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Abstract
We consider the weighted Sobolev spaces with weights of theMuckenhoupt class and charac-
terize the spaces by the square functions ofMarcinkiewicz type defined by repeated averaging
operations over spheres.
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1 Introduction

The function of Marcinkiewicz is defined by

μ( f )(x) =
(∫ ∞

0
|F(x + t) + F(x − t) − 2F(x)|2 dt

t3

)1/2

,

F(x) =
∫ x

0
f (y) dy.

Marcinkiewicz [7] in 1938 introduced an analogue of this square function in the setting of
periodic functions on the torus. Results conjectured in [7] were proved by Zygmund [17] and
the non-periodic version above was provided byWaterman [16]. LetS (Rn) be the Schwartz
class of rapidly decreasing smooth functions onRn and letS0(R

n) be the subspace ofS (Rn)

consisting of functions f with f̂ vanishing in a neighborhood of the origin, where f̂ denotes
the Fourier transform defined as

f̂ (ξ) = F ( f )(ξ) =
∫
Rn

f (x)e−2π i〈x,ξ〉 dx, 〈x, ξ 〉 =
n∑

k=1

xkξk .
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Then, for p ∈ (1,∞), it is known that

‖μ( f )‖p � ‖ f ‖p, f ∈ S0(R), (1.1)

where ‖ · ‖p denotes the L p norm and ‖μ( f )‖p � ‖ f ‖p means that there exist positive
constants C1,C2 independent of f such that

C1‖ f ‖p ≤ ‖μ( f )‖p ≤ C2‖ f ‖p.

We can see that (1.1) is equivalent to

‖ν( f )‖p � ‖ f ′‖p, f ∈ S0(R), (1.2)

where

ν( f )(x) =
(∫ ∞

0
| f (x + t) + f (x − t) − 2 f (x)|2 dt

t3

)1/2

.

The relation (1.2) can be used to characterize the Sobolev space W 1,p .
We write

f (x + t) + f (x − t) − 2 f (x) = 2

(∫
S0

f (x − tθ) dσ(θ) − f (x)

)
,

where S0 = {−1, 1} and σ is a measure on S0 such that σ({−1}) = 1/2, σ({1}) = 1/2. By
this observation we generalize ν to higher dimensions as follows. Let n ≥ 2 and

A( f )(x) =
(∫ ∞

0

∣∣∣∣ f (x) −
∫
Sn−1

f (x − tθ) dσ(θ)

∣∣∣∣
2 dt

t3

)1/2

,

where dσ is the Lebesgue surface measure on Sn−1 normalized as
∫
Sn−1 dσ = 1. We also

write

�t f (x) :=
∫
Sn−1

f (x − t y) dσ(y) = −
∫
S(x,t)

f dσx,t = σx,t (S(x, t))−1
∫
S(x,t)

f dσx,t ,

where S(x, t) = {y ∈ R
n : |x − y| = t} and σx,t is the Lebesgue surface measure on

S(x, t). We note that if f is a locally integrable Borel measurable function on R
n , then the

integral �t f (x) is defined for all x ∈ R
n and t > 0 and it is a Borel measurable function in

(x, t) ∈ R
n × (0,∞) (see [3, pp. 74–75], [14, pp. 1285–1287]). If f is a locally integrable

Lebesgue measurable function, then �t f (x) is defined for a.e. x ∈ R
n and all t > 0 and

measurable in (x, t) on Rn × (0,∞); also �t f (x) is measurable on Rn for each fixed t > 0.
When n ≥ 3, this can be seen from [14, pp. 1285–1287]), where the condition n ≥ 3 is
assumed to apply the maximal inequality (8-12) there. When n = 2, we also have similar
results for �t f (x), since we have a maximal inequality analogous to (8-12) of [14] by [2].

Let S( f ) = A(I1 f ):

S( f )(x) =
(∫ ∞

0

∣∣∣∣I1( f )(x) −
∫
Sn−1

I1( f )(x − t y) dσ(y)

∣∣∣∣
2 dt

t3

)1/2

,

where for β ∈ R, Iβ is the Riesz potential operator defined by

F (Iβ( f ))(ξ) = (2π |ξ |)−β f̂ (ξ) (1.3)

for f ∈ S0.
The following is known ( [5]).
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Theorem A Suppose that 1 < p < ∞, n ≥ 2. Let f ∈ S0(R
n). Then

‖S( f )‖p � ‖ f ‖p.

This is used to characterize the Sobolev space W 1,p(Rn) in terms of A( f ). Theorem A was
motivated by results of Alabern et al. [1], where the operator

E( f )(x) =
(∫ ∞

0

∣∣∣∣ f (x) − −
∫
B(x,t)

f (y) dy

∣∣∣∣
2 dt

t3

)1/2

(1.4)

was considered and used to characterize W 1,p . Here

−
∫
B(x,t)

f (y) dy = |B(x, t)|−1
∫
B(x,t)

f (y) dy,

where B(x, t) is a ball in R
n with center x and radius t .

We generalize the operators A and S defined above. Let

Aα( f )(x) =
(∫ ∞

0

∣∣∣∣ f (x) −
∫
Sn−1

f (x − t y) dσ(y)

∣∣∣∣
2 dt

t1+2α

)1/2

, (1.5)

Sα( f )(x) =
(∫ ∞

0

∣∣∣∣Iα( f )(x) −
∫
Sn−1

Iα( f )(x − t y) dσ(y)

∣∣∣∣
2 dt

t1+2α

)1/2

. (1.6)

Then, we have an analogue of Theorem A for 1 < α < 2 (see [9]).

Theorem B Let Sα be as in (1.6) and f ∈ S0(R
n), n ≥ 2. Then if 1 < α < 2, we have

‖Sα( f )‖p � ‖ f ‖p

for 1 < p < ∞.

This can be used to characterize the Sobolev spaces Wα,p for 1 < α < 2 by Aα in (1.5).
In this note, to characterizeWα,p for 2 ≤ α < n, we generalize Sα by considering iterated

averaging operations. For k ∈ Z (the set of integers), k ≥ 1, let

A(k)
α ( f )(x) =

(∫ ∞

0

∣∣∣(I − �t )
k f (x)

∣∣∣2 dt

t1+2α

)1/2

, (1.7)

S(k)
α ( f )(x) =

(∫ ∞

0

∣∣∣(I − �t )
k Iα( f )(x)

∣∣∣2 dt

t1+2α

)1/2

, (1.8)

where I is the identity operator and

(I − �t )
k = I +

k∑
j=1

(−1) j
(
k

j

)
�

j
t ,

(
k

j

)
= k!

