Detecting motor unit abnormalities in amyotrophic lateral sclerosis using high-density surface EMG

メタデータ	言語: eng
	出版者:
	公開日: 2022-09-29
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00066951

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

1	Tit	tle: Detection of Motor Unit in Amyotrophic Lateral Sclerosis Using High-Density Surface
2	Ele	ectromyography
3	Au	thors' full names
4	Yu	ichi Nishikawa, Ph.D. ^{1*} ; Aleš Holobar, Ph.D. ² ; Kohei Watanabe, Ph.D. ³ ; Tetsuya
5	Ta	kahashi, Ph.D. ⁴ ; Hiroki Ueno, Ph.D. ⁵ ; Noriaki Maeda, Ph.D. ⁶ ; Hirofumi Maruyama, Ph.D. ⁷ ;
6	Sh	inobu Tanaka, Ph.D. ¹ ; and Allison S. Hyngstrom, Ph.D. ⁸
7	Au	thor affiliations
8	1)	Faculty of Frontier Engineering, Institute of Science & Engineering, Kanazawa University,
9		Kanazawa, Japan
10	2)	Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor,
11		Slovenia
12	3)	Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo
13		University, Nagoya, Japan
14	4)	Faculty of Rehabilitation Medicine, Department of Rehabilitation Medicine, Hiroshima
15		International University, Higashi-Hiroshima, Japan
16	5)	Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
17	6)	Division of Sports Rehabilitation, Graduate School of Biomedical and Health Sciences,
18		Hiroshima University, Hiroshima, Japan
19	7)	Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and

- 8) Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
- 22 Running Title: Quantitative assessment of MU behavior in ALS

23	Correspondence:
----	------------------------

- 24 Yuichi Nishikawa, Faculty of Frontier Engineering, Institute of Science & Engineering,
- 25 Kanazawa University, Kanazawa, Japan
- 26 Kakuma-machi, Kanazawa, 920-1192
- 27 Tel. & Fax.: +81-76-234-4760, Email: yuichi@se.kanazawa-u.ac.jp

29 Keywords

30 Amyotrophic lateral sclerosis, electromyography, motor unit recruitment

32 <u>Highlights</u>

33 •	The establishment of a c	uantitative assessment tool for dia	gnosis of ALS is an important

34 <u>clinical issue.</u>

- **35** <u>People with ALS had higher motor unit firing rate than age-matched control subjects.</u>
- 36 <u>The motor unit firing rate at recruitment was useful for differentiating people with ALS</u>
- 37 <u>from control subjects.</u>

38 Abstract

39	Objective: The purpose of this study was to detect specific motor unit (MU) abnormalities in
40	people with amyotrophic lateral sclerosis (ALS) compared to controls using high-density
41	surface electromyography (HD-SEMG).
42	Methods: Sixteen people with ALS and 16 control subjects. The participants performed ramp
43	up and sustained contractions at 30% of their maximal voluntary contraction. HD-SEMG
44	signals were recorded in the vastus lateralis muscle and decomposed into individual MU
45	firing behavior using a convolution blind source separation method.
46	Results: In total, 339 MUs were detected (people with ALS; $n=93$, control subjects; $n=246$).
47	People with ALS showed significantly higher mean firing rate, recruitment threshold,
48	coefficient of variation of the MU firing rate, MU firing rate at recruitment, and motoneurons
49	excitability than those of control subjects (p <0.001). The number of MU, MU firing rate,
50	recruitment threshold, and MU firing rate at recruitment were significantly correlated with
51	disease severity (p <0.001). Multivariable analysis revealed that an increased MU firing rate at
52	recruitment was independently associated with ALS.
53	Conclusions: These results suggest increased excitability at recruitment, which is consistent
54	with neurodegeneration results in a compensatory increase in MU activity.
55	Significance: Abnormal MU firing behavior provides an important physiological index for
56	understanding the pathophysiology of ALS.

1. Introduction

58	Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of
59	motoneurons, and its prevalence in Japan is reported to be 9.9 per 100,000 people (Doi et al.,
60	2014). ALS is characterized by selective motoneuron death that develops within weeks or
61	months (van Es et al., 2017). However, the mechanisms of neurodegeneration in ALS are not
62	fully understood, and biomarkers reflecting the disease condition have not yet been
63	established. Given the involvement of motoneurons, pathology in motor unit (MU) firing rates
64	is a strong candidate biomarker, as common signs of ALS include increased MU firing rates
65	as well as unstable and polyphasic MUAPs on needle electromyography (EMG) due to a
66	decreased number of MUs (EMG) (de Carvalho et al., 2008).
67	The MU is the basic functional unit of the neuromuscular system and is composed of
68	motoneurons, including their dendrites and axons, and the muscle fibers innervated by the
69	axons (Duchateau and Enoka, 2011). In ALS, degeneration of lower motoneurons leads to
70	denervation of muscle fibers, resulting in abnormal MU firing behavior (prolonged and
71	polyphasic) (Kiernan et al., 2011). These findings are usually obtained by needle EMG, but
72	this method depends on the experience and skill of the examiner, as the morphology of the
73	MU varies greatly depending on the position of the needle electrode and the effort to get the
74	needle in a good position causes sampling bias. Consequently, inexperienced physicians may
75	produce a false-negative evaluation. Several studies have quantitatively evaluated MUAP

76	morphology, mobilization pattern, and interference pattern (Fuglsang-Frederiksen and
77	Rønager, 1990; Kurca and Drobný, 2000; Sanders et al., 1996), but no objective quantitative
78	evaluation is available for actual clinical practice. Therefore, it would be useful to establish
79	and disseminate a quantitative EMG method other than needle EMG.
80	Recently, there have been several papers on noninvasive methods for MU
81	identification in control subjects and in patients with different diseases using high-density
82	surface EMG (HD-SEMG) decomposition (Mazzo et al., 2021; Nishikawa et al., 2021a,
83	2021b; Nuccio et al., 2021; Watanabe et al., 2021). HD-SEMG with more than 60 surface
84	electrodes allows this technique to increase the number of detectable MUs compared to
85	intramuscular EMG and to investigate detailed MU firing characteristics, such as the
86	relationship of firing rates between MUs with different recruitment thresholds (Holobar et al.,
87	2009; Martinez-Valdes et al., 2017; Merletti et al., 2008). It is possible to accurately analyze
88	how MU populations respond to pathological conditions by employing HD-SEMG
89	(Castronovo et al., 2017). Although a previous study evaluated MU activity by HD-SEMG in
90	people with ALS (Weddell et al., 2021), there are still many unknown factors about the
91	disease-specific abnormalities of MU firing behavior. Weddell et al. reported that in the later
92	stage of ALS, MUs recruited at lower force levels in the biceps brachii muscle adopt a faster
93	phenotype, revealing compensatory changes in MUs (Weddell et al., 2021). Furthermore, an
94	animal study has shown that ALS model mice already exhibit aberrations in motoneuron

