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A Note on the Theorems of Neukirch and Neumann

Hiroshi Yamasita
(1989, 10, 20, <H)

Intreduction

Let % be a finite algebraic number field and %, be the completion at a place p of 2. Let S be
a finite set of places of 2. Denote by kg the maximal extension of & unramified outside S, and hy
k) the algebraic closure of k. Put Gy=Gal(ky/ky) and Gg=Gal(ky/k). An embedding ¢: kg —F,
induces a homomorphism p: Gy— G defined by p(g)=¢0-¢7'. We fix one of such homomorphisms
for each P € 5 and denote by p,. Denote by pg: u@s Gy— G the homomorphism induced from {p, ;
pe S} Let » be a natural number and Z be the ring of rational integers. It yields a homomor-
phism on the second cohomology groups with coefficient Z/xZ, which we denote this by pg(n).
Namely,

psln) 1 H(G,ZInZ) — pgSHZ(G,,,Z/nZ).

We shall determine the kernel and cokernel of pg(#). In particular, we shall prove that the kernel
of pg(#) is isomorphic to the dual group of the group of (S, #)-singularity defined in the below, which
is known from Neukirck([2] and Neumann[3] in the special cases.

Now we define the (S,»)-singular numbers. A number @ of # is called (S,x)-singular if the
principal ideal (2) is an n-th power of an ideal of %, and if there is a solution of the equation X "=
ain kyforeach peS. Let %,(S,n) be the set of (5,#)-singular numbers of % which are not 0. This
is a subgroup of the multiplicative group % containing #'. We call #,(S,n)/%" the group of {S,»)
~singularity of & and denote by B .(S,#n).

The results of Neukirck and Neumann mentioned above are as follows.

THEOREM A. ([2, Neukirch, Satz 7.6]). Assume that #nZ02 mod 4 and that k contains a

primitive n-th rool of unity. Assume also that S conlains all places lying over primes dividing n.
Then we have ker(pg(n))=B ,(S,»).

TurEoREM B. (Neumann[4]). Asswme that n is a prime number and that S contains every
places lying over n and all of the infinite places. Then we have ker(pg(n)= B,(S,n} and that

kerlpg(n)) is isomorphic to the multiplicative group of n-th vools of unity contained in k.

Let G be a group. @ denotes the field of rational numbers. For a prime number p, Q, and
Z, denote the field of p-adic numbers and the ring of p-adic integers, respectively. We call G

p-multiplicator free provided H 2(G,Qﬁ,/ Zp) vanishes, and also call it multiplicator free provided
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HYG,Q Az p):{O} for all primes p. Uning the development to partial fractions of rational num-
bers, we observe that G is multiplicator free if and only if H%G,Q/Z)={0}. We note that the
Leopoldt conjecture is true for an odd prime p if and only if Gg is p-multiplicator free for S

containing all places lying over p, and that, for p=2, the same statement is obtained when % is
totally imaginary. We need assume that G; is multiplicator {ree for all primes dividing » to prove

our result. It is interesting that in the above two theorems there is no such mention to G;.
For an abelian group A, we denote by 4,(A) the subgroups of %-torsion points, by ¢7(A4) those
of #™torsion points and by t(:’J(A) the unions of tf,:”)(A), m=1,-. Now we state the main result.
THEOREM. Let n22 be a natural number. Let S be a finite set of places of k containig all
places lying over every primes dividing n. Assume that Gg is p-multiplicator free for every prime
numbers dividing n. When n is even, we assume for p=2, not only that Gg is 2-multiplicator free,

but also that the Leopoldi conjecture is true for 2 in k. Then we have ker(pg)=Hom(B .(S,m),Q/Z)
and coker(pg)=Hom(%(%™),Q/Z).

