A note on Stickelberger ideals of abelian fields | メタデータ | 言語: eng | |-------|-------------------------------------| | | 出版者: | | | 公開日: 2022-06-03 | | | キーワード (Ja): | | | キーワード (En): | | | 作成者: 山下, 浩, Yakashita, Hiroshi | | | メールアドレス: | | | 所属: | | URL | http://hdl.handle.net/2297/00065611 | This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License. # A note on Stickelberger ideals of abelian fields. Hiroshi YAMASHITA (1993, 10, 20受理) ## 1. Introduction Let k be an imaginary finite abelian extension of the field of rational numbers Q. G be the Galois group of k/Q and \int_k be the finite part of the conductor. We shall recall the definition of the Stickelberger elements of k, according to [4]. When a ring R and a finit group A are given, RAdenote the group ring of A with coefficients in R and, for a subset X of A, s(X) denotes the sum of all elements of X in RA. For finite Galois extensions M and L of Q such that $M \supset L$, an R -algebra homomorphism by restricting $\sigma \in Gal(M/\mathbb{Q})$ onto L, we have $$res_{MR} : RGal(M/Q) \rightarrow RGal(L/Q)$$. Conversely, by assigning $\sigma \in Gal(L/Q)$ to $s(res_{L/M}^{-1}(\sigma))$, we have another R-algebra homomorphism $$\operatorname{cor}_{ML}: R\operatorname{Gal}(L/\mathbf{Q}) \to R\operatorname{Gal}(M/\mathbf{Q}).$$ Let (t, K) denote the Artin Symbol for an abelian extension over Q, which takes values in $Gal(K/Q) \cup \{0\}$. The symbol $\langle x \rangle$ means the value of x - [x], where [x] is the Gauss' symbol. For $n \in \mathbb{N}$, denote by ξ_n a primitive *n*-th root of unity and put $k_n = k \cap Q(\xi_n)$, $R(n) = \{t \in \mathbb{N} ; (t, n) = t \in \mathbb{N} \}$ 1, $1 \le t \le n-1$. The Stickelberger elements $\theta_{k,n}(a)$ are defined to be $$\theta_{k,n}(a) = \sum_{t \in R(n)} \langle \frac{-at}{n} \rangle \operatorname{cor}_{k/k_n} \operatorname{res}_{k_n/k_n} ((t,K_n)^{-1}), n \in \mathbb{N}, a \in \mathbb{Z}.$$ Especially, when $n = f_k$ and a = -1, we omit n and a and write θ_k for $\theta_{k,f_k}(-1)$, that is $$\theta_k = \sum_{t \in R(\hat{\uparrow}_k)} \left\langle \frac{t}{\hat{\uparrow}_k} \right\rangle (t,k)^{-1}$$ $\theta_k = \sum_{l \in R(\uparrow_k)} \langle \frac{t}{\bar{\uparrow}_k} \rangle (t,k)^{-1}.$ Let p be an odd prime, Z_p the ring of p-adic integers and Q_p the field of quotients of Z_p . Denote by S_k' the \mathbb{Z}_pG -submodule of \mathbb{Q}_pG generated by $\theta_{k,n}(a)$, $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. The Stickelberger ideal S_k defines to be an ideal $S' \cap Z_b G$ of $Z_b G$ in this paper. We note the statements of Proposition 2. 1, Theorem 3.1, 2.1, and 5.3 in [4] are still valid for our cases, though the Stickelberger ideals in Z[G] are argued there. Namely, letting $\varepsilon = (J-1)/2$, where J is the complex conjugation, and denoting by A_k the p-class group of k, we have the following statements: - (S1) S'_k/S_k is isomorphic to the group of all p-th power roots of unity in k. - (S1) $\varepsilon^- S_k$ annihilates $\varepsilon^- A_k$. - (S3) $[\varepsilon^{-} \mathbf{Z}_{b} G : \varepsilon^{-} S_{k}] = |\varepsilon^{-} A_{k}|$ if the p-Sylow subgroup of G is cyclic. When a ring R and an R-module M are given, we call M an R-cyclic module if M is generated by one element as R-module. According to (S1)-(S3), we see $\varepsilon^- A_k \cong \varepsilon^- Z_p G/\varepsilon^- S_k$ if the p-Sylow subgroup of G is cyclic and if $\varepsilon^- A_k$ is $Z_b G$ -cyclic. Let Δ be the p'-subgroup of G and Γ be the p-Sylow subgroup. Let φ be a Q_b -irreducible character of Δ and e_{φ} an associated idempotent in Q_pG . Since $e_{\varphi} \in \mathbb{Z}_pG$, we have $$M = e_{\alpha}M \oplus (1 - e_{\alpha})M$$. We call φ imaginary if $\varphi(J) = -\varphi(1)$ holds, which is equivalent to that an absolutely irreducible factor of φ is imaginary, further, $\bar{\varphi}$ denotes the Q_p -irreducibe character defined by $\bar{\varphi}(\sigma) = \varphi(\sigma^{-1})$, $\sigma \in G$. We call φ faithfull if $\{\sigma \in \Delta : \varphi(\sigma) = \varphi(1)\} = \{1\}$, or equivalently, if an absolutely irreducible factor is faithfull. Let ω denote the Teichmuller character of $\mathrm{Gal}(Q_p(\zeta_p)/Q_p)$. When $\zeta_p \in k$, we consider ω a character of Δ . Our main result in the present paper is as follows: **Theorem.