95	function (increased firing rates and persistent inward currents (PICs)) in the early and
96	probably presymptomatic stage of the disease (Jensen et al., 2020). According to the report,
97	the presence of motoneuron aberrations in people with early-stage ALS may indicate an
98	increased MU firing rate. In addition, Piotrkiewicz et al. reported that the duration of the
99	afterhyperpolarization (AHP) in motoneurons was significantly lower in ALS patients than in
100	control subjects as measured by needle EMG (Piotrkiewicz and Hausmanowa-Petrusewicz,
101	2011). A reduced AHP duration is expected to increase the variability in the MU firing rate
102	because the firing times of motoneurons are sensitive to noise in motor commands. However,
103	the characteristics of abnormal MU activity in people with early-stage ALS compared with
104	control subjects have not been elucidated using HD-SEMG. Furthermore, parameters useful
105	for diagnosis have not been identified.
106	Our study examined the use of HD-SEMG to detect disease-specific changes in MUs
107	in the vastus lateralis (VL) muscle of people with ALS. We hypothesized that HD-SEMG
108	could be used to detect an abnormal MU firing rate in people with ALS and that abnormalities
109	in MU firing behavior are correlated with metrics of disease severity. The results of this study
110	will support the use of HD-SEMG as a quantitative non-invasive method for the diagnosis and
111	evaluation of ALS disease progression.
112	

113 2. Materials and methods

114 2.1. Subjects

115	Sixteen people with ALS and 16 control subjects were enrolled in this study after
116	signing an informed consent form. The study protocol and procedures were approved by
117	Kanazawa University's Committee on Ethics in Research (approval number No. 77-2) and
118	conformed to the requirements of the Declaration of Helsinki. The inclusion criteria were a
119	diagnosis of ALS, confirmed signs of successful recording from VL motoneurons by needle
120	EMG, and the ability to walk without assistance. The Awaji criteria were used to diagnose
121	ALS (Costa et al., 2012). People with the following conditions were not included: lower
122	extremity injury, dementia, myositis, spinal muscular atrophy, and dystonia. The inclusion
123	criteria for control subjects were consent to participate in the study and appropriate age
124	matching. The exclusion criteria for control subjects were orthopedic diseases and
125	neurological diseases. Each person with ALS underwent an ALS Functional Rating Scale-
126	Revised (ALSFRS-R) test with the same neurologist (H.U.). The ALSFRS-R consists of 12
127	items (on a 5-point scale ranging from 0 to 4), including speech, swallowing, gait, and other
128	activities. The total symptom severity score ranges from 0 to 48, with lower values indicating
129	more severe symptoms.
130	2.2. Experimental protocols

Experimental protocols were performed according to the same procedure used in a
previous study (Nishikawa *et al.*, 2021*a*). During the examination, all participants were seated

133	in a custom-made dynamometer (TSA-110, Takei Scientific Instruments. Niigata, Japan),
134	with the hip and knee joint fixed at 90° of flexion (full extension at 0°) (Fig. 1A). We
135	captured the force signals using an analog-to-digital converter (Quattrocento, OT
136	Bioelettronica, Turin, Italy) at a frequency of 2048 Hz. All participants were asked to perform
137	the maximal knee extension force in two trials for each limb, with 2 minutes between trials
138	and a warm-up of 10 minutes. In the maximum voluntary contraction (MVC), the participant
139	gradually increased the toque exerted by the knee extensor muscles from zero to maximum
140	over a period of three seconds and held the maximum torque for two seconds (Nishikawa et
141	al., 2019). The peak torque was selected as the target torque level of the submaximal ramp-up
142	contraction task. After a rest period of at least 10 minutes from the MVC measurement, all
143	participants underwent EMG measurement. HD-SEMG signals from the VL muscle were
144	recorded on the more severely side (weaker muscle strength) in the participants with ALS and
145	the dominant side (self-reported when asked which leg is used to kick ball) in control
146	participants. Participants were asked to perform the ramp and hold contraction task (ramp up
147	to 30% MVC in 15 sec, sustained contraction for 15 sec, and ramp down in 15 sec: Fig. 1B).
148	The subjects received real-time visual feedback of their force, which was displayed on a
149	monitor.
150	"Place Figure 1 around here."

151 2.3. EMG recording

152	An array of 64 multiple electrodes (1 mm in diameter, 8 mm between electrodes,
153	GR08MM1305, OT Bioelettronica) was used to record HD-SEMG signals from the VL
154	muscle using the same procedure used in previous studies (Nishikawa et al., 2017b, 2017a;
155	Watanabe et al., 2012). The positioning of the electrode was determined by previous studies
156	(the center of the electrode was placed at the midpoint between the head of the greater
157	trochanter and the lateral edge of the patella; Fig. 1D) (Nishikawa et al., 2021b, 2018, 2017b).
158	After skin cleaning (80% alcohol), the electrode grid was attached to the muscle surface using
159	a biadhesive sheet (KIT08MM1305, OT Bioelettronica) with conductive paste (Elefix ZV-
160	181E, NIHON KOHDEN, Tokyo, Japan) (Nishikawa et al., 2017b). A ground electrode was
161	placed on the patella. The monopolar HD-SEMG signals were recorded using a 16-bit analog-
162	to-digital converter (Quattrocento, OT Bioelettronica, sampling frequency at 2048 Hz),
163	amplified with a gain of 150, and off-line bandpass filtered 10–500 Hz. The force and EMG
164	signals were analyzed by MATLAB software (MATLAB 2021b, Math Works GK, MA,
165	USA).
166	2.4. Data processing
167	A validated convolutive blind source separation technique was used to separate the
168	HD-SEMG recordings into individual MU discharge timings (Holobar et al., 2009; Holobar
169	and Zazula, 2004; Merletti et al., 2008). After decomposition analysis, all identified MU spike
170	trains were manually verified by one investigator (Y.N.). Interspike intervals (ISI) < 33.3 or >

