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EXPRESS LETTER

Magnetostratigraphic evidence 
for post-depositional distortion of osmium 
isotopic records in pelagic clay and its 
implications for mineral flux estimates
Yoichi Usui1*  and Toshitsugu Yamazaki2 

Abstract 

Chemical stratigraphy is useful for dating deep-sea sediments, which sometimes lack radiometric or biostratigraphic 
constraints. Oxic pelagic clay contains Fe–Mn oxyhydroxides that can retain seawater 187Os/188Os values, and its age 
can be estimated by fitting the isotopic ratios to the seawater 187Os/188Os curve. On the other hand, the stability 
of Fe–Mn oxyhydroxides is sensitive to redox change, and it is not clear whether the original 187Os/188Os values are 
always preserved in sediments. However, due to the lack of independent age constraints, the reliability of 187Os/188Os 
ages of pelagic clay has never been tested. Here we report inconsistency between magnetostratigraphic and 
187Os/188Os ages in pelagic clay around Minamitorishima Island. In a ~ 5-m-thick interval, previous studies correlated 
187Os/188Os data to a brief (< 1 million years) isotopic excursion in the late Eocene. Paleomagnetic measurements 
revealed at least 12 polarity zones in the interval, indicating a > 2.9–6.9 million years duration. Quartz and feldspars 
content showed that while the paleomagnetic chronology gives reasonable eolian flux estimates, the 187Os/188Os 
chronology leads to unrealistically high values. These results suggest that the low 187Os/188Os signal has diffused from 
an original thin layer to the current ~ 5-m interval, causing an underestimate of the deposition duration. The preserva-
tion of the polarity patterns indicates that a mechanical mixing such as bioturbation cannot be the main process for 
the diffusion, so diagenetic redistribution of Fe–Mn oxyhydroxides and associated Os may be responsible. The paleo-
magnetic chronology presented here also demands reconsiderations of the timing, accumulation rate, and origins of 
the high content of rare-earth elements and yttrium in pelagic clay around Minamitorishima Island.
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Introduction
Hydrogenous Os isotopic ratios are useful chrono-
logical markers for unfossiliferous pelagic clay, espe-
cially around the Eocene–Oligocene boundary (e.g., 
Peucker-Ehrenbrink and Ravizza 2012). Oxic pelagic 

clay contains Fe–Mn oxyhydroxides precipitated from 
seawater (e.g., Uramoto et  al. 2019). These oxyhydrox-
ides capture osmium in seawater (Koide et al. 1991) and 
record the 187Os/188Os at the time of deposition. In the 
late Eocene, seawater 187Os/188Os show a large excursion 
to unradiogenic (low 187Os/188Os) values (Ravizza and 
Peucker-Ehrenbrink 2003). This excursion was identi-
fied not only in pelagic clay (Pegram and Turekian 1999) 
and ferromanganese crusts (Klemm et  al. 2005; Nielsen 
et  al. 2009), but also in biogenic sediments with high-
resolution biostratigraphic and magnetostratigraphic 
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age models (Ravizza and Peucker-Ehrenbrink 2003; Dalai 
et  al. 2006). The age of the 187Os/188Os minimum was 
estimated to be 34.5 ± 0.1  Ma (Dalai et  al. 2006). It has 
also been proposed that dating of pelagic clay with ~ 0.1 
million-year (Myr) resolution is possible by matching the 
shape of the excursion (Dalai et  al. 2006; Nozaki et  al. 
2019; Ohta et  al. 2020). However, the reliability of this 
method critically depends on the assumptions that Fe–
Mn oxyhydroxides are hydrogenous and have been stable 
since deposition (e.g., Peucker-Ehrenbrink and Ravizza 
2000).