** Let k_0 be a real abelian field whose conductor and whose extension degree are prime to p. Set $k_1 = k_0(\zeta_p)$ and $k = k_0(\zeta_p)$ for $n \ge 1$. Then we have (1) Let φ be an imaginary Q_b -irreducible character of Δ different from ω . $$|e_{\alpha}A_{k}| = |e_{\alpha}Z_{b}G/e_{\alpha}S_{k}|.$$ Moreover, if $e_{\omega\bar{\phi}}A_{k_1^*}=\{1\}$, where $A_{k_1^*}$ is the p-class group of the maximal real subfield of k_1 , we have $$e_{\varphi}A_{k} = e_{\varphi}Z_{p}G/e_{\varphi}S_{k}$$. (2) Let $\mathcal{L}(p)$ be a set of imaginary subfields of k such that $(f_L, f_k/f_L) = 1$ and $p \mid f_L$ $\varepsilon^- S_k$ is generated by $\{\varepsilon - \operatorname{cor}_{k/L}(\theta_L)\}_{L \in \mathscr{L}(p)}$. We note that the result (1) for n=1 follows from Theorem II.1 in [5], however, when n>1, this theorem dose not work well. #### Generators of the Stickelberger ideal Let $B_1(x)$ donote the 1st Bernoulli polynomial. $B_1(x)$ satisfies the following distribution relation: $$\sum_{t=0}^{N-1} B_1(\langle y + \frac{t}{N} \rangle) = B_1(\langle Ny \rangle).$$ By means of this relation, we have: **Lemma 1.** Let q be a prime number and M a natural number and set $N = Mq^m$ for $m \ge 1$. Then the following relations holds: (1) When $q \mid M$, for $s \in R(M)$, we have $$\sum_{\substack{t\in R(N)\\t=s\bmod M\\t=s\bmod M}}(<\!y\!+\!\frac{t}{N}\!>\!)=B_1(<\!z^my\!+\!\frac{s}{M}\!>\!)\,.$$ When $q\nmid M$, for $s\!\in\!R(M)$, we have $$\sum_{\substack{t \in R(N) \\ t \equiv s \bmod M}} B_1(< y + \frac{t}{N} >) = B_1(< q^m y + \frac{s}{M} >) - B_1(< q^{m-1} y + \frac{q^{m-1} \alpha s}{M} >),$$ where α is an integer such that $\alpha q^m \equiv 1 \mod M$. (3) Let χ be a Dirichlet character and s be a multiple of the conductor of χ . We have $$\sum_{t\in R(f)}B_{1}(<-\frac{t}{f}>)\,\chi\left(t\right)=\prod_{\substack{q\mid f\\q:primes}}\left(1-\chi\left(q\right)\right)B_{1,\chi},$$ where $B_{1,r}$ is the generalized Bernoulli number associated to χ . Let \mathcal{A}_{k/k_n} be a crossed section of $G \to \operatorname{Gal}(k_n/Q)$. We define a map $\mathcal{A}_n : \{x \in \mathbb{Z} ; (x, n) = 1\} \to G$ by $$\delta_n(x) = \delta_{k/k_n} \cdot \operatorname{res}_{Q(\xi_n)/k_n} ((x, Q(\xi_n)^{-1})).$$ By using this map \circ , we rewrite the definition of θ_{kn} : (2.1) $$\theta_{k,n}(a) = \sum_{t \in R(n)} \langle -\frac{-at}{n} \rangle \, d_n(t) \, s \, (\operatorname{Gal}(k/k_n)).$$ Note $$\varepsilon^- \theta_{k,n}(a) = \varepsilon^- \sum_{t \in R(n)} B_1(\langle -\frac{-at}{n} \rangle) d_n(t) s(\operatorname{Gal}(k/k_n)).$$ We could apply Lemma 1 by virtue of this equality. Set $\ell = \text{g.c.d.}(n,a)$, $m = n/\ell$, $b = a/\ell$. We have (2.2) $$\theta_{k,n}(a) = \sum_{t \in R(n)} \langle -\frac{-bt}{m} \rangle \operatorname{d}_n(t) \operatorname{s} \left(\operatorname{Gal}(k/k_n) \right)$$ $$= \left[\mathbf{Q}(\xi_n) : k_n(\xi_m) \right] \theta_{k,m}(b)$$ $$= \left[\mathbf{Q}(\xi_n) : k_n(\xi_m) \right] \operatorname{d}_m(b)^{-1} \theta_{k,m}.$$ This implies that S'_k is generated by $\{\theta_{k,n}\}_{n\in\mathbb{N}}$ over Z_pG . Let C_p be the completion of an algebraic closure of Q_p . Let $\mathfrak X$ be the set of C_p -irreducible character of G. Abusing notation, we also consider $\chi \in \mathfrak X$ a C_p -algebra homomorphism from C_pG onto C_p defined by χ ($\sum_{\sigma \in G} a_{\sigma} \sigma$) = $\sum_{\sigma \in \mathcal X} a_{\sigma} \chi(\sigma)$. Note that $x, y \in Q_pG$ are equal if and only if $\chi(x) = \chi(y)$ holds for every $\chi \in \mathfrak X$. Let $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ be the intermediate field of $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ be the intermediate field of $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ be the intermediate field of $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ be the intermediate