Role of Cytokines in mediating of Ischemia/Reperfusion Injury in Liver.

メタデータ	言語: jpn
	出版者:
	公開日: 2022-05-30
	キーワード (Ja):
	キーワード (En):
	作成者: Shimizu, Koichi
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00066154

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

1997 Fiscal Year Final Research Report Summary

Role of Cytokines in mediating of Ischemia/Reperfusion Injury in Liver.

Research Project

Project/Area Number
08671424
Research Category
Grant-in-Aid for Scientific Research (C)
Allocation Type
Single-year Grants
Section
一般
Research Field
Digestive surgery
Research Institution
Kanazawa University
Principal Investigator
SHIMIZU Koichi Kanazawa University, School of Medicine, Assistant Professor, 医学部, 講師 (30196513)
Co-Investigator(Kenkyū-buntansha)
YAGI Masao Kanazawa University, University Hospital, Assistant Professor, 医学部・附属病院, 講師 (00182303)
Project Period (FY)
1996 – 1997
Keywords

Research Abstract

One of the most important complications after organ transplantation is graft damage caused by ischemia/reperfusion injury. The details of the mechanisms underlying organ injury under ischemia and reperfusion are not yet understood. We investigated the role of cytokines in mediating of ischemia/reperfusion injury and the intracellular signal transduction that modulates cytokine production.

The results from in-vitro experiments have shown that hypoxia induces the activation of NF-kappaB and tyrosine kinase inhibitors inhibits NF-kappaB activation by hypoxia. And the results from experiments using a mouse model for hepatic ischemia and reperfusion have shown that inflammatory cytokies affect liver injury following ischemia/reperfusion, and that pretreatment with a tyrosine kinase inhibitor, genistein, suppresses ischemia/reperfusion injury of the liver. Furthermore, it was also shown that JNK (c-Jun N-terminal kinase) was activated following hepatic ischemia and reperfusion. Interestingly, the activation of JNK and the number of apoptotic cells increased by shorter period of ischemia rather than longer period.

These results suggest that inhibition of cytokine production can suppress ischemia/reperfusion injury, and that JNK activation and apoptosis after short period of ischemia may play a protective role in tissue subjected to ischemia and reperfusion.

Research Products (6 results)

				[All	Other
	All Publications (6 res		esults)			
[Publications] Yamamoto, S., Shimizu, K., et al.: "Genistein suppresses cellular injury following hepatic ischemia/reperfusion Proceedings. 28 · (2). 1111-1115 (1996)	ı." Tr	ansp	olantat	ion:		~
[Publications] Muraoka, K., Shimizu, K, et al.: "Hypoxia,but not reoxygenation,induces interleukin 6 gene expression throug Transplantation. $63 \cdot (2)$. 466-470 (1997)	n NF	-кВ	activat	ion."		~
[Publications] Onishi, I., Shimizu, K., et al.: "Activation of c-Jun N-terminalkinase during ischemia and reperfusion in mouse 201-204 (1997)	liver	:" FE	BS Le	tters.	420	· •
[Publications] Yamamoto, S., Shimizu, K., et al.: "Genistein suppresses cellular injury following hepatic ischemia/reperfusion Proceedings. 28-2. 1111-1115 (1996)	ı." Tr	ansp	olantat	ion:		~
[Publications] Muraoka, K., Shimizu, K., et al.: "Hypoxia, but not reoxygenation, induces interleukin 6 gene expression throu Transplantation. 63-2. 466-470 (1997)	ıgh N	NF-ka	арраВ	activa	atior	." 🗸
[Publications] Onishi, I., Tani, T., et al.: "Activation of c-Jun N-terminal kinase during ischemia and reperfusion in mouse live 201-204 (1997)	r." Fl	EBS	Letter	s. 420	0.	~

URL: https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-08671424/086714241997kenkyu_seika_hokoku_

Published: 1999-03-15