorphisim, we have an exact sequence

Lo
0 — t,(Th) — U —3 Vi
Let o be an integer of & which generates a principal ideal

(@) = p1psa, (a,p)=1

V) is the image of Log,: aVi = Log, (Us).
Let Oy be the ring of integers of k and O , be the localization with respect to a multiplicatively
closed subset {z € O*|(p,z) = 1}. An isomorphism Qp ®q k =[] k@) induces

Z, ®z, O = [[O9 = W,

where Z,) is the localization of Z at p. Since Z, @7 Oy — Z, ®z,, Oy, p is surjective and since the
Z,-ranks of both modules are equal, this surjection is isomorphic. We identify these two modules.
Let b be the decomposition group of p; in k/Q. Since V; is an induced module of Zph-module
O, we have

0®z, Or 28 0V = Md0®z, O

O ®Z, Ind@.

1l
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Let & be a root of unity such that @ = Z,[€]. Let g € Q,[X] be the minimal polynomial of £.
Suppose ¢ is decomposed into a product of irreducible polynomials g;, 2 = 1,---,7 in k[X]. Let &
be a root of an algebraic equation g; = 0 and suppose £; = £. We have

oV, = @®ZP@ = @[X]/g = H@[{,]
: i=1

Denote by pr the composite of these isomorphisms and the projection of the direct product onto
the first factor G[¢).

Let f be the conductor of x and ¢ be a primitive f-th root of unity. Let &y be the intermediate
field of k/Q corresponding to Ker x and O, be the ring of integers of k. Let Try be the trace
map of k/ky. Since p is prime to [k : ky], we have

exo (% Ox = exO o} ’I‘erk = exO ® Of.
Hence we suppose k = k. Denote by O the ring of integers of Q(¢) and Tr be the trace map

with respect to Q({)/ky.

LEMMA 3. Suppose k = ky. Let 7(X) be the Gauss sum of X. We have

e 00 = 6,0 @Tr0y,
e, O ® Oy = @T()‘().

Proof. Let B 1 be an extension of p1 onto Q(¢). The completion of Q(¢} there is Qp (€). Let
Tr be the trace map from Q,(¢) into k. Let O; be the valuation ring of Qp(¢). We have

. w Y\ Ex - - .
Zp®TrOf o (TI‘O;) =T1'OJ-X---><T.COJ.

Let & be the inertia field in Q, (¢)/k and O be the valuation ring. Denote by Try (resp. Trp)
the trace of Qu(¢)/kr (resp. kr/k). Note Tr = Try o Tr;. We see Tr;(O;) = @. The assumption
p® Jf implies p dose not divide the ramification index, we have Try, & [ O;. However, since every
element of Tr; @ ¢ is integral over Zp, we have the converse inclusion. Therefore, we obtain

(O = O.
This proves Z, ® TrQ0; = V.. Consequently,
exO @V 2 6,02 Th0y;.

Since O ® O, = O @ Vi, we have the first isomorphism.
We define y(¢) for t € Z such that (¢, f) = 1 to be x{(t) = x(o¢), Where 0y is restriction of an au-
tomorphism of Q(¢) sending { onto (*. e, O®Tr0; is generated by {ex 1@ TR(()t=0,---, f =1},
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where
if ¢f)#1,
X(t)% deg ¥(e) @ Tr(” otherwise.

Since e, O ® Oy is a free O-module of rank 1, it must be generated by - ¥(¢) ® Tr(?. Simulta-
neously, the image of e, 0 @ Oy with pr is a free (O-module whose rank is 1 or 0. Let Ny be the
norm map from Q(¢) to k. We have

eyl @Tr¢t =

pr (Z z(a)wfc’) = (%) # 0.

gEy

Hence e, O ® O = O7(%). ¢-e.d.
LEMMA 4. Suppose k = k,. We have

pe, OV i x 0
e, OaVy = x“VE (p) #

e, OVi  othereise.

Proof. 1f x(p) # 0, the prime ideal (p) is not ramified in k. Hence we are able to choose & = p.
Assume x(p) = 0. Let F be the residue field of @. We have the following exact sequence:
0 — e,0®aly — 0@V — 0@ F — 0.

Recall b is the inertia group of p in k/Q. This group acts on F trivially. F** in the right term of
the above sequence i1s an induced module of F:

Fe o= Zpg ®z,5 F.
x{p) = 0 menas x is not trivial on the inertia group. Hence
exO® Zpg ®z,5 F = 0.

We have e, 0a'V; = e, OV} from the above exact sequence. g.e.d. .

LEMMA. 5.  Suppose k =k, and sel (%) = Ef;i x(a)log, (1 —(*). Then

T

proLogp(exOEk) = On(x).

Proof. Let Dy be a subgroup of k* generated by d, = N,(1 — ¢,) for n > 3, where ¢, is a
primitive n-th root of unity and N, is the norm map from Q((.} to k. Recall Cy = Dx N £y. Let
D be a subgroup of @ @ Dy generated by dj as a @g-module. Suppose (n, f) < f. Since there is
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o € g such that od, = d,, we have e, 1®@d, = 0. When f|n and n > f, we have e, 1® d,, € ¢, D.
Hence e, D = e, @ ® Dy is generated by e, 1 ® d;.

When f is not a power of a prime, we have e, 0 @ Cy = e, ® Di. Suppose f is a power of
prime: f = ¢°. 'We have the following exact sequence:

0 — 0@C: — e,0®Dr — 6,011

where I is the subgroup of the ideal group of k generated by ideals dividing ¢. Since g is totally
ramified in £/Q, g acts on I, trivially, and hence e, 0 ® I; = 0. We have ¢, 0 ® C; = O ® Dy.
Since O@C, = O®C}, we have exO_C—k is generated by e, 1®d;. We comput proLog, (e, 1®dy):

proLog,(exl ®ds) = pr ( (% Z)‘((o‘) ® log, (¢:(Ny (1 — C)))) )
p 1295

1 =
= =) x(0) X log,(1-¢")
4% 1<h<s
x(8)=1
1 .
= —MXx)-
. (x)
Since n(¥) # 0 and e, OC} is a free O-module of rank 1, we have e, OCy = On(X). g.¢.d.

Now, we shall prove the statement (2) of the theorem. Set 7 = p when x(p) # 0and f=ain
otherwise. By Lemma 3, 4 and 5, we have isomorphisms

e OUr exLog,(OU) ~ BOT(x)
exOCr ~ exlog,(OC:)  On(x)

Since 7(x)7(%) = x(—1)f, we have

[807(x) : On(x)] = [0 : On()r(x)f 873
Since

r(x) 2
B = (1-X2) Y g0

the above equality proves (2).
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