171	250 ms (firing rate > 30 and < 4 Hz, respectively) (Holobar <i>et al.</i> , 2009; Watanabe <i>et al.</i> ,
172	2016) as well as low-quality MU spike trains (pulse-to-noise ratio < 30 dB corresponding to
173	MU firing identification accuracy < 90%) (Holobar et al., 2014) were excluded. We
174	calculated the instantaneous firing rates (pulse per second, pps) of identified MUs from the
175	time interval between spikes. Afterward, the mean firing rate of the identified MUs was
176	calculated during ramping up and holding of the contraction (30 s in total). We defined the
177	coefficient of variation (CV) of the MU firing rate as the ratio of standard deviations and the
178	mean values of the MU firing rates. Further analysis did not include the MU firing rates with
179	> 30% CV (Fuglevand et al., 1993). The MU recruitment threshold (RT) was defined as the
180	force level (%MVC) at the first firing of each MU (Fig. 2A). Detected MUs were classified
181	into three subgroups for each RT (MU10, <10% MVC; MU20, 10%-20% MVC; and MU30,
182	20%–30% MVC; Fig. 2B) (Watanabe et al., 2016). We further divided them into two
183	subgroups using the absolute value of knee extension torque to compare the MU firing rate as
184	a function of the actual torque being generated. The two subgroups were divided as follows:
185	MU10Nm group, MUs recruited with less than 10 Nm; MU20Nm group, MUs recruited at
186	forces between 10 Nm and 20 Nm.
187	"Place Figure 2 around here."
188	To estimate PICs, we calculated ΔF . ΔF is calculated as the difference between the
189	smooth firing rate of the reference MU (using a 2-s Hanning window) and the recruitment-to-

190	derecruitment interval of the test MU (Gorassini et al., 2002) (Fig. 3A and B). The inclusion
191	criteria of ΔF values from MUs were that (1) the test MU was recruited at least 1 s after the
192	reference MU to ensure full activation of the PIC, (2) the test MU was derecruited at least 1.5
193	s before the reference MU in order to prevent overestimation of ΔF , and (3) the duration of the
194	firing of the test unit was greater than 2 s (Hassan et al., 2020, 2021).
195	We demonstrated the evaluation of motoneuron AHP duration by the analysis of their
196	ISI values. Previous study reported that the ISI, which corresponds to transitions between the
197	two ranges (transition interval, TI), is associated with the duration of AHP (Piotrkiewicz,
198	1999). The absolute value of each adjacent ISI difference is derived as follows:
199	Consecutive interval difference $(CD)2 = ISI_{i+1} - ISI_i $. CD2 was plotted against the
200	mean ISI duration calculated from the same two intervals: $MISI = (ISI_{i+1} + ISI_i)/2$
201	(Piotrkiewicz and Hausmanowa-Petrusewicz, 2011). Furthermore, we averaged mean CD2
202	data (CD_m) and MISI values over an interval of 10 ms. An example of a plot of CD_m vs. MISI
203	is shown Fig. 3C. The short- and long-interval sections of TI are estimated based on a
204	previous study (Piotrkiewicz et al., 2007).
205	"Place Figure 3 around here."
206	2.5. Statistical analysis
207	We performed all statistical analyses using Stata version 17 (Stata Corp LLC, Texas,
208	USA). All data were checked for normality of distribution using the Shapiro-Wilk test. An

209	unpaired t-test was used to compare participants with ALS and control subjects based on age,
210	height, body mass, thickness of subcutaneous tissue, knee extension torque, knee extension
211	torque/body mass, RT, CV of the MU firing rate, MU firing rate at recruitment, ΔF , and TI.
212	Analysis of covariance was performed to compare the number of MUs between participants
213	with ALS and control subjects; the dependent variable was the number of MUs, the fixed
214	factor was the group (ALS or control), and the covariate was the thickness of the
215	subcutaneous tissue. An analysis of the mean MU firing rate was conducted using a mixed-
216	effect model with a random intercept and a random slope. There were two explanatory
217	variables: the group (ALS or control) and MU subgroups (e.g., MU10, MU20, MU30,
218	MU10Nm, and MU20Nm). The association between the mean MU firing rate and the RT
219	and/or absolute torque in participants with ALS and healthy control subjects were computed
220	using Pearson's correlation coefficient. Furthermore, in the ALS group, Pearson's correlation
221	coefficient was used to determine the relationship between ALSFRS-R scores or knee
222	extension torque/body mass and the mean MU firing rate and the MU firing rate at
223	recruitment. The association between the ALSFRS-R and the number of MUs was analyzed
224	using partial correlation coefficients with the thickness of the subcutaneous tissue as a control
225	variable. To clarify factors related to the diagnosis of ALS, multiple logistic regression
226	analysis was conducted with ALS diagnosis and control status as the dependent variables and
227	outcomes that showed significant differences in the univariate analysis as the independent

228	variables. Furthermore, the outcome selected by multiple logistic regression analysis was
229	calculated as the area under the curve (AUC), specificity, and sensitivity of the outcome by
230	receiver operating characteristic (ROC) curve, and the Youden's index was used to calculate
231	the cutoff value. The significance level was set at a p value < 0.05 .
232	
233	3. Results
234	3.1. Participant characteristics
235	The characteristics of the participants are shown in Table 1. The age, height, and
236	thickness of the subcutaneous tissue of the participants did not differ between the groups ($p =$
237	0.0585, $p = 0.1051$, and $p = 0.6888$, respectively), while weight, knee extension torque, and
238	knee extension torque/body mass were significantly lower in people with ALS than in control
239	subjects ($p = 0.0072$, $p < 0.0001$, and $p < 0.0001$, respectively).
240	"Place Table 1 around here."
241	3.2. MU decomposition
242	A total of 339 MUs were accepted for data processing (people with ALS; $n = 93$,
243	control subjects; $n = 246$). The detected number of MUs was significantly lower in people
244	with ALS than in control subjects according to analysis of covariance ($p < 0.0001$). The
245	number of MUs detected in the MU subgroups was as follows: MU10, $n = 60$ (people with
246	ALS; $n = 16$, control subjects; $n = 44$), MU20, $n = 156$ (people with ALS; $n = 27$, control

