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Abstract

We consider pressure Poisson equations for stationary incompressible Stokes problems and
time-dependent incompressible Navier–Stokes problems. The pressure Poisson equation
is an elliptic partial differential equation of second order and is used in various numerical
methods for incompressible viscous flows. Since there are many mechanisms that generate
flow by creating pressure differences, a Dirichlet boundary condition is often set for the
pressure Poisson equation. However, in general, the pressure of the boundary condition
for the numerical methods differs from the exact pressure solution of the original problem.

This thesis aims to provide a mathematical analysis for the pressure Poisson equa-
tion from the viewpoint of additional boundary conditions. We establish error esti-
mates in suitable norms between solutions to a stationary Stokes problem and the cor-
responding pressure Poisson problem in terms of the additional boundary condition. As
boundary conditions for the Stokes problem, we use a traction boundary condition and
a Dirichlet-type pressure boundary condition with no tangent flow. In addition, for a
pseudo-compressibility problem that interpolates the Stokes and pressure Poisson prob-
lems, we also give error estimates in suitable norms between the solutions to the pseudo-
compressibility problem, the pressure Poisson problem, and the Stokes problem for several
additional boundary condition cases.

Moreover, we propose a new additional boundary condition for the projection method
of the time-dependent Navier–Stokes problem with a Dirichlet-type pressure boundary
condition and no tangent flow. We demonstrate stability for the scheme and establish error
estimates for the velocity and pressure under suitable norms. A numerical experiment
verifies the theoretical convergence results. Furthermore, the existence of a weak solution
to the original Navier–Stokes problem is proven by using stability.
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Chapter 1

Introduction

1.1 Motivations

There are various numerical methods for incompressible viscous flows described by the
Navier–Stokes equation and the continuity equation (incompressible condition). For ex-
ample, if we use the explicit Euler method for time, we can calculate the velocity of the
next step from the Navier–Stokes equation. However, we cannot calculate the pressure
from the incompressible condition. Hence, some strategy is needed for numerical methods
for incompressible viscous flows. Thus, there are many numerical methods that solve a
pressure Poisson equation instead of the incompressibility condition, such as the marker
and cell (MAC) method [42, 64, 85], simplified MAC (SMAC) method [4, 5, 82], projec-
tion method [21, 79, 38], moving-particle semi-implicit (MPS) method [57, 58, 74], and
incompressible smoothed particle hydrodynamics (ISPH) method [49, 61, 75]. Numerical
methods are effective for the finite difference method (FDM) [30, 78, 81], finite element
method (FEM) [17, 32, 87], finite volume method (FVM) [29, 65, 83], and particle methods
[46, 58, 62] and separately solve the velocity and pressure, which are different from other
numerical schemes such as the Hood–Taylor finite element method [17, 32], the pressure
stabilization method [26, 33, 48], and the pseudo-compressibility method [20, 70, 86].

Additional boundary conditions are required for numerical methods using the pressure
Poisson equation since the pressure Poisson equation is an elliptic partial differential
equation of second order. In general, the Neumann boundary condition is imposed on
the pressure when the Dirichlet boundary condition is applied for the flow velocity. In
[35, 73], the authors show that the pressure Poisson and Navier–Stokes equations with
appropriate boundary conditions are equivalent to the original incompressible Navier–
Stokes problem. The error estimate for the projection method is first given in [76, 71].
In particular, in [71], the proof is based on the fact that the projection method can be
interpreted as a pseudo-compressibility method, such as the pressure stabilization method
(cf. [31, 70]). Many boundary conditions have been proposed to improve the order of the
error [50, 52, 59]．

On the other hand, there are many mechanisms that generate flow by creating pressure
differences, such as water distribution systems, hydraulic systems, and blood circulation.
Hence, there is a motivation to impose pressure as a boundary condition in engineering.
Since one can naturally set Dirichlet boundary conditions on the pressure Poisson equa-
tion, the traction boundary condition or do-nothing boundary condition is often used in
numerical methods using the pressure Poisson equation [37, 38, 47]. However, the pres-
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2 Chapter 1. Introduction

sure of the boundary condition for the numerical method differs from the exact pressure
solution of the original problem. Although there are many good numerical results and
error estimates for the time step size and mesh size, there is no error estimate in terms
of the additional boundary condition．

We also note well-posed boundary conditions, including pressure, for the Stokes and
Navier–Stokes equations introduced in [7, 23]. There are many mathematical analyses and
discretization approaches; for example, the unique existence of the weak solution in the
steady case [24, 9, 10], extended to Lp-theory [3], and unsteady nonlinear case [63, 56]. On
the other hand, applying this type of boundary condition to the pressure Poisson method
is limited; for example, the projection method [39, 40]. However, the authors assume
an outflow condition for stability and the pressure to be stationary for implementation
reasons.

1.2 Synopsis of the thesis

This thesis aims to provide a mathematical analysis for the pressure Poisson equation
from the viewpoint of additional boundary conditions. We establish error estimates in
suitable norms between solutions to a stationary Stokes problem and the corresponding
pressure Poisson problem in terms of the additional boundary condition. In addition,
for a pseudo-compressibility problem that interpolates the Stokes and pressure Poisson
problems, we also give error estimates in suitable norms between the solutions to the
pseudo-compressibility problem, the pressure Poisson problem, and the Stokes problem
for several additional boundary condition cases. Moreover, we propose a new additional
boundary condition for the projection method for the time-dependent Navier–Stokes prob-
lem with a Dirichlet-type pressure boundary condition and no tangent flow.

In Chapter 2, we prepare notations, function spaces, and their properties used in the
thesis. Chapters 3, 4, and 5 contain all our mathematical results.

In Chapter 3, we introduce a stationary Stokes problem and the corresponding pressure
Poisson equation. We establish error estimates between solutions to the Stokes problem
and the pressure Poisson problem in terms of the additional boundary condition. As
boundary conditions for the Stokes problem, we use a traction boundary condition and
the boundary condition including pressure introduced in [7, 23].

In Chapter 4, we introduce an ε-Stokes problem as a pseudo-compressibility problem
that interpolates the Stokes and pressure Poisson problems. The boundary conditions
for the velocity are full Dirichlet boundary conditions, and those for the pressure are
Dirichlet, mixed, and Neumann boundary conditions. We give error estimates in suitable
norms between the solutions to the ε-Stokes problem, the pressure Poisson problem, and
the Stokes problem. Several numerical examples show that several such error estimates
are optimal in ε. In addition, we show that the solution to the ε-Stokes problem has a
nice asymptotic structure.

In Chapter 5, we propose a new additional boundary condition for the projection
method with a Dirichlet-type total pressure boundary condition and no tangent flow. We
demonstrate stability for the scheme and establish error estimates for the velocity and
pressure under suitable norms. A numerical experiment verifies the theoretical conver-
gence results. Furthermore, the existence of a weak solution to the original Navier–Stokes
problem is proven by using stability.
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In Appendix A, we define the standard Lipschitz boundary and prove the Nečas in-
equality and its corollary. These results have already been proven, but we provide careful
proof.





Chapter 2

Preliminaries

In this chapter, we provide notations, function spaces, and their properties used in the
thesis.

2.1 Notations and function spaces

We provide a list of notation and function spaces used in the thesis.

General used symbols. If not stated otherwise, the symbols listed below have the
following meaning:

N : the set of positive integers.
Z≥0 : the set of non-negative integers.
T : a positive real number representing the final time.
Rm : m-dimensional Euclidean space for m ∈ N.
Ω : a bounded Lipschitz domain in Rd for d = 2 or d = 3, corresponding

to the spatial region, where the equation is solved (see Definition A.1.1
for the precise definition of Lipschitz domain).

Ω : the closure of domain Ω.
Γ : the boundary ∂Ω of domain Ω.
n : the outer normal vector for the boundary Γ.
| · | : the Euclidean norm on Rd.
a · b : the inner product on Rd.
a× b : the cross product on R2 or R3. For three-dimensional vectors a =

(a1, a2, a3), b = (b1, b2, b3), the cross product of a and b is defined by

a× b := (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) .

For two-dimensional vectors a = (a1, a2) and b = (b1, b2), the cross
product of a and b is defined by

a× b := a1b2 − a2b1.

5



6 Chapter 2. Preliminaries

A : B : the componentwise inner product of two matrices A = (aij), B =
(bij) ∈ Rd×d and defined by

A : B :=
d∑

i,j=1

aijbij.

p : unknown real-valued function.
u : unknown real d-dimensional vector-valued function.
∇p : the gradient of p = p(x) with respect to spatial variables and defined

by

(∇p)(x) :=
(
∂p

∂x1
(x),

∂p

∂x2
(x), . . . ,

∂p

∂xd
(x)

)T

=



∂p

∂x1
(x)

∂p

∂x2
(x)

...
∂p

∂xd
(x)


,

where T is the transpose of the vector or matrix.
∇u : the gradient of u = (u1(x), u2(x), . . . , ud(x)) with respect to spatial

variables and the square matrix of order d defined by

(∇u)(x) :=



∂u1
∂x1

(x)
∂u2
∂x1

(x) · · · ∂ud
∂x1

(x)

∂u1
∂x2

(x)
∂u2
∂x2

(x) · · · ∂ud
∂x2

(x)

...
...

...
∂u1
∂xd

(x)
∂u2
∂xd

(x) · · · ∂ud
∂xd

(x)


.

S(u) : the matrix defined by

S(u) := ∇u+ (∇u)T,

which is twice the symmetric part of the matrix ∇u.
div u : the divergence of u = (u1(x), u2(x), . . . , ud(x)) with respect to spatial

variables and defined by

(div u)(x) :=
d∑
i=1

∂ui
∂xi

(x).

The divergence of σ = (σij(x)) ∈ Rd×d with respect to spatial variables
and defined by

(div σ)(x) :=

(
d∑
j=1

∂σ1j
∂xj

(x),
d∑
j=1

∂σ2j
∂xj

(x), · · · ,
d∑
j=1

∂σdj
∂xj

(x)

)T

.
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∇×u : the rotation of u with respect to spatial variables. For a three-
dimensional vector-valued function u = (u1(x), u2(x), u3(x)) on three-
dimensional real Euclidean space, ∇×u is defined by

∇×u :=

(
∂u3
∂x2

− ∂u2
∂x3

,
∂u1
∂x3

− ∂u3
∂x1

,
∂u2
∂x1

− ∂u1
∂x2

)
.

For a two-dimensional vector-valued function u = (u1(x), u2(x))
on two-dimensional real Euclidean space, by regarding u as
the three-dimensional vector-valued function (x1, x2, x3) 7→
(u1(x1, x2), u2(x1, x2), 0), we apply the above definition and pick
up meaningful parts, i.e.,

∇×u :=
∂u2
∂x1

− ∂u1
∂x2

,

∇×(∇×u) :=
(

∂

∂x2

(
∂u2
∂x1

− ∂u1
∂x2

)
,− ∂

∂x1

(
∂u2
∂x1

− ∂u1
∂x2

))
.

∆p : the Laplacian of p with respect to spatial variables, which is defined
by

∆p :=
d∑
i=1

∂2p

∂x2i
,

∆u : the Laplacian of u with respect to spatial variables, which is defined
by

∆u :=

(
d∑
i=1

∂2u1
∂x2i

,
d∑
i=1

∂2u2
∂x2i

, . . . ,
d∑
i=1

∂2ud
∂x2i

)T

,

For the boundary Γ, we assume that there exist two relatively open subsets Γ1,Γ2 of
Γ satisfying

|Γ \ (Γ1 ∪ Γ2)| = 0, |Γ1|, |Γ2| > 0, Γ1 ∩ Γ2 = ∅, Γ̊1 = Γ1, Γ̊2 = Γ2, (2.1.1)

where A is the closure of A ⊂ Γ with respect to Γ, Å is the interior of A with respect to
Γ, and |A| is the (d− 1)-dimensional Hausdorff measure of A.