In §1, we shall show that the theorem is obtained if it is proved in the case where # is a power
of prime number. In §2, we study the torsion subgroup of G4/[ G, Ggl, where [G,,Gy] denotes the
closure in Gy of the algebraic commutator subgroup. In §3, we shall prove the theorem by virtue

of the reduction and the results in §2.
1. The reduction to the cases of powers of a prime number.

We recall that pro-finite group is a projective limit of finite groups, which is totally discon-
nected and compact, and that a projective limit of finite p-groups is called a pro-p-group. Let G
be a pro-finite group. Let % be the set of open normal subgroups of G, and % p={U e GIU
are p-groups}. We note that % is a base of the system of neighborhoods of 1in G. Let G, denote
the projective limit of {G/U ; U/ ey/p}. Let f:G—H be a continuous homomorphism to a pro-
p-group H. Let 7 be the set of open subgroups of H. We have /" Y(V) ¢ #,for Ve There
is the canonical surjection from G, onte G/f “YV). Thus there is a homomorphism iy : G,eHIV.
Taking projective limit, we obtain a homomorphism ¢ G,— H whose image is equal to Image(f).

LemMma 1. Let G be an abelian pro-finite group. Then t{G) is a closed subgroup and G=11 G,.

Proor. Let g be an element contianed in the closure of £{G). Wesee L(GYNg-U+¢ for U
€ . Hence there is & € £,{(G;) such that h=g-u, w € /. This means that g” € U for every U €.
Namely, g"=1. This shows that £,(G) is closed. Since G is abelian, we have G/U are isomorphic
to a direct product 1 G/U/ » where U, are suitable elements of 7/'p for each p. Taking projective
limits in these isomgrphisms, we have the latter half of the lemma. Q E. D

Recall that [G,G] is the closure of the algebraic commutator group of G. Put G*=G/[G,G].

It is well-known that if there is a continuous surjective homomorphism from G onto an abelian pro-
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finite group, it induces one from G * onto the abelian group. We denote by G the abelian group

Hom(G*,@/Z) if no confusion occurs. We adopt the additive notation to describe this abelian
group.

LEMMA 2. Let p be a prime number. Then (Gp)* “:‘(G*)p.

- Proor. Set U(p)= N U. By Lemma 1 of Serre[4], G,=G/U(p). Since {(G,)" is isomorphic

e »p
to a factor group of G and is abelian, there is the canonical surjection f:G* —(G,)*. Hence f
induces a surjection f : (G*),—~(G,)*. On the other hand, since (G*), is a pro-p-group which is also
a factor group of G, we have the canconical surjection g:GJ,,—>(G*)p. Since (G*)p is abelian, this

induces Z:(G, ) —(G"),. We see that f and g are the inverse maps to each other. Q.E.D.
b P

By this lemma, we use the notation G: to denote both of (Gp)* and (G*)p.
Let T7:Q/Z—Q/Z be the endomorphism defined by T.{a+Z)=na+Z for an integer n. We
have a cohomology long exact sequence

*

(L1) — HYG.QiZ) 1% H'C,Q/2) — HAGAZIZ) — HAGC.QZ) — .

L]

Since H'(G,Q/Z) is isomorphic to G, we have coker 7" = G/nG =Hom(4(G¥),Q/Z), because

EH

i, (G7) is closed from Lemma 1.

ProrosiTioN 3. Lef p¢ be the maximal power of a prime number p dividing a natuval number
n.  Assume that G is p-multiblicator free. Then we have

ENHYG,ZInZ)=Hom(t)(G"),Q/Z)=Hom{£, (G,),Q/Z).

PrrOF. Set = p® in the above cohomology exact sequence, Since t;m)(H HG,Q/ZN=1{0} and
coker(T Y=Hom{t.{G™),Q/Z), we have I(HYG.Z/nZ)=Hom(;{G*),Q/Z) from (1.1). Hence, by

m

Lemma 2, Hom(!m(G*),Q,"Z)":’Hom(tm(G:),Q/Z). Q. E. D

Let # be a natural number which is greater than 1 and {f,-.p,; be the set of its prime divisers.
Let ¢; be the maximal power of p; dividing #. Assume that G is p,-multiplicator free for 1=7=
t. We have from Proposition 3

HYG,ZIn1)= 11 £ Hom(G}Q/2)).