(k − j)! j ! ,

�
j
t f (x) = f ∗ σt ∗ · · · ∗ σt︸ ︷︷ ︸

j

(x), j ≥ 2,

�1
t f (x) = �t f (x) =

∫
Sn−1

f (x − t y) dσ(y) = f ∗ σt (x), σt = σ0,t (S(0, t))−1σ0,t .

We note that f ∗ σt (x) = −
∫
S(x,t) f dσx,t .

123
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If k = 2 in (1.7), we have

A(2)
α ( f )(x) =

(∫ ∞

0

∣∣∣∣ f (x) − 2−
∫
S(x,t)

f (y) dσx,t (y) + −
∫
S(x,t)

( f )S(y,t) dσx,t (y)

∣∣∣∣
2 dt

t1+2α

)1/2

,

where ( f )S(y,t) = −
∫
S(y,t) f . We note that A(1)

α = Aα , A1 = A, S(1)
α = Sα , S1 = S.

Also, we consider discrete parameter versions of A(k)
α and S(k)

α :

B(k)
α ( f )(x) =

( ∞∑

=−∞

∣∣∣(I − �2
 )
k f (x)

∣∣∣2 2−2
α

)1/2

, (1.9)

U (k)
α ( f )(x) =

( ∞∑

=−∞

∣∣∣(I − �2
 )
k Iα f (x)

∣∣∣2 2−2
α

)1/2

. (1.10)

Let 1 < p < ∞, 0 < α < n and w ∈ Ap (the weight class of Muckenhoupt). We recall
that a weight function w belongs to Ap , if

sup
B

(
|B|−1

∫
B

w(x) dx

) (
|B|−1

∫
B

w(x)−1/(p−1)dx

)p−1

< ∞,

where the supremum is taken over all balls B in Rn . Let L p
w be the weighted Lebesgue space

consisting of all functions f such that

‖ f ‖p,w =
(∫

Rn
| f (x)|pw(x) dx

)1/p

< ∞.

Define the weighted Sobolev space Wα,p
w , 0 < α < n, by

Wα,p
w = { f ∈ L p

w : f = Iα(g) for some g ∈ L p
w}, (1.11)

where f = Iα(g) signifies that∫
Rn

f (x)h(x) dx =
∫
Rn

g(x)Iα(h) dx for all h ∈ S0;

such function g ∈ L p
w is uniquely determined by f , since Iα is a bijection on S0, which is

dense in L p′
(w−p′/p), the dual space of L p(w), with 1/p + 1/p′ = 1. Define g = I−α( f ),

and for f ∈ Wα,p
w let

‖ f ‖p,α,w = ‖ f ‖p,w + ‖I−α( f )‖p,w. (1.12)

(See Remarks 1.5 and 1.6 below.) We simply writeWα,p when w = 1 (unweighted case). In
this note, we mainly concentrate on the case 1 ≤ α < n.

We shall prove the following theorems.

Theorem 1.1 Suppose that 1 < α < min(2k, n), 1 < p < ∞ and w ∈ Ap. Let S
(k)
α be as in

(1.8). Then we have

‖S(k)
α ( f )‖p,w � ‖ f ‖p,w, f ∈ S0(R

n).

Theorem 1.2 Let 1 < α < min(2k, n) and letA(k)
α be as in (1.7). Let w ∈ Ap with 1 < p <

∞. Then, f is in the space Wα,p
w if and only if f ∈ L p

w and A(k)
α ( f ) ∈ L p

w; also, we have
‖I−α( f )‖p,w � ‖A(k)

α ( f )‖p,w,

where I−α( f ) is as in (1.12).
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Theorem 1.3 Suppose that 1 < α < min(2k, n), 1 < p < ∞ and w ∈ Ap. Let U
(k)
α be as

in (1.10). Then we have

‖U (k)
α ( f )‖p,w � ‖ f ‖p,w, f ∈ S0(R

n).

Theorem 1.4 Let 1 < α < min(2k, n) and let B(k)
α be as in (1.9). Suppose that 1 < p < ∞

and w ∈ Ap. Then, f belongs to Wα,p
w if and only if f ∈ L p

w and B(k)
α ( f ) ∈ L p

w; also, we
have

‖I−α( f )‖p,w � ‖B(k)
α ( f )‖p,w.

Analogues of Theorems 1.1 and 1.2 are obtained by Theorems 4.1 and 4.2 of [12], where
averaging over spheres is replaced by averaging over balls.

We shall prove Theorems 1.1 and 1.3 by applying results for more general Littlewood-
Paley operators. Let ψ be a function in L1(Rn) satisfying∫

Rn
ψ(x) dx = 0. (1.13)

The Littlewood-Paley function on R
n is defined by

gψ( f )(x) =
(∫ ∞

0
| f ∗ ψt (x)|2 dt

t

)1/2

, (1.14)

where ψt (x) = t−nψ(t−1x). Also a discrete parameter version of gψ is defined by

�ψ( f )(x) =
( ∞∑


=−∞

∣∣ f ∗ ψ2
 (x)
∣∣2

)1/2

. (1.15)

The following results are known.

Theorem C Suppose that

(1) there exists ε > 0 such that Bε(ψ) < ∞, where Bε(ψ) = ∫
|x |>1 |ψ(x)| |x |ε dx;

(2) there exists u > 1 such that Cu(ψ) < ∞, where Cu(ψ) = ∫
|x |<1 |ψ(x)|u dx;

(3) Hψ belongs to L1(Rn), where Hψ(x) = sup|y|≥|x | |ψ(y)|.
Then

‖gψ( f )‖p,w ≤ Cp,w‖ f ‖p,w

for all p ∈ (1,∞) and w ∈ Ap. If we further assume the non-degeneracy condition:
supt>0 |ψ̂(tξ)| > 0 for all ξ �= 0, then we also have the reverse inequality and hence
‖ f ‖p,w � ‖gψ( f )‖p,w , f ∈ L p

w, for p ∈ (1,∞) and w ∈ Ap.

Theorem D Let Bε(ψ), Hψ be as in Theorem C. Suppose that

(1) there exists ε > 0 such that Bε(ψ) < ∞;
(2) there exists δ > 0 such that |ψ̂(ξ)| ≤ C |ξ |−δ for all ξ ∈ R

n \ {0};
(3) the function Hψ is in L1(Rn).

Then

‖�ψ( f )‖p,w ≤ Cp,w‖ f ‖p,w

for every w ∈ Ap and every p ∈ (1,∞). If we further have the non-degeneracy condition:
sup
∈Z |ψ̂(2
ξ)| > 0 for all ξ �= 0, then the reverse inequality also holds and hence
‖ f ‖p,w � ‖�ψ( f )‖p,w, f ∈ L p

w , for p ∈ (1,∞) and w ∈ Ap.

123
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See [8, 11] for Theorems C and D.