Function spaces. The following function spaces and their corresponding norms and
inner products are used in the thesis. For a Banach space E, we denote its dual space E∗

and the dual product between E∗ and E by 〈·, ·〉E. Let Ω be an open domain in Rd, and
let k ∈ N, p ≥ 1, T > 0.

Ck(Ω) : the set of all functions f : Ω → R such that all derivatives up to and
including k-th order exist and are continuous and can be extended to
the closure Ω.

C∞(Ω) : the set of all infinitely differentiable functions f : Ω → R that can be
continuously extended with all their derivatives to the closure Ω, i.e.,
C∞(Ω) := ∩∞

k=0C
k(Ω).
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C∞
0 (Ω) : the set of all functions f ∈ C∞(Ω) such that there exists a compact

set K ⊂ Ω such that f vanishes on Ω \K.
D ′(Ω) : the space of all distributions on Ω.
Lp(Ω) : the set of all functions f : Ω → R such that the p-th power of the

absolute value is Lebesgue integrable and with the identification of
functions that only differ on null sets. The Lebesgue space Lp(Ω) is a
Banach space with respect to the norm

‖f‖Lp(Ω) :=

(∫
Ω

|f(x)|pdx
)1/p

.

In particular, L2(Ω) is also a Hilbert space with respect to the inner
product

(f, g) :=

∫
Ω

f(x)g(x)dx.

L∞(Ω) : the set of all functions f : Ω → R such that the norm

‖f‖L∞(Ω) := esssup
x∈Ω

|f(x)|

exists and is finite and with the identification of functions that only
differ on null sets, which is a Banach space with respect to ‖ · ‖L∞(Ω).

L2(Ω)/R : the space of all functions f ∈ L2(Ω) with the average of 0, i.e.,

L2(Ω)/R :=

{
[f ] := f − 1

|Ω|

∫
Ω

fdx

∣∣∣∣ f ∈ L2(Ω)

}
,

where |Ω| :=
∫
Ω
1dx.

W k,p(Ω) : the set of all functions f ∈ Lp(Ω) such that for each multi-index
α = (α1, α2, . . . , αd) ∈ Zd≥0 with |α|1 :=

∑d
i=1 |αi| ≤ k, ∂αf :=

(∂/∂x1)
α1(∂/∂x2)

α2 · · · (∂/∂xd)αdf exists in the distribution sense and
belongs to Lp(Ω). The Sobolev space W k,p(Ω) is a Banach space with
respect to the norm

‖f‖Wk,p(Ω) :=

 ∑
α∈Zd

≥0, |α|1≤k

‖∂αf‖pLp(Ω)

1/p

.

Hk(Ω) : the Sobolev space W k,2(Ω), which is a Hilbert space with respect to
the inner product

(f, g)Hk(Ω) :=
∑

α∈Zd
≥0, |α|1≤k

(∂αf, ∂αg).
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Hdiv(Ω) : the function space defined by

Hdiv(Ω) := {v ∈ L2(Ω)
d | div v ∈ L2(Ω)},

with the norm

‖v‖Hdiv(Ω) :=
√

‖v‖L2(Ω)d + ‖ div v‖L2(Ω).

H1(Ω)/R : the space of all functions f ∈ H1(Ω) with the average of 0, i.e.,
H1(Ω)/R = H1(Ω) ∩ (L2(Ω)/R).

H1
0 (Ω) : the closure of C∞

0 (Ω) in H1(Ω).

For m = 1 or m = d, the dual space H−1(Ω)
m

= (H1
0 (Ω)

m
)∗ is equipped with the

norm
‖f‖H−1(Ω)m := sup

φ∈Sm

〈f, φ〉

for f ∈ H−1(Ω)
m
, where

Sm := {φ ∈ H1
0 (Ω)

m | ‖∇φ‖L2(Ω)n×m = 1}.

For q ∈ L2(Ω), we set

〈∇q, φ〉
H1

0 (Ω)
d := −

∫
Ω

q divφdx for all φ ∈ H1
0 (Ω)

d
.

We remark that q ∈ H1(Ω) satisfies that for all φ ∈ H1
0 (Ω)

d
,

〈∇q, φ〉
H1

0 (Ω)
d = (∇q, φ).

We also use the following Lebesgue and Sobolev spaces defined on the open subset
Γ̃ ∈ {Γ,Γ1,Γ2} of the boundary Γ.

L2(Γ̃) : the Lebesgue space L2(Γ̃) with the inner product

(η, ζ)L2(Γ̃) :=

∫
Γ̃

η(s)ζ(s)ds,

where ds denotes the surface measure of Γ.

H1/2(Γ̃) : the set of all functions λ ∈ L2(Γ̃) such that the norm

‖η‖H1/2(Γ̃) :=

(
‖η‖2

L2(Γ̃)
+

∫
Γ̃

∫
Γ̃

|η(s1)− η(s2)|2

|s1 − s2|d
ds1ds2

)1/2

exists and is finite, which is a Banach space with respect to ‖·‖H1/2(Γ̃).

H−1/2(Γ) : the dual space (H1/2(Γ))∗.

We remark that η∗ ∈ L2(Γ) can be identified with an element of the dual space
H−1/2(Γ) by

〈η∗, η〉H1/2(Γ) =

∫
Γ

η∗η ds for all η ∈ H1/2(Γ).
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Let γ0 : H
1(Ω) → H1/2(Γ) be the standard trace operator. The trace operator γ0 is a

surjective continuous linear operator and Ker(γ0) = H1
0 (Ω) [32, Theorem 1.5]. For i = 1

or i = 2, the composition of the trace operator γ0 and the restriction H1/2(Γ) → H1/2(Γi)
is a continuous map from H1(Ω) to H1/2(Γi). By using the map H1(Ω) 3 ψ 7→ ψ|Γi

∈
H1/2(Γi), we define

H1
Γi
(Ω) := {ψ ∈ H1(Ω) | ψ|Γi

= 0}.

and then, there exists a constant c > 0 such that for all p ∈ H1(Ω),

‖p‖H1(Ω)/H1
Γi

(Ω) ≤ c‖p|Γi
‖H1/2(Γi),

where ‖p‖H1(Ω)/H1
Γi

(Ω) := infψ∈H1
Γi

(Ω) ‖p+ψ‖H1(Ω). We simply write ψ instead of ψ|Γi
when

there is no ambiguity. Since n is a unit vector, the maps H1(Ω)
d 3 u 7→ u ·n ∈ L2(Γ) and

H1(Ω)
d 3 u 7→ u× n ∈ L2(Γ)d(d−1)/2 are linear and continuous. We also set

H := {φ ∈ H1(Ω) | φ = 0 on L2(Γ1), φ× n = 0 on L2(Γ2)
d(d−1)/2}.

For the open subsets Γ1,Γ2 of the boundary Γ, we define the following subspaces of
H1/2(Γ):

H1/2
γ0

(Γ1) := γ0(H
1
Γ2
(Ω)),

H1/2
γ0

(Γ2) := γ0(H
1
Γ1
(Ω)).

For i = 1 or i = 2, the space H
1/2
γ0 (Γi) is continuously embedding in H1/2(Γi) and equiva-

lent to the Lions–Magenes space H
1/2
00 (Γi), for example, if Γi is a line segment with d = 2

[36, 72]. We remark that η∗ ∈ L2(Γi) can be identified with an element of the dual space

(H
1/2
γ0 (Γi))

∗ by

〈η∗, η〉
H

1/2
γ0

(Γi)
=

∫
Γi

η∗η ds for all η ∈ H1/2
γ0

(Γi).

2.2 Preliminary results

We use the following lemmas and theorems. These results can be found in [14, 16, 32, 80].

Proposition 2.2.1 (Cauchy–Schwarz). Let Ω be an open subset of Rd. For f, g ∈ L2(Ω),
we have the following inequality:∣∣∣∣∫

Ω

fgdx

∣∣∣∣ ≤ ‖f‖L2(Ω)‖g‖L2(Ω).

Proposition 2.2.2 (Young). Let n ≥ 2, and a1, a2, . . . , an be non-negative real numbers.
Additionally, let p1, p2, . . . , pn be positive real numbers such that

n∑
i=1

1

pi
= 1.

We then have
n∏
i=1

ai ≤
n∑
i=1

apii
pi
.
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In particular, when n = 2, we have for all c > 0,

a1a2 ≤
cap11
p1

+
ap22
cp2

.

Proposition 2.2.3 (Hölder). Let Ω be an open subset of Rd and let p1, p2, . . . , pn be
positive real numbers (possibly infinite). Additionally, let 1 ≤ r ≤ ∞ such that

n∑
i=1

1

pi
=

1

r
.

For all functions f1, f2, . . . , fn with fi ∈ Lpi(Ω), the product
∏n

i=1 fi belongs to L
r(Ω) and

we have ∥∥∥∥∥
n∏
i=1

fi

∥∥∥∥∥
Lr(Ω)

≤
n∏
i=1

‖fi‖Lpi (Ω).

Theorem 2.2.4 (Gauss divergence formula). There exists a continuous linear operator
γn : Hdiv(Ω) → H−1/2(Γ) such that γn(v) = v · n for all v ∈ C∞(Ω). Moreover, it holds
that for all v ∈ Hdiv(Ω), ψ ∈ H1(Ω),∫

Ω

v · ∇qdx+
∫
Ω

(div v)qdx = 〈γn(v), q〉H1/2(Γ).

In particular, it holds that for all v ∈ H1(Ω)
d
, ψ ∈ H1(Ω),∫

Ω

v · ∇qdx+
∫
Ω

(div v)qdx =

∫
Γ

(v · n)qds.

Theorem 2.2.5 (Sobolev embeddings). Let Ω be a bounded Lipschitz domain in Rd.

(i) If 1 ≤ p < d, then we have
W 1,p(Ω) ⊂ Lq(Ω)

with continuous embedding for all 1 ≤ q ≤ p∗, where p∗ is the critical exponent
associated with p:

1

p∗
=

1

p
− 1

d
.

(ii) If p = d, then we have
W 1,p(Ω) ⊂ Lq(Ω)

with continuous embedding for all 1 ≤ q <∞.

(iii) If d < p ≤ ∞, then we have
W 1,p(Ω) ⊂ C0(Ω)

with continuous embedding.

Theorem 2.2.6 (Rellich–Kondrachov). Let Ω be a bounded Lipschitz domain in Rd.

(i) If 1 ≤ p < d, then the embedding W 1,p(Ω) ⊂ Lq(Ω) is compact for all 1 ≤ q ≤ p∗(=
dp/(d− p)).
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(ii) If p = d, then the embedding W 1,p(Ω) ⊂ Lq(Ω) is compact for all 1 ≤ q <∞.

(iii) If d < p ≤ ∞, then the embedding W 1,p(Ω) ⊂ C0(Ω) is compact.

Theorem 2.2.7 (Generalized Poincaré inequality). Let Ω be a bounded Lipschitz do-
main and let Γ̃ be a subset of the boundary Γ with nonzero surface measure (e.g., Γ̃ ∈
{Γ1,Γ2,Γ}). There exists a constant c > 0 such that for all q ∈ H1

Γ̃
(Ω),

‖q‖L2(Ω) ≤ c‖∇q‖L2(Ω)d ,

which implies that
‖q‖H1(Ω) ≤ c̃‖∇q‖L2(Ω)d ,

where c̃ :=
√
1 + c2.

Theorem 2.2.8 (Poincaré–Wirtinger). There exists a constant c > 0 such that

‖q‖L2(Ω) ≤ c‖∇q‖L2(Ω)d

for all q ∈ H1(Ω)/R.

Theorem 2.2.9. Assume that E is a reflexive Banach space and let (xn)n∈N be a bounded
sequence in E. Then, there exist x ∈ E and a subsequence (xnk

)k∈N such that

xnk
⇀ x weakly in E as k → ∞.

Theorem 2.2.10. Assume that E is a reflexive Banach space and let M ⊂ E be a closed
linear subspace of E. Then, M is reflexive.

