Studies on the recovery of uranyl carbonate and the concentration of the isotopes using durable amino acid resins

メタデータ 言語: jpn 出版者: 公開日: 2022-06-17 キーワード (Ja): キーワード (En): 作成者: Ueda, Kazumasa メールアドレス: 所属: URL https://doi.org/10.24517/00066429

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

1995 Fiscal Year Final Research Report Summary

Studies on the recovery of uranyl carbonate and the concentration of the isotopes using durable amino acid resins

Research Project

Project/Area Number
06680463
Research Category
Grant-in-Aid for General Scientific Research (C)
Allocation Type
Single-year Grants
Research Field
エネルギー学一般・原子力学
Research Institution
Kanazawa University
Principal Investigator
UEDA Kazumasa Department of Engineering, Professor, 工学部, 教授 (40019758)
Co-Investigator(Kenkyū-buntansha)
MICHIGAMI Yoshimasa Department of Engineering, Research Accociate, 工学部, 助手 (90190678)
Project Period (FY)
1994 – 1995
Keywords
Uranyl carbonate / Amino acid resins / Collection capacity / Uranium isotopes
Research Abstract

^{1.} Synthesis of durable amino acid resins and the resin properties: We have synthesized 15 types of amino acid resin, introducing amino acids or imitative amino acids into polystirene resin by the active esterification method. Amino acid contents introduced were estimated to be about 2-3.7 mmol/g-resin and the resin properties were evaluated by the measurement of ion exchange capacity, water content, FT-IR and etc.. We also

investigated a washing effect with acids, alkali soaking and repeated use of the resins, and clarified that the developed resins were durable and functional ones.

- 2. Collection capacity of uranium and the selective adsorption function: The resins showed high adsorptive activity toward carbonate species of uranium. The equilibrium adsorption amounts were more than 950mg U/g-resin in Gly and Arg resins, and the high functionalization of amino acid resin was performed. The adsorption rate was exceedingly rapid and the mechanism was interpreted to be Langmuir type adsorption of dicarbonate uranyl species by the analysis of the adsorption isotherms. The protonated amino residue may behave as a driving force for adsorptions, whose function was confirmed by the introduction of iminative amino acids possessing steric hindrance in amino group. Effect of carbonate concentration and sea water matrixes, and the behaviors of break-through and elution using mobile phase were also examined, and the developed resins were proofed to be a selective adsorbent for uranium.
- 3. Separation and concentration behaviors for uranium isotopes: The separation behaviors of natural uranium isotopes were traced by the resin contact using batch method. The separation factor (^<234>U/^<238>U) of each resin was accumulated by the measurement of alpha-ray. We found clearly that the isotope concentration effect largely emerged from the contact with carbonate species at high temperature condition (90°C). The effect of ester-bonding type resins developed formerly was langer than that of amido-bonding types. It suggests that the oxidation-redox action of amino acid within the resin behaves as a acceleration factor of the separation. Some factors were 300 times or more against those of the equilibria in solution. Although the factiors of ^<235>U/^<238>U were measured by ICP-MS method, we could not perform wholly the meaning evaluation, due to large errors at the measurements. However, we found the resins possessing the factors 20 times or more against those of the solution equilibria. Accordingly, the developed resins can be expected for the application to the contact systems with multistage separations. Less

Research Products (4 results)

Published: 1997-03-03