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Abstract: Visible-light-driven photoelectrochemical (PEC) and photocatalytic water splitting sys-
tems featuring heterogeneous semiconductor photocatalysts (oxynitrides, oxysulfides, organopho-
tocatalysts) signify an environmentally friendly and promising approach for the manufacturing
of renewable hydrogen fuel. Semiconducting electrode materials as the main constituents in the
PEC water splitting system have substantial effects on the device’s solar-to-hydrogen (STH) conver-
sion efficiency. Given the complication of the photocatalysis and photoelectrolysis methods, it is
indispensable to include the different electrocatalytic materials for advancing visible-light-driven
water splitting, considered a difficult challenge. Heterogeneous semiconductor-based materials
with narrower bandgaps (2.5 to 1.9 eV), equivalent to the theoretical STH efficiencies ranging from
9.3% to 20.9%, are recognized as new types of photoabsorbents to engage as photoelectrodes for
PEC water oxidation and have fascinated much consideration. Herein, we spotlight mainly on
heterogenous semiconductor-based photoanode materials for PEC water splitting. Different het-
erogeneous photocatalysts based materials are emphasized in different groups, such as oxynitrides,
oxysulfides, and organic solids. Lastly, the design approach and future developments regarding
heterogeneous photocatalysts oxide electrodes for PEC applications and photocatalytic applications
are also discussed.

Keywords: photoelectrochemistry; water oxidation; oxynitride; oxysulfide; visible light; organophotocatalyst

1. Introduction

The accessibility of an economical, clean, and copious energy source is one of the
foremost challenges for humankind in the 21st century. Effective utilization of solar energy
and converting it to use fuels that are more appropriate for storage and transportation is
mandatory. Solar power provides a clean, renewable energy source with minimal ecological
impact since it is a decentralized and virtually unlimited resource. In detail, the solar power
reaching the earth’s surface is equivalent to that supplied by 130 million power plants
of 500 megawatts [1–3]. However, the forthcoming use of solar energy as a major source
to satisfy the worldwide requirements depends on accomplishing important milestones
of a fundamental and technological nature. The feasibility of the enlargement of solar
energy at the terawatt scale depends on finding cost-efficient compatible solutions to these
difficulties [4–6].
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The manufacture of solar hydrogen (H2) through PEC water splitting as a proficient
and renewable approach to arrest recurrent solar irradiance in the method of chemical fuels
has drained remarkable consideration since the revolutionary report by Fujishima and
Honda [7]. PEC water photoelectrolysis reaction is determined by solar energy generates
an ecological approach to store energy in the covalent bonds of H2 [8,9]. During earlier
stages of research, stoichiometric water splitting was not successful in a theoretical way
because of several difficulties, the simultaneous, reverse process, unstable nature of photo-
catalyst, poor variation in selecting photocatalyst and co-catalyst materials, etc. However,
significant advancement has been executed, and many complications and hurdles have
been overcome [9–15]. In this context, substantial research efforts have been carried out
to upsurge the STH efficiency of those solar-driven photocatalysts. Thermodynamically,
the conversion of one molecule of H2O into H2 and 1

2 O2 is an uphill reaction with a great
positive change in free energy change (∆G◦ = 238 kJ/mol). In order to efficiently transform
solar photons into usable fuels, n-type semiconductor materials can absorb a major portion
of the spectral area, with appropriate energy band levels, and lower overpotential to ex-
ecute a water photoelectrolysis reactions are mandatory. Extensive research efforts have
been completed to promote viable n-type semiconducting electrodes that have emerged as
photoanodes [14,15].

The oxygen evolution reaction (OER) is mutually kinetically and thermodynamically
more exciting, and it hurts from severe oxidizing circumstances [16]. Moreover, the PEC
water splitting system is one of the promising methods to examine the electron transfer
process in producing oxygen (O2) in water oxidation reaction to use solar energy [17–21].
In this regard, several oxide-based electrode materials have been investigated [22–35]. On
the other hand, all these metal oxides have absorption activity restricted to the UV spectral
region due to its wider band gap (>3.0 eV). This is a big drawback since the UV region
comprises only 3–5% of all incident solar energy. Further, n-type oxide semiconductor
materials such as Fe2O3, BiVO4, and WO3 photoelectrode materials have been extensively
applied to gather the visible-light photons for highly proficient as well as steady PEC water
splitting system and involve a large external bias [36–45].

It is challenging to develop cost-effective and steady photoelectrodes with STH effi-
ciencies of over 10%. In this regard, a supreme semiconductor light absorber must satisfy a
minimum of three simple necessities: (i) its bandgap must be narrow (varied between 1.8
and 2.4 eV) to display a strong light absorption, and its band energy levels must overlap
water redox potentials for naturally splitting water into H2 and O2; (ii) it must possess
great carrier mobilities, and thereby permit quick transport of photoinduced hole-electron
pairs from the bulk to the surface; (iv) its surface assembly must be active for water adsorp-
tion and successive reactions; (v) it must display lower charge-transfer resistance at the
interface. Moreover, highly stable, cost-effective, and ecofriendly photoelectrode materials
are mandatory for solar photolysis.

Considering all these conditions for a material to carry out water photolysis (energy
levels of the conduction band (CB) and valence band (VB) concerning oxidation and
reduction potential of water), most heterogeneous semiconductor-based photocatalysts can
also reduce the water. Figure 1 shows the energy for numerous oxide and heterogeneous
photocatalysts oxide semiconductors with the water redox reactions, illustrating this fact.

The definite processes in PEC water photolysis are defined in Figure 2. In order to
execute this, several steps are needed to gratify the execution of the overall PEC water
photolysis reactions. These steps comprise (i) the capture of visible-light photons; (ii)
separation of carriers; (iii) transportation of the separated electron/hole pairs through the
charge transfer; which need to be catalytically active; and (iv) surface reactions. Both the
potential of the excited charge carriers and suitable water oxidation kinetics are mandatory
for proficient water photoelectrolysis reactions.
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Figure 1. Energy diagram with the conduction and valence band positions for different semiconductor materials. Water
oxidation (H2O/O2) and reduction potentials (H+/H2) are also shown.