Remark 1.5 The definition (1.11) of Wα,p
w is the same as that in [9, 11], where Wα,p

w is
defined by using the Bessel potentials (see [13, Chap. V] for related results). This can be seen
as follows. The space Wα,p

w with the definition (1.11) is characterized by a certain square
function in [12, Theorem 1.5]. The same square function also characterizes the space Wα,p

w

defined in terms of the Bessel potentials, which is shown in [11, Corollary 5.2]. Consequently,
we see that the two definitions coincide.

Remark 1.6 LetS00(R
n) be the subspace ofS0(R

n) consisting of functions f with f̂ vanish-
ing outside a compact set not containing the origin. Then we can replaceS0(R

n) byS00(R
n)

in the definition of the weighted Sobolev spacesWα,p
w without changing the definition of the

spaces. This is because S00(R
n) is also dense in L p

w for w ∈ Ap , 1 < p < ∞.

In Sect. 2, we shall prove Theorem 1.1 by applying Theorem C. Theorem 1.2 will be
proved in Sect. 3 as an application of Theorem 1.1. We shall prove Theorem 1.3 in Sect. 4
by applying Theorem D. Also, in Sect. 4, Theorem 1.4 will be proved by using Theorem
1.3. In Sect. 5, analogues of Theorems 1.3 and 1.4 for α = 1 will be presented. This will be
accomplished by applying ideas of [5] in an essential way. Finally, in Sect. 6 we shall have
some further remarks and results.

2 Proof of Theorem 1.1

We write

(I − �t )
k = I − Nt , Nt = −

k∑
j=1

(−1) j
(
k

j

)
�

j
t . (2.1)

We note that Nt f = f ∗ μt with a measure μt , t > 0, satisfying

Nt f (x) =
∫

f (x − y) dμt (y) =
∫

f (x − t y) dμ(y),

μ̂t (ξ) = −
k∑
j=1

(−1) j
(
k

j

)
σ̂ (tξ) j , (2.2)

and hence μ̂t (0) = −∑k
j=1(−1) j

(k
j

) = 1, where μ = μ1. Using
∫
dμ = 1, for f ∈ S0,

we see that

(I − �t )
k Iα f (x) = Iα f (x) − Iα f ∗ μt (x)

=
∫
Rn

(Iα f (x) − Iα f (x − t y)) dμ(y).

Recall that if Lα(x) = τ(α)|x |α−n , 0 < α < n, with

τ(α) = � (n/2 − α/2)

πn/22α� (α/2)
,

then L̂α(ξ) = (2π |ξ |)−α . Let

ζ(x) = Lα(x) −
∫
Rn

Lα(x − y) dμ(y) =
∫
Rn

(Lα(x) − Lα(x − y)) dμ(y). (2.3)

The following results will be used in estimating ζ .

123
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Lemma 2.1 We have the following properties of μ.

(1) the measure μ is compactly supported;
(2) for any compact set K in Rn and α, 1 < α < n, we have

sup
x∈K

∣∣∣∣
∫
Rn

Lα(x − y) dμ(y)

∣∣∣∣ < ∞;

(3)
∫
Rn yγ dμ(y) = 0 if 1 ≤ |γ | ≤ 2k − 1, where γ = (γ1, . . . , γn) is a multi-index;

γ j ∈ Z, γ j ≥ 0, |γ | = γ1 + · · · + γn, yγ = yγ1
1 . . . yγn

n .

Proof We can see the assertion of part (1) from

μ = −
k∑
j=1

(−1) j
(
k

j

)
σ ( j), σ ( j) = σ ∗ · · · ∗ σ︸ ︷︷ ︸

j

, j ≥ 2, σ (1) = σ,

since σ is concentrated on Sn−1. To prove part (2), we first see that, by a direct computation,

sup
x∈K

∫
Lα(x − y) dσ(y) < ∞,

where we are assuming that α > 1. By induction, this holds with σ replaced by σ ( j) for any
2 ≤ j ≤ k, which easily implies what is claimed.

Proof of part (3). Since 1 − σ̂ (ξ) = O(|ξ |2) for |ξ | ≤ 1, we see that

1 − μ̂(ξ) = 1 +
k∑
j=1

(−1) j
(
k

j

)
σ̂ (ξ) j = (1 − σ̂ (ξ))k = O(|ξ |2k)

for |ξ | ≤ 1. On the other hand, applying Taylor’s formula for μ̂(ξ) at ξ = 0, we have

μ̂(ξ) = 1 +
∑

1≤|γ |≤2k−1

cγ ∂γ μ̂(0)ξγ + O(|ξ |2k)

for |ξ | ≤ 1, where ∂γ = ∂
γ1
1 . . . ∂

γn
n = (∂/∂ξ1)

γ1 . . . (∂/∂ξn)
γn . Thus we see that

∑
1≤|γ |≤2k−1

cγ ∂γ μ̂(0)ξγ = O(|ξ |2k)

for |ξ | ≤ 1. It follows that ∂γ μ̂(0) = 0 if 1 ≤ |γ | ≤ 2k − 1, which implies what we need. �
We apply Taylor’s formula in (2.3) for Lα(x − y) as a function of y at y = 0. Then, by

(1) and (3) of Lemma 2.1, since [α] ≤ 2k − 1, if α < 2k, we have, if |x | is sufficiently large,
|ζ(x)| ≤ C |x |α−n−[α]−1. (2.4)

Combining (2.4) with part (2) of Lemma 2.1, we see that

|ζ(x)| ≤
{
C |x |α−n if |x | ≤ 1,

C |x |α−n−[α]−1 if |x | > 1.
(2.5)

It follows, in particular, that ζ ∈ L1(Rn). Also, by (2.3) and part (3) of Lemma 2.1 we have

ζ̂ (ξ ) = (2π |ξ |)−α(1 − μ̂(ξ)) = O(|ξ |−α+2k)

123
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for |ξ | ≤ 1. Since α < 2k, this implies that ζ̂ (0) = 0, or
∫

ζ = 0. Also, we see that
supt>0 |ζ̂ (tξ)| > 0 for every ξ �= 0, since μ̂(ξ) → 0 as |ξ | → ∞. By this and (2.5) we
can apply Theorem C to conclude that ‖gζ ( f )‖p,w � ‖ f ‖p,w for f ∈ L p

w , p ∈ (1,∞) and

w ∈ Ap , which implies Theorem 1.1 since S(k)
α ( f ) = gζ ( f ).

Remark 2.2 It is known that

σ ∗ σ(x) =
{
c|x |−n+2

[
(22 − |x |2)|x |2](n−3)/2

, if 0 < |x | < 2;
0, otherwise.

Thus σ ( j) is a compactly supported radial function when j ≥ 2, where σ ( j) is as in the proof
of Lemma 2.1.

