Neuronal Mechanisms of Epilepsy: An Experimental Study with Kindling

メタデータ	言語: jpn
	出版者:
	公開日: 2022-06-30
	キーワード (Ja):
	キーワード (En):
	作成者: Wada, Yuji
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00066701
..	This work is licensed under a Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

1994 Fiscal Year Final Research Report Summary

Neuronal Mechanisms of Epilepsy : An Experimental Study with Kindling

Research Project

Project/Area Number
05670802
Research Category
Grant-in-Aid for General Scientific Research (C)
Allocation Type
Single-year Grants
Research Field
Psychiatric science
Research Institution
Kanazawa University
Principal Investigator
WADA Yuji Kanazawa Univ., Dept.of Neuropsychiatry, Assistant Professor, 医学部・附属病院, 講師 (30175153)
Project Period (FY)
1993 – 1994
Keywords
EPILEPSY / KINDLING / SEROTONIN / RECEPTOR

Research Abstract

In order to clarify the neuronal mechanisms of epilepsy, we conducted neuropharmacological research on brain serotonin (5-HT) using hippocampal kindling, an experimental model of temporal lobe epilepsy.

In 1994, we examined acute and chronic effects of fluoxetine upon hippocampal seizures. Its single administration did not affect hippocampal seizure

In 1993, we examined the effects of intra-hippocampal microinjection of a 5-HTIA receptor agonist (8-OH-DPAT) on hippocampal kindled seizures and suggested that the 5-HTIA receptor subtype has an inhibitory action against the generation of hippocampal seizure activity. We also examined the effects of selective 5-HT reuptake inhibitors with antideperssant properties (fluoxetine and paroxetine), and found that the systemic administration of these compounds shortened the duration of generalized convulsion. In addition, the microinjection study of fluoxetine showed the antiepileptic action of fluoxetine against hippocampal seizure generation.

activity, whereas fluoxetine at a dose of 10 mg/kg significantly elevated the hippocampal afterdischarge threshold when administered 1 week after its daily treatment for 21 days. The inhibitory effect of acute fluoxetine was also observed in rats receiving a 21-day treatment of gepirone, a 5-HTIA receptor agonist.

Based on these experiment, the 5-HT system is suggested to play an inhibitory role in hippocampal seizure activity. Our results indicate that the effect of long-term fluoxetine administration relate to the well-demonstrated evidence that fluoxetine, upon its long-term administration, can facilitate net 5-HT neurotransmission through desensitization of presynaptic 5-HT autoreceptors. It is also auggested that slective 5-HT reuptake inhibitors prossess clinical efficacy on depressive symptoms in patients with seizure disorder.

Research Products (8 results)

				_		
					All	Other
	All	Ρι	ıblicat	ions ((8 re	sults)
[Publications] Wada Y.,Nakamura M.,Hasegawa H,Yamaguchi N: "Effect of serotonin uptake inhibiting antidepressants on h seizures in cats" Neuroscience Research Communications. 12. 119-124 (1993)	ippoca	amp	al kind	led		~
[Publications] Wada,Y,Nakamura M,Hasegawa H,Yamaguchi N: "Microingection of the serotonin uptake inhibitor flnoxetine seizure threshold in rats" Neuroscience Reseauch Communications. 13. 143-148 (1993)	elevat	tes l	nippoca	ampal		~
[Publications] Wada,Y.,Nakamura M.,Hasegawa,H.,Yamaguchi N.: "Intra-hippocampal injection of 8-OH-DPAT inhibits parti induced by kindling stimulation in cats" Neuroscience Letters. 159. 179-182 (1993)	al and	gei	neralize	ed seiz	zures	; •
[Publications] Wada,Y.,Shiraishi J.,Nakamura M: "Prolonged but not acute fluoxetine administration produces its inhibitory seizures in rats" Psychopharmacology. (印刷中). (1995)	effect	on	nippoca	arnpal		~
[Publications] Wada Y,Nakamura M,Hasegawa H,Yamaguchi N: Neuroscience Research Communications. 12. 119-124 (19	93)					~
[Publications] Wada Y,Nakamura M,Hasegawa H,Yamaguchi N: Neuroscience Research Communications. 13. 143-148 (19	93)					~
[Publications] Wada Y,Nakamura M,Hasegawa H,Yamaguchi N: Neuroscience Letters. 159. 179-182 (1993)						~
[Publications] Wada Y,Shiraishi J,Nakanura M: Psychopharmacology. in press.						~

URL: https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-05670802/056708021994kenkyu_seika_hokoku_

Published: 1996-04-14