247 subjects; n = 129), MU30, n = 123 (people with ALS; n = 50, control subjects; n = 73), 248 MU10Nm, n = 114 (people with ALS; n = 65, control subjects; n = 49), MU20Nm, n = 155249 (people with ALS; n = 26, control subjects; n = 129) (Fig. 3). "Place Figure 4 around here." 250 251 3.3. Properties of MUs 252 In people with ALS, the values of RT, CV of the MU firing rate, MU firing rate at 253 recruitment, and ΔF were significantly higher than in control subjects, whereas TI was significantly reduced in people with ALS (p < 0.01 for each comparison; Fig. 4 and 5). 254 255 Analysis of the mean MU firing rate at the MU subgroups (MU10, MU20, MU30, MU10Nm, 256 and MU20Nm) showed that people with ALS had a significantly higher MU firing rate than 257 control subjects (p < 0.0001, respectively, Fig. 6). Furthermore, the firing rate of the MUs in 258 the MU30 group of control subjects was significantly lower than the rates of those in the 259 MU10 and MU20 groups (p < 0.0001 and p = 0.0021, respectively), and the firing rate of the 260 MUs in the MU20 group was significantly lower than that of those in the MU10 group (p =261 0.0009, Fig. 6A). The MU firing rate was also significantly lower in the MU20Nm group than in the MU10Nm group (p < 0.0001, Fig. 6B). On the other hand, significant differences 262 263 among the MU subgroups were not observed in people with ALS (Fig. 6A and B). "Place Figure 5 around here." 264 "Place Figure 6 around here." 265

266	The mean MU firing rate was significantly related to the RT in the control group ($r =$
267	-0.6381, $p < 0.0001$) but not people with ALS ($r = -0.1356$, $p = 0.1949$, Fig. 7A and B).
268	Absolute torque was significantly related to the mean MU firing rate in control subjects ($r =$
269	-0.6788, $p < 0.0001$) but not people with ALS ($r = -0.1781$, $p = 0.0877$, Fig. 7C and D). In
270	people with ALS, ALSFRS-R scores were significantly related to the number of MUs ($r =$
271	0.6708, $p = 0.0062$), RT ($r = -0.5653$, $p = 0.0225$), mean MU firing rate ($r = -0.6369$, $p = 0.0225$)
272	0.0080), and MU firing rate at recruitment ($r = -0.5034$, $p = 0.0468$, Fig. 8). The knee
273	extension torque/body mass did not significantly correlate with the number of MUs ($r =$
274	-0.08527, $p = 0.7535$), RT ($r = -0.1728$, $p = 0.5221$), mean MU firing rate ($r = 0.1732$, $p = 0.1732$)
275	0.5212), or MU firing rate at recruitment ($r = 0.3210$, $p = 0.2254$).
276	"Place Figure 7 around here."
277	"Place Figure 8 around here."
278	In the univariate analysis, significant differences between participants with ALS and
279	controls were found for the MU firing rate at recruitment and RT values ($p = 0.007$ and $p =$
280	0.042, respectively), which were used as dependent variables in the multivariable logistic
281	regression analysis. Multivariable analysis revealed that an increased MU firing rate at
282	recruitment was independently associated with ALS (odds ratio = 23.26 , 95% CI = $1.44-$
283	376.53, $p = 0.027$). When the probability of ALS positivity is <i>P</i> , the model equation by
284	logistic regression can be written as follows.

286
$$ln P/_{1-P} = 2.25146 \times (MU firing rate at the RT) - 16.203222872882882892892892802802802812812822832842842852862862872882882892802802812812922932942942952952962962974. Discussion2982992912912924. Discussion293294295a small number of detected MUs, (2) overactive MUs at each contraction level, and (3) high296297298298299299291291292293294294295295296296297298298299299291291292293294294295295296296297298298299299299291291292293$$

304	differentiate the disease from myogenic diseases; additionally, this method is invasive and
305	therefore causes significant pain to the patient. Consequently, this study focused on the
306	identification of abnormalities in MU firing behavior using HD-SEMG, which is a
307	noninvasive method that can be applied to people with ALS without requiring them to endure
308	any pain.
309	Fast-twitch MUs are especially vulnerable to degeneration in people with ALS, while
310	slow-twitch MUs are more affected by compensatory reinnervation of denervated MUs (Frey
311	et al., 2000; Pun et al., 2006). Therefore, a decrease in the number of MUs is a known
312	electrophysiological finding in ALS with neurogenic degeneration (van Es et al., 2017). The
313	HD-array showed that the number of MUs detected was significantly lower in people with
314	ALS than in control subjects, consistent with these previous findings. However, it should be
315	noted that protocol of the present study uses only 30% MVC and therefore does not
316	encompass all MUs.
317	We found that the firing rates of MUs in all MU subgroups were significantly higher
318	in people with ALS than in control subjects. Notably, people with ALS are known to have a
319	reduced number of MUs due to degeneration of motoneurons, such that the unaffected
320	motoneurons compensatively increase their firing rate (Shiga et al., 2000). The results of this
321	study showed that people with ALS exhibited a significantly small number of MUs. The
322	number of MUs and their firing rate are important factors in exerting muscle force (Heckman

323	and Enoka, 2012), and the results of this study may reflect the result of compensating for the
324	decrease in the number of MUs by increasing the firing rate. Importantly, our results also
325	showed a higher MU firing rate at a low RT (recruited at < 10% MVC and < 10 Nm) in
326	people with ALS compared with control subjects. Previous studies reported that slow-twitch
327	MUs are the most resistant to disease, maintaining an ability to reinnervate (Frey et al., 2000;
328	Hegedus et al., 2008; Pun et al., 2006), suggesting the involvement of a mechanism other than
329	degeneration of motoneurons. In addition to motoneuron degeneration, there are several
330	reports of increased motor cortex excitability in people with ALS (Vucic et al., 2013; Vucic
331	and Kiernan, 2006). According to previous research, increased cortical excitability can be a
332	result of changes in neurons' intrinsic properties, dysfunctional inhibitory mechanisms, and/or
333	structural changes leading to behavioral deficits (Sankaranarayani et al., 2014). Furthermore,
334	SOD1 mice show increased PICs in motoneurons during the early and possibly
335	presymptomatic stages of disease (Jensen et al., 2020). These findings suggest that there could
336	be changes in the intrinsic electrical properties of the motoneurons as well as changes in
337	cortex. We considered that these findings support the results of this study, which confirmed
338	the overactivity of MUs regardless of the firing threshold.
339	When lower motoneurons die in ALS, fast-twitch MUs are preferentially
340	degenerated, and surrounding slow-twitch MUs compensate by reinnervating (Frey et al.,
341	2000; Hegedus et al., 2008; Pun et al., 2006). We found that people with ALS exhibited a