Processes such as bioturbation and diagenesis can 
diffuse Fe–Mn oxyhydroxides either mechanically or 
chemically, so they can potentially distort the Os isotopic 
records. Bioturbation appears to be ubiquitous, even in 
pelagic clay of oligotrophic oceans (e.g., Rutledge et  al. 
1995; Expedition 329 Scientists 2011). Detailed geo-
chemical studies of sediments and Fe–Mn nodules in the 
northeastern Pacific suggested that deep-sea redox con-
ditions may have varied in response to surface productiv-
ity changes even if it is oxic at present (Mewes et al. 2014; 
Wegorzewski and Kuhn 2014). Diagenetic Fe–Mn micro-
nodules were reported from surface clay in the western 
Pacific (Li et al. 2020). Abundant magnetite produced by 
magnetotactic bacteria was also found in oxic pelagic clay 
(Yamazaki and Shimono 2013; Shimono and Yamazaki 
2016; Usui et al. 2017, 2019). These bacteria are thought 
to live near oxic/anoxic transition, suggesting the pres-
ence of reducing microenvironment (Yamazaki and Shi-
mono 2013).

Because pelagic clay generally has a low sedimentation 
rate (< 1 m/Myr), post-depositional modifications would 
affect the reliability of 187Os/188Os stratigraphy. To date, 
however, no pelagic clay with 187Os/188Os data has been 
accompanied by independent age constraints with suf-
ficient resolution to confirm the stability of the isotopic 
records. In this study, we report the magnetostratigra-
phy within the putative late Eocene 187Os/188Os excur-
sion in pelagic clay around Minamitorishima Island. Flux 
estimates for eolian dust and fish debris are discussed to 
evaluate the different chronologies.

Materials
We studied pelagic clay recovered by a piston core 
MR14-E02 PC11 around Minamitorishima Island at 
154°00.98′E, 22°59.02′N, and 5,647 m water depth (Addi-
tional file 1). The core length was 13.12 m. The sediments 
were brown to dark brown clay. There was a manganese-
rich layer at 4.12–4.33 m core depth. Lithological obser-
vation suggests it represents a hiatus. A 187Os/188Os 
excursion in this core was interpreted as the late Eocene 
excursion (Nozaki et  al. 2019), as well as in a nearby 
core KR13-02 PC05 (Ohta et  al. 2020). Geochemical 

and magnetic correlations confirmed that they are in the 
same stratigraphic position (Tanaka et al. 2020; Yamazaki 
et al. 2020).

In both cores, the 187Os/188Os excursions roughly coin-
cide with the high concentrations (> 2000 ppm) of rare-
earth elements and yttrium (REY), labeled as the 1st 
REY peak (Iijima et al. 2016; Tanaka et al. 2020). REY in 
pelagic clay are mainly carried by fish debris consisting of 
biogenic apatite (Kashiwabara et al. 2014, 2018; Yasukawa 
et al. 2016), especially in this region (Takaya et al. 2018; 
Yasukawa et  al. 2019). From these observations, Ohta 
et al. (2020) proposed that fish production increased sig-
nificantly at ~ 34.4 Ma in response to the expansion of the 
Antarctic ice sheet (Katz et al. 2008).

Methods
Paleomagnetism and rock magnetism
Cubic samples were taken from the archive halves of 
the core by pushing 7-cm3 plastic cubes. The samples 
were taken continuously, and every other cube was 
used for this study, resulting in a resolution of ~ 4.5 cm. 
The interval 1.2–1.7  m was disturbed by coring, and 
the interval 3.9–4.9  m was very stiff due to Mn enrich-
ment. Consequently, we did not sample these intervals. 
A hiatus was estimated at ~ 4.2  m based on lithological 
changes (Nozaki et  al. 2019). Progressive AF demag-
netizations of natural remanence were conducted using 
a cryogenic magnetometer 2G Enterprises 760 at the 
Center for Advanced Marine Core Research (CMCR), 
Kochi University. The results were analyzed by principal 
component analysis to isolate characteristic remanence 
(Kirschvink 1980). We use results with maximum angular 
deviation (MAD) smaller than 15° for further analyses. 
Because the core was not azimuthally oriented, we first 
estimated polarity patterns by near 180° changes in rela-
tive declination and inclination sign. For intervals with 
possible polarity changes, we calculated virtual geomag-
netic pole (VGP). We used the VGP latitude, which com-
bines information from declination and inclination, for 
further interpretation. Chronostratigraphy was estimated 
by comparing the polarity patterns with the geomagnetic 
polarity time scale (GPTS) in Geological Time Scale 2012 
(Ogg 2012).

