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A note on Stickelberger ideals of abelian fields.

Hiroshi YAMASHITA
(1993, 10, 205}

1. Introduction

Let %2 be an imaginary finite abelian extension of the field of rational numbers . G be the
Galois group of £/Q and T, be the finite part of the conductor. We shall recall the definition of the
Stickelberger elements of £, according to [4]. When a ring R and a finit group A are given, RA
denote the group ring of A with coefficients in R and, for a subset X of A4, s(X) denotes the sum
of all elements of X in RA. For finite Galois extensions M and L of @ such that M>L, an R
-algebra homomorphism by restricting ¢=Gal(M/Q) onto L, we have ‘

res,, : RGal(M/Q)—RGal(L/Q).

Conversely, by assigning 0=Gal(L/Q) to s(res;)y(¢)), we have another R-algebra homomor-
phism

cory,  RGal(L/@)—RGal(M/Q).

Let (¢, K) denote the Artin Symbol for an abelian extension over @, which takes values in
Gal{K/Q)\U{0}. The symbol (x> means the value of x— [x], where [x] is the Gauss’ symbol. For
nEN, denote by £, a primitive #-th root of unity and put £,=2NQ(E,}, R{n)={tEN; (¢, n)=
1,1=¢t=n—1}. The Stickelberger elements @, ,(a) are defined to be

Gpala)= 2 <_—at>cor,,,k°res“k ({(t,K,)™"), nEN, a<Z.
. T . T€Sy k,

Especially, when #= T, and ¢=—1, we omit # and ¢ and write 8, for 8, ; (—1), that is

g,= 3 >k
1ER(F) Tk
Let p be an odd prime, Z, the ring of p-adic integers and @, the field of quotients of Z,. Denote

by S’ the Z,G-submodule of Q,G generated by 8,,(a), nEN and aEZ. The Stickelberger ideal
S; defines to be an ideal S’NZ,G of Z,G in this paper. We note the statements of Proposition 2.
1, Theorem 3.1, 2.1, and 5.3 in [4] are still valid for our cases, though the Stickelberger ideals in
Z{G] are argued there. Namely, letting e~ = {7 —1)/2, where J is the complex conjugation, and
dencting by A, the p-ciass group of %, we have the following statements :

(S1) 83/S, is isomordhic to the group of all p-th power roofs. of unity in k.

(S1) &78, annihilates €A,

(83) [ Z,G: e S)=1e" A, if the p-Sylow subgroup of G is cyclic.
When a ring R and an R-module M are given, we call # an R-cyclic module if f is generated by
one element as R-module. According to (§1)-(83), we see ¢” A, =& Z,G/e" S, if the p-Sylow



86 SR FRRERS T43E, VOL. 35 (1993

subgroup of G is cyclic and if e” A4, is Z,G-cyclic.
Let A be the p’-subgroup of G and I" be the p-Sylow subgroup. Let @ be a @,-irreducible
character of A and ¢, an associated idempotent in €,G. Since ¢, Z,G, we have

M=e,M & (1—¢,) M.
We call @ imaginary if @ (J)=—(1) holds, which is equivalent to that an absolutely irreducible
factor of ¢ is imaginary, further, @ denotes the @,-irreducibe character defined by @ {(a)=@lc D,
cEG. We call @ faithfull if {e€A ; ¢ (6) =@ (1) }={1}, or equivalently, if an absolutely irreduc-
ible factor is faithfull. Let o denote the Teichmuller character of Gal(@,(£,)/Q,). When {, €4,
we consider w a character of A.
QOur main result in the present paper is as follows:

Theorem. Let ky be a real abelian field whose conduclor and whose extension degree are prime
to p. Set ky=hky(&,) and k=k(E,.) for nz1. Then we have
(1) Let @ be an imaginary Q,~irreducible character of A different from w. We have
le Al =1e,Z,Gle,S,|.
Moreover, if e ;A= {1}, where A, is the p-class group of the maximal rveal subfield of k,, we have
e, Ay=e,Z,Gle,S,

(2} Let £(p) be a sel of imaginary subfields of k such that (7, 7,/7,)=1and p| ..
&S, is generated by {e-cory, (6) sy

We note that the result (1) for #=1 follows from Theorem II.1 in [5], however, when #>1,
this theorem dose not work well.