field of $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ and $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ be the intermediate field of $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ be the intermediate field of $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ be the intermediate field of $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ by $C_{\chi} = \{\sigma \in G : \chi(\sigma) = 1\}$ For a prime number q, let T_q denote the inertia group of q in k/Q and $\lambda_q \in G$ be a representative of the Frobenius class at prime (q). Lemma 2. Set $\lambda_q^* = \lambda_q^{-1} s(T_q)$ and $\alpha_n = \prod_{q \mid n} (1 - \lambda_q^*)$ for $n \in \mathbb{N}$. Then we have the following equality: $$\chi\left(\varepsilon^{-}\theta_{k,n}\right) = \chi\left(\varepsilon^{-}\alpha_{n}S\left(G_{n}\right)\right)B_{1,\hat{\chi}}.$$ **Proof.** If χ is even or if $\int_{\chi} |n| n$, both side of the above equality are equal to 0. Assume χ is odd and $\int_{\chi} |n| n$. By virtue of (3) of Lemma 1, we have $$\chi\left(\varepsilon^{-}\theta_{k,n}\right) = -\sum_{t \in R(n)} \langle \frac{t}{n} \rangle \bar{\chi}\left(t\right) \chi\left(s\left(\operatorname{Gal}\left(k/k_{n}\right)\right)\right)$$ $$= -[k:k_n] \prod_{q|n} (1-\chi(q)) B_{1,\tilde{\chi}}$$ = $\chi(\varepsilon^- s(\operatorname{Gal}(k/k_n)) \alpha_n) B_{1,\tilde{\chi}}.$ Q.E.D. Let $\mathfrak M$ be the set of all imaginary abelian subfields of k, $\mathscr L$ be the subset consisting of $L{\in}\mathfrak M$ such that $(\mathfrak{f}_L,\ \mathfrak{f}_k/\mathfrak{f}_L)=1$ and $\mathscr L(p)=\{L{\in}\mathscr L\ ;\ p\,|\,\,\mathfrak{f}_L\}.$ **Lemma 3.** Let β be an element of $\mathbf{Z}_{p}G$ satisfying the following condition: (C) $\varepsilon^{-}\beta s(T_q) = 0$ for every prime q such that $p \mid |T_q|$. Then, $\varepsilon^-\beta S_k'$ is generated by $\{\varepsilon_-\beta \operatorname{cor}_{k/M}(\theta_M)\}_{M\in\mathfrak{M}}$ over $Z_{\wp}G$. **Proof.** Note ε cor $_{k/M}(\theta_M) = 0$ if M is a real subfield of k. For $n \in N$ such that $n \mid f_k$, set $M = k_n$. By the definition (2.1), we see $$\theta_{k,n} = \operatorname{cor}_{k/M}(\theta_M).$$ Assume $n \nmid f_k$ and $M = k_n \in \mathfrak{M}$. Set $m = f_M$ and $$\alpha_{n,m} = \prod_{\substack{q \mid n \\ a \nmid m}} (1 - \lambda_q^*).$$ Since $k_n = k_m$ and $\alpha_n = \alpha_m \alpha_{n,m}$, by virtue of Lemma 2, we have $$\chi (\varepsilon^- \theta_{k,n}) = \chi (\varepsilon^- \alpha_{n,m} \theta_{k,m})$$ for every $\chi \in \mathfrak{X}$. Hence $\varepsilon^- \theta_{k,m} = \varepsilon^- \alpha_{n,m} \theta_{k,m}$. The condition (C) menas $\alpha_{n,m} \in \mathbb{Z}_p G$ and hence the lemma follows from (2.3). - **Lemma 4.** Notation being same as that of Lemma 3, we assume further that the maximal real subfield whose conductor is prime to p is a real subfield. Suppose $\beta \in \mathbb{Z}_pG$ satisfying the following condition (C') instead of the above (C): - (C') $\varepsilon^-\beta s(T_q)=0$ for primes q such that $q\neq p$ and $p\mid\mid T_q\mid$. Then we have $\varepsilon^-\beta S'_k$ is generated by $\{\varepsilon_-\beta \mathrm{cor}_{k/M}(\theta_M)\}_{M\in\mathfrak{M}}$ over Z_pG . - **Proof.** If the conductor of $M \in \mathbb{M}$ is prime to p, then M is real. Hence, the factor concerning p dose not appear in α_{nm} . The lemma follows from the previous one. - **Theorem 5.** For each $M \in \mathfrak{M}$, there is $L \in \mathcal{L}$ such that $M \subset L$ and $\varepsilon \cap_{k/M}(\theta_M) \in \mathbb{Z}_p G \varepsilon \cap_{k/L}(\theta_L)$. Therefore, for $\beta \in \mathbb{Z}_p G$ satisfying the condition (C) of Lemma 3(resp. (C') of Lemma 4), we have $\varepsilon \cap \beta S_k$ is generated by $\{\varepsilon \cap \beta \operatorname{cor}_{k/L}\}_{L \in \mathcal{L}}(\operatorname{resp}, \{\varepsilon \cap \beta \operatorname{cor}_{k/L}\}_{L \in \mathcal{L}}(\rho))$. - **Proof.