Magnetic properties of the samples were examined 
to help paleomagnetic interpretation. We measured the 
ratio of anhysteretic remanence (ARM) susceptibility 
(κARM) to saturation isothermal remanence (SIRM) and S 
ratios (Bloemendal et al. 1992). In the Minamitorishima 
region, κARM/SIRM reflects the abundance of biogenic 
magnetite relative to terrigenous magnetic minerals 
(Usui et al. 2017, 2019; Yamazaki et al. 2020). After paleo-
magnetic measurements, ARMs were imparted with a 0.1 
mT DC field and 80 mT peak AF field using the cryogenic 
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magnetometer at CMCR. IRMs were imparted with 2.5 T 
field using a pulse magnetizer magnetic measurements 
model MMPM-10 at Atmosphere and Ocean Research 
Institute, the University of Tokyo. S ratios measure the 
relative abundance of minerals with contrasting coer-
civity. SIRM measurements were followed by IRMs 
imparted by back fields of − 0.1 and − 0.3  T. S ratios 
(S−0.1 and S−0.3) were calculated following the definition 
of Bloemendal et  al. (1992). In pelagic sediments, S-0.1 
and S-0.3 often reflect the relative abundance of biogenic 
magnetite to abiotic (eolian) magnetic minerals, and fer-
romagnetic minerals to antiferromagnetic minerals (e.g., 
hematite), respectively (e.g., Bloemendal et  al. 1992; 
Yamazaki 2009; Usui et al. 2017).

Quartz and feldspar content
To quantify eolian dust content, we separated quartz and 
feldspars using the sodium pyrosulfate  (Na2S2O7) fusion 
method (Kiely and Jackson 1964; Syers et al. 1968; Clay-
ton et al. 1972; Blatt et al. 1982; Stevens 1991; Usui et al. 
2018). Dry samples of ~ 1 g were first treated with citrate–
bicarbonate–dithionite (CBD) to remove poorly crystal-
line Fe–Mn oxyhydroxides (Rea and Janecek 1981). The 
residues were washed with purified water, freeze-dried, 
weighed, and treated with acetic acid overnight, which 
has been assumed to remove carbonate and apatite. 
The oxyhydroxides-free residues were washed, freeze-
dried, weighed, and fused with  Na2S2O7 at 460 °C, which 
decompose sheet silicates. The fusions were treated with 

3 N HCl and washed with purified water to remove solid-
ified potassium pyrosulfate and relict clays. Then, the 
residues were heated to 50 °C in 1 M NaOH overnight to 
remove relict clays.

Results
Rock magnetism
Rock magnetic properties showed smooth variations 
(Fig. 1). κARM/SIRM were ~ 1 mm/A down to ~ 6 m. They 
increased to > 2.0  mm/A below ~ 7  m into the 1st REY 
peak, indicating dominance of biogenic magnetite over 
terrigenous magnetic minerals. These behaviors are 
consistent with those of nearby cores (Usui et  al. 2017; 
Yamazaki et al. 2020). S ratios were high, indicating lim-
ited contribution from antiferromagnetic minerals. S−0.1 
were close to 1 between ~ 6 and 12 m (Fig. 1b), indicat-
ing dominance of low-coercivity minerals such as bio-
genic magnetite. S−0.3 were slightly lower below ~ 12  m 
(chemostratigraphic Unit III of Tanaka et al. 2020), sug-
gesting an increase in antiferromagnetic minerals such as 
hematite.