3 Proof of Theorem 1.2

We can easily prove the following two lemmas (see [12] for the proofs).

Lemma 3.1 Let f ∈ L p
w , where 1 < p < ∞ and w ∈ Ap. Let m be a positive integer and

define f(m) = f χEm with

Em = {x ∈ R
n : |x | ≤ m, | f (x)| ≤ m},

where χE denotes the characteristic function of a set E. Then we see that f(m) → f almost
everywhere and in L p

w as m → ∞.

Lemma 3.2 Let 1 < p < ∞ and f ∈ L p
w with w ∈ Ap. Choose an infinitely differentiable,

non-negative, radial function φ on Rn such that φ(ξ) = 1 for |ξ | ≤ 1, supp(φ) ⊂ {|ξ | ≤ 2}.
Define η(ε) ∈ S0 for ε ∈ (0, 1/2) by

η(ε)(ξ) = φ(εξ) − φ(ε−1ξ).

Then η(ε)(ξ) = η(ε/2)(ξ)η(ε)(ξ). Define f (ε) = f ∗ F−1(η(ε)). Then f (ε) → f almost
everywhere and in L p

w as ε → 0.

Also, we need the following.

Lemma 3.3 Suppose that f ∈ L p
w , w ∈ Ap, 1 < p < ∞. Let f (ε) be as in Lemma 3.2. Let

dμ be as in (2.2). Then we have the following.

(1) there exists a sequence {εk}, εk → 0, such that
∫
Sn−1

f (εk )(x − t y) dμ(y) →
∫
Sn−1

f (x − t y) dμ(y) (3.1)

for a.e. (x, t) ∈ R
n × (0,∞);

(2) we can find a sequence {εk}, εk → 0, such that we have the convergence (3.1) for a.e.
x ∈ R

n and for all t = 2
 with 
 ∈ Z.

Proof Let KM = B(0, M)×(0, M),M = 1, 2, 3, . . . . By part (1) of Lemma2.1, themeasure
μ is supported in B(0, N ) for some N > 0. We see that

123
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IM,ε :=
∫∫

KM

∣∣∣∣
∫

f (ε)(x − t y) dμ(y) −
∫

f (x − t y) dμ(y)

∣∣∣∣ dx dt
≤

∫
B(0,N )

M
∫
B(0,M+MN )

∣∣∣ f (ε)(x) − f (x)
∣∣∣ dx d|μ|(y)

≤ CM
∫

B(0,M+MN )

(∣∣∣ f (ε)(x) − f (x)
∣∣∣p w(x) dx

)1/p
⎛
⎜⎝

∫
B(0,M+MN )

w(x)−p′/p dx

⎞
⎟⎠

1/p′

,

where the last inequality follows by Hölder’s inequality. By Lemma 3.2, it follows that
IM,ε → 0 as ε → 0. Therefore, there exists a sequence {εk} for which we have (3.1) for
a.e. (x, t) ∈ KM . Applying this arguments, we can find sequences {ε(M)

k }, M = 1, 2, 3, . . . ,

such that {ε(M+1)
k } is a subsequence of {ε(M)

k } and we have∫
Sn−1

f (ε
(M)
k )(x − t y) dμ(y) →

∫
Sn−1

f (x − t y) dμ(y)

for a.e. (x, t) ∈ KM . Thus we can get the conclusion of part (1) of the lemma by applying
the diagonal process arguments.

Part (2) can be shown similarly, since we have the convergence (3.1) for a.e. x ∈ R
n and

for each fixed t = 2
 with some {εk} by the arguments of the proof of part (1). �
For δ ∈ (0, 1/2), β ∈ R and f ∈ L p

w, let I
(δ)
β ( f ) = F−1(η(δ)(ξ)(2π |ξ |)−β) ∗ f , where

η(δ) is as in Lemma 3.2.

Lemma 3.4 Let f ∈ L p
w, w ∈ Ap, 1 < p < ∞ and let f (ε) be as in Lemma 3.2. Let A(k)

α be
as in Theorem 1.2. Then

‖A(k)
α ( f (ε))‖p,w � ‖I (ε/2)

−α f (ε)‖p,w, 0 < ε < 1/2.

Proof For f ∈ L p
w, ε ∈ (0, 1/2) and a positive integer m, define fm,ε ∈ S0 by fm,ε =

( f(m))
(ε), where f(m) is as in Lemma 3.1. By Theorem 1.1 we have

‖A(k)
α ( fm,ε)‖p,w = ‖S(k)

α (I−α fm,ε)‖p,w � ‖I (ε/2)
−α fm,ε‖p,w, (3.2)

where we have used the relation I−α fm,ε = I (ε/2)
−α fm,ε .

Let K be a compact set inRn . Then we see that fm,ε(x) → f (ε)(x) uniformly for x ∈ K ,
since by Hölder’s inequality, we have

∣∣∣ fm,ε(x) − f (ε)(x)
∣∣∣ =

∣∣∣∣
∫

( f(m)(y) − f (y))F−1(η(ε))(x − y) dy

∣∣∣∣
≤ ‖ f(m) − f ‖p,w

(∫ ∣∣∣F−1(η(ε))(x − y)
∣∣∣p′

w(y)−p′/p dy

)1/p′

.

Thus by Lemma 3.1 we can easily see the uniform convergence claimed. It follows that
fm,ε(x) − fm,ε ∗ μt (x) → f (ε)(x) − f (ε) ∗ μt (x) as m → ∞ for all x ∈ R

n and t > 0
(see (2.2)). Therefore, recalling the definition ofA(k)

α and noting (2.1), by Fatou’s lemma and
(3.2), we see that,

‖A(k)
α ( f (ε))‖p,w ≤ lim inf

m→∞ ‖A(k)
α ( fm,ε)‖p,w

≤ C lim inf
m→∞ ‖I (ε/2)

−α fm,ε‖p,w = C‖I (ε/2)
−α f (ε)‖p,w, (3.3)
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where we have the last equality since I (ε/2)
−α is bounded on L p

w. In particular, we see that

A(k)
α ( f (ε)) ∈ L p

w.
To complete the proof of Lemma 3.4, we first note that

‖A(k)
α ( f (ε)) − A(k)

α ( fm,ε)‖p,w ≤ ‖A(k)
α ( f (ε) − fm,ε)‖p,w

= ‖A(k)
α (( f − f(m))

(ε))‖p,w. (3.4)

We can see that

( f( j) − f(m))
(ε)(x) − ( f( j) − f(m))

(ε) ∗ μt (x) → ( f − f(m))
(ε)(x) − ( f − f(m))

(ε) ∗ μt (x)

as j → ∞ for all x and t , as we have shown above that fm,ε(x) − fm,ε ∗ μt (x) →
f (ε)(x) − f (ε) ∗ μt (x). Thus by Fatou’s lemma we see that

‖A(k)
α (( f − f(m))

(ε))‖p,w ≤ lim inf
j→∞ ‖A(k)

α (( f( j) − f(m))
(ε))‖p,w. (3.5)

Since ( f( j) − f(m))
(ε) ∈ S0, by Theorem 1.1 we have

‖A(k)
α (( f( j) − f(m))

(ε))‖p,w � ‖I−α(( f( j) − f(m))
(ε))‖p,w

= ‖I (ε/2)
−α (( f( j) − f(m))

(ε))‖p,w.