2. Generators of the Stickelberger ideal

Let B,{x) donote the lst Bernoulli polynomial. B {x) satisfies the following distribution
relation :

N-1
S B(<y+L>)=B(<Ny>).
o N

By means of this relation, we have :

Lemma 1. Let g be a prime number and M a natural number and set N=Mq" for mz1.
Then the following relations holds
(1) When q| M, for sER{M), we have -

by m. S
tERE(N) (<y+N>)—Bl(<z y+M>).

t=s mod

(2) When gl M, for sER{(M), we have
m—1
£

i — m Ea _ m—1 q S
RE(N) BI(<y+N>) B/{(<q y+M>) B/(<gq y+—M >),

e
t=s mod M
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where a is an integer such that «q™=1 mod M. 7
(3) Let x be a Dirichlet character ana’ s be a multiple of the conductor of x. We have

S B(<—E>)z()= 0 -x(a)By,

1ER(S) f
QP”'"ES

where B, , is the generalized Bernoulli number assoctated o .

Let 4, be a crossed section of G—Gal(k,/Q). We define a map ¢, : {x&€Z ; {x, n) =1}
G by
dn(x) = 4‘@”{"0 resq(;_)/k,((x.Q (é‘,,) _1) ) .
By using this map < ,, we rewrite the definition of 8, :
2.1) b= S <——2L5 4 (1)s(Gal (k).

tER(x)
Note

at

& 0,(a)= E_EE, >)4,(8)s(Gal(k/k,)).

We could apply Lemma 1 by virtue of this equahty Set ¢ =gecd.(na), m=n/L,b=a/l. We

have

(2.2) bnl@)= 3, <20, ()5 (Gal (k/E,)

t=ER(n)

=[Q(¢,) : k (018, (b)
- [ Q (Cﬁ) k (gm ] d ( 0k,m'
This implies that S} is generated by {6, ,},ey over Z,G.

Let C, be the completion of an algebraic closure of @, Let X be the set of C,-irreducible
character of G. Abusing notation, we also consider x € X a C,-algebra homomorphism from C,G
onto C, defined by % ( Z a,0) =2, a,x{(0). Note that x, yEQ,G are equal if and only if x (x)=

z (») holds for every xE X. Let G,={0EG ; x(0) =1} and %, be the intermediate field of #/Q
corresponding to G,. Write f, for ?k We consider x a Dirichlet character of conductor T,.
Denote by ¥ the character defined by x (6) =x (™.

For a prime number g, let 7, denote the inertia group of ¢ in 2/Q and A , &G be a representa-
tive of the Frobenius class at prime (g).

Lemma 2. Set A,=21."s(T,) and a,,=];I(1—l:) for nEN. Then we have the following
qin
equality

x(e76,,)=x (e a,s(G))B, .

Proof. If g is even or if { f#, both side of the above equality are equal to 0. Assume g is
odd and f, (% By virtue of (3) of Lemma 1, we have

2 8,)=— 3 <— >x( ) x (s (Gal(k/k,)

{ERMm)
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=~k BT =% (0B,
gln
=x (573 (Gal(k/k”) ) a',,) Bl.x"
QED.

Let M be the set of all imaginary abelian subfields of %, % be the subset consisting of LEM
such that (%, T,/¥,)=1and £(p)={LEeZ; p| i}

Lemma 3. Let § be an element of Z,G satisfving the following condition :
(C) & Bs(T)=0 for every prime q such that pl|T,|.
Then, ¢ S, is generated by {&_Bcor, (6,0} yem over Z,G.

Proof. Note & cor,,, (6,) =0if M is a real subfield of 2. For n&€ N such that »| ,, set M=
By the definition (2.1}, we see

(2.3) 6, =COL 0 (8.

Assume #f T, and M=k M Set m= 1,, and

k

"

*
@, =1 (1-1.).
gqln
qfm
Since k,=*%, and «,=«,a,,, by virtue of Lemma 2, we have

X (8 h Br'c.n) —X (E —an.m ﬁk,m)
for every y€X. Hence ¢ 6,,,=¢ a,,,0,,. The condition (C) menas «
lemma follows from (2.3).