Paleomagnetism
Clear polarity patterns were obtained at limited inter-
vals (Fig. 1c, d). Top ~ 8 m was characterized by stable 
declination dominated by apparent normal polarity 
(positive inclination; Fig.  1d). Considering the pro-
posed chronology (~ 2  Ma at 0.01  m and ~ 34  Ma 
at ~ 7  m; Nozaki et  al. 2019), we interpreted that this 
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normal polarity is not an original signal but reflect vis-
cous overprint and cancellation of a dual polarity due 
to slow sedimentation. This interpretation is partly sup-
ported by the presence of normal polarity overprints 
in samples with characteristic remanence with nega-
tive inclinations (Additional file 2b). Consequently, we 
did not assign polarity above 8 m. Below 8 m, changes 
in inclination signs together with near 180° changes 
in relative declination were observed (Fig.  1c, d). The 
absolute inclination is slightly larger in samples with 
positive inclinations. We interpreted this is also due to 
incomplete removal of the viscous overprint.

We calculated the VGP positions for intervals below 
8  m. To calculate the VGP, we corrected the core ori-
entation assuming that the mean of the relative dec-
linations of the samples with negative inclinations 
correspond to geographic south. The VGP latitude 
showed swings between + 50º and − 60º (Fig.  2). The 
plate motion after sedimentation and the incomplete 
removal of viscous overprint would reduce the quality 
of the VGP data. We simply assign normal and reversed 
polarities to the intervals with positive and negative 
VGP latitudes, respectively (Fig.  2; Additional file  3). 
Above ~ 8.5  m, the VGP latitude showed small oscil-
lation around 0º. This is unlikely to be the geomag-
netic signal; rather, it mainly reflects the anomalous 

declination (Fig. 1c). We did not interpret the polarity 
in this interval. The core showed 12 polarity zones with 
comparable lengths between 8.5 and 13 m.

Quartz and feldspars content
The CBD treatment reduced the sample weight by 
10–20% (Fig.  3a). This can be considered as approxi-
mated weight fractions of Fe–Mn oxyhydroxides. The 
weight change was ~ 10% at the top, gradually increased 
with depth to ~ 15–20% towards ~ 6 m.

Acetic acid treatment further reduced the weight; the 
change was largest in ~ 7–12  m where REY concentra-
tions were high. This is consistent with the interpreta-
tion that fish debris carries REY (Iijima et al. 2016; Ohta 
et al. 2020). However, the change was at most ~ 5% of the 
original weight. On the other hand, there is a strong lin-
ear relationship between  P2O5 and REY content in sedi-
ments around Minamitorishima Island (Iijima et al. 2016; 
Takaya et al. 2018), suggesting the fraction of fish debris 
is nearly proportional to REY content. Using data from 
KR13-02 PC05 (Ohta et  al. 2020), we can estimate that 
MR14-E02 PC11 clay (REY content up to 4000 ppm) con-
tains up to ~ 20 wt.% of fish debris. It is thus likely that 
acetic acid treatment does not remove biogenic apatite 
effectively.

Na2S2O7 fusion further reduced the sample weight 
to ~ 15–30 wt.% of the original weight (Fig.  3b). We 
consider these weights as the quartz and feldspars con-
tent. The highest content was from the top of the core. 
Below 7 m, it was ~ 15 wt.%. Note that these numbers are 
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affected by Fe–Mn oxyhydroxides and fish debris con-
tent; given ~ 15 wt.% of Fe–Mn oxyhydroxides and up 
to ~ 20 wt.% of fish debris below 7 m, the weight fraction 
of quartz and feldspar relative to total silicate may be ~ 20 
below 7 m and ~ 20–30 wt.% throughout the core.