Theorem 2.2.11 (Lax–Milgram). Assume that a(·, ·) : H × H → R is a continuous
coercive bilinear form on a Hilbert space H. Then, given any f ∈ H∗, there exists a
unique element u ∈ H such that

a(u, v) = 〈f, v〉

for all v ∈ H.

The following Theorem 2.2.12 is necessary for the existence and uniqueness of a solu-
tion to the Stokes problem.

Theorem 2.2.12. [32, Corollary 4.1] Let (X, ‖ · ‖X) and (Q, ‖ · ‖Q) be two real Hilbert
spaces. Let a : X ×X → R and b : X ×Q → R be bilinear and continuous maps and let
f ∈ X∗. If there exist two constants α > 0 and β > 0 such that

a(v, v) ≥ α‖v‖2X for all v ∈ V,

sup
0 ̸=v∈X

b(v, q)

‖v‖X
≥ β‖q‖Q for all q ∈ Q,

where V = {v ∈ X | b(v, q) = 0 for all q ∈ Q}, then there exists a unique solution
(u, p) ∈ X ×Q to the following problem:{

a(u, v) + b(v, p) = f(v) for all v ∈ X,
b(u, q) = 0 for all q ∈ Q.
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We recall the following Theorem 2.2.13, which plays an important role in the proof
of the existence of the pressure solution of the Stokes problem; see Appendix A for the
proof.

Theorem 2.2.13. [66, Lemma 7.1] There exists a constant c > 0 such that for all q ∈
L2(Ω),

‖q‖L2(Ω) ≤ c(‖q‖H−1(Ω) + ‖∇q‖H−1(Ω)).

The following two results follow from Theorem 2.2.13.

Theorem 2.2.14. [32, Corollary 2.1, 2◦] There exists a constant c > 0 such that for all
q ∈ L2(Ω),

‖[q]‖L2(Ω) ≤ c‖∇q‖H−1(Ω)n .

Theorem 2.2.15. [32, Corollary 2.4, 2◦] The operator div : H1
0 (Ω)

d → L2(Ω)/R is

surjective, i.e., for all q ∈ L2(Ω)/R, there exists vq ∈ H1
0 (Ω)

d
such that

div vq = q.

Furthermore, there exists a constant c > 0 such that for all q ∈ L2(Ω)/R,

‖vq‖H1(Ω)d ≤ c‖q‖L2(Ω).

Theorem 2.2.15 implies the following theorem.

Theorem 2.2.16.

(i) There exists a constant c > 0 such that for all q ∈ L2(Ω)/R,

sup
0 ̸=v∈H1

0 (Ω)

1

‖v‖H1(Ω)d

∫
Ω

q div vdx ≥ c‖q‖L2(Ω).

(ii) Let H1
0 (Ω)

d ⊂ X ⊂ H1(Ω)
d
be a subspace. If there exists a function v0 ∈ X such

that
∫
Ω
div v0dx 6= 0, then there exists a constant c > 0 such that for all q ∈ L2(Ω),

sup
0 ̸=v∈X

1

‖v‖H1(Ω)d

∫
Ω

q div vdx ≥ c‖q‖L2(Ω).

Theorem 2.2.16 (i) is well-known [2, 14, 32]. The following proof of Theorem 2.2.16 (ii)
is based on [11, Proof of Theorem 2.1] and [13, Lemma 2.7] and use only Theorem 2.2.15

and existence of v0 ∈ X. The function spaces H1
Γ1
(Ω)

d
and H satisfy the assumption of

(ii).

Proof. (i) By Theorem 2.2.15, for all q ∈ L2(Ω)/R, there exists vq ∈ H1
0 (Ω) such that

div vq = q. Then, it holds that for all q ∈ L2(Ω)/R,∫
Ω

q div vqdx = ‖q‖2L2(Ω) ≥
1

c
‖q‖L2(Ω)‖vq‖H1(Ω)d .



14 Chapter 2. Preliminaries

where the constant c > 0 is used in Theorem 2.2.15. Hence, we obtain for all 0 6= q ∈
L2(Ω)/R,

1

c
‖q‖L2(Ω) ≤

1

‖vq‖H1(Ω)d

∫
Ω

q div vqdx ≤ sup
0 ̸=v∈H1

0 (Ω)

1

‖v‖H1(Ω)d

∫
Ω

q div vdx.

(ii) We can assume that v0 ∈ X satisfies that
∫
Ω
div v0dx = |Ω| without loss of gener-

ality. For all q ∈ L2(Ω), we set q0 := (
∫
Ω
qdx)/|Ω| and q1 := [q] = q − q0 ∈ L2(Ω)/R.

If q1 = 0, i.e., q = q0 ∈ R, then it holds that

‖q‖L2(Ω) =
1√
|Ω|

|q0|
∫
Ω

div v0dx

≤ 1√
|Ω|

∣∣∣∣∫
Ω

q0 div v0dx

∣∣∣∣
≤

‖v0‖H1(Ω)d√
|Ω|

1

‖v0‖H1(Ω)d

∣∣∣∣∫
Ω

q0 div v0dx

∣∣∣∣
≤

‖v0‖H1(Ω)d√
|Ω|

sup
0 ̸=v∈X

1

‖v‖H1(Ω)d

∫
Ω

q0 div vdx.

(2.2.2)

If q1 6= 0, then we set

λ := 1− q0
‖q1‖2L2(Ω)

∫
Ω

q1 div v0dx.

By Theorem 2.2.15, there exists v1 ∈ H1
0 (Ω) such that div v1 = q1. Let ṽq := q0v0 + λv1.

Then, we have∫
Ω

q div ṽqdx =

∫
Ω

(q0 + q1) div(q0v0 + λv1)dx

= q20

∫
Ω

div v0dx+ λq0

∫
Ω

div v1dx+ q0

∫
Ω

q1 div v0dx+ λ

∫
Ω

q1 div v1dx

=

∫
Ω

q20dx+ q0

∫
Ω

q1 div v0dx+

(
1− q0

‖q1‖2L2(Ω)

∫
Ω

q1 div v0dx

)
‖q1‖2L2(Ω)

=

∫
Ω

(q20 + q21)dx

= ‖q‖2L2(Ω),

where we have used
∫
Ω
div v1dx =

∫
Γ
v1 · nds = 0. Since it holds that

‖ṽq‖H1(Ω)d ≤ |q0|‖v0‖H1(Ω)d + |λ|‖v1‖H1(Ω)d

≤ |q0|‖v0‖H1(Ω)d +

(
1 +

|q0|‖ div v0‖L2(Ω)

‖q1‖L2(Ω)

)
c‖q1‖L2(Ω)

≤ (‖v0‖H1(Ω)d + c
√
d‖v0‖L2(Ω))|q0|+ c‖q1‖L2(Ω)

=
1 + c

√
d√

|Ω|
‖v0‖H1(Ω)d‖q0‖L2(Ω) + c‖q1‖L2(Ω)

= c̃‖q‖L2(Ω)



2.2. PRELIMINARY RESULTS 15

where c̃ :=
√
c2 + (1 + c

√
d)2‖v0‖2H1(Ω)d

/|Ω|, we obtain for all q ∈ L2(Ω)/R with q1 6= 0,

1

c̃
‖q‖L2(Ω) ≤

‖q‖2L2(Ω)

‖ṽq‖H1(Ω)d
=

1

‖ṽq‖H1(Ω)d

∫
Ω

q div ṽqdx ≤ sup
0 ̸=v∈X

1

‖v‖H1(Ω)d

∫
Ω

q div vdx,

and hence, by (2.2.2) and c̃ ≥ ‖v0‖H1(Ω)d/
√

|Ω|, we have for all q ∈ L2(Ω),

1

c̃
‖q‖L2(Ω) ≤ sup

0 ̸=v∈X

1

‖v‖H1(Ω)d

∫
Ω

q div vdx.

We define a bilinear form a0 : H
1(Ω)

d×H1(Ω)
d → R and a seminorm ‖·‖a0 on H1(Ω)

d
,

for u, v ∈ H1(Ω)
d
,

a0(u, v) :=

∫
Ω

(div u)(div v)dx+

∫
Ω

(∇×u) · (∇×v)dx,

‖u‖a0 :=
√
a0(u, u).

We will assume the following condition in Chapter 3, 5:

Hypothesis 2.2.17.

(i) The open subset Γ2 is piecewise C1,1-class, i.e., there exist relatively open connected
non-empty subsets Γ2,1, Γ2,2, . . . ,Γ2,NΓ

of Γ such that for all i, j = 1, 2, . . . , NΓ, Γ2,i

is C1,1-class and ∣∣∣∣∣Γ2 \

(
NΓ⋃
k=1

Γ2,k

)∣∣∣∣∣ = 0, Γ2,i ∩ Γ2,j = ∅ (i 6= j).

(ii) There exists a constant δ > 0 such that for all x ∈ Γ2,i∩Γ2,j (i, j = 1, 2, . . . , NΓ, i 6=
j),

ni(x) · nj(x) ≤ 1− δ,

where ni(x) and nj(x) are the limits of the outer normal vectors when approaching
x from Γi and Γj, respectively.

Remark 2.2.18. If Γ is C1,1-class or Ω is polygon, then Hypothesis 2.2.17 holds.

Under Hypothesis 2.2.17, the following coercivity of the bilinear form a0 : H×H → R
holds.

Theorem 2.2.19. Under Hypothesis 2.2.17, there exists a constant ca = ca(Ω,Γ1,Γ2) > 0
such that for all v1, v2, v ∈ H,

a0(v1, v2) ≤ ‖v1‖a0‖v2‖a0 ≤ ca‖v1‖1‖v2‖1,
1

ca
‖v‖21 ≤ ‖v‖2a0 .

The first inequality holds from the Cauchy–Schwarz inequality. For the proof of the
second inequality, see [12, Lemma 2.11] and [51, Lemma 5].





Chapter 3

Pressure Poisson method

This chapter is based on the following published paper:

• Matsui, K.: Sharp consistency estimates for a pressure Poisson problem with Stokes
boundary value problems. Discrete & Continuous Dynamical Systems - S 14 (3),
1001–1015 (2021). DOI 10.3934/dcdss.2020380

3.1 Introduction

Let Ω be a bounded domain in Rd with Lipschitz continuous boundary Γ satisfying (2.1.1).
The strong form of the Stokes problem is given as follows. Find uS : Ω → Rd and
pS : Ω → R such that 

−∆uS +∇pS = F in Ω,

div uS = 0 in Ω,

uS = 0 on Γ1,

Tn(u
S, pS) = tb on Γ2,

(ST)

holds, where F : Ω → Rd, tb : Γ2 → Rd,

T (uS, pS)ij :=
∂uSi
∂xj

+
∂uSj
∂xi

− pSδij,

Tn(u
S, pS)i :=

d∑
k=1

T (uS, pS)iknk,

for all i, j = 1, 2, . . . , d. Here, δij is the Kronecker delta. The functions uS and pS are
the velocity and the pressure of the flow governed by (ST), respectively. For the flow,
T (uS, pS) and Tn(u

S, pS) are often called the stress tensor and the normal stress on Γ,
respectively. Let the fourth equation of (ST) be called the traction boundary condition.
By the second equation of (ST), the first equation is equivalent to

− div T (uS, pS) = F in Ω.

We refer to [14, 32, 80] for details on the Stokes problem (i.e., physical background and
corresponding mathematical analysis). Taking the divergence of the first equation, we

17
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obtain

divF = div(−∆uS +∇pS) = −∆(div uS) + ∆pS = ∆pS. (3.1.1)

This equation is often called the pressure Poisson equation and is used in numerical
schemes, such as the MAC, SMAC, and projection method (see, e.g., [4, 21, 25, 41, 38,
40, 60, 42, 53, 64, 68]).