** Let q be a prime such that $q^2|_{k}$. Let q^a be the maximal power of q dividing f_k . Take b, $m \in N$ so that $1 \le b < a$, (m,q) = 1 and $m|_{k}$. For $c \in \{a, b\}$, we write N_c for mq^c , and further, K_c , k_c , θ_c , R_c Since $\xi s(Gal(h/h_a)) = s(Gal(h/h_b))$, we have by virtue of Lemma 1, $$\begin{split} \varepsilon^-\theta_\alpha \xi &= \varepsilon^- \sum_{t \in R_b} \sum_{\substack{t \in R_b \\ t \equiv s \bmod N_a}} B_1(<\frac{s}{N_a}>) \ \delta_a(t) \, s \, (\mathrm{Gal} \, (k/k_a)) \\ &= \varepsilon^- \sum_{s \in R_b} \delta_b(t) \, s \, (\mathrm{Gal} \, (k/k_b) \, B_1(<\frac{s}{N_b}>) \\ &= \varepsilon^-\theta_b. \end{split}$$ Therefore, by (2.3), we have (2.4) $$\varepsilon^{-} \operatorname{cor}_{k/k_{a}}(\theta_{k_{a}}) \xi = \varepsilon^{-} \operatorname{cor}_{k/k_{a}}(\theta_{b}).$$ Let $\mathfrak{f}_k = \prod_{i=1}^r q_i^{e_i}$ be the factorization. By changing order of $\{q_i\}$ if necessary, we suppose $$f_M = \prod_{i=1}^{s} q^{d_i}, \ 1 \le d_i < e_i, \ s \le r.$$ Set $m_0 = \dagger_M$, $m_i = m_{i-1}q_i^{e_i-d_i}$ and $M_i = k_{m_i}$. By virtue of (2.4), we have $\varepsilon^- \mathrm{cor}_{k/M_i}(\theta_{M_i}) = \varepsilon^- \mathrm{cor}_{k/M_{m_i}}(\theta_{M_{i+1}}) \, \xi_i, \; \xi_i \in \mathbb{Z}_p G$. This proves the first statement of the theorem, and the latter part follows from this satement and Lemma 3, 4. ### 3. The index of the Stickelberger ideal. We assume the *p*-sylow subgroup of G is cyclic. Let φ be a \mathfrak{g}_p -irreducible character and χ be a C_p -irreducible component of φ . Let $\mathcal{O}=Z_p[\chi(\sigma); \sigma\in\mathfrak{g}]$, \mathfrak{g} be the field of quotients of \mathcal{O} and $\mathfrak{g}=\mathrm{Gal}(\mathfrak{g}/Q_p)$. φ is the trace of χ , *i.e.* $$\varphi = \sum_{\sigma \in \Lambda} \sigma \chi$$ Let e_r denote the idempotent in $\mathfrak{g} \Delta$ such that $e_r \mathfrak{g} \Delta$ affords χ . We see $$e_{\varphi} = \sum_{\sigma \in \sigma} e_{\sigma_{X}} \in \mathbb{Z}_{p} \Delta.$$ Let M be an \mathcal{O} -module of order p^e . Let $\ell_{\mathcal{O}}(\mathcal{O}M)$ denote the length of \mathcal{O} -composition series of $\mathcal{O}M$. Since $(|\Delta|, p) = 1$, we have $\ell_{\mathcal{O}}(\mathcal{O}M) = e = v_p(|M|)$, where v_p is an additive valuation such that $v_p(p) = 1$. We see further $|\mathcal{O}M| = [\mathcal{O}: p\mathcal{O}]^e$, and $|\mathcal{O}M| = |\mathcal{O}L/\mathcal{O}N|$ for \mathbb{Z}_p -modules L, N such that $M \cong L/M$. We obtain the following theorem from Theorem II.1 in [5]: **Theorem 6.** Let k be an imaginary abelian extension such that $p \nmid [k:Q]$. Then, for imaginary $\varphi \neq \omega$, we have $$|e_{\varphi}A_k| = |e_{\varphi}(\varepsilon^- Z_p G/\varepsilon^- S_k)|.$$ **Proof.** By Theorem II.1 in [4], we have $$\ell_{\mathcal{O}}(e_{_{\boldsymbol{\mathcal{X}}}}\mathcal{O}\boldsymbol{A}_{_{\boldsymbol{k}}}) = v_{_{\boldsymbol{\mathcal{D}}}}(B_{1,\bar{_{\boldsymbol{\mathcal{X}}}}})\,.$$ On the other hand, by Theorem 5, we have $e_{\chi}(\varepsilon^- S_k)$ is generated by $\chi((\varepsilon^- \operatorname{cor}_{k/L}(\theta_L)), L \in \mathcal{L})$ over \mathbf{Z}_{p} . Since the value of $\chi(\varepsilon^- \operatorname{cor}_{k/L}(\theta_L))$ equals $$-\left[\,k\,:\,k_{\!_{\boldsymbol{\chi}}}\right]\cdot\underset{q\mid\,\,\mathfrak{f}_{\!_{L}}}{\Pi}\left(1-\chi\left(q\right)\right)B_{1,\bar{\chi}}$$ when $\mathfrak{f}_x \mid \mathfrak{f}_L$ and, it equals 0 otherwise, we have $e_x(\varepsilon^- S_k) = Z_p B_{1,\bar{x}}$. Thus $$\begin{split} \ell_{\mathcal{O}}(e_{\mathbf{x}}\mathcal{O}A_{\mathbf{k}}) &= v_{\mathbf{p}}(B_{1,\mathbf{x}}) \\ &= \ell_{\mathcal{O}}(e_{\mathbf{x}}(\varepsilon^{-}\mathbf{Z}_{\mathbf{p}}G/\varepsilon^{-}S_{\mathbf{k}})) \,. \end{split}$$ Hence $$\begin{split} v_{p}(\mid e_{\varphi}A_{k}\mid) &= \ell_{\mathcal{O}}(\mathcal{O}e_{\varphi}A_{k}) = \sum_{\sigma \in \mathfrak{g}} \ell_{\mathcal{O}}(e_{\sigma_{\mathbf{X}}}\mathcal{O}A_{k}) \\ &= \ell_{\mathcal{O}}(\mathcal{O}e_{\varphi}(\varepsilon^{-}\mathbf{Z}_{p}G/\varepsilon^{-}S_{k})) \\ &= v_{p}(e_{\varphi}(\varepsilon^{-}\mathbf{Z}_{p}G/\varepsilon^{-}S_{k})). \end{split}$$ Q.E.D. When the extension degree of k/Q is not prime to p, Solomon's theorem dose not work well. However, applying the main theorem of Iwasawa