Since f(m) → f in L p
w , from this it follows that

lim
j,m→∞ ‖A(k)

α (( f( j) − f(m))
(ε))‖p,w = 0,

which combinedwith (3.4) and (3.5) implies thatA(k)
α ( fm,ε) → A(k)

α ( f (ε)) in L p
w asm → ∞.

Thus, letting m → ∞ in (3.2), we have the conclusion of Lemma 3.4. �
Furthermore, we need the following.

Lemma 3.5 Let w ∈ Ap, 1 < p < ∞. Suppose that f ∈ Wα,p
w and g = I−α( f ) (0 < α <

n). Then we have

I (ε/2)
−α f (ε) = g(ε).

Proof For h ∈ S0 we see that∫
g(ε)(x)Iα(h)(x) dx = lim

m→∞

∫
gm,ε(x)Iα(h)(x) dx

= lim
m→∞

∫
I (ε/2)
α (gm,ε)(x)h(x) dx

=
∫

I (ε/2)
α (g(ε))(x)h(x) dx, (3.6)

where gm,ε is as in the proof of Lemma 3.4.We rewrite the integral
∫
g(ε) Iα(h) dx as follows:∫

g(ε)(x)Iα(h)(x) dx = lim
m→∞

∫
gm,ε(x)Iα(h)(x) dx

= lim
m→∞

∫
g(m)(x)Iα(h(ε))(x) dx =

∫
g(x)Iα(h(ε))(x) dx . (3.7)

We have
∫
gIα(h(ε)) dx = ∫

f h(ε) dx by the definition of g = I−α( f ). Using this in (3.7),
we see that
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∫
g(ε)(x)Iα(h)(x) dx =

∫
f (x)h(ε)(x) dx = lim

m→∞

∫
f(m)(x)h

(ε)(x) dx

= lim
m→∞

∫
fm,ε(x)h(x) dx =

∫
f (ε)(x)h(x) dx . (3.8)

By (3.6) and (3.8) for all h ∈ S0 we have∫
I (ε/2)
α (g(ε))(x)h(x) dx =

∫
f (ε)(x)h(x) dx .

Thus we see that I (ε/2)
α (g(ε)) = f (ε). We note that I (ε/2)

α and I (ε/2)
−α are bounded on L p

w and
the mapping f → f (ε) is also bounded on L p

w. Therefore, using Lemma 3.1 we have

I (ε/2)
−α ( f (ε)) = I (ε/2)

−α (I (ε/2)
α (g(ε))) = lim

m→∞ I (ε/2)
−α (I (ε/2)

α (gm,ε)).

Since gm,ε ∈ S0 and η(ε/2) = 1 on the support of F (gm,ε), we easily see that

I (ε/2)
−α (I (ε/2)

α (gm,ε))(x) =
∫

(η(ε/2)(ξ))2F (gm,ε)(ξ)e2π i〈x,ξ〉 dξ

=
∫

F (gm,ε)(ξ)e2π i〈x,ξ〉 dξ = gm,ε(x).

Using this, we see that

I (ε/2)
−α ( f (ε)) = lim

m→∞ gm,ε = g(ε).

This completes the proof of Lemma 3.5. �
Proof of Theorem 1.2 Let f ∈ Wα,p

w and g = I−α( f ). From Lemmas 3.4 and 3.5, it follows
that

‖A(k)
α ( f (ε))‖p,w ≤ C‖g(ε)‖p,w ≤ C‖M(g)‖p,w ≤ C‖g‖p,w,

where M denotes the Hardy-Littlewood maximal operator, which is bounded on L p
w. From

part (1) of Lemma 3.3 and Lemma 3.2, we can find a sequence {ε j } such that f (ε j )(x) −
f (ε j ) ∗ μt (x) → f (x) − f ∗ μt (x) for a.e. (x, t) ∈ R

n × (0,∞) as j → ∞. Therefore, by
Fatou’s lemma we have

‖A(k)
α ( f )‖p,w ≤ lim inf

j→∞ ‖A(k)
α ( f (ε j ))‖p,w ≤ C‖I−α f ‖p,w. (3.9)

Conversely, we assume that f ∈ L p
w and A(k)

α ( f ) ∈ L p
w. Then, Minkowski’s inequality

and the L p
w boundedness of M imply that

‖A(k)
α ( f (ε))‖p,w ≤ C‖M(A(k)

α ( f ))‖p,w ≤ C‖A(k)
α ( f )‖p,w. (3.10)

Using Lemma 3.4 and (3.10), we have

sup
ε∈(0,1/2)

‖I (ε/2)
−α f (ε)‖p,w ≤ C sup

ε∈(0,1/2)
‖A(k)

α ( f (ε))‖p,w ≤ C‖A(k)
α ( f )‖p,w.

By compactness, we can find a sequence {ε j }, 0 < ε j < 1/2, and a function g ∈ L p
w such

that ε j → 0,

‖g‖p,w ≤ C‖A(k)
α ( f )‖p,w (3.11)

and I
(ε j /2)
−α f (ε j ) → g weakly in L p

w as j → ∞.
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Now we prove that f = Iαg. Let h ∈ S0. From Lemma 3.2, we see that f (ε j ) → f in
L p

w as j → ∞. Using this, we have∫
Rn

f (x)h(x) dx = lim
j→∞

∫
Rn

f (ε j )(x)h(x) dx = lim
j→∞ lim

m→∞

∫
Rn

fm,ε j (x)h(x) dx

= lim
j→∞ lim

m→∞

∫
Rn

I−α( fm,ε j )(x)Iα(h)(x) dx .

Thus, noting that I−α( fm,ε j ) = I
(ε j /2)
−α ( fm,ε j ), we see that∫

Rn
f (x)h(x) dx = lim

j→∞ lim
m→∞

∫
Rn

I
(ε j /2)
−α ( fm,ε j )(x)Iα(h)(x) dx

= lim
j→∞

∫
Rn

I
(ε j /2)
−α ( f (ε j ))(x)Iα(h)(x) dx =

∫
Rn

g(x)Iα(h)(x) dx .