Discussion
Chronostratigraphy and eolian flux estimates
Our paleomagnetic data show that there are at least 12 
polarity zones in 8.5–13 m (Fig. 2). Rock magnetic prop-
erties change smoothly in this interval (Fig.  1a, b), so 
these polarity zones are likely to reflect the geomagnetic 
reversals rather than short-scale variations in overprint. 
187Os/188Os were as low as 0.3 in 7–12  m, and previ-
ous interpretations correlated them to the late Eocene 
excursion (Nozaki et al. 2019). However, this interpreta-
tion would put the 7–12  m interval into a single chron 
of C13r (Fig. 4), while individual reversed polarity zones 
are < 50 cm in the core (Fig. 2).

Because there are only ichthyoliths stratigraphy con-
straints for late Eocene–early Oligocene ages of the cor-
responding 1st REY peak in KR13-02 PC05 (Ohta et  al. 
2020), we cannot correlate the observed polarity zones 
with GPTS uniquely. Nonetheless, based on the ich-
thyoliths data and the low 187Os/188Os, we infer that the 
late Eocene 187Os/188Os excursion (~ 34.5  Ma) is some-
where in the 7–12  m interval. With this inference, we 
can list possible correlations with GPTS (Additional 
File 3; Fig.  4). Here we assumed that the sedimentation 
was continuous, and all the major chrons are recorded. 
These assumptions lead to conservative estimates for the 
depositional duration. The deepest polarity transition 

(11.96  m), which coincides with the beginning of the 
1st REY peak, would be between 34.999 and 38.615 Ma, 
and the shallowest polarity transition (9.01 m), which is 
deeper than the end of the 1st REY peak (7 m), would be 
between 28.141 and 35.706  Ma. All of these magneto-
stratigraphic correlations indicate that the deposition of 
the 1st REY peak took much longer (> 2.9–6.9 Myr) than 
the 187Os/188Os ages (< 1 Myr; Nozaki et  al. 2019; Ohta 
et al. 2020). The linear sedimentation rate between 9.01 
and 11.96 m is estimated to be 0.43–1.02 m/Myr, depend-
ing on the correlation to GPTS (Additional File 3). They 
are much smaller than the sedimentation rate estimate 
for the 1st REY peak based on 187Os/188Os (Nozaki et al. 
2019; Ohta et al. 2020), but similar to the sedimentation 
rate above the 1st REY peak (Fig. 4).

Inconsistency between the magnetostratigraphy and 
187Os/188Os ages can be compared in terms of the eolian 
flux. The chemical digestion results (Fig.  3) show that 
quartz and feldspars account for ~ 10–20 wt.% of the dry 
sediments of the 1st REY peak. 187Os/188Os suggest the 
sedimentation rate of ~ 3.3 m/Myr for the 1st REY peak of 
MR14-E02 PC11 (Nozaki et al. 2019; Fig. 4). Using a typi-
cal dry bulk density of 500 kg/m3 (Ohta et al. 2020), these 
numbers are converted to a quartz and feldspars flux 
of ~ 165–330  kg/m2/Myr. Typically, quartz and feldspars 
account for 10–20 wt.% of eolian dust (Blank et al. 1985; 
Leinen et  al. 1994; Usui et  al. 2018), which is broadly 
consistent with our estimate of ~ 20–30 wt.% of the sili-
cate. These numbers indicate > 500  kg/m2/Myr of eolian 
flux. This is comparable to the current flux to the Pacific 
at ~ 16ºN (Rea 1994), where Minamitorishima Island was 
at ~ 35  Ma. However, multiple records from the North 
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Pacific indicated that the eolian flux has increased by 
more than tenfold since 25 Ma (e.g., Zhang et al. 2016). 
Only a few estimates exist for flux before 30  Ma, but it 
may be even smaller between 35 and 45  Ma (Janecek 
and Rea 1983; Janecek 1985). Thus, the flux estimates 
based on the 187Os/188Os seem too large. In contrast, 
the magnetostratigraphy suggests sedimentation rates of 
0.43–1.02 m/Myr in the 1st REY peak (Fig. 4). They are 
converted to eolian flux estimates of ~ 70–500  kg/m2/
Myr. The lower end of the range is consistent with the 
evolution of the eolian flux in the North Pacific. There-
fore, we argue that the 187Os/188Os ages overestimate 
the sedimentation rate of the 1st REY peak. We further 
consider that GPTS correlations which give slower sedi-
mentation rates (< 0.5 m/Myr) are more plausible, imply-
ing that the deposition of the 1st REY took more than 6.5 
Myr and completed later than 30 Ma (Fig. 4).