Figure 2. A schematic energy illustration for a photoanodes (n-type semiconductor). Several phases
of process are displayed, specifically: (i) light-absorption; (ii) charge-transfer; (iii) transportation of
charge-induced electron-hole pairs; and (iv) surface reactions.

In recent years, organic semiconductors (OSCs) with heterojunctions have generally
been utilized to construct cost-efficient and effective photocatalysts for photoenergy con-
version systems [46–48]. In some cases, photocatalytic reactions via organic p–n bilayers
react to the whole visible-light energy for the oxidative elimination of organic pollutants.
In another instance, an organic p-n bilayer of phthalocyanine [MPc (M = H2 or Zn), p-
type] and perylene derivatives (3,4,9,10-perylenetetracarboxyl-bisbenzimidazole, PTCBI)
or Pt-loaded fullerene (C60, n-type) can act as a photocathode, whereas a reducing power
can be produced at the C60/water interface via a sequence of photophysical events in
the bilayer [49–52]. Moreover, it was recently evidenced that an organic p-n bilayer can
engage near-infrared energy to carry out photocatalysis [53]. In recent years, our group
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employed a wet-chemical process of a reprecipitation through a polar solvent in creating
biphasic nanocrystals of aluminum phthalocyanine (AlPc)/cobalt phthalocyanine (CoPc)
and C60 [54–56], whereas earlier reprecipitation developed by Kasai et al. provide a single
component of organic crystals whose size, however, is manageable among nanometers to
micrometers [57–59].

(Oxy) nitrides are new kinds of materials recently employed as photoelectrode materi-
als for water splitting systems. Oxynitride based photocatalyst tends to possess narrower
bandgaps than the equivalent metal oxides since the M-N bond in oxynitrides has potential
energy greater than that of the M-O bond in metal oxides. In particular, it must be noted
that these kinds of materials vary from photocatalysts doped with N or sulfur [60]. More-
over, (Oxy)nitrides are well-known for their solidity against anodic dissolution in alkaline
media, providing them appropriate materials for water splitting applications.61 Compar-
atively, certain (Oxy)nitrides photocatalysts can replace metal-oxide-based materials to
absorb visible-light photons for water photolysis reactions [61–63]. Similarly, an organic
solid/water interface in a p/n organic bilayer was established to be proficient of photoin-
duced redox reactions combined with photoconduction of the generated hole/electron
pairs in the interior [50,64,65], whereas wide-range visible-light energy (λ < 750 nm) is
accessible for the photogenerated redox reactions at the interface mentioned above.

It is projected that long-lasting struggles in this area will result in more fascinating
approaches towards emerging durable and high-efficiency heterogeneous photocatalysts
based electrodes for water oxidation shortly. This focused review illustrates recent find-
ings in promoting and advancing heterogeneous photocatalyst materials for light-driven
water splitting reactions. In this review, heterogeneous photocatalyst materials, such as
organophotocatalysts, (Oxy)nitrides, oxysulfides, and other heterogeneous photocatalysts,
are presented for solar-driven photocatalytic water splitting, concentrating on recent devel-
opments on heterogeneous photocatalyst materials. An outlook for the future growth of
heterogeneous photocatalysts-based photoanodes is also projected.

2. (Oxy)nitrides Based Materials

Comparatively, metal nitride/oxynitride based photocatalysts are subjected to pho-
todissociation and have not been employed for water photolysis reaction [66]. In particular,
oxynitrides are exceptionally favorable photocatalysts due to their narrower bandgap
and subsequent superior visible-light photons related to oxide-based materials. For in-
stance, TaON, Ta3N5, and Ba(Ca, Sr)TaO2N are the distinct classes of (Oxy)nitrides-based
families. TaON, whose bandgap is varied from 1.9 to 2.5 eV and energy levels overlap
with water redox potentials, is accepted as a more suitable material for developing highly
active photoanodes.

The energy level positons of both TaON and Ta3N5 are more appropriate for wa-
ter oxidation and reduction in visible-light conditions. Balaz and co-workers reported
the CB and VB’s absolute positions of various kinds of characteristic TaON perovskites
ATaO2N (A = Ca, Sr, and Ba) and PrTaON2 [67]. Moreover, TaON and Ta3N5 have been
widely examined as solar-driven photoelectrode materials in water redox processes [68].
Particularly, above 10% quantum yield has been accomplished with TaON and Ta3N5
photocatalysts [69–71]. Domen and co-workers mostly investigated oxynitride based pho-
toelectrodes as an alternative to oxide material, which is likely to arrest the incoming
photons for water oxidation reactions [72–74]. In this regard, creating highly active
oxynitride-based photoanodes is significant in achieving a high-efficiency PEC water
photoelectrolysis process.

Electronic structures of oxynitrides were theoretically investigated in terms of the
framework of density functional theory [75,76]. These results illustrate that the N2p orbital
has greater potential energy than the O2p orbital; it might be remarkable to engage a metal
(Oxy)nitride as a photocatalytic material. In this context, (Oxy)nitrides display distinctive
optical features, owing to O2/N3 ions’ interplay in the system [75,76]. Comparatively,
(Oxy)nitrides of the metal system cause a red-shift in the material than oxide-based ma-



Catalysts 2021, 11, 160 5 of 27

terials. This might be owing to incorporating nitrogen (N) into the lattices, whereas the
extra energy levels in the host material band considerably affect the optical transition in the
system [77]. Particularly, this originated owing to the lesser electronegativity of N to that of
O. For instance, Figure 3 compares the schematic representation of the oxide-based NaTaO3
and (Oxy)nitride BaTaO2N, and both of them possess a similar perovskite structure [78].

Figure 3. Schematic representation of electronic energy band positions of a metal oxide (NaTaO3) and
metal (oxy)nitride (BaTaO2N). Reprinted with permission from Reference K. Maeda and K. Domen, J.
Phys. Chem. C, 2007, 111, 7851. Copyright 2007 American Chemical Society [78].