€Z,G and hence the

nm

Lemma 4. Nolation being same as that of Lemma 3, we assume further that the maximal real
subfield whose conductor is prime to p is a rveal subfield. Suppose SEZ,G satisfying the following
condition (C') instead of the above (C) :

(C) & Bs(T) =0 for primes q such that q+p and p||T,|.

Then we have € BS', is generateqd by {e_fcory, (8,) 1 yem over Z,G.

Proof. If the conductor of M €M is prime to p, then M is real. Hence, the factor concerning
p dose not appear in «,,. The lemma follows from the previous one,

Theorem 5. For each MEM, there s LEY such that MCTL and & cory,(6,)€
Z,Ge " cory, (8,). Therefore, for BEZ,G satistying the condition (C) of Lemma 3(resp. (C') of
Lemma 4), we have ¢ BS', is generaled by {e” fcor,, trey{vesp. {e7Bcor licem).

Proof. Let g be a prime such that ¢°| f,. Let ¢° be the maximal power of ¢ dividing §,.
Take b, mEN so that 1=6<a, (m,q)=1 and m| §,. For c={a &}, we write N, for mq", and
further, K, &, 0., R,, G, 4, for @ (&), ky, 6.5, RN, Cal{k/ky), 4y, respectively. Set

E=s{a,, (Gallk/k))).



A note on Stickelberger ideals of abelian fields 89

Since £s(Gal(kfk,)) =s(Gal(k/k,)), we have by virtue of Lemma 1,
eT0=e" S 3 Bi{<gr>) 6,(0s(Gal(kky)

IER“ES’ﬁf& N,
=& 3 df,(t)s(Gal(k/k,,)Bl(<Ni>)
SER, b
=¢ 8,

Therefore, by (2.3}, we have
(2.4) & cory, (8,)&=e"cor,, (6,).
r
Let f,= Il ¢/ be the factorization. By changing order of {g} if necessary, we suppose
i=1 s
fy=Mqg% 12d <e, s=»
i=1

Set my= Ty, my=m_,g" “ and M,=k,. By virtue of (2.4), we have

& Coryy (Oy) =& coryy, (6, )&, EE2,G.
This proves the first statement of the theorem, and the latter part follows from this satement and
Lemma 3, 4,

3. The index of the Stickelberger ideal.

We assume the p-sylow subgroup of G is cyclic. Let ¢ be a g,-irreducible character and x
be a C,-irreducible component of @. Let O=Z,[x (o) ; c€g], ¢ be the field of quotients of &
and g =Gal{g /Q,). o is the trace of g, ‘e

p= 2 0x.

. A=
Let ¢, denote the idempotent in g A such that ¢, g A affords x. We see
e,= 2 ¢, EZA.
c=q
Let M be an O-module of order p°. Let £,(QOM) denote the length of (O-composition series of
OM. Since {|A|, p)=1, we have L ,{(OM)=e¢=v,{|M}), where , is an additive valuation such
that o,(p}=1. We see further |OM =[O : pO]*, and |OM|=|OL/ON| for Z,-modules L, N
such that M=L/M.
We obtain the following theorem from Theorem II1.1 in [5] :

Theorem 6. Let k& be an imaginary abelian extension such that pY(k : Q). Then, for imagi-
nary @ ¥ @, we have
le, Ayl =le,(e”Z,G/e"S) |.

Proof. By Theorem I1.1 in [4], we have
tnle,OA) =0u,(B ;).
On the other hand, by Theorem 5, we have ¢,(¢"5,) is generated by x {(e cor,,.(§,)), LEZ over
Z,. Since the value of g (e cory,; (6,)) equals
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—[&: l’e,cl-quIi (1—x () B,
when f | T, and, it equals 0 otherwise, we haveLex(e_Sk) =Z,B, ..
Thus

Lole, OA) =1,(B, )
=Lple (e Z,G/e”S)).
Hence

2,(le, A1) = £5(0e,AY =3, bnle,OA)
e
=2,(Oe,(e7Z,G/e™S))
=v,le, (e Z,G/c"S)).
Q.E.D.