It follows that f = Iαg by definition. Thus (3.11) can be restated as

‖I−α f ‖p,w = ‖g‖p,w ≤ C‖A(k)
α ( f )‖p,w. (3.12)

By combining (3.9) and (3.12), we conclude the proof of Theorem 1.2. �

4 Proofs of Theorems 1.3 and 1.4

Let ζ be as in (2.3). In the proof of Theorem 1.1 in Section 2, we have already seen that
ζ ∈ L1(Rn) and

∫
ζ = 0. We observe that U (k)

α ( f ) = �ζ ( f ). By (2.5), we can see that ζ

satisfies the conditions (1) and (3) of Theorem D. To see the condition (2) of Theorem D, we
recall that

ζ̂ (ξ ) = (2π |ξ |)−α(1 − μ̂(ξ)).

Obviously, this implies the condition (2) of TheoremDand also the non-degeneracy condition
required in Theorem D. So we can apply Theorem D to get Theorem 1.3.

Next we prove Theorem 1.4.

Lemma 4.1 Let w ∈ Ap, 1 < p < ∞ and f ∈ L p
w. Let f (ε) be as in Lemma 3.2. Let B(k)

α be
as in Theorem 1.4. Then

‖B(k)
α ( f (ε))‖p,w � ‖I (ε/2)

−α f (ε)‖p,w, 0 < ε < 1/2.

Proof For f ∈ L p
w, let fm,ε ∈ S0 be as in the proof of Lemma 3.4. Applying Theorem 1.3,

we have

‖B(k)
α ( fm,ε)‖p,w = ‖U (k)

α (I−α fm,ε)‖p,w � ‖I (ε/2)
−α fm,ε‖p,w. (4.1)

Using (4.1) and arguing as in the proof of Lemma 3.4, we can prove Lemma 4.1. �
Proof of Theorem 1.4 The proof is similar to that of Theorem 1.2, so it is brief.

Suppose that f ∈ Wα,p
w and let g = I−α( f ). By Lemmas 4.1 and 3.5, we have

‖B(k)
α ( f (ε))‖p,w ≤ C‖g(ε)‖p,w ≤ C‖M(g)‖p,w ≤ C‖g‖p,w.

Thus, as in the proof of (3.9), by part (2) of Lemma 3.3, Lemma 3.2 and Fatou’s lemma we
see that

‖B(k)
α ( f )‖p,w ≤ C‖I−α f ‖p,w. (4.2)
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Next, we assume that f ∈ L p
w and B(k)

α ( f ) ∈ L p
w. Using Minkowski’s inequality we see

that

‖B(k)
α ( f (ε))‖p,w ≤ C‖M(B(k)

α ( f ))‖p,w ≤ C‖B(k)
α ( f )‖p,w. (4.3)

By Lemma 4.1 and (4.3), we have

sup
ε∈(0,1/2)

‖I (ε/2)
−α f (ε)‖p,w ≤ C sup

ε∈(0,1/2)
‖B(k)

α ( f (ε))‖p,w ≤ C‖B(k)
α ( f )‖p,w.

So, we can find a sequence {ε j } and a function g ∈ L p
w such that 0 < ε j < 1/2, ε j → 0,

‖g‖p,w ≤ C‖B(k)
α ( f )‖p,w (4.4)

and I
(ε j /2)
−α f (ε j ) → g weakly in L p

w as j → ∞.
We can prove that f = Iαg as in the proof of Theorem 1.2. So by (4.4) we have

‖I−α f ‖p,w = ‖g‖p,w ≤ C‖B(k)
α ( f )‖p,w. (4.5)

We conclude the proof of Theorem 1.4 by combining (4.2) and (4.5). �

5 Characterization ofW1,p
w by discrete parameter square functions

In [5] A1 is used to characterize W 1,p
w for 1 < p < ∞, w ∈ Ap . Here we consider B1 and

prove a similar characterization by B1, where B1 = B(1)
1 (see (1.9)).

Theorem 5.1 Let 1 < p < ∞, w ∈ Ap and f ∈ L p
w. Then, f ∈ W 1,p

w if and only if
B1( f ) ∈ L p

w; further

‖I−1( f )‖p,w � ‖B1( f )‖p,w.

Let R j , 1 ≤ j ≤ n, be the Riesz transform:

R j ( f )(x) = p.v.Cn

∫
f(x − y)

yj
|y|n+1 dy,

where Cn = �((n + 1)/2)/π(n+1)/2. It is known that F (R j f )(ξ) = (−iξ j/|ξ |) f̂ (ξ),
f ∈ S .
To prove Theorem 5.1 we need the following results.

Lemma 5.2 Let φ( j)(x) = c−1
n x j |x |−nχB(0,1), j = 1, . . . , n, where cn is the surface area of

Sn−1. Then we have the following.

(1) Rk(φ
( j)) ∈ L1(Rn) for 1 ≤ j, k ≤ n.

(2) F (Rk(φ
( j)))(ξ) = (−iξk/|ξ |)F (φ( j))(ξ) and

∫
Rk(φ

( j))(x) dx = 0 for 1 ≤ j, k ≤ n.
(3)

∣∣F (φ( j))(ξ)
∣∣ ≤ C min(|ξ |ε, |ξ |−ε) for ξ ∈ R

n \ {0} with some ε > 0.

(4) sup
∈Z
∣∣∣∑n

j=1 F (R j (φ
( j)))(2
ξ)

∣∣∣ > 0 for ξ ∈ R
n \ {0}.

Proof Proof of part (1). This is valid since φ( j) is essentially an atom for H1(Rn) (the Hardy
space) (see [4, Chap. III]). Here we give a proof for completeness. For |x | > 2 we have
|Rk(φ

( j))(x)| ≤ C |x |−n−1 as follows. Since
∫

φ( j) = 0, we see that
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|Rk(φ
( j))(x)| =

∣∣∣∣Cn

∫
|y|≤1

(
xk − yk

|x − y|n+1 − xk
|x |n+1

)
φ( j)(y) dy

∣∣∣∣
≤ C

∫
|x |−n−1|φ( j)(y)| dy ≤ C |x |−n−1‖φ( j)‖1.

Also, we note that φ( j) ∈ L p(Rn) for p ∈ (1, n/(n − 1)). Thus by Hölder’s inequality and
the L p- boundedness of Rk , for p ∈ (1, n/(n − 1)) we see that∫

|x |≤2
|Rk(φ

( j))(x)| dx ≤ |B(0, 2)|1/p′ ‖Rk(φ
( j))‖p ≤ C‖φ( j)‖p.

Collecting results, we have Rk(φ
( j)) ∈ L1(Rn).