Generally, the most vital parameter affecting photocatalysts’ visible-light-driven water
oxidation efficiency is the amount of living photoinduced holes directed by the morphol-
ogy and size of a photocatalyst [79]. In general, the photocatalytic performance can be
promoted by means of photoelectrodes with huge surface area, higher dispersion, high
crystallinity, reduced defect density, well-defined morphologies, and precisely exposed
facets, permitting to decrease the amount of recombination sites and to highly photo-
chemically active sites. In particular, the morphological and structural modification of
oxynitrides considerably affects the photocatalytic activity for water oxidation. Also, the
flux-assisted nitridation method is beneficial for enhancing the crystallinity, modifying the
morphological as well as surface modification of oxynitrides [80,81]. It is also evidenced
that the cocatalyst–photoelectrode interface and co-catalysts dispersion over electrodes
play a significant part in oxynitride photocatalysis. For instance, Maegli et al. reported the
controlled morphological and structural changes of LaTiO2N/CoOx photoelectrodes for
photocatalytic O2 oxidation [82]. They also demonstrated that the flux method improved
the crystallinity and higher nitrogen contents in LaTiO2N than if prepared without flux. In
particular, the skeletal and edgy morphology has higher CoOx catalyst dispersion on the
LaTiO2N electrode contained unsaturated bonds, thereby improving the photocatalytic
O2 evolution. Moreover, Kodera et al. demonstrated that flux treatment on BaNbO2N
photoelectrodes greatly influenced the morphological natures [83]. Prior to flux action, the
BaNbO2N morphological features were uncertain, with an accumulation of particle sizes
varied from a few 10’ s nm to 100′ s nm. After the flux treatment, a noticeable modification
in morphology happened. Figure 4 displays FE-SEM images of BaNbO2N photocatalysts
before and after flux action. After flux treatment, a cubic morphology was clearly noticed.
Similar flux-influenced morphological modifications are also demonstrated for BaTaO2N
crystal structures [84]. Thus, the flux-aided nitridation process is mandatory to promote
oxynitride’s photocatalytic features by enhancing crystallinity, tailoring the morphology
and surface modifications, reducing the defect density.
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Figure 4. FE-SEM photographs of obtained BaNbO2N particles (a) before and after flux treatment
with (b) LiCl, (c) NaCl, (d) KCl, (e) RbCl, and (f) CsCl. Scale bars represent 1 µm [83].

Different (Oxy)nitrides materials have been considered to replace the oxide catalysts
to capture the light-photons to produce H2 and O2 from water at the stoichiometric ra-
tio [85–90]. Afterwards, these kinds of (Oxy)nitride-based photoelectron materials are
well-known for PEC water oxidation, with nominal input [91,92]. A large quantity of such
(Oxy)nitride photoanodes have been reported to date. Moreover, few of them attained
superior incident photon-to-current efficiency (IPCE) efficiency of >10% with an applied
bias lesser than the thermodynamically needed bias (1.23 V) for water photoelectrolysis.
Further, in the case of wavelength, light photons with wavelengths up to 600 nm are accessi-
ble for PEC water oxidation with Ta3N5 [93] and LaTiO2N [94]. In this regard, no narrower
photoanodes (<2.0 eV~equivalent to 600 nm) are available to oxidize water without any
externally applied bias has been demonstrated till now. Furthermore, while decreasing
the photoanodes’ bandgap, reducing the driving powers for water redox reactions makes
water electrolysis reactions more challenging.

Both the superior performances and stability of (oxy)nitrides for PEC water electrol-
ysis rely on the effective transfer of the photoinduced holes from the photoelectrodes
to reactants adsorbed on the surface to induce the water oxidation for OER. Building
a catalytic active surface morphology for PEC water electrolysis is extremely required
to advance surface charge transfer. In particular, the catalytic surface must provide the
roles of gathering photoinduced holes, permitting ample adsorption of water molecules
and making it a lower reaction kinetic barrier for the oxidation reaction. Despite its abil-
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ity to capture solar energy and chemical inertness, the PEC behavior of (oxy)nitrides is
bizarrely restricted due to its deprived photon absorption, the greater recombination rate
of photogenerated carriers sluggish OER kinetics. To rectify these drawbacks, (oxy)nitrides
photoanodes must be loaded with co-catalyst materials to promote light photon absorp-
tion. During the last decades, numerous works have been carried out to advance (oxy)
nitride-based photoanodes with appropriate co-catalysts to efficiently utilize visible light
photons [63,92]. Moreover, much attention has been paid to develop (oxy)nitride-based
photoanodes loaded with cost-effective transition metal oxides. Nishimura al. demon-
strated the TaON based (oxy)nitrides along with co-catalyst photoanodes and attained IPCE
of 76% at 400 nm with a nominal external bias [92]. Subsequently, different (oxy)nitrides,
such as LaTaO2N [94], SrNbO2N [95–97], and BaNbO2N [98], among others, have been
newly advanced as photoanodes [99–103].

Photoelectrodes with catalytic surface modification of several co-catalysts for wa-
ter electrolysis, namely IrO2, CoOx and “Co-Pi” have been deeply examined [102–109].
In particular, Abe and co-workers reported incorporating IrO2.nH2O nanoparticles over
porous TaON photoanodes and have achieved the IPCE of 76% in an aq.Na2SO4 solu-
tion [109]. Further, it is the first report to demonstrate the PEC water splitting on TaON
(oxy)nitride with a scannable production of O2, as well as measured anodic photocur-
rent. Notably, Higashi et al. reported a methodology of pre-depositing earth plentiful
CoOx co-catalysts over TaON particles via impregnation before the electrophoretic deposi-
tion (EPD) of TaON particles [106]. Recent years, (Oxy)nitrides photoelectrode materials,
namely LaTiO2N/CoOx, BaTaO2N/BaZrO3, and BaNbO2N [110–113], have been devel-
oped to exploit the visible-light photons absorption with the supporting sacrificial reagents.
Much research has mainly focused on creating the visible-light active narrower bandgap
semiconductors photoanodes (<2 eV). In this regard, Zhang et al. reported LaTaO2N
photocatalysts materials prepared through the flux technique. It also revealed enriched
PEC behavior for the water oxidation reaction [114]. Quite recently, new kinds of rare earth
hafnium (RHfO2N) (Oxy)nitride were demonstrated for the photocatalytic water redox
reactions [77,115]. The RHfO2N perovskites (R = La, Nd and Sm) signified the GdFeO3-
type structure with a bandgap energy of 3.35, 3.40, and 2.85 eV. These hafnium-based
materials photocatalytic results revealed RHfO2N oxynitrides that have been successfully
applied towards overall water splitting reactions. Also, Takata et al. have demonstrated
and activated LaMgxTa1−xO1+3xN2−3x photocatalysts for photocatalytic water splitting by
incorporating the co-catalyst of RhCrOx [116].