When the extension degree of 2@ is not prime to p, Solomon’s theorem dose not work well.
However, applying the main theorem of Iwasawa theory, we could extend Theorem 5.

Let %, be a real abelian extension whose conductor and whose extension degree are prime to
p. Set k,=ky(§,.) and k,= ”Lleie,,. In the following, denote by T the Galois group of %../k and G,=
Gal(k,/Q). We consider A=Gal(k,/Q). Write A, for A,. Let H, be the projective limit of 4,
with respect to the norm maps. Let y be a topological generator of T' and A= Z,[[7']] be the ring
of formal power series. By T—y—1, H, becomes a compact A-module. By Iwasawa theory,
there are distinguished polynomials %, such that

¢, Ho— LA/ ()
is an injection with finite cokernel. Set 2=TIk,. By extending coefficient to (0, we have
(2.5) Oeq,Hm:(y?ﬂeuOHm,
and obtain distinguished polynomials &, .= OA, i=1, -, r, such that
%IOHGD*’EOA/ (h,,)

have finite kernel and cokernel. Since ¢,, O H,, are O-free, the kernels are trivial. Set /= i hy;
i=1
By (2.5), we have

OAR=OA( T ).
A=}

Lemma 7. Set E_/ ,-ljl A/(h) and E /= iIEIOA/(ilu,i)'
For wEA such that |e H,/ze H.| <o°, we have
|E,/zE,|=|e,H./ze H,],
|E /zE,| = e, OH. jwe, OH.,|.

Proof. Set
A=Im{¢,H, ,~E)), B={yEA ; there are z€E, such that zy ==z},
C=coker(¢,H,—~E)), X={z€EE ; :z€A}.
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We see zX =F and the following sequence is exact :
0> X/A—C— 2C — 0.

Since the order of C is finite and £, is a free Z,-module, we have |C/xC|=|X/A|=|zX/zA|=
| B/zA|. The first equality follows from the exact sequence

0 = B/zA - A/lzA — E_/zE, - C/zC — 0.
By (2.5), we see |¢, OH . /ne,,(OH,| <co for every 0. Set A’=Im(e,,OH,~E,), B’={y€A’;
there are € E, such that zy=az}, C’=coker(e,, OH,,—E,), X'={2E€E,; 1z€A’}. Replacing 4,
B C X toA, B, C’, X’ in the above argument, the second equality is proved similary.

Lemma 8. Set w,=(T+1)""—1and take f;, LEA (resp. g, EON). Put f=1f, (resp. g=
g&). If g and w, are prime to each other, we have
A G 0 1A e @) [ =18/ @,)]
|OA/(g1, &’n)l'lOA/gz: mﬂ)[:lOA/(g; Wn)l

Proof. We have a chain AD{f, w,)>{(f, w,. The first equality follows from
(fp @)/, @,) =A/(f,, ,). Similarly, we have the second one.

We abuse notoation and consider y is also a generator of Gal (£, /&) of order p” ' by restricting
y onto k,. Let p, denote a C,Gal(k,/k)~algebra homomorphism defined by

n—l_l i .
Pl 2 ay)=Zox(a)y’ a,€C.
We recall Iwasawa’s construction of p~adic L-funstions. Let g, be the conductor of ox. Note
pla, Denote by 6,, the Stickelberger ideal 6y for K,=@Q(¢,, €, and set &,,=p,(6,,). To

construct p-adic L-funtion, we have to fix ¥ to (ﬁﬂ(l-l'qu, K,). By isomorphisms
neN

OA/ (w,) =p,{(Z,G,), we have the following identification :
OA=1mOA/ (w,) =1lim p (Z,G,).
Then {&,,},.y converges to a power series /, €A which satisfies the formula :
Lis, w(ox) N =£{1+g)° 1.

(See [7] chap. 7). Furthermore, since £,, maps £,,, for #>m by the canonical map p,(Z,G,)—
#,(Z,G,), the isomorphism OA/(w,) =p,(Z,G,) induces

(2.6) £, mod OAw,—&,,.