Proof of part (2). Let 1 < p < n/(n − 1). We take a sequence { f
}∞
=1 in S such
that f
 → φ( j) in L p as 
 → ∞. Since φ( j) is supported on |x | ≤ 1, we may assume that
supp( f
) ⊂ B(0, 2) and hence we also have f
 → φ( j) in L1. Thus f̂
(ξ) → F (φ( j))(ξ) for
every ξ . By the L p boundedness of Rk , it follows that Rk( f
) → Rk(φ

( j)) in L p . Applying
the inequality of Hausdorff-Young, we see thatF (Rk( f
)) → F (Rk(φ

( j))) in L p′
; also we

may assume that F (Rk( f
)) → F (Rk(φ
( j))) a.e. by taking a subsequence, if necessary.

Thus, for almost every ξ we have

F (Rk(φ
( j)))(ξ) = lim


→∞F (Rk( f
))(ξ) = lim

→∞

−iξk
|ξ | f̂
(ξ) = −iξk

|ξ | F (φ( j))(ξ). (5.1)

Since Rk(φ
( j)) ∈ L1 by part (1), F (Rk(φ

( j))) is continuous on R
n . Also, F (φ( j)) is con-

tinuous on R
n . Thus by (5.1) F (Rk(φ

( j)))(ξ) = (−iξk/|ξ |)F (φ( j))(ξ) holds for every
ξ �= 0.

Next, we observe that
∣∣∣F (φ( j))(ξ)

∣∣∣ =
∣∣∣∣
∫

φ( j)(x)(e−2π i〈x,ξ〉 − 1)

∣∣∣∣ ≤ C |ξ |
∫

|φ( j)(x)||x | dx ≤ C |ξ |. (5.2)

Thus ∣∣∣F (Rk(φ
( j)))(ξ)

∣∣∣ =
∣∣∣∣i ξk

|ξ |F (φ( j))(ξ)

∣∣∣∣ ≤ C |ξ |,

which implies F (Rk(φ
( j)))(0) = 0, in other words,

∫
Rk(φ

( j))(x) dx = 0 .
Proof of part (3). We write F (φ( j)) as follows.

F (φ( j))(ξ) =
∫

φ( j)(x)e−2π i〈x,ξ〉 dx =
∫ 1

0

∫
Sn−1

θ j e
−2π ir〈θ,ξ〉 dσ(θ) dr

=
∫
Sn−1

θ j
(1 − e−2π i〈θ,ξ〉)

2π i〈θ, ξ 〉 dσ(θ). (5.3)

Thus ∣∣∣F (φ( j))(ξ)

∣∣∣ ≤
∫
Sn−1

|θ j |π−ε |〈θ, ξ 〉|−ε dσ(θ) = C |ξ |−ε,

where 0 < ε < 1 and C is a positive constant independent of ξ . From this and (5.2) we can
deduce the inequality claimed.

Proof of part (4). We recall that∫
Sn−1

e−2π i〈θ,ξ〉 dσ(θ) = 2π

cn

J(n−2)/2(2π |ξ |)
|ξ |(n−2)/2

=: V (|ξ |),
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where Jβ denotes the Bessel function of the first kind of order β (see [15, p.154]). It follows
that ∫

Sn−1
θ j e

−2π i〈θ,ξ〉 dσ(θ) = 1

−2π i
(∂/∂ξ j )V (|ξ |) = 1

−2π i

ξ j

|ξ |V
′(|ξ |).

Using this in (5.3), we have

F (φ( j))(ξ) = i

2π

ξ j

|ξ |
∫ 1

0
V ′(r |ξ |) dr = ξ j

|ξ |W (|ξ |),

where W is an analytic function defined by

W (u) = i

2π

∫ 1

0
V ′(ru) dr .

So, using part (2), we see that∣∣∣∣∣∣
n∑
j=1

F (R j (φ
( j)))(ξ)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

ξ2j

|ξ |2W (|ξ |)
∣∣∣∣∣∣ = |W (|ξ |)| for ξ ∈ R

n \ {0}.

Thus, we need to show that

sup

∈Z

|W (|2
ξ |)| > 0 for ξ ∈ R
n \ {0}. (5.4)

We give a proof by contradiction. We first note that W (0) = 0. If there is ξ ∈ R
n \ {0}

such that W (2−
|ξ |) = 0 for all 
 ∈ Z, then we have a sequence {2−
|ξ |}∞
=1 of distinct
points such that 2−
|ξ | → 0 and W (2−
|ξ |) = 0 for all 
 = 1, 2, . . . . This implies that the
functionW is identically 0 by the uniqueness of analytic continuation. Thus we have reached
a contradiction, and hence we have (5.4). �

To prove Theorem 5.1, we apply the following result.

Theorem 5.3 Suppose that 1 < p < ∞ and w ∈ Ap. Let U1 = U (1)
1 , where U (1)

1 is as in
(1.10). Then we have

‖U1( f )‖p,w � ‖ f ‖p,w, f ∈ S0(R
n).

Proof Let f ∈ S0. Then by [5, Lemma 2.1] we see that

I1( f )(x) −
∫
Sn−1

I1( f )(x − t y) dσ(y) = 1

cn

∫
B(x,t)

〈
∇ I1 f (y),

x − y

|x − y|n
〉
dy, (5.5)

where cn is the surface area of Sn−1 as above and ∇g = (∂1g, . . . , ∂ng). Let

ψ( j)(x) = −R j (φ
( j))(x), ψ(x) =

n∑
j=1

ψ( j)(x).

Then by (5.5), we have

I1( f )(x) −
∫
Sn−1

I1( f )(x − t y) dσ(y) = t( f ∗ ψt (x)).

Thus

U1( f ) = �ψ( f ). (5.6)
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We note that �ψ( j) ( f ) = �φ( j) (R j f ). Using part (3) of Lemma 5.2, we can easily see that
Theorem D is applicable to �φ( j) to get its L p

w boundedness. Thus, by Theorem D and the
L p

w boundedness of R j , we see that

‖�ψ( f )‖p,w ≤
n∑
j=1

‖�ψ( j) ( f )‖p,w

=
n∑
j=1

‖�φ( j) (R j f )‖p,w ≤ C
n∑
j=1

‖R j f ‖p,w ≤ C‖ f ‖p,w. (5.7)

�
To prove the reverse inequality, we apply the following result, which is essentially [11,

Theorem 3.6].

Lemma 5.4 Let ψ ∈ L1(Rn) satisfy (1.13) and let �ψ be as in (1.15). Suppose that

‖�ψ( f )‖p,w ≤ C‖ f ‖p,w, f ∈ S0,

for all w ∈ Ap and all p ∈ (1,∞). Further, suppose that the function m(ξ) =∑∞

=−∞ |ψ̂(2
ξ)|2 is continuous and strictly positive on B0 = {1 ≤ |ξ | ≤ 2}. Then the

reverse inequality

‖ f ‖p,w ≤ C‖�ψ( f )‖p,w, f ∈ S0,

also holds for all w ∈ Ap and all p ∈ (1,∞). Thus ‖ f ‖p,w � ‖�ψ( f )‖p,w, f ∈ S0, for
p ∈ (1,∞) and w ∈ Ap.