Niobium-based oxynitrides are of specific interest in water splitting owing to their
narrow bandgap of 1.7 eV, while it was evidenced to be satisfactory for photocatalytic
water photodissociation [117]. Maeda et al. first reported the narrower bandgap semicon-
ductor of FTO/SrNbO2N photoanodes (<2.0 eV) substrate via electrophoretic deposition
(EPD) process and examined for water splitting reactions under neutral conditions.118 IrO2
incorporated SrNbO2N/FTO electrodes chronoamperometric (CA) investigation showed
significantly improved PEC water oxidation behavior compared to SrNbO2N/FTO as
presented in Figure 5A. During the CA analysis, an external bias of 1.55 VRHE was en-
gaged under steady-state light irradiance (λ > 420 nm). The enhanced performance was
accredited to the substantial role of adsorbed IrO2 colloids over SrNbO2N particles to
suppress the material’s oxidative self-decomposition and thereby enhance the selectivity of
photoinduced holes toward water oxidation. This is an efficient approach to improving the
PEC performances in the lower potential region, thereby promoting water oxidation. The
authors further evidenced the water oxidation by evaluating the stoichiometric generation
of H2 and O2 upon irradiation and was shown in Figure 5B. Moreover, in terms of evolved
H2 and O2, the authors estimated that 47% of the visible-light current might be credited to
photogenerated water oxidation by IrO2/SrNbO2N.
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Figure 5. (A) Photocurrent-time plots in aq. 0.5 M Na2SO4 (pH ≈ 6) for SrNbO2N photoelectrodes
(6 cm2) with and without colloidal IrO2 at +1.55 VRHE under visible-light conditions (λ > 420 nm).
(B) and its equivalent time progresses of gas evolution in PEC reactions by an IrO2-loaded electrode.
Reprinted with permission from Reference K. Maeda, M. Higashi et al. J. Am. Chem. Soc., 2011, 133,
12334. Copyright 2018 American Chemical Society [118].

In recent years, we also demonstrated the PEC activity of cobalt phosphate (CoPi)/
La(Ta,Nb)O2N and CoPi/ZnTaO2N electrodes for PEC water oxidation in alkaline condi-
tions [99,119], which showed up to a nearly four-fold advancement in the PEC activities
at a lower oxidation potential. In particular, the loading of the CoPi over (Oxy)nitride
photoanodes might promote the charge separation as well as the carrier collection created
at the electrode surface, thereby improving PEC features of the photoanodes). We have
also recently reported the CoPi loaded ZnLaTaON2 photoanodes for PEC water oxidation
performances under alkaline solution [120]. In all these cases, the photodeposition (PD)
of CoPi onto (oxy)nitrides photoanodes under irradiation conditions were evidenced to
promote the OER at the photocatalysts [121]. Further, the CoPi co-catalyst layer was in-
corporated over (oxy)nitrides by employing the in-situ PD approach to promote the OER
half-reaction kinetics. We have also evidence that the CoPi deposition’s magnitude was
determined by the electrodes’ morphology, time, and loading process method. The thicker
CoPi incorporation over (Oxy)nitrides photoanodes resulted in the poorer PEC behavior
for water oxidation. These facts can be illustrated that the photocatalytic water oxidation
reaction happens at the CoPi/electrolyte interface. In the thicker CoPi, the photoinduced
holes need to transfer between more number CoPi molecules and a CoPi/electrolyte in-
terface. Subsequently, a decline in photocurrent is witnessed. However, in thin CoPi
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layer over (oxy)nitrides, associated cobalt ions on (Oxy)nitrides surface easily capture the
photoinduced holes to yield the active catalytic species of cobalt (Co4+) mandatory for
a water electrolysis reaction [122,123]. Likewise, amorphous Co(OH)x has been used as
a co-catalytic material for water oxidation reaction and can enhance the PEC stability as
well as performances of Ta3N5 photoanodes [122–125], even though it is not as efficient as
CoPi. One of the major roles for superior performance of CoPi co-catalyst in comparison
with Co(OH)x is the whole coverage of Co-Pi on the Ta3N5 photoanodes. Generally, in
Co(OH)x is incorporated over Ta3N5 photoanodes surface via the co-precipitation process;
thereby, it is hard to obtain the homogeneous dispersion by PD method. Thus, the PD
methodologies benefit from permitting the comparatively homogeneous wrapping of CoPi
over the (Oxy)nitride surface of the photoanodes. These results show that the incorporation
of CoPi over (Oxy)nitride has been an efficient route to enhance the PEC current gain via
the PEC water oxidation reaction.

Like CoPi electrocatalysts, layered double hydroxides (LDHs) have been widely inves-
tigated as catalytic materials for water oxidation [126,127]. Particularly, LDHs attained by
a solution exfoliation process revealed greater OER performances and improved durability
compared to noble metal/metal oxide electrocatalysts. Mostly, LDHs co-catalysts were
engaged to promote the PEC performances for water electrolysis reaction [128]. In this
regard, Wang et al. reported the Ni–Fe LDHs incorporated Ta3N5 photoanodes array
and are significantly enhanced stability and PEC performances for water oxidation [129].
Further, the author’s group deposited the Co(OH)x and CoPi electrocatalysts on sequence
over Ni–Fe LDH/Ta3N5 photoanodes, further enriched the photocurrent. Liao et al. associ-
ated the effect of various co-catalysts (Co(OH)x, Co3O4 and IrO2) and electrolytes (NaOH
and Na2SO4) on the photocurrent and superior durability of photoanodes comprising of
nanoparticulate Ta3N5 [130].