Set m= ij')“1 and N=p"m. Let M be a multiple of » such that (M,p)=1. There is unique
;=R (p") such that Ma,= (1+p)' mod p” for 0=¢<p" % Set

(2.7) ¥t s i M)=tp"+s"a,M
Observe {y(t s, i ; M) : tER(m),sER (p), 0 <p™ '} gives a complete system of representatives
of (Z/NZ)™. ’

Lemma 9. Let : G,—C, be a characier which assigns a generator y of " fo &, for 0=m<
n. Then we have
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By~ 3 5 5 pre2ibs il

0=i<p™! sER(P) tERm) N
Hence, f, is prime to w, for every n.

>) g (8p" 45" M) " (g M)

Proof. The equality follows from Lemma 1. Set g= T and g,,= /@, for m=1. g, isa
irreducible polynomial and g, (£,.—1) =0. Then, the equality of the lemma and (2.6} implies f, is
prime to g,. Q.ED.

Theorem 10. Let ¢ be an odd Q,irreducible character such lhat 9+ and set
w,=(T+1)""—~1. Abbreviate S, to S,. Then we have
| eq,Hm/mneq,Hm| =le,Z,G,/e,S,|.

Proof. We shall prove the following equality ;
(2.8) |OA/ (s @,) 1 =1p,(Z,G,)/p,(S,) .
Before proving this, we shall show that the theorem follows from this equality.
By the main theorem of Iwasawa theory, we have OAf,=OAh, Hence, Lemma 9 imlies that
I, and w, are prime to each other, and further that /, and «, are alsc prime to each other. Thus,
by virtue of Lemma 8§ and (2.5), we have
| OEq,/m,,OEGD! =| Oeme/w"Oeg,HQ

— g [é‘ngHw/@nengHool
=g

=1 |OA/ (B, @)} ].

aE g

On the other hand, we have an isomorphism
¢, 0G,/e,0S, Eg@ﬂ ¢,,0G,/e, 08,
= ® .(2,6,)/5,(S).
Therefore, the theorem follows from (2.8).

Now, we shall prove (2.8). Note ¢ 5',=e¢,S,, because of p* o and (S1). Denote by | the
conductor of ox and set k=Q (&, §,.). We have

pa’ (Cork,‘/}((ga‘,n) ) = [kn : ]{] grr,n'
Since ([k,: K], p)=1, we have &,,Ep.(S,), and hence, by (2.6),
(2.9) OA/ fyy @,)—p,(Z,G)/p,(S,)

is surjective.

Since the condition (C’} is valid, we have ¢,S, is generated by {e cor,; (&)} Lecrp
by Theorem 5. For L& # (p) such that | [ {;, we have p,{e cory, 6,)=0. When T |7, let T,=p"
m be a decomposition such that (p,#)=1. Set N=p"m. Let cx=yx,w" be the decomposition
into the product of characters such that pf |, and 0=%<p—1. Using the symbol (¢, s, i ; m) of
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(2.7), we have

p,(E—COI‘;,/L(ﬁL))Z[kniL] 2 T—i 2 &)ﬁk(s) 2 Bl< }’(t; S, 1;??’1) >)x0(fp")_l.
" 0Si<pn SER(P) 1ER(m) N

By virtue of Lemma 1, the right hand side is modified as follows:

-1

el ,
kL] 3 T (-7(@) 5 B(<E>)ax By~
i=0 qlm ter(f) f
This means p,(S,)CO&,, Thus (2.9) is injective and the equality (2.8) follows.
Q.E.D.

3. Z,[G]-cyclicity of A,.

Let % be the imaginary abelian field such that the p-Sylow subgroup of G is cyclic. Let 2, be
the intermediate field corresponding to the p-Sylow subgroup of G. Let U, (resp. U,) be the unit
group of the idele group of J, (resp. J,).