342	significant increase in RT compared with control subjects. This increase is consistent with a
343	greater degree of rate modulation in MUs that have relatively larger forces due to the onset of
344	reinnervation. AHPs and PICs are known to be important factors that affect the firing
345	frequency of motoneurons and the excitability of spinal motoneurons (Jensen et al., 2020;
346	Kuo et al., 2004). Previous studies reported that an increase in PICs is responsible for the
347	increase in motoneurons excitability (Kuo et al., 2004), while a decrease in AHPs is
348	responsible for the increase in firing frequency (de Carvalho and Swash, 2016). In this study,
349	the TI and ΔF methods were used to estimate AHPs and PICs, respectively, and the results
350	showed that people with ALS exhibited greater ΔF and lower TI than control subjects. These
351	findings suggested that the mechanism of greater rate modulation in MUs consisted of greater
352	current-to-frequency gain in motoneurons, caused by a reduction in AHPs and/or an increase
353	in PICs. Furthermore, a reduction in AHP amplitudes would contribute to the increased CV of
354	the firing rate, as a shorter AHP duration would make motoneuron firing times more sensitive
355	to noise in motor commands (Matthews, 1996). This finding is in accordance with the results
356	of the present study, showing that people with ALS exhibit a greater CV of the mean MU
357	firing rate than control subjects. Although there has been a report of progressive
358	hyperexcitability followed by hypoexcitability of the spinal motoneurons until the onset of
359	denervation (Martínez-Silva et al., 2018), and there is controversy over the excitability level
360	of spinal motoneurons in the early stage of ALS, our results support the findings of Huh et al.

361 showing that excitability increases in onset of denervation period in ALS model mice (Huh et 362 al., 2021). Huh et al. also report a decrease in spinal cord excitability as symptoms progress 363 (Huh et al., 2021). Although our study only included subjects in the early stages of disease onset, we consider that it would be important to include subjects at different stages of disease 364 365 in the future studies to examine serial changes in spinal excitability. 366 Motoneuron firing rates and thresholds are correlated at any specified force level; 367 thus, the RT is determined by the input resistance of the cell and number of leak channels (De 368 Luca and Hostage, 2010). The MU firing behavior in the control group exemplifies the neural 369 control scheme referred to as the "onion skin" control scheme (De Luca and Erim, 1994; De 370 Luca and Hostage, 2010; de Souza et al., 2018), which states that early recruited MUs have a 371 higher mean MU firing rate than later recruited MUs and maintain that higher MU firing rate 372 over time. On the other hand, the MU firing behavior in the ALS group did not follow the 373 onion skin scheme, and there was no relationship between the MU firing rate and the RT. The 374 MU firing rate was significantly higher in people with ALS in all MU subgroups, confirming 375 a tendency for later recruited MUs to be more active, as shown in Fig. 7B. A previous study 376 attempted to examine the RT of MUs in people with ALS, but visual inspection was 377 performed, and the RT could not be used as a useful index (de Carvalho et al., 2012). It is 378 difficult to visually confirm the recruitment of MUs, but in this study, the RTs of MUs can be 379 easily identified by synchronization with force data. The RT of an MU is an important

380	physiological indicator in people with ALS, especially in muscles with predominantly fast-
381	twitch MUs (Frey et al., 2000; Pun et al., 2006), because it reflects the characteristics of the
382	MU activation properties (e.g., slow-twitch or fast-twitch MUs) (Gregory and Bickel, 2005).
383	Our findings reaffirm the importance of the RT of MUs as one of the indicators of abnormal
384	MU firing behavior in people with ALS.
385	The comparison between the ALSFRS-R score and several MU outcomes (e.g., mean
386	MU firing rate, RT, CV of the MU firing rate, and MU firing rate at recruitment) revealed that
387	the MU firing rate is significantly influenced by disease severity. ALS is a rapidly progressive
388	neurodegenerative disease (van Es et al., 2017). It has been shown in rat models of ALS that
389	the proportion of muscle fiber types changes from time to time as neurodegeneration
390	progresses (Kryściak et al., 2014). The correlation of neurodegeneration with abnormal MU
391	firing patterns is consistent with these observations. On the other hand, there was no
392	correlation between muscle weakness and abnormal MU firing behavior. This finding
393	indicates that there is no relationship between the progression of muscle weakness and
394	abnormal MU firing behavior and suggests that abnormalities in MUs can be detected in the
395	early phase of ALS. The assessment of MU firing behavior in people with ALS is often used
396	for diagnostic purposes and rarely for the purpose of tracking long-term changes in the
397	disease condition. However, our findings suggest that abnormalities in MU firing behavior
398	directly reflect the pathogenesis of ALS and may be an important biomarker for

399	understanding the progression of signs and symptoms. In particular, our results revealed that
400	the MU firing rate at recruitment is useful for differentiating disease by multiple logistic
401	regression analysis. The cutoff value for the MU firing rate at recruitment was calculated to
402	be > 7.660 , and the ALS detection rate was 87.5% when this cutoff value was used. This
403	finding was inferred from only one parameter, and we consider that its discriminative
404	accuracy is relatively high and useful for diagnosis. In addition to pain, an inherent
405	disadvantage of conventional needle EMG is that the position of the needle electrode must be
406	changed every time to search for a small electrode region, which could decrease the reliability
407	of measurement. Furthermore, needle EMG causes the shape of the MUAP to change with the
408	position of the needle electrode, resulting in the examiner focusing on lesion detection and
409	resulting sampling bias. By contrast, HD-SEMG can analyze MU firing behavior over a wide
410	range within a muscle at once, which may reduce sampling bias.
411	Our study has several limitations. First, since this study was a cross-sectional study
412	and did not examine neurodegeneration longitudinally, it only predicts the process of
413	neurodegeneration based on differences in the severity of symptoms. In the future,
414	longitudinal follow-up studies of MU firing behavior in the same patients will clarify how
415	neural reinnervation due to neurodegeneration affects MUs. This information will provide a
416	more detailed understanding of the pathogenesis of ALS and provide useful data for clarifying
417	pathology and new treatment methods. Second, although this study only included subjects