theory, we could extend Theorem 5. Let k_0 be a real abelian extension whose conductor and whose extension degree are prime to p. Set $k_n = k_0(\zeta_{p^n})$ and $k_\infty = \bigcup_{n \ge 1} k_n$. In the following, denote by Γ the Galois group of k_∞/k and $G_n = \operatorname{Gal}(k_n/Q)$. We consider $\Delta = \operatorname{Gal}(k_1/Q)$. Write A_n for A_{k_n} . Let H_∞ be the projective limit of A_n with respect to the norm maps. Let γ be a topological generator of Γ and $\Lambda = \mathbb{Z}_p[[T]]$ be the ring of formal power series. By $T \to \gamma - 1$, H_∞ becomes a compact Λ -module. By Iwasawa theory, there are distinguished polynomials h_i such that $$e_{\varphi}H_{\infty} \longrightarrow \prod_{i=1}^{r} \Lambda/(h_{i})$$ is an injection with finite cokernel. Set $h=\Pi h_i$. By extending coefficient to \mathcal{O} , we have $$(2.5) \mathcal{O}e_{\varphi}H_{\infty} = \bigoplus_{\sigma \in \mathfrak{g}} e_{\sigma\chi}\mathcal{O}H_{\infty},$$ and obtain distinguished polynomials $h_{\sigma,i} \in \mathcal{O}\Lambda$, $i=1, \dots, r_{\sigma}$ such that $$e_{\sigma_{\mathbf{X}}} \mathcal{O} H_{\infty} \longrightarrow \prod_{i=1}^{r_{\sigma}} \mathcal{O} \Lambda / (h_{\sigma,i})$$ have finite kernel and cokernel. Since $e_{\sigma_x} \mathcal{O} H_{\infty}$ are \mathcal{O} -free, the kernels are trivial. Set $h_{\sigma} = \prod_{i=1}^{r_{\sigma}} h_{\sigma,i}$. By (2.5), we have $$\mathcal{O}\Lambda h = \mathcal{O}\Lambda \left(\prod_{\sigma \in \mathfrak{g}} h_{\sigma}\right).$$ Lemma 7. Set $$E_{\varphi}/\prod_{i=1}^{r} \Lambda / (h_{i})$$ and $E_{\sigma}/\prod_{j=1}^{r_{\sigma}} \mathcal{O} \Lambda / (h_{\sigma,i})$. For $\pi \in \Lambda$ such that $|e_{\varphi}H_{\infty}^{i}/\pi e_{\varphi}H_{\infty}| < \infty$, we have $|E_{\varphi}/\pi E_{\varphi}| = |e_{\varphi}H_{\infty}/\pi e_{\varphi}H_{\infty}|$, $|E_{\sigma}/\pi E_{\sigma}| = |e_{\sigma}\mathcal{O}H_{\infty}/\pi e_{\sigma}\mathcal{O}H_{\infty}|$. Proof. Set $$\begin{split} A = & \operatorname{Im}(e_{\varphi} H_{\infty} \to E_{\varphi}), \ B = \{y \in A \text{ ; there are } z \in E_{\varphi} \text{ such that } \pi y = \pi z\}, \\ & C = \operatorname{coker}(e_{\varphi} H_{\infty} \to E_{\varphi}), \ X = \{z \in E \text{ ; } \pi z \in A\}. \end{split}$$ We see $\pi X = B$ and the following sequence is exact: $$0 \to X/A \to C \to \pi C \to 0$$ Since the order of C is finite and E_{φ} is a free \mathbb{Z}_p -module, we have $|C/\pi C| = |X/A| = |\pi X/\pi A| = |B/\pi A|$. The first equality follows from the exact sequence $$0 \to B/\pi A \to A/\pi A \to E_{\pi}/\pi E_{\pi} \to C/\pi C \to 0.$$ By (2.5), we see $|e_{\sigma_X}\mathcal{O}H_{\infty}/\pi e_{\sigma_X}\mathcal{O}H_{\infty}| < \infty$ for every σ . Set $A' = \operatorname{Im}(e_{\sigma_X}\mathcal{O}H_{\infty} \to E_{\sigma})$, $B' = \{y \in A' ; \text{there are } z \in E_{\sigma} \text{ such that } \pi y = \pi z\}$, $C' = \operatorname{coker}(e_{\sigma_X}\mathcal{O}H_{\infty} \to E_{\sigma})$, $X' = \{z \in E_{\sigma} ; \pi z \in A'\}$. Replacing A, B, C, X to A', B', C', X' in the above argument, the second equality is proved similarly. **Lemma 8.** Set $\omega_n = (T+1)^{p^{n-1}} - 1$ and take f_1 , $f_2 \in \Lambda$ (resp. g_1 , $g_2 \in \mathcal{O}\Lambda$). Put $f = f_1 f_2$ (resp. $g = g_1 g_2$). If g and ω_n are prime to each other, we have $$|\Lambda/(f_1, \omega_1)| \cdot |\Lambda/(f_2, \omega_n)| = |\Lambda/(f, \omega_n)|$$ $$|\mathcal{O}\Lambda/(g_1, \omega_n)| \cdot |\mathcal{O}\Lambda/g_2, \omega_n\rangle| = |\mathcal{O}\Lambda/(g, \omega_n)|$$ **Proof.** We have a chain $\Lambda \supset (f_1, \omega_n) \supset (f, \omega_n)$. The first equality follows from $(f_1, \omega_n)/(f_1, \omega_n) \cong \Lambda/(f_2, \omega_n)$. Similarly, we have the second one. We abuse notoation and consider γ is also a generator of $Gal(k_n/k_1)$ of order p^{n-1} by restricting γ onto k_n . Let ρ_{σ} denote a $C_bGal(k_n/k_1)$ -algebra homomorphism defined by $$\rho_{\sigma}\left(\sum_{i=0}^{p^{n-1}-1}a_{i}\gamma^{i}\right)=\sum\sigma\chi\left(a_{i}\right)\gamma^{i},\ a_{i}\in C_{p}\Delta.