We need an additional boundary condition for solving equation (3.1.1). In real-world
applications, the additional boundary condition is usually given by using experimental
or plausible values. We consider the following boundary value problem for the pressure
Poisson equation: Find uPP : Ω → Rd and pPP : Ω → R satisfying

−∆uPP −∇(div uPP ) +∇pPP = F in Ω,

−∆pPP = − divF in Ω,

uPP = 0 on Γ1,

∂pPP

∂n
= gb on Γ1,

Tn(u
PP , pPP ) = tb on Γ2,

pPP = pb on Γ2,

(PPT)

where gb : Γ1 → R and pb : Γ2 → R are the data for the additional boundary conditions.
We call this problem the pressure Poisson problem. The second term −∇(div uPP ) in the
first equation of (PPT) is usually omitted since div uS = 0, but this term is necessary to
treat the traction boundary condition in a weak formulation. The idea of using (3.1.1)
instead of div uS = 0 is useful for calculating the pressure numerically in the Navier–Stokes
problem. For example, this idea is used in the MAC, SMAC, and projection methods.

As the boundary condition for the Stokes problem, we also consider the boundary
condition introduced in [7, 8, 23]; 

u = 0 on Γ1,

u× n = 0 on Γ2,

p = pb on Γ2,

(3.1.2)

(see also [12, 13, 24, 63]). On boundary Γ2, the boundary value of the pressure is described,
and the velocity is parallel to the normal direction. Such a situation happens at the end
of pipes, such as blood vessels or pipelines (Fig. 3.1). The well-posedness is proven in
[12, 13, 23, 24].

In this chapter, we establish error estimates between problems (PPT) and (ST) and
between problem (PPT) and the Stokes problem with the boundary condition (3.1.2) in
terms of the additional boundary conditions. In particular, since boundary conditions
that contain a Dirichlet boundary condition for the pressure often appear in engineer-
ing problems, a comparison between problem (PPT) and the Stokes problem with the
boundary condition (3.1.2) is important.

The organization of this paper is as follows. In Section 3.2, we introduce notations
and symbols used in this work and the weak form of these problems. We also prove the
well-posedness of the problems (ST) and (PPT) and show several properties of them.
In Section 3.3, we establish error estimates between solutions to the problems (ST) and
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Figure 3.1: Image of a flow in a pipe

(PPT) in terms of the additional boundary conditions. Section 3.4 is devoted to the study
of the Stokes problem with the boundary condition (3.1.2). We conclude this paper with
several comments on future works in Section 3.5.

3.2 Weak formulation and well-posedness

3.2.1 Preliminaries

For u ∈ H1(Ω)
d
and p ∈ H1(Ω) satisfying ∆u + ∇(div u) (= div S(u)) ∈ L2(Ω)

d
and

∆p (= div(∇p)) ∈ L2(Ω), we set

S(u)n := (γn(S(u)1), . . . , γn(S(u)d))
T ∈ H−1/2(Γ)d,

∂p

∂n
:= γn(∇p) ∈ H−1/2(Γ),

where S(u)i = (S(u)i1, . . . , S(u)id)
T for i = 1, . . . , d. SinceH

1/2
γ0 (Γi) ⊂ H1/2(Γ) for i = 1, 2,

we have S(u)n ∈ (H
1/2
γ0 (Γ2)

d)∗ and ∂p/∂n ∈ (H
1/2
γ0 (Γ1))

∗. By Theorem 2.2.4, it holds that

〈S(u)n, φ〉
H

1/2
γ0

(Γ2)d
=

∫
Ω

(
1

2
S(u) : S(φ) + (∆u+∇(div u)) · φ

)
dx for all φ ∈ H1

Γ1
(Ω)

d
,〈

∂p

∂n
, ψ

〉
H

1/2
γ0

(Γ1)

=

∫
Ω

(∇p · ∇ψ + (∆p)ψ) dx for all ψ ∈ H1
Γ2
(Ω).

We remark that u ∈ H2(Ω)d and p ∈ H2(Ω) satisfy

〈S(u)n, φ〉
H

1/2
γ0

(Γ2)d
=

∫
Γ2

(
d∑

i,j=1

Sij(u)φinj

)
ds,〈

∂p

∂n
, ψ

〉
H

1/2
γ0

(Γ1)

=

∫
Γ1

∂p

∂n
ψ ds

for all φ ∈ H1
Γ1
(Ω)

d
and ψ ∈ H1

Γ2
(Ω). For u ∈ H1(Ω)

d
and p ∈ H1(Ω) satisfying

∆u+∇(div u) ∈ L2(Ω), we set

〈Tn(u, p)n, φ〉H1/2
γ0

(Γ2)d
:= 〈S(u)n, φ〉

H
1/2
γ0

(Γ2)d
−
∫
Γ2

pφ · n ds for all φ ∈ H1
Γ1
(Ω)

d
.

We recall Korn’s first inequality for the existence and uniqueness of a solution to the
Stokes problem.
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Theorem 3.2.1 (Korn’s first inequality). There exists a constant c > 0 such that

‖φ‖H1(Ω)d ≤ c‖S(φ)‖L2(Ω)d×d .

for all φ ∈ H1
Γ1
(Ω)

d
.

See [22, Theorem 6.3.4] and [69, Corollary 4.1] for the proof.

3.2.2 Weak formulations of (PPT) and (ST)

We start by defining the weak solution to (PPT). Throughout of this paper, we assume
the following conditions;

tb ∈ (H1/2
γ0

(Γ2)
d)∗, F ∈ L2(Ω)

d
, (3.2.3)

gb ∈ (H1/2
γ0

(Γ1))
∗, pb ∈ H1(Ω), divF ∈ L2(Ω). (3.2.4)

Lemma 3.2.2. For u ∈ H2(Ω)d, p ∈ H1(Ω), and φ ∈ H1
Γ1
(Ω)

d
,

(−∆u−∇(div u) +∇p, φ) = 1

2
(S(u), S(φ))− (p, divφ)− 〈t, φ〉

H
1/2
γ0

(Γ2)d

holds, where t := Tn(u, p).

Proof. We compute

(−∆u−∇(div u) +∇p, φ)

= −
∫
Ω

d∑
i,j=1

(
∂ui

∂xj∂xj
+

∂uj
∂xj∂xi

)
φidx+

∫
Ω

d∑
i=1

∂p

∂xi
φidx

= −
∫
Ω

d∑
i,j=1

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xj

)
φidx+

∫
Ω

d∑
i=1

∂p

∂xi
φidx

=
d∑

i,j=1

{∫
Ω

(
∂ui
∂xj

+
∂uj
∂xj

)
∂φi
∂xj

dx−
∫
Γ

(
∂ui
∂xj

+
∂uj
∂xj

)
φinjds

}

−
d∑
i=1

{∫
Ω

p
∂φi
∂xi

dx−
∫
Γ

pφinids

}

=
1

2

∫
Ω

d∑
i,j=1

(
∂ui
∂xj

+
∂uj
∂xj

)(
∂φi
∂xj

+
∂φj
∂xj

)
dx−

∫
Ω

p

(
d∑
i=1

∂φi
∂xi

)
dx

−
∫
Γ

d∑
i,j=1

{(
∂ui
∂xj

+
∂uj
∂xj

)
φinj − pφini

}
ds

=
1

2
(S(u), S(φ))− (p, divφ)− 〈t, φ〉

H
1/2
γ0

(Γ2)d

which completes the proof.
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For the second equation of (PPT), taking ψ ∈ H1
Γ2
(Ω), we obtain

−(divF, ψ) = −(∆pPP , ψ)

= −
∫
Γ

∂pPP

∂n
ψ ds+ (∇pPP ,∇ψ)

= −〈gb, ψ〉
H

1/2
γ0

(Γ1)
+ (∇pPP ,∇ψ).

Therefore, the weak form of (PPT) becomes as follows. Find uPP ∈ H1
Γ1
(Ω)

d
and pPP ∈

H1(Ω) such that
1

2
(S(uPP ), S(φ))− (pPP , divφ) = (F, φ)− 〈tb, φ〉

H
1/2
γ0

(Γ2)d
for all φ ∈ H1

Γ1
(Ω)

d
,

(∇pPP ,∇ψ) = −(divF, ψ) + 〈gb, ψ〉
H

1/2
γ0

(Γ1)
for all ψ ∈ H1

Γ2
(Ω),

pPP = pb on Γ2.

(PPT’)

Remark 3.2.3. If (uPP , pPP ) ∈ H1
Γ1
(Ω)

d ×H1(Ω) satisfies uPP ∈ H2(Ω)d, pPP ∈ H1(Ω)

and (PPT’), then we have for all φ ∈ H1
Γ1
(Ω)

d
and ψ ∈ H1

Γ2
(Ω),

(−∆uPP −∇(div uPP ) +∇pPP − F, φ) = 〈Tn(uPP , pPP )− tb, φ〉
H

1/2
γ0

(Γ2)d
,

(−∆pPP + divF, ψ) =

〈
−∂p

PP

∂n
+ gb, ψ

〉
H

1/2
γ0

(Γ1)

.

Therefore, (uPP , pPP ) satisfies (PPT).

Next, we define the weak formulation of (ST). For all φ ∈ H1
Γ1
(Ω)

d
, we obtain from

the first equation of (ST),

(F, φ) = (−∆uS +∇pS, φ)
= (−∆uS −∇(div uS) +∇pS, φ)

=
1

2
(S(uS), S(φ))− (pS, divφ)− 〈tb, φ〉

H
1/2
γ0

(Γ2)d
.

Using this expression, the weak form of the Stokes problem becomes as follows: Find
(uS1, pS1) ∈ H1

Γ1
(Ω)

d × L2(Ω) such that
1

2
(S(uS1), S(φ))− (pS1, divφ) = (F, φ)− 〈tb, φ〉

H
1/2
γ0

(Γ2)d
for all φ ∈ H1

Γ1
(Ω)

d
,

(ψ, div uS1) = 0 for all ψ ∈ L2(Ω).
(ST’)

Remark 3.2.4. If (uS1, pS1) ∈ H1
Γ1
(Ω)

d×L2(Ω) satisfies uS1 ∈ H2(Ω)d, pS1 ∈ H1(Ω) and
(ST’), then we have{

(−∆uS1 +∇pS1 − F, φ) = 〈Tn(uS1, pS1)− tb, φ〉
H

1/2
γ0

(Γ2)d
for all φ ∈ H1

Γ1
(Ω)

d
,

(ψ, div uS1) = 0 for all ψ ∈ L2(Ω).

Therefore, (uS1, pS1) satisfies (ST).



22 Chapter 3. Pressure Poisson method

3.2.3 Well-posedness of (PPT’), (ST’)

We show the well-posedness of the problems (PPT’) and (ST’) in Theorems 3.2.5 and
3.2.6.

Theorem 3.2.5. Under the conditions (3.2.3) and (3.2.4), there exists a unique solution

(uPP , pPP ) ∈ H1
Γ1
(Ω)

d ×H1(Ω) satisfying (PPT’).

Proof. From the second and third equations of (PPT’), by using the Lax–Milgram theorem

and Theorem 2.2.7, pPP ∈ H1(Ω) is uniquely determined. Then, uPP ∈ H1(Ω)
d
is also

uniquely determined from the first equation of (PPT’) by the Lax–Milgram theorem,
where the coercivity is guaranteed from Theorem 3.2.1.

Theorem 3.2.6. Under the condition (3.2.3), there exists a unique solution (uS1, pS1) ∈
H1

Γ1
(Ω)

d × L2(Ω) satisfying (ST’).

Proof. By Theorems 3.2.1 and 2.2.7, the continuous bilinear form H1
Γ1
(Ω)

d ×H1
Γ1
(Ω)

d 3
(u, φ) 7→ (S(u), S(φ)) ∈ R is coercive. By Theorems 2.2.12 and 2.2.16, there exists a

unique solution (uS1, pS1) ∈ H1
Γ1
(Ω)

d × L2(Ω) satisfying (ST’).

We prove the following property of the solution to (ST’).

Proposition 3.2.7. If the weak solution (uS1, pS1) ∈ H1
Γ1
(Ω)

d × L2(Ω) to (ST’) satisfies
pS1 ∈ H1(Ω) and ∆pS1 ∈ L2(Ω), then we have

(∇pS1,∇ψ) = −(divF, ψ) +

〈
∂pS1

∂n
, ψ

〉
H

1/2
γ0

(Γ1)

for all ψ ∈ H1
Γ2
(Ω).