418	who could walk independently, the included patients had significantly lower muscle strength
419	than the control subjects. Detecting abnormalities in MU firing behavior in the very early
420	stages of neurodegeneration in ALS, when muscle strength is still preserved, would be a more
421	useful tool for the early detection and diagnosis of the disease. Finally, we did not perform
422	comparisons with needle EMG. However, HD-SEMG has been validated extensively in
423	comparison with needle EMG in previous work, and the usefulness of the HD-SEMG
424	methodology has already been verified (Holobar et al., 2014, 2010; Marateb et al., 2011).
425	Although most of the people with ALS in this study were evaluated by needle EMG at the
426	time of diagnosis, clinical needle examinations of decomposition were not performed, and the
427	EMG waveforms were visually evaluated to confirm pathophysiology. Therefore, to reduce
428	the physical pain of the people with ALS, we did not perform additional needle EMG
429	measurements, and only HD-SEMG measurements were performed in this study.
430	
431	5. Conclusion
432	We identified disease-specific MU firing behavior in people with ALS using HD-
433	SEMG. The people with ALS exhibited overactivity in all investigated types of MUs
434	compared to control subjects, indicating the usefulness of this new method for the
435	noninvasive assessment of neuromuscular degeneration in people with ALS. Abnormalities in

436	MU firing behavior were significantly correlated with disease severity, providing an
437	important physiological index for understanding the pathophysiology of ALS.
438	
439	Data availability statement
440	All primary data reported here are available from the corresponding author (Y.N.)
441	upon reasonable request.
442	
443	Conflict of Interest Statement
444	The authors declare no competing interests.
445	
446	Author contributions
447	Conception or design of the work: Y.N., A.H., K.W., and T.T.; Acquisition or
448	analysis or interpretation of data for the work: Y.N., A.H., K.W., T.T., H.U., N.M., H.M.,
449	S.T., and A.S.H.; Drafting the work or revising it critically for important intellectual content:
450	Y.N., A.H., K.W., T.T., H.U., N.M., H.M., S.T., and A.S.H. All authors have read and
451	approved the final version of this manuscript and agree to be accountable for all aspects of the
452	work in ensuring that questions related to the accuracy or integrity of any part of the work are
453	appropriately related to the accuracy or integrity of any part of the work are appropriately

454	investigated and resolved. All persons designated as authors qualify for authorship, and all
455	those who qualify for authorship are listed.
456	
457	Acknowledgements
458	Yuichi Nishikawa, Kohei Watanabe, and Aleš Holobar were supported by the
459	Bilateral Program of JSPS (JPJSBP-82626). Aleš Holobar was supported by the Slovenian

460 Research Agency (project J2-1731 and program funding P2-0041).

461 References

462	Castronovo M, Mrach	acz-Kersting N, Land	di F, Jørgensen H	HR, Severinsen	K, Farina D. Motor
-----	---------------------	----------------------	-------------------	----------------	--------------------

- 463 Unit Coherence at Low Frequencies Increases Together with Cortical Excitability Following a
- 464 Brain-Computer Interface Intervention in Acute Stroke Patients. Converging Clinical and
- 465 Engineering Research on Neurorehabilitation II, Springer International Publishing; 2017, p.

466 1001–5.

- 467 Costa J, Swash M, de Carvalho M. Awaji criteria for the diagnosis of amyotrophic lateral
- 468 sclerosis:a systematic review. Arch Neurol 2012;69:1410–6.
- 469 De Luca CJ, Erim Z. Common drive of motor units in regulation of muscle force. Trends
- 470 Neurosci 1994;17:299–305.
- 471 De Luca CJ, Hostage EC. Relationship between firing rate and recruitment threshold of
- 472 motoneurons in voluntary isometric contractions. J Neurophysiol 2010;104:1034–46.
- 473 de Carvalho M, Dengler R, Eisen A, England JD, Kaji R, Kimura J, et al. Electrodiagnostic
- 474 criteria for diagnosis of ALS. Clin Neurophysiol 2008;119:497–503.
- 475 de Carvalho M, Swash M. Lower motor neuron dysfunction in ALS. Clin Neurophysiol
- **476** 2016;127:2670–81.
- 477 de Carvalho M, Turkman A, Swash M. Motor unit firing in amyotrophic lateral sclerosis and
- 478 other upper and lower motor neurone disorders. Clin Neurophysiol 2012;123:2312–8.

- 479 Doi Y, Atsuta N, Sobue G, Morita M, Nakano I. Prevalence and incidence of amyotrophic
- 480 lateral sclerosis in Japan. J Epidemiol 2014;24:494–9.
- 481 Duchateau J, Enoka RM. Human motor unit recordings: origins and insight into the integrated
- 482 motor system. Brain Res 2011;1409:42–61.
- 483 Frey D, Schneider C, Xu L, Borg J, Spooren W, Caroni P. Early and selective loss of
- 484 neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J
- 485 Neurosci 2000;20:2534–42.
- 486 Fuglevand AJ, Winter DA, Patla AE. Models of recruitment and rate coding organization in
- 487 motor-unit pools. J Neurophysiol 1993;70:2470–88.
- 488 Fuglsang-Frederiksen A, Rønager J. EMG power spectrum, turns-amplitude analysis and
- 489 motor unit potential duration in neuromuscular disorders. J Neurol Sci 1990;97:81–91.
- 490 Gorassini M, Yang JF, Siu M, Bennett DJ. Intrinsic activation of human motoneurons:
- 491 possible contribution to motor unit excitation. J Neurophysiol 2002;87:1850–8.
- 492 Gregory CM, Bickel CS. Recruitment patterns in human skeletal muscle during electrical
- **493** stimulation. Phys Ther 2005;85:358–64.
- 494 Hassan A, Thompson CK, Negro F, Cummings M, Powers RK, Heckman CJ, et al. Impact of
- 495 parameter selection on estimates of motoneuron excitability using paired motor unit analysis.
- 496 J Neural Eng 2020;17:016063.

- 497 Hassan AS, Fajardo ME, Cummings M, McPherson LM, Negro F, Dewald JPA, et al.
- 498 Estimates of persistent inward currents are reduced in upper limb motor units of older adults.
- **499** J Physiol 2021;599:4865–82.
- 500 Heckman CJ, Enoka RM. Motor unit. Compr Physiol 2012;2:2629–82.
- 501 Hegedus J, Putman CT, Tyreman N, Gordon T. Preferential motor unit loss in the SOD1
- 502 G93A transgenic mouse model of amyotrophic lateral sclerosis. J Physiol 2008;586:3337–51.
- 503 Holobar A, Farina D, Gazzoni M, Merletti R, Zazula D. Estimating motor unit discharge
- patterns from high-density surface electromyogram. Clin Neurophysiol 2009;120:551–62.
- 505 Holobar A, Minetto MA, Botter A, Negro F, Farina D. Experimental analysis of accuracy in
- 506 the identification of motor unit spike trains from high-density surface EMG. IEEE Trans
- 507 Neural Syst Rehabil Eng 2010;18:221–9.
- 508 Holobar A, Minetto MA, Farina D. Accurate identification of motor unit discharge patterns
- 509 from high-density surface EMG and validation with a novel signal-based performance metric.
- 510 J Neural Eng 2014;11:016008.
- 511 Holobar A, Zazula D. Correlation-based decomposition of surface electromyograms at low
- 512 contraction forces. Med Biol Eng Comput 2004;42:487–95.
- 513 Huh S, Heckman CJ, Manuel M. Time Course of Alterations in Adult Spinal Motoneuron
- 514 Properties in the SOD1(G93A) Mouse Model of ALS. ENeuro 2021;8.
- 515 https://doi.org/10.1523/ENEURO.0378-20.2021.