Allam and co-workers recently reported a novel photoanode material of Ti-Pd mixed
(Oxy)nitride films prepared through anodization method and attained a photocurrent den-
sity of 1.9 mA/cm2 and a nearly five-fold enhancement in the efficiency compared to pure
TiO2 nanotubes [131]. Similarly, titanium oxynitride (TiON) emerges as a favourable candi-
date for light absorption and appropriate energy level positions for water splitting [132,133].
In particular, Soliman et al. fabricated the TiON nanotube arrays via NH3 nitridation from
anodized Ti foil. Very recently, Soliman et al. demonstrated the highly ordered Ag nanopar-
ticles incorporated TiON nanotubes arrays for solar-driven water splitting [134]. Further,
the author group investigated PEC properties of Ag/TiON nanotubes arrays resulting in
an exceptionally superior photocurrent of 14 mA/cm2 at 1.0 V SCE (Figure 6b), which is
consistent with the absorption spectra (Figure 6a). The observed improvement of pho-
tocurrent over TiON counterparts is credited to co-operative features of Ag nanoparticles
incorporation, N-doping, and the distinctive morphological characteristics of the fabricated
NTs arrays. In detail, the IPCE measurements of Ag/TiON nanotube arrays with the
potential between 0.2 V and 0.4 V (Figure 6d) evidences the maximum IPCE of 41% in
the wavelength ranging between 450 and 510 nm and is comparatively superior to TiON
nanotubes arrays (Figure 6c).

Table 1 summarizes studies on different (Oxy)nitride-based electrode materials for
solar light-driven water splitting reactions. The electrodes presented in Table 1 and
the co-catalysts’ deposition significantly improved the PER performance with higher
durability for solar-water splitting. In recent years, (Oxy)nitrides-based electrode materials
have gained much consideration. They must be investigated in numerous ways, namely
morphological features, co-doping strategies, defect induced features, surface activation,
co-catalyst loading, etc. These examinations on the (Oxy)nitride photoelectrode materials
basically lead to a more detailed understanding of their effective usage in the water-
splitting system.
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Figure 6. (a) UV-Vis absorption analysis of NTs, air annealed TiO2 NTs, and Ag incorporated TiON
NTs (Ag/TiON), (b) LSV plots under the irradiation of TiO2, TiON and Ag/TiON, (c) the IPCE
spectra of the samples, and (d) the IPCE of Ag/TiON electrodes under externally applied bias [134].

Table 1. Review on different kinds of (Oxy)nitrides based photoelectrodes with co-catalysts and their photoelectrochemical
features for water splitting reactions.

Electrodes Cocatalysts Synthesis
Method Photocurrent(j)

Efficiency
IPCE

(@1.23 V vs. RHE)
Stability Reference

LaTiOxNy IrO2
magnetron
sputtering

70 µA cm−2 at +1.0 V vs.
Ag/AgCl

- 30 min [90]

LaTiO2N In2O3

Electrophoretic
deposition

(EPD)

0.61 mA cm−2 at 1.23
VRHE,

3.2% at 400 nm 30 min [135]

SrNbO2N IrO2
Polymer Com-
plex(PC)/EPD

0.35 mA cm−2 at +1.2 V
vs.

RHE
0.2% 2h [118]

TaON CoOx/TiO2 screen-printing 0.7 mA cm−2 at +1.2 V vs.
RHE

27% at with
λ = 410 nm 15 h [136]

BaTaO2N CoOx/RhOx EPD - 10% at 600 nm 60 min [137]

BaNbO2N FeOx/Co(OH)x
particle transfer

(PT)
5.2 mA cm−2 at 1.23

VRHE,
38% at with 460 nm « 30 min [138]
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Table 1. Cont.

Electrodes Cocatalysts Synthesis
Method Photocurrent(j)

Efficiency
IPCE

(@1.23 V vs. RHE)
Stability Reference

SrNbO2N CoOx
magnetron
sputtering

4.1 mA cm−2 at +1.2 V
vs.

RHE
10% λ = 400 nm – [139]

BaTaO2N Co PT 4.2 mA cm−2 at 1.2
VRHE

24% with λ = 400 nm 6 h [140]

SrNbO2N CoPi
flux

treatment/PT
method

1.5 mA cm−2 at 1.23
VRHE

- 2 h [141]

BaNbO2N - Flux
treatment/PT 5 mA cm−2 at 1.23 VRHE - - [142]

CaNbO2N Co-Pi/Al2O3 solid state/PC 70 µA cm−2 at 1.23
VRHE

- 30 min [109]

CaTaO2N-A NiB EPD 40 µA cm−2 at 1.23 V
versus RHE

- - [143]

SrNbO2N-
NRs - PT 1.3 mA cm−2 at 1.23

VRHE,
- 15 min [144]

SrNbO2N Co3O4 EPD 2.0 mA cm−2 at 1.23
VRHE

12% with 420 nm 30 min [145]

3. Oxysulfide Based Photocatalyst

Oxysulfides are new kinds of fascinating photocatalytic materials in heterogeneous
based semiconductors photocatalysts. Similar to (Oxy)nitrides, the main idea of combining
sulfur into oxides is basically the same as that for N incorporation. Particularly, the oxy-
sulfides recognized as stable photocatalyst form than its corresponding metal oxides. Its
energy level positions are appropriate for water photoelectrolysis reactions. In particular,
oxysulfides comprise S as a constituent element that forms the tops of the VB. Thus, the
sulfur loading usually reduces the bandgap compared to its counterparts of the corre-
sponding oxide by developing shallower filled energy states than O 2p states. Thereby,
photoinduced holes can travel smoothly in the VB of the material, predominantly beneficial
for water oxidation concerning the 4-electron transfer. Till now, overall water splitting
through an independent oxysulfide is yet to be developed. In contrast, few oxysulfides
based photocatalysts are applied to PEC water electrolysis reaction with bias assistance,
tandem style, or Z-scheme, water splitting.