Proof. From the second equation of (ST’) and uS1 ∈ H1(Ω), div uS1 = 0 holds in L2(Ω).
From the first equation of (ST’), we obtain

−∆uS1 +∇pS1 = −∆uS1 −∇(div uS1) +∇pS1 = F in D ′(Ω).

Taking the divergence, we get

divF = div(−∆uS1 +∇pS1) = −∆(div uS1) + ∆pS1 = ∆pS1 in D ′(Ω).

By the assumptions ∆pS1 ∈ L2(Ω) and divF ∈ L2(Ω), ∆pS1 = divF holds in L2(Ω).
Multiplying ψ ∈ H1

Γ2
(Ω) and integrating over Ω, we get

−(divF, ψ) = −(∆pS1, ψ) = (∇pS1,∇ψ)−
〈
∂pS1

∂n
, ψ

〉
H

1/2
γ0

(Γ1)

,

which is the desired result.
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3.3 The traction boundary condition

The purpose of this paper is to give an estimate of the difference between the solutions
of the Stokes problem and the pressure Poisson problem. Roughly speaking, from (3.1.1)
and the second equation of (PPT), ∆(pS − pPP ) = 0 holds. Hence, we get

‖pS − pPP‖H1(Ω) ≲ ( difference between pS and pPP on Γ),

where A ≲ B means that there exists a constant c > 0, independent of A and B, such
that A ≤ cB. From (ST) and the second equation of (PPT), we have

−∆(uS − uPP ) = −∇(pS − pPP ).

We obtain

‖uS − uPP‖H1(Ω)d ≲ ‖∇(pS − pPP )‖L2(Ω)d + ( difference between pS and pPP on Γ).

Therefore, we have

‖uS − uPP‖H1(Ω)d + ‖pS − pPP‖H1(Ω)

≲ ( difference between (uS, pS) and (uPP , pPP ) on Γ).

In other words, if we have a good prediction for the boundary data, then (PPT) is good
approximation for (ST).

In this section, we prove these types of estimates for the weak solutions. Let the
solutions of (PPT’) and (ST’) be denoted by (uPP , pPP ) and (uS1, pS1), respectively. First,
we establish a lemma.

Lemma 3.3.1. If p ∈ H1(Ω), f ∈ L2(Ω) and g ∈ (H
1/2
γ0 (Γ1))

∗ satisfy

(∇p,∇ψ) = (f, ψ) + 〈g, ψ〉
H

1/2
γ0

(Γ1)
for all ψ ∈ H1

Γ2
(Ω), (3.3.5)

then there exists a constant c > 0 such that

‖p‖H1(Ω) ≤ c
(
‖f‖L2(Ω) + ‖g‖

(H
1/2
γ0

(Γ1))∗
+ ‖p‖H1/2(Γ2)

)
.

Proof. Let p0 ∈ H1(Ω) such that p0−p ∈ H1
Γ2
(Ω). Putting ψ := p−p0 in (3.3.5), we have

‖∇(p− p0)‖2L2(Ω)d

= (∇(p− p0),∇(p− p0))

= (f, p− p0) + 〈g, p− p0〉H1/2
γ0

(Γ1)
− (∇p0,∇(p− p0))

≤ ‖f‖L2(Ω)‖p− p0‖L2(Ω) + ‖g‖
(H

1/2
γ0

(Γ1))∗
‖p− p0‖H1/2

γ0
(Γ1)

+ ‖∇p0‖L2(Ω)d‖∇(p− p0)‖L2(Ω)d

≤ (‖f‖L2(Ω) + c1‖g‖(H1/2
γ0

(Γ1))∗
+ ‖p0‖H1(Ω))‖p− p0‖H1(Ω).

By Theorem 2.2.7, there exists a constant c2 > 0 such that

c2‖p− p0‖2H1(Ω) ≤ (‖f‖L2(Ω) + c1‖g‖(H1/2
γ0

(Γ1))∗
+ ‖p0‖H1(Ω))‖p− p0‖H1(Ω).

Hence,
‖p− p0‖H1(Ω) ≤ c3(‖f‖L2(Ω) + ‖g‖

(H
1/2
γ0

(Γ1))∗
+ ‖p0‖H1(Ω)).
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Since ‖p‖H1(Ω) − ‖p0‖H1(Ω) ≤ ‖p− p0‖H1(Ω), we obtain

‖p‖H1(Ω) ≤ c4(‖f‖L2(Ω) + ‖g‖
(H

1/2
γ0

(Γ1))∗
+ ‖p0‖H1(Ω)). (3.3.6)

For all p0 ∈ H1(Ω) satisfying p0 − p ∈ H1
Γ2
(Ω), (3.3.6) holds. Therefore,

‖p‖H1(Ω) ≤ c4

(
‖f‖L2(Ω) + ‖g‖

(H
1/2
γ0

(Γ1))∗
+ inf

q∈H1
Γ2

(Ω)
‖p+ q‖H1(Ω)

)
= c4(‖f‖L2(Ω) + ‖g‖

(H
1/2
γ0

(Γ1))∗
+ ‖p‖H1(Ω)/H1

Γ2
(Ω))

≤ c5(‖f‖L2(Ω) + ‖g‖
(H

1/2
γ0

(Γ1))∗
+ ‖p‖H1/2(Γ2)).

Using Proposition 3.2.7, we prove the following theorem which is the main result of
this section.

Theorem 3.3.2. If pS1 ∈ H1(Ω) and ∆pS1 ∈ L2(Ω), there exists a constant c > 0 such
that

‖uS1 − uPP‖H1(Ω)d + ‖pS1 − pPP‖H1(Ω)

≤ c

(∥∥∥∥∂pS1∂n
− gb

∥∥∥∥
(H

1/2
γ0

(Γ1))∗
+ ‖pS1 − pb‖H1/2(Γ2)

)
.

(3.3.7)

Proof. Using Proposition 3.2.7, we obtain from (ST’) and (PPT’),
1

2
(S(uS1 − uPP ), S(φ)) = (pS1 − pPP , divφ) for all φ ∈ H1

Γ1
(Ω)

d
,

(∇(pS1 − pPP ),∇ψ) =
〈
∂pS1

∂n
− gb, ψ

〉
H

1/2
γ0

(Γ1)

for all ψ ∈ H1
Γ2
(Ω).

(3.3.8)

Putting φ := uS1 − uPP ∈ H1
Γ1
(Ω)

d
in (3.3.8), we get

1

2
‖S(uS1 − uPP )‖2

L2(Ω)d×d = (pS1 − pPP , div(uS1 − uPP ))

≤ ‖pS1 − pPP‖L2(Ω)‖ div(uS1 − uPP )‖L2(Ω)

≤
√
d‖pS1 − pPP‖H1(Ω)‖uS1 − uPP‖H1(Ω)d .

From Theorem 3.2.1,

‖uS1 − uPP‖H1(Ω)d ≤ c1‖pS1 − pPP‖H1(Ω)

holds for a constant c1 > 0. By the second equation of (3.3.8) and Lemma 3.3.1, there
exists a constant c2 > 0 such that

‖pS1 − pPP‖H1(Ω) ≤ c2

(∥∥∥∥∂pS1∂n
− gb

∥∥∥∥
(H

1/2
γ0

(Γ1))∗
+ ‖pS1 − pPP‖H1/2(Γ2)

)

≤ c2

(∥∥∥∥∂pS1∂n
− gb

∥∥∥∥
(H

1/2
γ0

(Γ1))∗
+ ‖pS1 − pb‖H1/2(Γ2)

)
.
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Therefore, it holds that

‖uS1 − uPP‖H1(Ω)d + ‖pS1 − pPP‖H1(Ω)

≤ c3

(∥∥∥∥∂pS1∂n
− gb

∥∥∥∥
(H

1/2
γ0

(Γ1))∗
+ ‖pS1 − pb‖H1/2(Γ2)

)
,

for a constant c3 > 0.

3.4 Boundary condition involving pressure

Let pb ∈ H1(Ω). We consider the Stokes problem with the boundary condition (3.1.2):
−∆uS +∇pS = F in Ω,

div uS = 0 in Ω,
u = 0 on Γ1,

u× n = 0 on Γ2,
p = pb on Γ2.

(3.4.9)

In this section, we evaluate the difference between the solutions to (PPT) and (3.4.9)
as in (3.3.7). First, we define the weak formulation of (3.4.9) and prove the existence
and the uniqueness of the weak solution. Next, we prove a proposition and a lemma as
preparation for the proof of our main theorem: Theorem 3.4.6.

We define the weak formulation of (3.4.9). Multiplying the first equation of (3.4.9) by
v ∈ H, integrating by parts in Ω, and using the second equation of (3.4.9), we obtain

(F, v) = (∇× uS,∇× v)− (pS, div v) +

∫
Γ2

pbv · n ds,

where we have used the following lemma.

Lemma 3.4.1. For u ∈ H2(Ω)d, p ∈ H1(Ω) and v ∈ H, there holds

(−∆u+∇(div u) +∇p, v) = (∇× u,∇× v)− (p, div v) +

∫
Γ2

pv · n ds.

Proof. We compute

(−∆u+∇(div u) +∇p, v)
= (∇× (∇× u) +∇p, v)

= (∇× u,∇× v)−
∫
Γ

((∇× u)× n) · v ds− (p, div v) +

∫
Γ

pv · n ds

= (∇× u,∇× v)−
∫
Γ

(n× v) · (∇× u) ds− (p, div v) +

∫
Γ2

pv · n ds

= (∇× u,∇× v)− (p, div v) +

∫
Γ2

pv · n ds.
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The weak form of the Stokes problem (3.4.9) becomes as follows: Find (uS2, pS2) ∈
H × L2(Ω) such that(∇× uS2,∇× v)− (pS2, div v) = (F, v)−

∫
Γ2

pbv · n ds for all v ∈ H,

(ψ, div uS2) = 0 for all ψ ∈ L2(Ω).

(SP)

Remark 3.4.2. If (uS2, pS2) ∈ H×L2(Ω) satisfies uS2 ∈ H2(Ω)d, pS2 ∈ H1(Ω) and (SP),
then we have(−∆uS2 +∇pS2 − F, v) =

∫
Γ2

(pS2 − pb)v · n ds for all v ∈ H,

(ψ, div uS2) = 0 for all ψ ∈ L2(Ω).

Therefore, (uS2, pS2) satisfies (3.4.9).

We establish the well-posedness of this problem (SP) in the following theorem.

Theorem 3.4.3. [23, Theorem 1.5] For F ∈ L2(Ω)
d
and pb ∈ H1(Ω), under Hypothesis

2.2.17, there exists a unique solution (uS2, pS2) ∈ H × L2(Ω) to (SP).

Proof. We set

a(u, v) := a0(u, v), b(v, q) := −(q, div v), f(v) := (F, v)−
∫
Γ2

pbv · n ds

for all u, v ∈ H and q ∈ L2(Ω). Clearly, a and b are continuous and bilinear forms and
f ∈ H∗. By Theorem 2.2.19, a is coercive on {v ∈ H | b(v, q) = 0 for all q ∈ L2(Ω)} =
{v ∈ H | div v = 0}. By Theorem 2.2.16, b satisfies the assumption of Theorem 2.2.12.
Therefore, there exists a unique solution (uS2, pS2) ∈ H × L2(Ω) to (SP) by Theorem
2.2.12.

From here on, let the solutions of (PPT’) and (SP) be denoted by (uPP , pPP ) and
(uS2, pS2), respectively. The solution (uS2, pS2) to (SP) satisfies the following property.