We know from Theorem 4 of Serre[5] that the Galois group G, of the local field for a finite place
b is always multiplicator free. Moreover, when p is an infinite places, we prove H*(G,,Q/Z}=1{0}
directely. Hence again we have from Proposition 3

HYGyZ[nZ)=Hom{t,(G; ,Q/Z).

Therefore we have the following diagram.



A Note on the Theorems of Neukirch and Neumann 109

Ps(n)
HYG,ZInT) — »gs HY G ZInZ)
1.2) | = | =
! !
I Hom(£,"(G;).Q/Z} —— Il Hom(454G),Q/2).

We observe from this diagram that the kernel and cokernel of pg{#n) are isomorphic to the diect

products of those of pg(p}), respectively.
! i
Lemma 4. Leat n=_l}1pf’. Then BulS,n)= By(S,p7) XX B4S,p7).

ProoF. Put n,=#n/p*. Let v, {=1,---,f be integers such that 1=wyn, +- -+ prn,. We see g
e #AS.p7) for ae %(n,S). Then f:a—(a"™, &™) gives a homomorphism from B,(S,%) to the
direct product of B.(S.p%). Conversely, set a=a;" a;"-a;™ for a;c #(S,p*). We see fla)=

{@n™,+-,a"™), hecause v;#;= 1 mod p%  This proves the lemma.

Clearly, 4{k”) is isomorphic to the direct product of £4(%™), i=1, -, f. Therefore, by virtue
of (1.2) and Lemma 4, we see that the theorem would be proved if we prove it when = is a2 power
of a prime number.

2. Torsion subgroups of G;.

Let L be the maximal unramified abelian extension of % and £s be the maximal abelian
p-extension of k£ which is unramified outside S. Put G=Gal(}ESL/k). We note (G; ),=G,. Wecan
describe this group by using class field theory as follows.

Let U, be the unit group of the p-adic completion of £ for each finite place. Put V= t,,,(/e: )

and m=NPp—1, where Np denotes the absolute norm. When p is an infinite place, we set U, :k‘f‘
and V, = Uf . We define

Us=T Uy, Vs= 1T Vp and Ws=T1 U,.
pe s pES pg S

Let / be the idele group of .. These groups are considered as subgroups of /. Let H be the
closure of 2*WsVs in /. By class field theory, we.have

G=J/H.

This identification of G and J/H is given by means of the norm residue symbol. Let & be the class
number of k. We note that {7*"“H/H}*_, forms a base of the system of neighborhoods of 1, We

n=1
note that /%" H =J"" k™. Ws+ Vs, because J™" Ws are open subgroups of 7. Hence xeH is equiva-
lent to xeJ Wk Ws+ Vs for every natural numbers .
Now we suppose that the Leopoldt conjecture is true for p in % and that S contains the set P
of places lying over p. We have from Lemma 2 of Miki[l] the following lemma, which is
fundamental to study fj,’")(G).
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LemMa 5. Lel E be the unit group of k. Then for each nalural number m, there is a nalural
number n such that E*" contains ENU".

We denote by g(m) the samllest naturl number # such that E "oEN U,f".
For ¢ € H, we have the following decomposition for each »

c=cw b, cek, weW, ve V, be].
Since VSP = Vs, there is v, € ¥V such that vzvf". On the other hand, since B € Us Ws-k™, we have
b:=bwnu, be B, w, € Ws, w € Us. Consequently, the following decomposition of ¢ € H is obtained
for each n by setting ¢"= 5", w‘"’=w'wf", ™=y
(2.1)  c=¢OhaptMay T ot e X gt e W, w™ € Us.