$$ We recall Iwasawa's construction of p-adic L-functions. Let q_0 be the conductor of $\sigma_{\mathcal{X}}$. Note $p \mid q_0$. Denote by $\theta_{\sigma,n}$ the Stickelberger ideal θ_{K_n} for $K_n = Q(\xi_q, \xi_{p^n})$ and set $\xi_{\sigma,n} = \rho_{\sigma}(\theta_{\sigma,n})$. To construct p-adic L-funtion, we have to fix γ to $\lim_{n \in \mathbb{N}} (1 + q_0, K_n)$. By isomorphisms $\mathcal{O}\Lambda/(\omega_n) \cong \rho_{\sigma}(Z_b G_n)$, we have the following identification: $$\mathcal{O}\Lambda = \underline{\lim} \mathcal{O}\Lambda/(\omega_n) = \underline{\lim} \rho_{\sigma}(\mathbf{Z}_pG_n).$$ Then $\{\xi_{\sigma,n}\}_{n\in\mathbb{N}}$ converges to a power series $f_{\sigma} \in \Lambda$ which satisfies the formula: $$L_p(s, \omega(\sigma_X)^{-1}) = f_{\sigma}((1+q_0)^s-1).$$ (See [7] chap. 7). Furthermore, since $\xi_{\sigma,n}$ maps $\xi_{\sigma,m}$ for n > m by the canonical map $\rho_{\sigma}(Z_pG_n) \longrightarrow \rho_{\sigma}(Z_pG_m)$, the isomorphism $\mathcal{O}\Lambda/(\omega_n) \cong \rho_{\sigma}(Z_pG_n)$ induces $$(2.6) f_{\sigma} \bmod \mathcal{O}\Lambda \omega_n \longrightarrow \xi_{\sigma,n}.$$ Set $m = \int_{a_x} p^{-1}$ and $N = p^n m$. Let M be a multiple of m such that (M, p) = 1. There is unique $a_i \in R(p^n)$ such that $Ma_i = (1+p)^i \mod p^n$ for $0 \le i < p^{n-1}$. Set (2.7) $$y(t, s, i; M) = tp^n + s^{p^n}a_i M$$ Observe $\{y(t, s, i; M); t \in R(m), s \in R(p), 0 \le i < p^{n-1}\}$ gives a complete system of representatives of $(\mathbb{Z}/N\mathbb{Z})^{\times}$. **Lemma 9.** Let $\psi: G_n \to C_p$ be a character which assigns a generator γ of Γ to ζ_{p^n} for $0 \le m < n$. Then we have $$B_{1,\overline{x\psi}} = \sum_{0 \le i < p^{n-1}} \sum_{s \in R(p)} \sum_{t \in R(m)} B_1(\langle \frac{y(t, s, i; M)}{N} \rangle) \chi(tp^n + s^{p^n}M)^{-1} \psi(a_i M)^{-1}.$$ Hence, f_{σ} is prime to ω_n for every n . **Proof.** The equality follows from Lemma 1. Set $g_0 = T$ and $g_m = \omega_m/\omega_{m-1}$ for $m \ge 1$. g_m is a irreducible polynomial and $g_m(\xi_{p^m}-1)=0$. Then, the equality of the lemma and (2.6) implies f_σ is prime to g_m . **Theorem 10.** Let φ be an odd Q_p -irreducible character such that $\varphi \neq \omega$ and set $\omega_n = (T+1)^{p^{n-1}} - 1$. Abbreviate S_k to S_n . Then we have $$\mid e_{\varphi}H_{\infty}/\omega_{n}e_{\varphi}H_{\infty}\mid =\mid e_{\varphi}\mathbf{Z}_{p}G_{n}/e_{\varphi}S_{n}\mid.$$ **Proof.** We shall prove the following equality; (2.8) $$|\mathcal{O}\Lambda/(h_{\sigma}, \omega_n)| = |\rho_{\sigma}(\mathbf{Z}_p G_n)/\rho_{\sigma}(S_n)|.$$ Before proving this, we shall show that the theorem follows from this equality. By the main theorem of Iwasawa theory, we have $\mathcal{O}\Lambda f_{\sigma} = \mathcal{O}\Lambda h_{\sigma}$. Hence, Lemma 9 imlies that h_{σ} and ω_n are prime to each other, and further that h_{σ} and ω_n are also prime to each other. Thus, by virtue of Lemma 8 and (2.5), we have $$\begin{split} | \, \mathcal{O}E_{\varphi}/\omega_{n}\mathcal{O}E_{\varphi} | &= | \, \mathcal{O}e_{\varphi}H_{\infty}/\omega_{n}\mathcal{O}\,e_{\varphi}H_{\infty}| \\ &= \prod_{\sigma \in \mathfrak{g}} | \, e_{\sigma\chi}\mathcal{O}H_{\infty}/\omega_{n}e_{\sigma\chi}\mathcal{O}H_{\infty}| \\ &= \prod_{\sigma \in \mathfrak{g}} | \, \mathcal{O}\Lambda/\left(h_{\sigma}, \ \omega_{n}\right)| \, . \end{split}$$ On the other hand, we have an isomorphism $$\begin{split} e_{\varphi} \mathcal{O} G_{n} / e_{\varphi} \mathcal{O} S_{n} &\cong \bigoplus_{\sigma \in \mathfrak{g}} e_{\sigma_{X}} \mathcal{O} G_{n} / e_{\sigma_{X}} \mathcal{O} S_{n}, \\ &\cong \bigoplus_{\sigma \in \mathfrak{g}} \rho_{\sigma} (\mathbf{Z}_{\rho} G_{n}) / \rho_{\sigma} (S_{n}) \,. \end{split}$$ Therefore, the theorem follows from (2.8). Now, we shall prove (2.8). Note $e_{\varphi}S'_n = e_{\varphi}S_n$, because of $\varphi \neq \omega$ and (S1). Denote by \dagger the conductor of σ_{χ} and set $k = Q(\xi_{\dagger}, \xi_{p^n})$. We have $$\rho_{\sigma}(\operatorname{cor}_{k_{n}/K}(\theta_{\sigma,n})) = [k_{n}:K] \xi_{\sigma,n}.