Ishikawa et al. reported the stable oxysulfide of Sm2Ti2S2O5 with a wide absorption
band in the visible-light region (λ < 600 nm) and band edge potential are more appropriate
for overall water splitting [146]. These oxysulfide photocatalysts can be attained by an-
nealing the mixture of equivalent precursors under vacuum and subsequently processed
for sulfurization through H2S gas [147]. Density function theory calculations further ev-
idence that the S3p atomic orbitals constitute the upper region of the VB of Sm2Ti2S2O5
and provide a significant influence in lowering the bandgap energy to its counterpart of
metal oxide (Sm2Ti2O7). Further, metal sulfides such as CdS are not appropriate to engage
as a catalytic material for water oxidation due to the integral unstable nature of these
electrode materials in the reaction through the photoinduced generation of holes [148,149].
In contrast, Sm2Ti2S2O5 performed as a relatively stable photoelectrode material for water
electrolysis reaction. Similar to (Oxy)nitride, the photooxidation performance of the oxy-
sulfides will be improved by incorporating the colloidal IrO2 over Sm2Ti2S2O5, thereby
increasing the quantum efficiency for O2 generation to 1.1% [150,151]. Moreover, physical
characterization evidence that the decomposition of oxysulfide in bulk and at the surface,
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in precise the oxidation of S2− species, does not happen throughout the photooxidation
of water. Quite recently, Ma et al. reported the Sm2Ti2S2O5 via novel flux method and
demonstrated its photocatalytic activity is promoted by incorporating IrO2 co-catalyst and
Pt over oxysulfides. Further, Z-scheme visible-light assisted water splitting into H2, and
O2 was evidenced by applying the oxysulfides photocatalyst for H2 production combined
with an H-CS-WO3 photocatalyst (shown in Figure 7) [152]. These results conclude that
the oxysulfide Sm2Ti2S2O5 behaves as a highly stable photoelectrode material for water
redox reactions under visible-light illumination. Similarly, other kinds of Ln2Ti2S2O5 (Ln:
Pr, Nd, Gd, Tb, Dy, Ho, and Er) oxysulfides with similar layered perovskite structure are
recognized as active and stable electrode materials for water photoelectrolysis reactions
with supporting electrolyte comprising a sacrificial electron donor or acceptor [153]. Like-
wise, Zhang et al. developed that Ln2Ti2S2O5 compounds (absorption edge at ca. 600 nm)
evidenced photocatalytic behavior for water electrolysis reaction with appropriate support
sacrificial reagents [154]. Moreover, this is the first Ln2Ti2S2O5 oxysulfide to behave as a
photocatalyst for the water oxidation reaction. Similarly, Ogisu and co-workers developed
the visible-light responsive La5In3S9O3 and La3GaS5O14 oxysulfide photocatalysts and
investigated water electrolysis reaction with a proper hole or electron scavenger(s) under
irradiation conditions [155–157].

Figure 7. Schematic representation of the oxysulfide system employed for visible-light-driven Z-scheme water splitting into
H2 evolution in conjunction with Cs loaded WO3 photocatalysts. Reprinted with permission from Reference G. Ma, S. Chen
et al. J. Phys. Chem. Lett, 2016, 7, 3892. Copyright 2016 American Chemical Society [154].

These oxysulfides based electrodes reveal remarkable PEC behaviors. Usually, p-type
semiconductors behave as photocathodes, and generate H2 at the boundary between the
semiconductor and the electrolyte. In particular, most of the sulfides are naturally an n-type
semiconductor, while Cu+ -containing sulfides tend to behave as p-type semiconductors. In
this regard, Liu et al. reported the Cu+-containing oxysulfide La5Ti2CuS5O7 photocathode
via the particle transfer method. In contrast, doped oxysulfides show an 8-fold enhance-
ment compared to their counterparts for PEC water splitting reaction [157]. Likewise, Ma
et al. reported the La5Ti2CuS5O7 oxysulfides enabling to act both as photocathodes and
photoanodes by tuning its work functions and employing them as electrodes in the water-
splitting reaction [158]. Similarly, Hisatomi et al. reported the new kinds of oxysulfides
La5Ti2Cu1−xAgxS5O7 photocathodes, functioning at the operative potential for PEC H2
evolution under solar-light irradiance [159].

4. Other Heterogeneous Photocatalysts

As an alternative to oxides, Yoshimizu attempted new kinds of silicide based photocat-
alyst (Iron disilicide β-FeSi2) composed of abundant, durable, and non-toxic elements [160].
In particular, the author investigated the β-FeSi2 catalyst material for H2 evolution cata-
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lysts because it possesses appropriate conduction band energy levels and succeeded an
obvious quantum efficiency of 24% upto 950 nm support of a sacrificial agent. Similarly,
Akiyama et al. succeeded in fabricating the semiconducting β-FeSi2/Si composite through
the vapor-liquid-solid method. They investigated the photocatalytic H2 behavior with the
support of the formaldehyde as a sacrificial agent [161]. As an H2 evolution photocatalyst,
β-FeSi2 is projected to be sensitive to near-infrared light (>1300 nm), which is the longest
wavelength of light to be used. Recently, Akiyama et al. fabricated the β-FeSi2/SiC com-
posite powder and evolved H2 under the visible light photons with methyl alcohol as a
sacrificial reagent [162].

Similar to heterogeneous photocatalysts, metal-free photocatalysts are favorable photo-
catalytic materials that have not been widely investigated. On this phenomenon, Wang et al.
demonstrated a new class of metal-free graphitic C3N4 (g-C3N4) based material and em-
ployed as photocatalysts for water splitting reactions under visible-light photons [163,164].
In this regard, few kinds of metal-free photocatalytic materials are presently available:
g-C3N4, C3N3S3 [165], a-sulfur [166], red phosphorus [167], black phosphorus [168], and or-
ganic ones as below. However, all these metal-free photocatalysts require scarce/expensive
noble metal co-catalysts to be active for PEC water splitting reactions [169]. Fortunately,
boron carbide and hexagonal boron carbon nitride (h-BCN) are fascinating new kinds of
proficient metal-free and light-active photocatalysts for water splitting reaction. Liu et al.
developed the boron carbides as photocatalytic materials for H2 production. They achieved
H2 production of 14.5 µmol h−1 g−1 without any co-catalysts [170].

5. Organic Photocatalyst (Organophotocatalyst)

Generally, organic materials have run after inorganic ones that exhibit high electro-
magnetic properties due to high electron density and various elements such as conductions,
magnetism, optics, etc. Organophotocatalysis based system exhibits an innovative tech-
nique for water splitting reactions exploiting energy over the whole range of visible light.

Primary reports designated photocathodes made from conducting polymers, namely
polyacetylene [171–173], polypyrrole [174], polyaniline [175,176], poly(3-methylthiophene) [177]
or poly(3-hexylthiophene), P3HT [178,179], phthalocyanine [180–184]. Organic photo-
catalyst without electrode also has a long history using poly(p-phenylene) [185–187] etc.
Conversely, these photocatalytic materials did not comprise any junction between OSCs
and charge separation from the Schottky junction between p-type OSC and electrolyte and
kinetically low efficiency.