- Jensen DB, Kadlecova M, Allodi I, Meehan CF. Spinal motoneurones are intrinsically more
 responsive in the adult G93A SOD1 mouse model of amyotrophic lateral sclerosis. J Physiol
 2020;598:4385–403.
- 519 Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, et al. Amyotrophic
- 520 lateral sclerosis. Lancet 2011;377:942–55.
- 521 Kryściak K, Grieb P, Celichowski J. Changes in motor unit properties in SOD1 (G93A) rats.
- 522 Muscle Nerve 2014;50:577–86.
- 523 Kuo JJ, Schonewille M, Siddique T, Schults ANA, Fu R, Bär PR, et al. Hyperexcitability of
- 524 cultured spinal motoneurons from presymptomatic ALS mice. J Neurophysiol 2004;91:571–5.
- 525 Kurca E, Drobný M. Four quantitative EMG methods and theirs individual parameter
- 526 diagnostic value. Electromyogr Clin Neurophysiol 2000;40:451–8.
- 527 Marateb HR, McGill KC, Holobar A, Lateva ZC, Mansourian M, Merletti R. Accuracy
- 528 assessment of CKC high-density surface EMG decomposition in biceps femoris muscle. J
- 529 Neural Eng 2011;8:066002.
- 530 Martínez-Silva M de L, Imhoff-Manuel RD, Sharma A, Heckman CJ, Shneider NA, Roselli
- 531 F, et al. Hypoexcitability precedes denervation in the large fast-contracting motor units in two
- unrelated mouse models of ALS. Elife 2018;7. https://doi.org/10.7554/eLife.30955.

533	Martinez-Valdes E, Negro F, Laine CM, Falla D, Mayer F, Farina D. Tracking motor units
534	longitudinally across experimental sessions with high-density surface electromyography. J
535	Physiol 2017;595:1479–96.
536	Matthews PB. Relationship of firing intervals of human motor units to the trajectory of post-
537	spike after-hyperpolarization and synaptic noise. J Physiol 1996;492 (Pt 2):597-628.
538	Mazzo MR, Weinman LE, Giustino V, Mclagan B, Maldonado J, Enoka RM. Changes in
539	neural drive to calf muscles during steady submaximal contractions after repeated static
540	stretches. J Physiol 2021;599:4321–36.
541	Merletti R, Holobar A, Farina D. Analysis of motor units with high-density surface
542	electromyography. J Electromyogr Kinesiol 2008;18:879–90.
543	Nishikawa Y, Watanabe K, Holobar A, Maeda N, Maruyama H, Tanaka S. Identification of
544	the laterality of motor unit behavior in female patients with parkinson's disease using high-
545	density surface electromyography. Eur J Neurosci 2021a;53:1938–49.
546	Nishikawa Y, Watanabe K, Holobar A, Takahashi T, Maeda N, Maruyama H, et al.
547	Association between the Degree of Pre-Synaptic Dopaminergic Pathway Degeneration and
548	Motor Unit Firing Behavior in Parkinson's Disease Patients. Sensors 2021b;21.

- 549 https://doi.org/10.3390/s21196615.
- 550 Nishikawa Y, Watanabe K, Kawade S, Takahashi T, Kimura H, Maruyama H, et al. The
- effect of a portable electrical muscle stimulation device at home on muscle strength and

- 552 activation patterns in locomotive syndrome patients: A randomized control trial. J
- 553 Electromyogr Kinesiol 2019;45:46–52.
- 554 Nishikawa Y, Watanabe K, Takahashi T, Hosomi N, Orita N, Mikami Y, et al. Sex
- 555 differences in variances of multi-channel surface electromyography distribution of the vastus
- 556 lateralis muscle during isometric knee extension in young adults. Eur J Appl Physiol

557 2017a;117:583–9.

- 558 Nishikawa Y, Watanabe K, Takahashi T, Kimura H, Maruyama H. The effect of medication
- on vastus lateralis muscle activation patterns in Parkinson's disease patients. J Electromyogr
- 560 Kinesiol 2018;42:66–73.
- 561 Nishikawa Y, Watanabe K, Takahashi T, Orita N, Kimura H, Matsumoto M, et al. Spatial
- solution between the sector of the sector of
- 563 contractions in Parkinson's disease patients. J Electromyogr Kinesiol 2017b;37:125–31.
- 564 Nuccio S, Del Vecchio A, Casolo A, Labanca L, Rocchi JE, Felici F, et al. Deficit in knee
- 565 extension strength following anterior cruciate ligament reconstruction is explained by a
- reduced neural drive to the vasti muscles. J Physiol 2021;599:5103–20.
- 567 Piotrkiewicz M. An influence of afterhyperpolarization on the pattern of motoneuronal
- rhythmic activity. J Physiol Paris 1999;93:125–33.
- 569 Piotrkiewicz M, Hausmanowa-Petrusewicz I. Motoneuron afterhyperpolarisation duration in
- amyotrophic lateral sclerosis. J Physiol 2011;589:2745–54.

571	Piotrkiewicz M, Kudina L, Mierzejewska J, Jakubiec M, Hausmanowa-Petrusewicz I. Age-
572	related change in duration of afterhyperpolarization of human motoneurones. J Physiol
573	2007:585:483-90.