$$ Since $([k_n:K], p) = 1$, we have $\xi_{\sigma,n} \in \rho_{\sigma}(S_n)$, and hence, by (2.6), (2.9) $$\mathcal{O}\Lambda/(f_{\sigma}, \omega_n) \longrightarrow \rho_{\sigma}(\mathbf{Z}_b G_n)/\rho_{\sigma}(S_n)$$ is surjective. Since the condition (C') is valid, we have $e_{\varphi}S_n$ is generated by $\{e_{\varphi}\operatorname{cor}_{k/L}(\theta_L)\}_{L\in\mathscr{L}(p)}$ by Theorem 5. For $L\in\mathscr{L}(p)$ such that $f\not\mid f_L$, we have $\rho_{\sigma}(\varepsilon^-\operatorname{cor}_{k/L}\theta_L)=0$. When $f\mid f_L$, let $f_L=p^n$ m be a decomposition such that (p,m)=1. Set $N=p^nm$. Let $\sigma\chi=\chi_0\omega^k$ be the decomposition into the product of characters such that $p\not\mid f_{\infty}$ and $0\leq k < p-1$. Using the symbol y(t,s,i;m) of (2.7), we have $$\rho_{\sigma}(\varepsilon^{-}\operatorname{cor}_{k_{n}/L}(\theta_{L})) = [k_{n}:L] \sum_{0 \leq i < p^{n}} \gamma^{-i} \sum_{s \in R(p)} \omega^{-k}(s) \sum_{t \in R(m)} B_{1} < \frac{y(t, s, i; m)}{N} >) \chi_{0}(tp^{n})^{-1}.$$ By virtue of Lemma 1, the right hand side is modified as follows: $$[k_n:L] \sum_{i=0}^{p^{n-1}-1} \prod_{q \mid m} (1-\bar{\chi}(q)) \sum_{t \in R(\dagger)} B_1(\langle \frac{t}{\dagger} \rangle) \sigma \chi^{-1}(t) \gamma^{-i}.$$ This means $\rho_{\sigma}(S_n) \subset \mathcal{O} \xi_{\sigma,n}$. Thus (2.9) is injective and the equality (2.8) follows. Q.E.D. ## 3. $Z_p[G]$ -cyclicity of A_k . Let k be the imaginary abelian field such that the p-Sylow subgroup of G is cyclic. Let k_1 be the intermediate field corresponding to the p-Sylow subgroup of G. Let U_k (resp. U_k) be the unit group of the idele group of J_k (resp. J_k). **Lemma 11.** Let φ be a Q_p -irreducible character of Δ and γ be a generator of Γ . Set $V_{k_i} = U_{k_i} \cap J_k^p k_i^{\times}$. Then we have the following exact sequence: $$1 \! \rightarrow \! e_{\varphi}(U_{k_{\!\scriptscriptstyle l}}\!/V_{k_{\!\scriptscriptstyle l}}\!N_{k/k_{\!\scriptscriptstyle l}}U_{k}) \! \rightarrow \! e_{\varphi}(A_{k}\!/A_{k}^{\gamma-1}A_{k}^{p}) \! \rightarrow \! e_{\varphi}(A_{k}\!/A_{k}^{p}) \! \rightarrow \! 1$$ **Proof.** Set $X = N_{k/k_1}(J_k) k_1^{\times}$, $Y = N_{k/k_1}(U_k) k_1^{\times}$, $Z = U_{k_1} k_1^{\times}$. Denote by $t_p(M)$ the *p*-Sylow subgroup for a finite abelian group M. We have exact sequences: Since $e_{\varphi}(Gal(k/k_1)) = \{1\}$ and since X/Y is the genus group with respect to k/k_1 , we have $$e_{\varphi}t_{p}(J_{k_{l}}/Y)\cong e_{\varphi}(A_{k}/A_{k}^{\gamma-1}).$$ The lemma follows from $Z J_k^P/Y J_k^p \cong U_k/V_k N_{k/k} U_k$. For a finite abelian group M of exponent dividing p, denote by dim M the dimension of M as a F_p -space, where F_p is the finite field of p-elements. We abbreviate $A_k/A_k^{r-1}A_k^p$ to A_k . By Lemma 11, we have By Lemma 11, we have $$\dim e_{\varphi} \mathcal{A}_{k} = \dim e_{\varphi} U_{k_{i}} / V_{k_{i}} N_{k/k_{i}} U_{k} + \dim e_{\varphi} A_{k_{i}} / A_{k_{i}}^{p}$$ Note $e_{\sigma}A_k$ is Z_bG -cyclic if and only if dim $A_k \leq 1$. We suppose $k \ni \xi_p$ and $k = k_1(\xi_{p^n})$, $n \ge 2$. Let Δ_p be the decomposition group of (p) in k/k_1 . **Lemma 12.** Let χ be a C_p -irreducible factor of φ and $\chi = \chi_0 \omega^t$ be the decomposition of characters such that $p \nmid \uparrow_{\chi_0}$ and $0 \le t < p-1$. Then, if $t \ne 1$, we have $e_{\varphi} Z_p \Delta = \{0\}$. Hence, $e_{\varphi} U_{k_j} / V_{k_i} N_{k_{k_i}} U_k = \{1\}$. **Proof.** Note $e_{\sigma_{\mathcal{X}}}\mathcal{O}\Delta=\{0\}$ for every $\sigma\in\mathfrak{g}$ because $\sigma_{\mathcal{X}}$ are not trivial on Δ_p . Since $e_{\sigma}Z_p\Delta=\{0\}$ if and only if $e_{\sigma_{\mathcal{X}}}\mathcal{O}\Delta=\{0\}$ for every $\sigma\in\mathfrak{g}$, we have $e_{\sigma}Z_p\Delta=\{0\}$. We have $U_{k_i}/U_{k_i}^pN_{k_i/k_i}U_k\cong F_p\Delta/\Delta_p$, and hence $e_{\sigma}U_{k_i}/V_{k_i}N_{k_i/k_i}U_k=\{1\}$. Q.E.D. Put $S = k_1^{\times} \cap J_{k_1}^{p} \prod_{\mathfrak{p} \mid p} U_{\mathfrak{p}}$, where $U_{\mathfrak{p}}$ denote the unit groups of the completions of k_1 at places \mathfrak{p} . Let E be the unit group of k_1 . Set $E = S/k_1^{\times p}$, $E^{(1)} = E \cap S/E^{p}$. For $a \in S$, there is $\mathfrak{a} \in J_{k_1}$ such that $\mathfrak{a}U_{k_1} \ni a$. By $ak_1^{\times p} \to \mathfrak{a}U_{k_1}k_1^{\times}$, we have a homomorphism $E \to A_{k_1}$. Denote by $E^{(0)}$ the image of this homomorphism. Hence, the following sequence is exact: $$(4.2) 1 \rightarrow B^{(1)} \rightarrow B \rightarrow B^{(0)} \rightarrow 1.