Proposition 3.4.4. If ∆uS2 + ∇(div uS2) ∈ L2(Ω)
d
, pS2 ∈ H1(Ω) and ∆pS2 ∈ L2(Ω),

then

1

2
(S(uS2), S(φ))− (pS2, divφ) = (F, φ)− 〈Tn(uS2, pS2), φ〉H1/2

γ0
(Γ2)d

for all φ ∈ H1
Γ1
(Ω)

d
,

(∇pS2,∇ψ) = −(divF, ψ) +

〈
∂pS2

∂n
, ψ

〉
H

1/2
γ0

(Γ1)

for all ψ ∈ H1
Γ2
(Ω),

pS2 = pb on Γ2.

Proof. From the second equation of (SP) and uS2 ∈ H1(Ω), div uS2 = 0 holds in L2(Ω).
From the first equation of (SP), we obtain

−∆uS2 −∇(div uS2) +∇pS2 = −∆uS2 +∇(div uS2) +∇pS2 = F (3.4.10)
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in D ′(Ω). By the assumptions ∆uS2 + ∇(div uS2) ∈ L2(Ω)
d
, pS1 ∈ H1(Ω) and divF ∈

L2(Ω), equation (3.4.10) holds in L2(Ω). Multiplying φ ∈ H1
Γ1
(Ω) and integrating over Ω,

we get

(F, v) = (−∆uS2 −∇(div uS2) +∇pS2, φ)

=
1

2
(S(uS2), S(φ))− (pS2, divφ) + 〈Tn(uS2, pS2), φ〉H1/2

γ0
(Γ2)d

.

Taking the divergence of (3.4.10), we have

∆pS2 = divF in D ′(Ω).

By the assumptions ∆pS2 ∈ L2(Ω) and divF ∈ L2(Ω), ∆pS2 = divF holds in L2(Ω).
Multiplying ψ ∈ H1

Γ2
(Ω) and integrating over Ω, we get

−(divF, ψ) = −(∆pS2, ψ) = (∇pS2,∇ψ)−
〈
∂pS2

∂n
, ψ

〉
H

1/2
γ0

(Γ1)

.

Multiplying (3.4.10) by v ∈ H and integrating over Ω, we get

(F, v) = (−∆uS2 +∇(div uS2) +∇pS2, v)

= (∇× uS2,∇× v)− (pS2, div v) +

∫
Γ2

pS2v · n ds.

By the first equation of (SP), it holds that∫
Γ2

pS2v · n = −(∇× uS2,∇× v) + (pS2, div v) + (F, v) =

∫
Γ2

pbv · n ds

for all v ∈ H. Hence, pS2 = pb holds in H1/2(Γ2).

We establish a lemma.

Lemma 3.4.5. If u ∈ H1
Γ1
(Ω)

d
, p ∈ L2(Ω) and t ∈ H−1/2(Γ2) satisfy

1

2
(S(u), S(φ)) = (p, divφ)− 〈t, φ〉

H
1/2
γ0

(Γ2)d
for all φ ∈ H1

Γ1
(Ω), (3.4.11)

then there exists a constant c > 0 such that

‖u‖H1(Ω)d ≤ c(‖p‖L2(Ω) + ‖t‖H−1/2(Γ2)).

Proof. Putting φ := u in (3.4.11), we obtain

1

2
‖S(u)‖2

L2(Ω)d×d = (p, div u)− 〈t, u〉
H

1/2
γ0

(Γ2)d

≤ ‖p‖L2(Ω)‖ div u‖L2(Ω) + ‖t‖H−1/2(Γ2)‖u‖H1/2(Γ2)

≤ (
√
d‖p‖L2(Ω) + c1‖t‖H−1/2(Γ2))‖u‖H1(Ω)d ,

for a constant c1 > 0. By Theorem 3.2.1, there exists a constant c2 > 0 such that

c2
2
‖u‖2

H1(Ω)d
≤ (

√
d‖p‖L2(Ω) + c1‖t‖H−1/2(Γ2))‖u‖H1(Ω)d .

Hence, we obtain the result with c = (2/c2)max{
√
d, c1}.
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The next theorem is the main result of this section.

Theorem 3.4.6. If ∆uS2 +∇(div uS2) ∈ L2(Ω)
d
, pS2 ∈ H1(Ω) and ∆pS2 ∈ L2(Ω), then

there exists a constant c > 0 such that

‖pS2 − pPP‖H1(Ω) ≤ c

∥∥∥∥∂pS2∂n
− gb

∥∥∥∥
(H

1/2
γ0

(Γ1))∗
,

‖uS2 − uPP‖H1(Ω)d ≤ c

(∥∥∥∥∂pS2∂n
− gb

∥∥∥∥
(H

1/2
γ0

(Γ1))∗
+ ‖tS2 − tb‖

(H
1/2
γ0

(Γ2)d)∗

)
,

where tS2 = Tn(u
S2, pS2).

Proof. Using Proposition 3.4.4, we obtain from (SP) and (PPT), for all φ ∈ H1
Γ1
(Ω)

d
and

ψ ∈ H1
Γ2
(Ω),

1

2
(S(uS2 − uPP ), S(φ)) = (pS2 − pPP , divφ)− 〈tS2 − tb, φ〉

H
1/2
γ0

(Γ2)d
,

(∇(pS2 − pPP ),∇ψ) =
〈
∂pS2

∂n
− gb, ψ

〉
H

1/2
γ0

(Γ1)

,

pS2 − pPP = 0 on Γ2,

(3.4.12)

where tS2 = Tn(u
S2, pS2). By the second equation of (3.4.12) and Lemma 3.3.1, there

exists a constant c1 > 0 such that

‖pS2 − pPP‖H1(Ω) ≤ c1

(∥∥∥∥∂pS2∂n
− gb

∥∥∥∥
(H

1/2
γ0

(Γ1))∗
+ ‖pS2 − pPP‖H1/2(Γ2)

)

≤ c1

∥∥∥∥∂pS2∂n
− gb

∥∥∥∥
(H

1/2
γ0

(Γ1))∗
.

By the first equation of (3.4.12) and Lemma 3.4.5,

‖uS2 − uPP‖H1(Ω)d ≤ c2

(
‖pS2 − pPP‖L2(Ω) + ‖tS2 − tb‖

(H
1/2
γ0

(Γ2)d)∗

)
≤ c2

(
c1

∥∥∥∥∂pS2∂n
− gb

∥∥∥∥
(H

1/2
γ0

(Γ1))∗
+ ‖tS2 − tb‖

(H
1/2
γ0

(Γ2)d)∗

)
.

3.5 Conclusion and future works

We have proposed a new formulation for the pressure Poisson problem (PPT). We have
established error estimates between the solutions to (PPT’) and (ST’) in Theorem 3.3.2
and between the solutions to (PPT’) and (SP) in Theorem 3.4.6. Theorems 3.3.2 and
3.4.6 state that if we have a good prediction for the boundary data (gb or pb), then the
pressure Poisson problem is a good approximation for the Stokes problem. In particular,
by using Theorem 3.4.6, we propose a new viewpoint of the pressure Poisson problem and



3.5. CONCLUSION AND FUTURE WORKS 29

the boundary condition (3.1.2). The numerical solution to the Stokes problem with the
boundary condition (3.1.2) requires delicate choices of the weak formulation and special
finite element techniques [12]. On the other hand, the pressure Poisson problem was
previously used as a simple numerical scheme. From our results, we can confirm that
the pressure Poisson problem is also available for the Stokes problem with the boundary
condition (3.1.2).

For problem (SP), a finite element scheme is proposed in [13] (under the assumption
that Γ2 is flat). On the other hand, in many practical problems, the projection method
is more widely used due to its ease of implementation. Numerical comparison of (PPT’)
and (SP) offers an interesting direction for future works from those points of view.

As another extension of our research, generalization of our results to the Navier–Stokes
problem is important but is still completely open.





Chapter 4

ε-Stokes problem

This chapter is based on the following published paper:

• M. Kimura, K. Matsui, A. Muntean, and H. Notsu: Analysis of a projection method
for the Stokes problem using an ε-Stokes approach. Japan Journal of Industrial and
Applied Mathematics 36, 959–985 (2019). DOI 10.1007/s13160-019-00373-3

• K. Matsui and A. Muntean: Asymptotic analysis of an ε-Stokes problem connecting
Stokes and pressure Poisson problems. Advances in Mathematical Sciences and
Applications 27, 181–191 (2018).

4.1 Introduction

Let Ω be a bounded Lipschitz domain in Rd (d ≥ 2, d ∈ N) and let F : Ω → Rd be a given
applied force field and ub : Γ := ∂Ω → Rd be given Dirichlet boundary data satisfying∫
Γ
ub ·nds = 0. A strong form of the Stokes problem is given as follows. Find uS : Ω → Rd

and pS : Ω → R such that 
−∆uS +∇pS = F in Ω,
div uS = 0 in Ω,
uS = ub on Γ,

(S)

where uS and pS are the velocity and the pressure of the flow governed by (S), respectively.
We refer to [14, 32, 80] for details on the Stokes problem (i.e., physical background and
corresponding mathematical analysis). Taking the divergence of the first equation, we
obtain

divF = div(−∆uS +∇pS) = −∆(div uS) + ∆pS = ∆pS.

This equation is often called the pressure Poisson equation and is used in numerical
schemes, such as the MAC, SMAC, and projection methods (see, e.g., [4, 21, 25, 40, 42,
53, 64, 68]).

We need an additional boundary condition for solving equation (3.1.1). In real-world
applications, the additional boundary condition is usually given by using experimental or
plausible values. We consider the following problem: Find uPP : Ω → Rd and pPP : Ω → R

31
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satisfying 
−∆uPP +∇pPP = F in Ω,
−∆pPP = − divF in Ω,
uPP = ub on Γ,
+boundary condition for pPP .

(PP)

We call this problem the pressure Poisson problem. The idea of using (3.1.1) instead
of div uS = 0 is useful for calculating the pressure numerically in the Navier–Stokes
equation. For example, this idea is used in the MAC, SMAC, and projection methods.
The Dirichlet boundary condition for the pressure is used in an outflow boundary [18, 84].
See also [23, 24, 63].

We introduce an “interpolation” between problems (S) and (PP). For ε > 0, find
uε : Ω → Rd and pε : Ω → R such that

−∆uε +∇pε = F in Ω,
−ε∆pε + div uε = −ε divF in Ω,
uε = ub on Γ,
+boundary condition for pε.

(ES)

We call this problem the ε-Stokes problem (ES). In [26, 33, 48], the authors treat this
problem as an approximation of the Stokes problem to avoid numerical instabilities. The
ε-Stokes problem approximates the Stokes problem (S) as ε→ 0 and the pressure Poisson
problem (PP) as ε → ∞ (Fig. 4.1). As in Chapter 3, we will show that if pS ∈ H1(Ω),
then there exists a constant c > 0 independent of ε such that

‖uS − uPP‖H1(Ω)d + ‖pS − pPP‖H1(Ω) ≤ c‖pS − pPP‖H1/2(Γ),

‖uS − uε‖H1(Ω)d + ‖pS − pε‖H1(Ω) ≤ c‖pS − pPP‖H1/2(Γ).

From the first inequality, if we have a good predictive value for pressure on Γ, then uPP

is a good approximation of uS. Moreover, uε is also a good approximation of uS from the
second inequality.

(PP ) (S)

(ES)

ε→∞

ccGGGGGGGGG ε→0

<<yyyyyyyy

Figure 4.1: Sketch of the connections between problems (S), (PP) and (ES).

Next, we specify the boundary conditions for pPP and pε. We consider a Neumann
boundary condition (4.1.1) and a mixed boundary condition (4.1.2),

∂pPP

∂n
= gb on Γ,

∂pε

∂n
= gb on Γ, (4.1.1)


∂pPP

∂n
= gb on Γ1,

pPP = pb on Γ2,


∂pε

∂n
= gb on Γ1,

pε = pb on Γ2,
(4.1.2)
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pPP = pb on Γ, pε = pb on Γ, (4.1.3)

where pb : Γ → R and gb = Γ → R satisfying
∫
Γ
gb =

∫
Γ
divF are given boundary data.

The boundary condition (4.1.2) corresponds to (4.1.1) when Γ1 = Γ,Γ2 = ∅ and to (4.1.1)
when Γ1 = ∅,Γ2 = Γ.