- 574 Pun S, Santos AF, Saxena S, Xu L, Caroni P. Selective vulnerability and pruning of phasic
- 575 motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 2006;9:408–19.
- 576 Sanders DB, Stålberg EV, Nandedkar SD. Analysis of the electromyographic interference
- 577 pattern. J Clin Neurophysiol 1996;13:385–400.
- 578 Sankaranarayani R, Raghavan M, Nalini A, Laxmi TR, Raju TR. Reach task-associated
- 579 excitatory overdrive of motor cortical neurons following infusion with ALS-CSF. J Neural
- **580** Transm 2014;121:49–58.
- 581 Shiga Y, Onodera H, Shimizu H, Kimura I, Ohnuma A, Itoyama Y. Two consecutive
- 582 fasciculation potentials having different motor unit origins are an electromyographically
- 583 pathognomonic finding of ALS. Electromyogr Clin Neurophysiol 2000;40:237–41.
- de Souza LML, Cabral HV, de Oliveira LF, Vieira TM. Motor units in vastus lateralis and in
- 585 different vastus medialis regions show different firing properties during low-level, isometric
- 586 knee extension contraction. Hum Mov Sci 2018;58:307–14.
- 587 van, Es, Michael A, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, et al.
- 588 Amyotrophic lateral sclerosis. Lancet 2017;390:2084–98.

- 589 Vucic S, Kiernan MC. Novel threshold tracking techniques suggest that cortical
- 590 hyperexcitability is an early feature of motor neuron disease. Brain 2006;129:2436–46.
- 591 Vucic S, Ziemann U, Eisen A, Hallett M, Kiernan MC. Transcranial magnetic stimulation and
- 592 amyotrophic lateral sclerosis: pathophysiological insights. J Neurol Neurosurg Psychiatry
- **593** 2013;84:1161–70.
- 594 Watanabe K, Holobar A, Kouzaki M, Ogawa M, Akima H, Moritani T. Age-related changes
- in motor unit firing pattern of vastus lateralis muscle during low-moderate contraction. Age
- **596** 2016;38:48.
- 597 Watanabe K, Holobar A, Uchida K, Mita Y. Fish Protein Ingestion Induces Neural, but Not
- 598 Muscular Adaptations, Following Resistance Training in Young Adults. Front Nutr
- **599** 2021;8:645747.
- 600 Watanabe K, Kouzaki M, Moritani T. Task-dependent spatial distribution of neural activation
- 601 pattern in human rectus femoris muscle. J Electromyogr Kinesiol 2012;22:251–8.
- 602 Weddell T, Bashford J, Wickham A, Iniesta R, Chen M, Zhou P, et al. First-recruited motor
- 603 units adopt a faster phenotype in amyotrophic lateral sclerosis. J Physiol 2021;599:4117–30.

604 Figure legends

605 Fig. 1. Experimental setting.

606	All subjects were seated on a custom-made dynamometer with their hip and knee fixed at 90°
607	and performed the motor task (A). A 30% maximal voluntary contraction task was performed
608	as a submaximal voluntary contraction task (B). A 2D grid of 64 electrodes (C) was attached
609	to the vastus lateralis muscle (D).
610	
611	Fig. 2. Definition of recruitment threshold (RT) and motor unit (MU) subgroups.
612	The RT was calculated from the spike train detected at the beginning of each MU (the white
613	circles indicate the RT, and the solid line indicates torque data) in control subject (A) and
614	ALS individual (C). Three MU subgroups were defined with reference to the RT in control
615	subject (B) and ALS individual (D): the MU10 group includes MUs recruited with less than
616	10% maximal voluntary contraction (MVC), the MU20 group includes MUs recruited at
617	forces between 10% MVC and 20% MVC, and the MU30 group includes MUs recruited at
618	forces higher than 20% MVC.
619	
620	Fig. 3. Estimation of ΔF and transition interval.
621	Example data from one subject (control subject, age = 59 years, male) showing the

622 instantaneous discharge rate profiles of two concurrently active motor units expressed in

623	pulses per second (pps). The first recruited motor unit was classified as the reference motor
624	unit (B), and the second recruited motor unit was the test motor unit (A). ΔF was estimated as
625	$F_{start} - F_{end}$. Relationship between the consecutive interval difference (CD) and mean
626	interspike interval (MISI) (C). Arrow, transition interval.
627	
628	Fig. 4. Comparison of motor unit (MU) properties between the people with amyotrophic
629	lateral sclerosis (ALS) and control subjects.
630	People with ALS showed significantly higher recruitment thresholds (A), MU firing rates at
631	recruitment (B), and CV values of the MU firing rate (C) than control subjects.
632	
633	Fig. 5. Comparison of ΔF and transition interval (TI) between people with amyotrophic
634	lateral sclerosis (ALS) and control subjects.
635	People with ALS showed significantly higher values of ΔF , and significantly lower values of
636	TI than control subjects.
637	
638	Fig. 6. Comparison of the mean motor unit (MU) firing rate in control subjects and
639	people with amyotrophic lateral sclerosis (ALS) among the MU10, MU20, MU30,
640	MU10Nm, and MU20Nm groups.

641	There were significant differences between the control subjects and people with ALS in each
642	MU subgroup (e.g., MU10, MU20, MU30 (A), and MU10Nm, MU20Nm (B)). Furthermore,
643	control subjects showed a higher mean MU firing rate for the early-recruited MUs than for the
644	later-recruited MUs, whereas no such difference was observed in people with ALS. * $p <$
645	0.0001, † $p < 0.0001$ compared with control subjects.
646	
647	Fig. 7. Relationship of the recruitment threshold (RT) and/or absolute torque and with
648	the motor unit (MU) firing rate in control subjects and people with amyotrophic lateral
649	sclerosis (ALS).
650	Significant correlations of the Rt and/or absolute torque with the MU firing rate were
651	observed in control subjects (A and C) but not in people with ALS (B and D).
652	
653	Fig. 8. Relationship between the amyotrophic lateral sclerosis (ALS) Functional Rating
654	Scale-Revised (ALSFRS-R) score and motor unit (MU) properties in people with ALS.
655	Significant correlations were observed between the ALSFRS-R scores and number of MUs
656	(A), RT (B), mean MU firing rate (C), and MU firing rate at recruitment (D).
657	
658	Fig. 9. The receiver operating characteristic (ROC) curve of the motor unit (MU) firing
659	rates at recruitment.

- 660 The ROC curve was calculated from the data of people with amyotrophic lateral sclerosis (ALS)
- and control subjects. The cutoff value for detecting ALS was calculated to be > 7.6, and the
- sensitivity and specificity were 81.25% and 90.63%, respectively.

D

B

D

MU Firing Rates at the Recruitment (pps)

Α

D

ALS

Cut off value > 7.660, AUC = 0.9258Sensitivity = 81.25, Specificity = 90.63