Let a-He t;””(G) for a €. It follows from this decomposition that
@ = gy Mg gt e BX it € e, e [,
We shall show that &' determines an unige element of B.(S,p™) despite of the choice of # when n=

u(m). Obviousely, ¢™ is (S,p™)-singular when nZm.
Assume n=pg(m). Let a?"=g"@"7¥8" be another decompositiom. We have

atm. (ﬁ(n))*l — (w‘"’)fl' -a(n).((u(n))— 1.ﬁm;)ﬂ"'
This shows that & = a™(@) ! is an unit contained in US‘1> " By Lemma 5, we have ¢ € E*”, because
SDP. Hence a™k" =", We can show that ¢k =a™k?" for every natural numbers /= #,
similarly. Therefore, &k does not depend on the choice of » and «™. Next, we change the
represetative of the coset a-H from a to a’=a-c, ¢ €H, By (2.1), we have

¢ :cln).ytn).z(n)p"' b ¢ B, y(n) e Ws, 2" el
Thus

a’?" = (qU? )« (gt « y0HET) L (g oy

Since @k = {a™pWTV LT we have that ¢ k" dose not depend on the choice of the representative.
It followes from the uniqueness of ¢®k’" that there is a homomorphism sg”’:tg”’(G)eBk(S,p”‘)
defined by s;’") tarHy=a"™ k", where n isan arbitrary integer such shat n= u(m).

(m)

PROPOSITION 6. s »

is surjective and the kernel is tf,’")(Us)-H/H .

ProoF. Let a <€ #.(S,p™. There are v € Ws, € Us and a €J-such that e=z#*"-a*". Since
{m)

s (a-H)=ak"", we have si" is surjective. Assume s} (a-H)=1. For each natural number
which is greater than #, we have
aP" = gligpstnhey (" - gl E.kﬁ’“’ w® € We, ut™ € Us,

Set p=""g™ € k. Since (a-p~'-(z) "V =™ there is y ¢ Ws such that w™=y"". Put ¢"=
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by-u¥"". We have a-(c*)”" & £;"(Us), and hence a < £y (Us-HJ"™"". This implies that
ti,"')(Us)-H contains a. Since ker(s;"')) contains i;'")( Us)-H/H, we have the proposition.

Lemma 7. We have t;’"’(kx)=l:"')(Us)ﬂH as subgroups of Us.

Proor. Let x€ tf,""(Us)ﬁH . We consider x is an element (L,x) € WsXUs NI, Let [ be a
natural number greater than m. Set n=gx({)+I—m. By (2.1), we have x= g™ Py ge p*
w'™ € Ws, ™ € Us. Here, we see 2""is an unit contained in U, because x*"=1. Thus there is
an unit & € £ such that &'=a"*". Hence o € B 4, (). 1t follows x € E* ™+t (k") Ws U, and we

have
t-n % '
x eleE” 1 (RTyWeUs.
Let 7z denote the projection from Wgq-Us onto Us. Let £,(Us) be the subgroup of Us generated by
all torsion elements whose order are prime to £. Since tp(kx)' Wst;( Usy=NE* " p(k")- Ws-U ’;', we

have #(x) € t,(k™)t,(Us), where we identify ¢,(k™) to its image by the map . We obtain xe:tfo”"(la .
This proves the lemma, because the inclusion !P(kx)C {,(Us)N H is obvious.

3. The proof of the theorem.

By virtue of Proposition 6 and Lemma 7, we obtain the exact sequence

(m)
N
Lo 87" > &0 > £7G) B BUSH™ 1

We consider the dual sequence. Since gst;'")((G,)*)Ezj,'"’(Us) by local class field theory, we have
?
the following exact sequence by means of Proposition 3.

1~ Hom(B4(S»"™,Q/2) > HAG.Z{p"2) = I H'(G,,Z/p"Z) — Hom({s"(k™),Q/2) =1.

This proves the theorem when # is a power of a prime number, and completes the proof according
to the reduction in §2.
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