$$ Let D be a subgroup of the ideal class group of k_1 generated by ideals dividing p. By [6], there is a perfect duality $\mathbb{D} \times A_{k_1} D / A_{k_1}^p D \to \mu_p$, where μ_p is the subgroup of k_1^\times generated by ξ_p . Moreover, we have $e_{\omega \sigma} \mathbb{D}$ and $e_{\omega} A_{k_1} D / A_{k_2}^p D$ are dual each other. Note $e_{\omega} D / D^p = \{1\}$ if $e_{\omega} Z_p \Delta / \Delta_p = \{0\}$. **Lemma 13.** Let φ be an imaginary Q_{b} -irreducible character of Δ . Then we have $$\begin{split} \dim \ e_{\omega \bar{\varphi}} \, \mathbf{b}^{(1)} & \leq 1. \\ Further, \ if \ e_{\varphi} \mathbf{Z}_{\!p} \! \Delta \! / \! \Delta_{\!p} &= \! \{0\} \ and \ \varphi \neq \omega, \ we \ have \\ \dim \ e_{\varphi} \mathcal{A}_{\!k} &= \! \dim \ e_{\omega \bar{\varphi}} \, \mathbf{b}^{(1)}. \end{split}$$ **Proof.** Putting $F = \mathbf{Z}_b \otimes_{\mathbf{Z}} E$, we have $$e_{\omega\bar{\phi}}(F/F^{\flat}\mu_{\flat}) \cong e_{\omega\bar{\phi}}(E/E^{\flat}\mu_{\flat})$$ here we identify $1 \otimes \mu_b$ and μ_b . By assigning xE^b to $x^b E^{b^{**}}$, we have an isomorphism $$e_{\omega\bar{\varphi}}(F/F^{\flat}\mu_{\flat})\cong e_{\omega\bar{\varphi}}(F^{\flat'}/F^{\flat''}\mu_{\flat}^{\flat'})\,.$$ Let ε be a unit such that $H = \langle \varepsilon^{\sigma}; \sigma \in \operatorname{Gal}(k_1/Q) \rangle$ is a Z-free subgroup of rank $[k_1:Q]/2-1$. Then, there is $\eta \in H$ such that $e_{\omega \bar{\varphi}}(1 \otimes \eta) \neq 1$ in F. Let t be the maximal natural number such that $e_{\omega \bar{\varphi}}(1 \otimes \eta) \in F^{P'}$. We see $e_{\omega \bar{\varphi}}(F^{P'}/F^{P^{m'}}) \neq \{1\}$ and hence $e_{\omega \bar{\varphi}}(F/F^{P}) \neq \{1\}$. This means (4.3) $$\dim e_{\omega\bar{\varphi}}(F/F^{\flat}\mu_{\flat}) \ge \omega\bar{\varphi}(1).$$ Therefore, we have $$\dim F/F^{p}\mu_{p} \geq \sum_{\substack{\varphi: imaginary\\ \varphi \neq \varphi}} \omega \bar{\varphi}(1) = |\Delta|/2 - 1$$ This implier equality holds in (4.3), namely $e_{\omega\phi}^{(F/F^{\rho}\mu_{p})}$ is $F_{\rho}\Delta$ -cyclic. Since $B^{(1)}$ is a subgroup of E/E^{ρ} , we have $$\dim e_{\omega\bar{\varphi}} \mathbf{B}^{(1)} \leq \omega \bar{\varphi} (1).$$ We have $e_{\varphi}A_{k_i}/A_{k_i}^{p} \cong e_{\varphi}A_{k_i}D/A_{k_i}^{p}D \cong e_{\omega\bar{\varphi}}B$ if $e_{\varphi}Z_{p}\Delta/\Delta_{p} = \{0\}$. Hence, by (4.2), the proof is completed. **Proof of the main Theorem.** Let φ be an Q_{b} -irreducible character of Δ . Since the conductor of k_0 is primt to p and k_0 is real, we have $\chi = \chi_0 \omega'$, $1 \le t < p-1$, for a C_p -irreducible factor of φ . Hence $e_{\varphi} Z_p \Delta / \Delta_p = \{0\}$. By Lemma 13, we have dim $A_k \le 1$ if $e_{\omega \bar{\varphi}} A_k = \{1\}$. Since $e_{\omega \bar{\varphi}} A_k \cong e_{\omega \bar{\varphi}} A_{k\uparrow}$, we have $e_{\varphi} A_k$ is $Z_p G$ -cyclic by virtue of Lemma 11 and 13. By Theorem 10, we obtain the statement (1). The statement (2) is a direct consequence from Theorem 6. #### References - [1] J. Coates and S. Lichtenbaun; On l-adic zeta functions, Ann. of Math., 24(1973), 498-550. - [2] S. Lang; Cyclotomic fields I and II: combined second edition, G.T.M.121, Springer-Verlag. - [3] B. Mazur and A. Wiles; Class field of abelian extensions of Q. Invent. Math., 76 (1984), 179-330. - [4] W. Sinnott; On the Stickelberger ideal and circular units of an abelian field, Invent. Math., 63 (1980), 181-234. - [5] D. Solomon; On the class group of imaginary abelian fields, Ann. Inst. Fourier, Grounoble, 40, 3 (1990), 467-492. - [6] H. Yamashita; A note on some properties of p^m-singular numbers of algebraic number fields, 金沢女子大学紀要(文学部), 7(1993), 13-24. - [7] L.C. Washington; Introduction to cyclotomic fields, G.T.M. 83, Springer-Verlag.