Lemma 11. Let @ be a @,-irreducible character of A and y be a generator of T'. Set V, =
U,NJ{k". Then we have the following exact sequence :

1_>9¢, ( Ulh/VhNk/k. Uk) _’e‘p(/]*/Ag_lAﬁ) —e, (Ak,/A::) =]

Proof. Set X=N,, (J)k, Y=N,, (U)k{, Z=Uyk. Denote by #,(M) the p-Sylow
subgroup for a finite abelian group M. We have exact sequences :
1=e L{(X/Y) e t,(],/Y)—e Gallkik) -1,
1=e, Z/Y —e, b, (], /) e, 4,1,
Since ¢, (Gal(k/k))={1} and since X/Y is the genus group with respect to k/k, we have
ety (T /Y)Y =e (A/AT7Y).
The lemma follows from Z J{/Y Ji=U,/V,N,, U,

For a finite abelian group M of exponent dividing p, denote by dim M the dimension of M as a F-
space, where F, is the finite field of p-elements. We abbreviate AJA T Al to A, By Lemma 11,
we have By Lemma 11, we have

(4.1) dim ¢, A, =dim ¢,U,/V, Ny, U,-+dim e, A, /AL

Note e, 4, is Z,G-cyclic if and only if dim A,=1.
We suppose 42§, and k=~ ({,.), n=2. Let A, be the decomposition group of (p)in /.
Lemma 12. Lel x be a Cy-irreducible factor of ¢ and yx= xow' be the decomposition of
characters such that pf T, and 0St<p—1. Then, if t+1, we have e, Z,A=1{0}. Hence,
echk]/Vk‘Nk’rkl Uk= { 1}.
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Proof. Notee, OA= {0} for every o€ g because oy are not trivial on 4A,. Since eq,ZpA:{O}
if and only if ¢,,OA={0} for every o€ g, we have ¢,Z,A={0}. We have U /UGN U= F, A/,
and hence e, U, /V, Ny, U,={1}. QE.D.

Put § =k1>< N ],fl Il U, where U/, denote the unit groups of the completions of % at places b.
Let E be the unit grou’{) of b Set B=S/k*, BY=ENS/E’. For 2E S, thereis a €] ., such that
alU,>a. By ak;’—a U, k; . we have a homomorphism B—4,. Denote by B the image of this
homomorphism. Hence, the following sequence is exact :

(4.2) 1-BY->B-B5%-1.

Let D be a subgroup of the ideal class group of %, generated by ideals dividng p. By [6], there is
a perfect duality B X A, D/A{ D~ pu,, where u, is the subgroup of k* generated by ¢,- Moreover,
we have ¢,;B and ¢4, D/A}D are dual each other. Note ¢ D/D*={1} if ¢,Z,A/5,={0}.

Lemma 13. Let @ be an imaginary Q,~irreducible character of A. Then we have
dim e, BV=1.
Further, if e, Z,A/B8,={0} and ¢+ w, we have

dim e, A,=dim ¢,,5".

Proof. Putting F=Z,®,E, we have
| us (FIF ) =g (E/Ew,)
here we identify 1®pu, and g, By assigning x£? to x*E*", we have an isomorphism
s FIF ) =y (FY [FY" ).

Let & be a unit such that H=<¢"; 6=Gal{k,/Q) > is a Z-free subgroup of rank [%:Q]/2—1.
Then, there is € H such that e_;{1®#) #1in F. Let ¢ be the maximal natural number such that
ew.(1®7;)EF'°'. We see e,_,é(Fp'/F”m) #{1} and hence ¢, (F/F’) #{1}. This means

(4.3) dim e, (F/F'u,) 2 0@ (1),
Therefore, we have

dim F/FPu,2 3, wp(l)=|al/2—-1
qa:r'zu;glz,mm
This implier equality holds in (4.3}, namely e, (F/F ’ #,) is FyA-cyclic. Since BY is a subgroup
of E/E?, we have

dim ¢,,B” S w@(1).
We have ¢ A, /Al =e A, D/AID=¢ ,B if ¢,Z,A/A,={0}. Hence, by (4.2), the proof is com-
pleted.

Proof of the main Theorem. Let @ be an Q,-irreducible character of A. Since the conductor
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of %, is primt to p and % is real, we have x= xom', 1=¢<p-1, for a C,-irreducible factor of ¢.
Hence ¢,Z,A/A,={0}. By Lemma 13, we have dim A, <1 if ¢,;4,={1}. Since ¢ ,4,=e ;A
we have ¢ A, is Z,G-cyclic by virtue of Lemma 11 and 13. By Theorem 10, we obtain the
statement (1). The statement (2} is a direct consequence from Theorem 6.
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