The closest research field of organic photovoltaic (OPV) devices to organic photocat-
alyst becomes more than 14% power conversion efficiency from the sunlight [188], and
organic photocatalysts would have promising high efficiency in the near future if the
stability problem is solved. Besides general merits in organic materials such as fabrication
process varieties, flexibility, low density, and solubility, there are great merits of huge variety
to control electronic properties in light absorption with a pi-system, conducting polymers
nanostructures, e.g., synthetic metals or phase separations of bulk heterojunction [189–195].
As shown, the first p-n junction OPV [196] exhibited unidirectional electron-hole transfer
path at both interfaces and the potential difference is derived by the photo illumination as
visible-light-induced charge creation is succeeded at the boundary between the two OSCs
as shown in Figure 8. Upon absorption of visible-light photons in one of the OSCs, an
exciton is created and then transported to the junction with another OSC. At this point, the
exciton dissociates, resultant in the arrival of a hole in one OSC called the donor, and an
electron in the other OSC called the acceptor. In photovoltaic systems, charge carriers then
transport to the electrodes where charges have been collected. These concepts are useful
to design an efficient PEC system. By choosing a bilayer system, photoinduced charge
separation becomes efficient in the case of PEC also [52]. Furthermore, various modifica-
tions gave more efficiency, such as p-n interface [197] and liquid/electrolyte interface [198].
Low cost and water-based synthesis of p-n junction like nanoparticles are possible to
mass productively [46–48]. By combining polymer substrate, macroscopic separation of
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redox site is possible [49], and multilayerization of the photocatalyst film [47] exhibit
more efficient utilization of natural light. The utilization of longer wavelength reaching to
near-infrared is also attractive to utilize the sunlight [48,199]. Very recently, lateral charge
separation to the substrate direction was discovered for step shape electrode using Kelvin
probe force microscopy [200]. It is noteworthy that phthalocyanine has another role as a
catalyst. One of the evidential phenomena is P3HT/PCBM photoanode [201,202], where
coating with co-catalyst phthalocyanine enhanced photoanodic current. A recent observa-
tion by Kelvin force probe microscopy reveals a dipole formation between the co-catalyst
and bulk heterojunction (BHJ), suggesting efficient charge separation for multi-electron
transfer [202].

Figure 8. Schematic view of p-n junction photovoltaic cell (a), PEC (b), and photocatalyst (c). There are five common
processes, while the final methods of carrier collections are different. Reprinted with permission from Kobunshi Ronbunshu.,
vol. 70, page 461. Copyright 2013, The Society of Polymer Science, Japan [202].

The main concern is the arrangement of the two different things since excitons can
only diffuse in the range of few tens of nm for the duration of their lifetime, i.e., beforehand
spontaneous recombination happened. As a result, the two OSCs must be either loaded as
two very thin layers, probably with an interlayer comprising both constituents, resulting
in a mixture of the two materials creating molecular p-n junctions all over the bulk layer
BHJ. More importantly, BHJ is made between a polymer or an array of small molecules,
performing as the light absorber, and a C60 derivative [195] typically. In order to employ
such organic junctions in direct PEC water splitting, there are similarities in the continuous
processes as above, while dissimilar conditions must be seen at the interface between the
organic layer with a liquid electrolyte.

OER has a more crucial issue that strongly relates to stability and efficiency problems
due to multielectron oxidation and co-existing thermodynamically easy path of photoanode
etching. However, OER in an aqueous medium was validated with organic polymer
catalysts/electrolyte solution junctions, obtaining photocurrent densities in the range of a
few microamperes [203–205], or more bias potential [206]. Saline oxidation is one of the
smart systems as alternative oxidation of chloride ions [207,208]. Coating of the metal
oxide layer is another choice for long term stability [209–214].

Pt nanoparticles are good HER catalyst and were incorporated over the uppermost of
an organic p/n bilayer electrode of small moieties (metal-free phthalocyanine, H2Pc/C60),
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photocurrent values grasped several cents of µA.cm−2 and the faradic efficiency for H2
evolution in aqueous media reached nearly 90% (Figure 9) [45]. H2 generation at Pt-
attached C60/water interface utilizes electrons from the CB of the C60 layer. While the
lowest of the CB of C60 is less negative than H2 evolution, the production of 2-electron
reduced C60

2− species was demonstrated spectroscopically after a 20-min induction period.

Figure 9. Schematic representation of visible-light-assisted H2 generation in the organic
ITO/H2Pc/C60-Pt system. H2 evolves at Pt-loaded C60, after a 20 min period during which C60

2−

is formed. Reprinted with permission from The Journal of Physical Chemistry C., vol. 115, page 7704.
Copyright 2011, American Chemical Society [45].

The organic electrode presented in Figure 10 comprises photoelectrodes based on
OSC to oxidize thiol [215], based on TiO2 to oxidize water [216], hydrazine oxidation [217]
or borane-ammonia [218]. By employing photoelectrodes, H2 can be produced without
additional electric bias. In this case, concomitant H2 evolution takes place at the Pt electrode
without any input. Our research group recently investigated the photocatalysis system
comprising an organic p/n bilayer for the stoichiometric degradation of hydrazine into N2
and H2 [218]. In this regard, these works illustrate the H2 generation by reducing power
photoinduced at the PTCBI in an organic p/n bilayer.

Figure 10. Twin-compartment cell utilized for one active electrode photocatalysis and the structures of
the chemicals. Reproduced from Ref. [219] with permission from the Royal Society of Chemistry [219].
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Our research group recently reported the PEC system containing an organic-based
photocathode of a p/n bilayer (ITO/ZnPc/C60–Pt) alongside a WO3 photoanode, where
a stoichiometric generation of H2 and O2 was initiate to happen (Figure 11) [220]. In
this system, oxidation and reduction powers can be markedly produced at the tungsten
oxide photoanode and organo-photocathode, correspondingly. In this context, electron
transport from tungsten oxide CB to the hole continued p-type VB in the organic p/n
bilayer can proficiently happen for executing the PEC method, accordingly effecting a
high concentration of carriers, which is readily existent for rate-limiting O2 evolution at
photoanodes for effective charge separation. Finally, combining the two different water
splitting materials is an efficient approach to developing a Z-scheme photocatalytic system.