Let

b(ξ) =
∞∑


=−∞
|F (ψ)(2
ξ)|2 =

∞∑

=−∞

∣∣∣∣∣∣
n∑
j=1

F
(
ψ( j)

)
(2
ξ)

∣∣∣∣∣∣
2

.

Let N be a positive integer and

bN (ξ) =
N∑


=−N

|F (ψ)(2
ξ)|2.

Then bN is continuous on B0, where B0 is as in Lemma 5.4. By (2) and (3) of Lemma 5.2
bN converges to b uniformly on B0 and hence b is continuous on B0. Also, Lemma 5.2
(4) implies that b is strictly positive on B0. Thus, taking into account (5.7), we can apply
Lemma 5.4 to �ψ to get ‖ f ‖p,w ≤ C‖�ψ( f )‖p,w . Recalling (5.6), we conclude the proof
of Theorem 5.3. �
Proof of Theorem 5.1 The proof is similar to those of Theorems 1.2 and 1.4. We need the
following.

Lemma 5.5 Suppose that w ∈ Ap, 1 < p < ∞ and f ∈ L p
w. Let f (ε) be as in Lemma 3.2.

Let B1 be as in Theorem 5.1. Then

‖B1( f
(ε))‖p,w � ‖I (ε/2)

−1 f (ε)‖p,w, 0 < ε < 1/2.
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Proof Using Theorem 5.3, we have

‖B1( fm,ε)‖p,w = ‖U1(I−1 fm,ε)‖p,w � ‖I (ε/2)
−1 fm,ε‖p,w, (5.8)

where f ∈ L p
w and fm,ε ∈ S0 is as in the proof of Lemma 3.4. We can prove Lemma 5.5 by

applying (5.8) and by arguing similarly to the proofs of Lemmas 3.4 and 4.1. �

Applying Lemma 5.5, we can prove Theorem5.1 in the sameway aswe have proved Theorem
1.4 by applying Lemma 4.1. �

6 Some further remarks and results

6.1 On availability of polarization techniques

In proving Theorem 1.1, if we have the inequality ‖S(k)
α ( f )‖p,w ≤ C‖ f ‖p,w , then the reverse

inequality can be shown by the polarization techniques as in [5, 9] by using the identity
‖S(k)

α ( f )‖2 = c‖ f ‖2 (see [4, Chap. V, p. 507, 5.6 (b)]). In proving Theorems 1.3 and 5.3
we have difficulties in applying similar arguments due to absence of the corresponding L2

equalities. So we need to apply different arguments using non-degeneracy.

6.2 Comments on S˛

In theorems of this note, we have considered square functions involving averaging over
spheres S(x, t) = {y ∈ R

n : |x − y| = t}. To define analogues in metric measure spaces
of those square functions involving averaging over S(x, t), we have difficulties in defining
suitable measures on the spheres (boundaries of balls) in general spaces. This is not the case
for square functions involving averaging over balls like the one in (1.4).

On the other hand, in relation to harmonic analysis on the Euclidean spaces, the square
function Sα( f ) in (1.6) has an interesting pointwise relation with the square functions arising
from the Bochner-Riesz operators. Let

Sβ
R( f )(x) =

∫
|ξ |<R

f̂ (ξ)(1 − R−2|ξ |2)β e2π i〈x,ξ〉 dξ

be the Bochner-Riesz mean of order β and let σβ be a Littlewood-Paley operator defined as

σβ( f )(x) =
(∫ ∞

0

∣∣∣R(∂/∂R)Sβ
R( f )(x)

∣∣∣2 dR/R

)1/2

=
(∫ ∞

0

∣∣∣−2β
(
Sβ
R( f )(x) − Sβ−1

R ( f )(x)
)∣∣∣2 dR/R

)1/2

.

Then the following result is known (see [6, 10]).

Theorem E Suppose that 0 < α < 2 and β = α + n
2 . Then we have

σβ( f )(x) � Sα( f )(x),

for f ∈ S0(R
n).
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6.3 Discrete parameter square functions defined with repeated uses of averaging
operations over balls

We can also consider a discrete parameter version of the square function in (1.4) as follows:( ∞∑

=−∞

∣∣∣∣ f (x) − −
∫
B(x,2
)

f (y) dy

∣∣∣∣
2

2−2


)1/2

.

Furthermore, we can consider analogues of B(k)
α ( f ) andU (k)

α ( f ) in (1.9) and (1.10), respec-
tively,where the averaging operation f ∗σt is replaced by f ∗�t with� = |B(0, 1)|−1χB(0,1),
and we can prove analogues of Theorems 1.3 and 1.4, as follows.

We define �
j
t f (x), j ≥ 1, by �

j
t f (x) = f ∗ �

( j)
t (x), where

�(1)(x) = �(x), �( j)(x) = � ∗ · · · ∗ �︸ ︷︷ ︸
j

(x), j ≥ 2.

We also write �t f for �1
t f . Let I be the identity operator and for a positive integer k we

consider

(I − �t )
k f (x) = f (x) +

k∑
j=1

(−1) j
(
k

j

)
�

j
t f (x).

For 0 < α < n, let

G(k)
α ( f )(x) =

( ∞∑

=−∞

∣∣∣(I − �2
 )
k f (x)

∣∣∣2 2−2α


)1/2

,

and

R(k)
α ( f )(x) =

( ∞∑

=−∞

∣∣∣(I − �2
 )
k Iα( f )(x)

∣∣∣2 2−2α


)1/2

.

We state the following results without proofs.

Theorem 6.1 Let 0 < α < min(2k, n), 1 < p < ∞ and w ∈ Ap. Then

‖R(k)
α ( f )‖p,w � ‖ f ‖p,w, f ∈ S0(R

n).

Theorem 6.2 Suppose that 1 < p < ∞, w ∈ Ap and 0 < α < min(2k, n). Then f ∈ Wα,p
w

if and only if f ∈ L p
w and G(k)

α ( f ) ∈ L p
w; further,

‖I−α( f )‖p,w � ‖G(k)
α ( f )‖p,w.

Theorems 6.1 and 6.2 can be shown arguing similarly to the proofs of Theorems 1.3 and 1.4,
respectively. Analogues of Theorems 6.1 and 6.2 for continuous parameter square functions
are obtained in Theorems 4.1 and 4.2 of [12], respectively, where more general settings are
considered.
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