Possible mechanisms for the distortion of the osmium 
isotope record
187Os/188Os are stably low throughout the 1st REY peak, 
while the magnetostratigraphy predicts < 50  cm excur-
sion (Fig.  5). Although processes such as extraterres-
trial influx can modify the absolute 187Os/188Os values, 
it is unlikely to eliminate only the excursion. Rather, the 

simplest explanation for the absence of a short excur-
sion is post-depositional homogenization of 187Os/188Os. 
Complete mechanical mixing by processes such as bio-
turbation over ~ 5 m interval is unlikely, and they would 
also destroy the polarity records. So, we suspect chemical 
remobilization of Fe–Mn oxyhydroxides as a cause of the 
homogeneous 187Os/188Os. The 1st REY peak represents 
enhanced flux of fish debris, which may have brought 
oxic–anoxic transition zone to shallow depths, promot-
ing diagenetic movement of Mn (Mewes et  al. 2014; 
Wegorzewski and Kuhn 2014).

A simple averaging of the seawater 187Os/188Os curve 
does not reproduce the absolute values observed in the 
core (Fig.  5b), suggesting additional processes were at 
work. We note three factors that help to resolve this prob-
lem, although these are not exhaustive and further quan-
titative research is required. First, Os influx to sediments 
may be variable, so homogenization involves taking 
weighted averages of the seawater curve. If the original 
Os deposition was sufficiently larger during the isotopic 
excursion than other period, then the 187Os/188Os after 
homogenization would be low, and Os content would 
be high. This is qualitatively consistent with the elevated 
Os content in the 1st REY peak of KR13-02 PC05 (Ohta 
et al. 2020); however, the Os content of MR14-E02 PC11 
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does not show a similar pattern (Nozaki et  al. 2019), so 
the contribution of this factor may be limited. Second, 
187Os/188Os may not be globally uniform. The 187Os/188Os 
minima in the excursion differ by ~ 0.05 in two high-
resolution sites from the eastern equatorial Pacific (e.g., 
Peucker-Ehrenbrink and Ravizza 2012). This amount 
alone may be insufficient to explain the low 187Os/188Os 
in the 1st REY peak, but such heterogeneity should be 
considered. Finally, the 187Os/188Os of pelagic sediments 
may be contaminated by unradiogenic extraterrestrial 
and ultramafic components to yield lower values (e.g., 
Peucker-Ehrenbrink and Ravizza 2000). The 187Os/188Os 
in the Minamitorishima samples were analyzed using 
the Carius tube methods with reverse aqua regia (Shirey 
and Walker 1995), which would introduce extraterrestrial 
and ultramafic components, although the absolute abun-
dance of these components are not known. Some argued 
that more diluted leaching solution (0.15%  H2O2) should 
be used to minimize the effect of extraterrestrial com-
ponents (Turekian and Pegram 1997). Indeed, Nozaki 
et al. (2019) reported low 187Os/188Os due to an influx of 
extraterrestrial material from a Miocene impact event in 
the same core studied here. These factors may affect the 
187Os/188Os dating outside the 1st REY peak as well.