In this chapter, we introduce a weak solution (uε, pε) to the ε-Stokes problem (ES)

and prove that (uε, pε) strongly converges in H1(Ω)
d × H1(Ω) to a weak solution to the

pressure Poisson problem (PP) as ε→ ∞ and weakly converges in H1
0 (Ω)

d×(L2(Ω)/R) to
a weak solution (uS, pS) to the Stokes problem (S) as ε→ 0. In addition, for the Neumann
boundary condition, we estimate the error between the weak solutions to (ES) and (S)
provided pS ∈ H1(Ω). We also give an asymptotic expansion for the weak solution to
(ES). We further check this convergence result using numerical computations.

The organization of this chapter is as follows. In Section 4.2, we introduce the weak
form of these problems. We also prove the well-posedness of the problems (PP) and (ES).
In Section 4.3, we establish error estimates between solutions to the problems (PP), (ES)
and (S) in terms of the additional boundary conditions. In Section 4.4, we study that
the solution to (ES) converges to the solution to (PP) in the strong topology as ε → ∞.
Here, we also explore the structure of regular perturbation asymptotics. Section 4.5 is
devoted to proving that the solution to (ES) converges to the solution to (S) in the weak
and strong topology as ε → 0. In Section 4.6, we show several numerical examples of
these problems. The numerical errors between problems (ES) and (PP), and between the
problems (ES) and (S) using the P2/P1 finite element method. We conclude this chapter
with several comments on future works in Section 4.7.

4.2 Weak formulation and well-posedness

In this section, we introduce the weak form of the problems (S), (PP) and (ES), and prove
their well-posedness. We give estimates between these solutions by using a pressure error
on the boundary Γ.

Let Q ⊂ H1(Ω) be a closed subspace such that there exists a constant c > 0 for which
‖q‖L2(Ω) ≤ c‖∇q‖L2(Ω)d for all q ∈ Q. The dual space Q∗ is equipped with the norm

‖f‖Q∗ := sup
ψ∈SQ

〈f, ψ〉

for f ∈ Q∗, where

SQ := {ψ ∈ Q | ‖∇ψ‖L2(Ω)d = 1}.

4.2.1 Weak formulations of the problems (S), (PP) and (ES)

We assume the following conditions for F, ub, gb and pb:

F ∈ L2(Ω)
d
, ub ∈ H1/2(Γ),

∫
Γ

ub · n = 0, (4.2.4)

gb ∈ H−1/2(Γ), divF ∈ L2(Ω), (4.2.5)
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〈gb, 1〉H1/2(Γ) =

∫
Ω

divF dx, (4.2.6)

pb ∈ H1(Ω). (4.2.7)

We start by defining the weak solution to (S). For all φ ∈ H1
0 (Ω)

d
, we obtain from the

first equation of (S) that

(F, φ) = −
∫
Γ

∂uS

∂n
· φds+ (∇uS,∇φ) +

∫
Γ

pSφ · n ds− (pS, divφ)

= (∇uS,∇φ) + 〈∇pS, φ〉
H1

0 (Ω)
d .

Using this expression, the weak form of the Stokes problem becomes as follows: Find
uS ∈ H1(Ω)

d
and pS ∈ L2(Ω)/R such that
(∇uS,∇φ) + 〈∇pS, φ〉

H1
0 (Ω)

d = (F, φ) for all φ ∈ H1
0 (Ω)

d
,

(div uS, ψ) = 0 for all ψ ∈ L2(Ω)/R,
uS = ub in H1/2(Γ)n.

(S’)

Remark 4.2.1. If (uS, pS) ∈ H1(Ω)
d × L2(Ω) satisfies uS ∈ H2(Ω)d, pS ∈ H1(Ω) and

(S’), then we have 
(−∆uS +∇pS − F, φ) = 0 for all φ ∈ H1

0 (Ω)
d
,

div uS = 0 in L2(Ω),

uS = ub in H1/2(Γ)n.

Therefore, (uS, pS) satisfies (S).

Next, we define the weak formulations of (PP) and (ES) first for the Neumann bound-
ary condition (4.1.1) and them for the mixed boundary condition (4.1.2). After that, we
define generalized weak formulations for (PP) and (ES) which cover both cases.

First, we apply the Neumann boundary condition (4.1.1) for (PP) and (ES). We take
a test function ψ ∈ H1(Ω). From the second equation of (PP), we obtain

−(divF, ψ) = −(∆pPP , ψ)

= −
∫
Γ

∂pPP

∂n
ψ ds+ (∇pPP ,∇ψ)

= −〈gb, ψ〉H1/2(Γ) + (∇pPP ,∇ψ).

Hence,

(∇pPP ,∇ψ) = 〈gb, ψ〉H1/2(Γ) − (divF, ψ).

We note that 〈gb, ψ〉H1/2(Γ) − (divF, ψ) = 〈gb, [ψ]〉H1/2(Γ) − (divF, [ψ]) for all ψ ∈ H1(Ω)
by (4.2.6). Therefore, the weak form of the pressure Poisson problem with the Neumann
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boundary condition (4.1.1) becomes as follows. Find uPP ∈ H1(Ω)
d
and pPP ∈ H1(Ω)/R

such that 
(∇uPP ,∇φ) + (∇pPP , φ) = (F, φ) for all φ ∈ H1

0 (Ω)
d
,

(∇pPP ,∇ψ) = 〈G1, ψ〉H1(Ω) for all ψ ∈ H1(Ω)/R,
uPP = ub in H1/2(Γ)n,

(PP1)

where G1 ∈ H1(Ω)
∗
defined by for all ψ ∈ H1(Ω),

〈G1, ψ〉H1(Ω) := 〈gb, ψ〉H1/2(Γ) − (divF, ψ). (4.2.8)

The weak form of (ES) with the Neumann boundary condition can be defined similarly

to that of (PP). Find uε ∈ H1(Ω)
d
and pε ∈ H1(Ω)/R such that

(∇uε,∇φ) + (∇pε, φ) = (F, φ) for all φ ∈ H1
0 (Ω)

d
,

ε(∇pε,∇ψ) + (div uε, ψ) = ε〈G1, ψ〉H1(Ω) for all ψ ∈ H1(Ω)/R,
uε = ub in H1/2(Γ)n.

(ES1)

Remark 4.2.2. If (uPP , pPP ) ∈ H1(Ω)
d × H1(Ω) satisfies uPP ∈ H2(Ω)d, pPP ∈ H1(Ω)

and (PP1), then we have
(−∆uPP +∇pPP − F, φ) = 0 for all φ ∈ H1

0 (Ω)
d
,

(−∆pPP + divF, ψ) =

〈
−∂p

PP

∂n
+ gb, ψ

〉
H1/2(Γ)

for all ψ ∈ H1(Ω),

uPP = ub in H1/2(Γ)n.

Therefore, (uPP , pPP ) satisfies (PP) and the Neumann boundary condition (4.1.1).

In the same way, if (uε, pε) ∈ H1(Ω)
d ×H1(Ω) satisfies uε ∈ H2(Ω)d, pε ∈ H1(Ω) and

(ES1), then we have
(−∆uε +∇pε − F, φ) = 0 for all φ ∈ H1

0 (Ω)
d
,

(−ε∆pε + div uε + ε divF, ψ) = ε

〈
−∂p

ε

∂n
+ gb, ψ

〉
H1/2(Γ)

for all ψ ∈ H1(Ω),

uε = ub in H1/2(Γ)n.

Therefore, (uε, pε) satisfies (ES) and the Neumann boundary condition (4.1.1).

Secondly, we apply the mixed boundary condition (4.1.2) for (PP) and (ES). We take
a test function ψ ∈ H1

Γ2
(Ω). From the second equation of (PP), we obtain

−(divF, ψ) = −(∆pPP , ψ)

= −
∫
Γ

∂pPP

∂n
ψ ds+ (∇pPP ,∇ψ)

= −〈gb, ψ〉H1/2
γ0

(Γ1)
+ (∇pPP ,∇ψ).

Hence,
(∇pPP ,∇ψ) = 〈gb, ψ〉H1/2

γ0
(Γ1)

− (divF, ψ).
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The weak form of the pressure Poisson problem with the mixed boundary condition (4.1.2)

becomes as follows. Find uPP ∈ H1(Ω)
d
and pPP ∈ H1(Ω) such that

(∇uPP ,∇φ) + (∇pPP , φ) = (F, φ) for all φ ∈ H1
0 (Ω)

d
,

(∇pPP ,∇ψ) = 〈G2, ψ〉H1
Γ2

(Ω) for all ψ ∈ H1
Γ2
(Ω),

uPP = ub in H1/2(Γ)n,
pPP = pb in H1/2(Γ2),

(PP2)

where G2 ∈ H1
Γ2
(Ω)

∗
defined by for all ψ ∈ H1

Γ2
(Ω),

〈G2, ψ〉H1
Γ2

(Ω) := 〈gb, ψ〉H1/2
γ0

(Γ1)
− (divF, ψ). (4.2.9)

The weak form of (ES) with the mixed boundary condition (4.1.2) can be defined similarly

to that of (PP). It reads as follows. Find uε ∈ H1(Ω)
d
and pε ∈ H1(Ω) such that

(∇uε,∇φ) + (∇pε, φ) = (F, φ) for all φ ∈ H1
0 (Ω)

d
,

ε(∇pε,∇ψ) + (div uε, ψ) = ε〈G2, ψ〉H1
Γ2

(Ω) for all ψ ∈ H1
Γ2
(Ω),

uε = ub in H1/2(Γ)n,
pε = pb in H1/2(Γ2).

(ES2)

Remark 4.2.3. If (uPP , pPP ) ∈ H1(Ω)
d × H1(Ω) satisfies uPP ∈ H2(Ω)d, pPP ∈ H1(Ω)

and (PP2), then we have

(−∆uPP +∇pPP − F, φ) = 0 for all φ ∈ H1
0 (Ω)

d
,

(−∆pPP + divF, ψ) =

〈
−∂p

PP

∂n
+ gb, ψ

〉
H1

Γ1
(Ω)

for all ψ ∈ H1
Γ2
(Ω),

uPP = ub in H1/2(Γ)n,
pPP = pb in H1/2(Γ2).

Therefore, (uPP , pPP ) satisfies (PP) and the mixed boundary condition (4.1.2).

In the same way, if (uε, pε) ∈ H1(Ω)
d ×H1(Ω) satisfies uε ∈ H2(Ω)d, pε ∈ H1(Ω) and

(ES2), then we have

(−∆uε +∇pε − F, φ) = 0 for all φ ∈ H1
0 (Ω)

d
,

(−ε∆pε + div uε + ε divF, ψ) = ε

〈
−∂p

ε

∂n
+ gb, ψ

〉
H1

Γ1
(Ω)

for all ψ ∈ H1(Ω)/R,

uε = ub in H1/2(Γ)n,
pε = pb in H1/2(Γ2).

Therefore, (uε, pε) satisfies (ES) and the mixed boundary condition (4.1.2).

When Γ1 = ∅ and Γ2 = Γ, the mixed boundary condition (4.1.2) becomes the
full-Dirichlet boundary condition (4.1.3). Hence, the weak form of the pressure Pois-
son problem with the full-Dirichlet boundary condition (4.1.3) becomes as follows. Find



4.2. WEAK FORMULATION AND WELL-POSEDNESS 37

uPP ∈ H1(Ω)
d
and pPP ∈ H1(Ω) such that

(∇uPP ,∇φ) + (∇pPP , φ) = (F, φ) for all φ ∈ H1
0 (Ω)

d
,

(∇pPP ,∇ψ) = 〈G3, ψ〉H1
0 (Ω) for all ψ ∈ H1

0 (Ω),

uPP = ub in H1/2(Γ)n,
pPP = pb in H1/2(Γ),

(PP3)

where G2 ∈ H−1(Ω) defined by for all ψ ∈ H1
0 (Ω),

〈G3, ψ〉H1
0 (Ω) := −(divF, ψ). (4.2.10)

In the same way, the weak form of the ε-Stokes problem with the full-Dirichlet boundary
condition (4.1.3) becomes as follows. Find uε ∈ H1(Ω)

d
and pε ∈ H1(Ω) such that

(∇uε,∇φ) + (∇pε, φ) = (F, φ) for all φ ∈ H1
0 (Ω)

d
,

ε(∇pε,∇ψ) + (div uε, ψ) = ε〈G3, ψ〉H1
0 (Ω) for all ψ ∈ H1

0 (Ω),

uε = ub in H1/2(Γ)n,
pε = pb in H1/2(Γ).