Figure 11. A schematic representation of the water-splitting system comprising an organo-
photocathode and WO3 photoanodes. Reproduced from Ref. [220] with permission from the Royal
Society of Chemistry [220].

The recent trend to use OSM is to be covered with a thin inorganic layer, for ex-
ample, amorphous molybdenum sulfide (a-MoSx) as HER catalyst as an alternative of
Pt [221,222]. Photocathodes fabricated via spray deposition of a combination of a-MoSx
and TiO2 on the BHJ layer obtained a photocurrent density of 200 µA·cm−2 at 0 VRHE and
up to 300 µA·cm−2 at –0.4 VRHE. Another inorganic layer is TiOx layer on P3HT:PCBM
BHJ layer and the catalytic film [223]. Moreover, metallic Al/Ti interfacial layers resulting
in an enhancement in the photocurrent nearly about the 8 mA·cm−2 at 0 V vs. RHE. A 50-
nm-thick C60 layer also functions as an interfacial layer, with a current density attaining
1 mA·cm−2 at 0 V vs. RHE [224]. Also, reduced graphene oxide, WO3 and NiO, CuI,
polyaniline underlayers are effective for persistent PEC features in acidic aqueous elec-
trolytes [225–230]. The use of α-sexithiophene (α-6T) and chloroboron subphthalocyanine
(SubPc) combined with C60 as the electron extracting layer gave more H2 evolution [231].
MoS3 coating gave 3 mW/cm2 at 0 V vs. RHE [225]. Tandem cells are known to obtain
high Open circuit voltage (Voc) in a solar cell. For water splitting, such high Voc is nec-
essary, at least 1.23 V theoretically. Applications by the use of high Voc with the tandem
structure are reported [231–238]. There are several review papers about using advanced
organic and carbon-based materials [239–248], while the present paper focused only on the
heterogeneous organic semiconductor photocatalysts.

Among these heterogeneous photocatalysts, the conjugated microporous polymers
(CMPs) have been recognized as photocathodes for H2 evolution from water to support
a sacrificial electron donor. Sprick et al. also investigated various kinds of CMPs by
varying monomer linker length and were investigated for photocatalytic H2 evolution
reactions [248]. Like CMPs, covalent organic frameworks (COFs) are also an emergent
class of crystalline polymers comprised of organic units connected via covalent bonds to
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produce porous networks. Very recently, Sick et al. reported first-time COFs as a new
kinds of porous electrode materials of BDT-ETTA (benzo[1,2-b:4,5-b′]-dithiophene-2,6-
dicarboxaldehyde (BDT); 1,1′,2,2′-tetra-p-aminophenylethylene, ETTA) for water-splitting
reaction [249]. Further, these materials satisfy the necessities for light-driven water re-
duction application, which comprise effective light-harvesting, appropriate energy level
positions, and stability.

6. Conclusions and Future Outlook

Energy harvesting technology from the limitless solar irradiation source has been
recognized as a sustainable solution for the global energy crisis. In this review, the visible-
light-driven water-splitting system has significantly improved since H2 is a water-splitting
reaction expected to support future societies. In this context, a series of heterogenous
photocatalyst materials have been examined for PEC water splitting reaction. Special
consideration has been paid to organophotocatalysts based electrodes for the applications
of solar-driven water splitting reactions. (Oxy)nitrides, oxysulfides, and organophotocata-
lysts have the potential to acts as stable photoelectrodes for water redox reaction under
visible-light illumination, have been shown to PEC behavior without noticeable degrada-
tion. In some cases, heterogenous semiconductor photocatalyst systems need to feature
organophotocatalysts along with a simple conventional oxide and were evidenced to be
effective for the stoichiometric decomposition of water into H2 and O2. Over the past few
decades, the available photocatalysts for visible-light-driven water splitting has mostly
comprised of metal oxides. The development of heterogenous photocatalysts attempting
to attain the same role has probably given a boost to research on photocatalytic material for
solar energy conversion.

In summary, over the past decades, (oxy)nitride and oxysulfides based photoelectrodes
have been faced a high-speed advancement in terms of both the stable electrochemical
nature as well as the activity of PEC water oxidation. Understanding the mechanism
assembled by investigating this kind of photoanodes will cover a solid path for advancing
other types of proficient photoanodes. In all these systems, the photoelectrode materials,
which cannot merely contribute to the complete decomposition of water, can play active
parts. The usage of these novel kinds of heterogeneous photocatalyst based materials and
suitable electrocatalyst materials have more advantages in gathering solar energy. PEC wa-
ter decomposition is already recognized as the most promising methodologies for obtaining
solar hydrogen. In this perspective, developing new kinds of heterogeneous photocatalyst
will be an efficient strategy for creating a commercially viable water-splitting system.

During the past few years, considerable research efforts have applied photoelectro-
chemistry for other reactions besides water splitting. In this context, the conversion of CO2
into value-added organic molecules has gained enormous interest in recent years. Carbon
dioxide reduction reaction (CO2RR) is far more complicated than water splitting. Still, it
permits the opportunity of extracting the greenhouse gas CO2 from the atmosphere and
turning it into value-added fuels. Commercially, products such as methane or ethanol
generation via CO2RR have been explored [250,251]. Conversely, the major limits for
CO2RR are finding suitable photoelectrodes and robust semiconductors to be kept in di-
rect contact with the reaction, as the higher required reductive potentials (>1 V) improve
materials corrosion [252,253]. Despite the described potentialities for the usage of photo-
electrochemistry in H2 production and CO2RR, it has not been possible to demonstrate
an application capable of competing economically with conventional procedures that are
frequently used e.g., methane reforming permits obtaining H2 at € 3/kg. In this regard,
to be capable of developing alternate methods built on the usage of renewable energies
such as photoelectrocatalysis, it is essential to promote efficient and robust devices created
using cost-effective most-abundant electrode materials (like heterogeneous photocatalyst),
demanding optimization approaches like the tandem arrangement of photoelectrodes to
relax the stringent conditions required for effective PEC value-added solar fuel production.
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Indeed, PEC water splitting development will help to identify and adapt photoelectrodes
for other electrochemical reactions.
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