Implication for the fish debris accumulation estimates
The proposed revision of the chronology for the 1st 
REY peak affects the estimates of fish debris accumula-
tion rates and the origin of the REY peaks. On the basis 
of the 187Os/188Os ages, Ohta et al. (2020) estimated high 
fish debris accumulation rates of > 300  kg/m2/Myr for 
the 1st REY peak in KR13-02 PC05. Our paleomagnetic 
data indicate that the deposition of the 1st REY peak 
may have taken > 10 times longer. Therefore, we suggest 
that the maximum fish debris accumulation rate in the 
1st REY peak was on the order of 10 kg/m2/Myr. Indeed, 
assuming a fish debris content of 20 wt.%, the paleomag-
netic linear sedimentation rates indicate that the peak 
fish debris accumulation rate for MR14-E02 PC11 was 
43–101 kg/m2/Myr. The fact that the REY content shows 
a sharp maximum even within the 1st REY peak indicates 
significant temporal variation of the fish debris accumu-
lation. Cenozoic fish debris accumulation rate in the cen-
tral North Pacific can also be estimated using data from 
the core LL44-GPC3 (Kyte et  al. 1993). Assuming that 
 P2O5 is exclusively in fish debris at ~ 30 wt.% (Kon et al. 
2014; Takaya et al. 2018), the estimated rate was mostly 
below 10  kg/m2/Myr except for a peak at ~ 66  Ma and 
another smaller peak at ~ 58  Ma (see Additional file  4). 
Thus, the formation of the 1st REY peak around Minami-
torishima Island still requires an explanation.

Ohta et  al. (2020) suggested that the enhanced fish 
debris accumulation is related to the bottom water 

upwelling during the brief ice volume expansion 
at ~ 34.15  Ma (Katz et  al. 2008). While upwelling is still 
a viable hypothesis, the paleomagnetic chronology indi-
cates that the 1st REY peak reflects longer-term changes. 
The present paleomagnetic chronology cannot place 
unique ages (Additional file  3); a better chronology is 
needed to test the connections to specific paleoenviron-
mental events for the beginning and end of the 1st REY 
peak.

Conclusion
Magnetostratigraphy of MR14-E02 PC11 indicates > 2.9–
6.9 Myr duration for the deposition of a layer where 
187Os/188Os was previously correlated to a < 1 Myr excur-
sion. Eolian flux estimates based on the direct meas-
urements of quartz and feldspar content support that a 
duration longer than 6 Myr is plausible. The inconsist-
ency may have resulted from diagenetic redistribution of 
Fe–Mn oxyhydroxides and associated Os under high bio-
genic flux. The revised chronology indicates that the fish 
debris accumulation rate in the interval was an order of 
magnitude lower than the previous estimates; nonethe-
less, it may be still significantly higher than other areas 
or time. The elevated fish debris flux is likely to be associ-
ated with long-term oceanographic changes rather than 
a single event. Our results indicate that high-resolution 
dating of pelagic clay using 187Os/188Os should be con-
ducted with care.
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Additional file 1 Location and backtrack of the site. (Top) Location and 
backtrack path of Minamitorishima Island at 5 Myr intervals. The backtrack 
path was calculated using GPlates (Boyden et al. 2011) with the rotation 
model of Matthews et al. (2016). (Bottom) Detailed locations of the core 
sites. 

Additional file 2 Representative orthogonal vector plots for the natural 
remanences. (a) Normal polarity sample. (b) Reversed polarity sample. 
(c-e) Samples whose polarities were indeterminate (see text for discus-
sion). Solid circles show the horizontal projection, and open circles show 
the vertical projection. Colored markers show steps used for PCA analyses. 
Insets show decay of remanence intensity. 

Additional file 3 GPTS correlation models. Possible correlations of paleo-
magnetic data to GPTS (Ogg, 2012). 

Additional file 4 Cenozoic fish debris accumulation flux estimated for 
LL44-GPC3 in the central North Pacific. Fish debris accumulation rate 
estimates for LL44-GPC3. Data are from Kyte et al. (1993). P2O5 content 
was converted to fish debris content assuming that P2O5 is exclusively in 
fish debris at 30 wt.%.
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