(ES3)

Finally, we generalize (PP1), (PP2), and (PP3) to an abstract pressure Poisson prob-

lem. Let Q ⊂ H1(Ω) be a closed subspace as defined in Section 4.2. Find uPP ∈ H1(Ω)
d

and pPP ∈ Q such that
(∇uPP ,∇φ) + (∇pPP , φ) = (F, φ) for all φ ∈ H1

0 (Ω)
d
,

(∇pPP ,∇ψ) = 〈G,ψ〉Q for all ψ ∈ Q,
uPP = ub in H1/2(Γ)n,
pPP − pb ∈ Q,

(PP’)

with G ∈ Q∗. Indeed, we obtain (PP1) (resp. (PP2), (PP3)) from (PP’) by putting
Q := H1(Ω)/R (resp. H1

Γ2
(Ω), H1

0 (Ω)) and G := G1 (resp. G2, G3).
We generalize (ES1), (ES2), and (ES3) to an abstract ε-Stokes problem. Find uε ∈

H1(Ω)
d
and pε ∈ Q such that

(∇uε,∇φ) + (∇pε, φ) = (F, φ) for all φ ∈ H1
0 (Ω)

d
,

ε(∇pε,∇ψ) + (div uε, ψ) = ε〈G,ψ〉Q for all ψ ∈ Q,

uε − ub ∈ H1
0 (Ω)

d
,

pε − pb ∈ Q.

(ES’)

Indeed, we obtain (ES1) (resp. (ES2), (ES3)) from (ES’) by putting Q := H1(Ω)/R (resp.
H1

Γ2
(Ω), H1

0 (Ω)) and G := G1 (resp. G2, G3).

4.2.2 Well-posedness of (S’), (PP’) and (ES’)

We show the well-posedness of problems (S’), (PP’) and (ES’) in Theorems 4.2.4, 4.2.5
and 4.2.6.
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Theorem 4.2.4. Under the condition (4.2.4), there exists a unique solution (uS, pS) ∈
H1(Ω)

d × (L2(Ω)/R) satisfying (S’).

Proof. We take arbitrary u1 ∈ H1(Ω)
d
with γ0u1 = ub. By Theorem 2.2.15, there exists

u2 ∈ H1
0 (Ω)

d
such that div u2 = div u1. We put u0 := u1 − u2, and note that γ0u0 = ub

and div u0 = 0. The problem (S’) is equivalent to the following equations:
(∇(uS − u0),∇φ)− (pS, divφ) = (F, φ)− (∇u0,∇φ) for all φ ∈ H1

0 (Ω)
d
,

(ψ, div(uS − u0)) = 0 for all ψ ∈ L2(Ω)/R,

uS − u0 ∈ H1
0 (Ω)

d
.

(4.2.11)

By Theorem 2.2.7, the continuous bilinear form H1
0 (Ω)

d × H1
0 (Ω)

d 3 (u, φ) 7→
∫
Ω
∇u :

∇φdx ∈ R is coercive. By Theorems 2.2.12 and 2.2.14, there exists a unique solution
(uS, pS) ∈ H1(Ω)

d × (L2(Ω)/R) satisfying (4.2.11).

Theorem 4.2.5. Under the conditions (4.2.4) and (4.2.7), for G ∈ Q∗, there exists a

unique solution (uPP , pPP ) ∈ H1(Ω)
d ×Q satisfying (PP’).

Proof. Using the Lax–Milgram theorem, since Q × Q 3 (p, ψ) 7→
∫
Ω
∇p · ∇ψ dx ∈ R is

a continuous and coercive bilinear form, pPP ∈ H1(Ω) is uniquely determined from the

second and fourth equations of (PP’). Then, uPP ∈ H1(Ω)
d
is also uniquely determined

from the first and third equations, again using the Lax–Milgram theorem.

Theorem 4.2.6. Under the conditions (4.2.4) and (4.2.7), for ε > 0 and G ∈ Q∗, there

exists a unique solution (uε, pε) ∈ H1(Ω)
d ×H1(Ω) satisfying (ES’).

Proof. We take arbitrary u1 ∈ H1(Ω)
d
with γ0u1 = ub. Since div : H1

0 (Ω)
d → L2(Ω)/R is

surjective [32, Corollary 2.4, 2◦], there exists u2 ∈ H1
0 (Ω)

d
such that div u2 = div u1. We

put

u0 := u1 − u2, (4.2.12)

and note that γ0u0 = ub and div u0 = 0. To simplify the notation, we set u := uε − u0 ∈
H1

0 (Ω)
d
, p := pε − pb ∈ Q, and define f ∈ H−1(Ω)

d
and g ∈ Q∗ by

〈f, v〉
H1

0 (Ω)
d := (F, v)− (∇u0,∇v)− (∇pb, v) for all v ∈ H1

0 (Ω)
d
,

〈g, q〉Q := 〈G, q〉Q − (∇pb,∇q) for all q ∈ Q.
(4.2.13)

Then, (uε, pε) satisfies (ES’) if and only if (u, p) satisfies{
(∇u,∇φ) + (∇p, φ) = 〈f, φ〉

H1
0 (Ω)

d for all φ ∈ H1
0 (Ω)

d
,

ε(∇p,∇ψ) + (div u, ψ) = ε〈g, ψ〉Q for all ψ ∈ Q.
(4.2.14)

Adding the equations in (4.2.14), we get((
u
p

)
,

(
φ
ψ

))
ε

:= (∇u,∇φ) + ε(∇p,∇ψ) + (∇p, φ) + (div u, ψ)

= 〈f, φ〉
H1

0 (Ω)
d + ε〈g, ψ〉Q.
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We check that (·, ·)ε is a continuous coercive bilinear form on H1
0 (Ω)

d×Q. The bilinearity
and continuity of (·, ·)ε are obvious. The coercivity of (·, ·)ε is obtained in the following

way. Take (v, q)T ∈ H1
0 (Ω)

d ×Q. We have the following sequence of inequalities:((
v
q

)
,

(
v
q

))
ε

= (∇v,∇v) + ε(∇q,∇q) + (v,∇q) + (div v, q)

= ‖∇v‖2L2(Ω) + ε‖∇q‖2L2(Ω)

≥ min{1, ε}
(
‖∇v‖2L2(Ω) + ‖∇q‖2L2(Ω)

)
≥ c min{1, ε}

(
‖v‖2

H1(Ω)d
+ ‖q‖2H1(Ω)

)
.

Summarizing, (·, ·)ε is a continuous coercive bilinear form and H1
0 (Ω)

d × Q is a Hilbert
space. Therefore, the conclusion of Theorem 4.2.6 follows from the Lax–Milgram Theo-
rem.

4.3 Error estimates in terms of the additional bound-

ary condition

In this section, as in Chapter 3, we give estimates of the difference between the solutions to
the pressure Poisson problem, the ε-Stokes problem and the Stokes problem, respectively.

We prove the following lemma about estimates of the difference between the solutions
to the ε-Stokes problem and the Stokes problem.

Lemma 4.3.1. If pS ∈ H1(Ω), then there exists a constant c > 0 independent of ε such
that

‖uS − uε‖H1(Ω)d ≤ c‖∇(pS − pPP )‖L2(Ω)d .

Proof. Let wε := uS − uε ∈ H1
0 (Ω)

d
and rε := pPP − pε ∈ Q. By (S’), (PP’) and (ES’),

we obtain{
(∇wε,∇φ) + (∇rε, φ) = −(∇(pS − pPP ), φ) for all φ ∈ H1

0 (Ω)
d
,

ε(∇rε,∇ψ) + (divwε, ψ) = 0 for all ψ ∈ Q.
(4.3.15)

Putting φ := wε and ψ := rε and adding the two equations of (4.3.15), we get

‖∇wε‖2
L2(Ω)d×d + ε‖∇rε‖2

L2(Ω)d
≤ ‖∇(pS − pPP )‖L2(Ω)d‖w

ε‖L2(Ω)d

from
∫
Ω
(∇rε) · wε dx = −

∫
Ω
(divwε)rε dx. Thus we find

‖wε‖H1(Ω)d ≤ c‖∇(pS − pPP )‖L2(Ω)d

for a constant c > 0 independent of ε.
By Lemma 4.3.1, if we have a good prediction for the pressure boundary data, then

(ES) is also good approximation for (S). In this section, we prove these types of estimates
for the weak solutions.
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Theorem 4.3.2. Suppose that pS ∈ H1(Ω), H1
0 (Ω) ⊂ Q and 〈G,ψ〉Q = −(divF, ψ) for

all ψ ∈ H1
0 (Ω). Then, there exists a constant c > 0 independent of ε such that

‖uS − uPP‖H1(Ω)d ≤ c‖pS − pPP‖H1/2(Γ),

‖uS − uε‖H1(Ω)d ≤ c‖pS − pPP‖H1/2(Γ).
(4.3.16)

In particular, if pS = pPP , then (uS, pS) = (uPP , pPP ) = (uε, pε) holds for all ε > 0.

Proof. First, we prove that there exists a constant c > 0 independent of ε such that
‖uS − uPP‖H1(Ω)d ≤ c‖pS − pPP‖H1/2(Γ), and if (pS − pPP ) = 0, then pPP = pS. Taking

the divergence of the first equation of (S’), we obtain

divF = div(−∆uS +∇pS) = −∆(div uS) + ∆pS = ∆pS.

in distributions sense. Since pS ∈ H1(Ω) and C∞
0 (Ω) is dense in H1

0 (Ω), it follows that

(∇pS,∇ψ) = −(divF, ψ)

for all ψ ∈ H1
0 (Ω). Together with (S’), (PP’) and H1

0 (Ω) ⊂ Q, we obtain{
(∇(uS − uPP ),∇φ) = −(∇(pS − pPP ), φ) for all φ ∈ H1

0 (Ω)
d
,

(∇(pS − pPP ),∇ψ) = 0 for all ψ ∈ H1
0 (Ω)

(4.3.17)

from the assumption 〈G,ψ〉Q = (∇F, ψ). Putting φ := uS − uPP ∈ H1
0 (Ω)

d
in (4.3.17),

we get

‖∇(uS − uPP )‖2
L2(Ω)d×d = −(∇(pS − pPP ), uS − uPP )

≤ ‖∇(pS − pPP )‖L2(Ω)d‖uS − uPP‖L2(Ω)d .

Hence,

‖uS − uPP‖H1(Ω)d ≤ c1‖∇(pS − pPP )‖L2(Ω)d . (4.3.18)

From the second equation of (4.3.17) and Lemma 3.3.1 (with Γ1 = ∅ and Γ2 = Γ i.e.,
H1

Γ2
(Ω) = H1

0 (Ω)), we obtain

‖pS − pPP‖H1(Ω) ≤ c2‖pS − pPP‖H1/2(Γ). (4.3.19)

Together with (4.3.18), we obtain ‖uS − uPP‖H1(Ω)d ≤ c1c2‖pS − pPP‖H1/2(Γ). Moreover, if

γ0(p
S − pPP ) = 0 then pPP = pS.
Next, we prove that there exists a constant c > 0 independent of ε such that ‖uS −

uε‖H1(Ω)d ≤ c‖pS−pε‖H1/2(Γ), and if γ0(p
S−pPP ) = 0, then pPP = pε. Let wε := uS−uε ∈

H1
0 (Ω)

d
and rε := pPP − pε ∈ Q. By (S’), (PP’) and (ES’), we obtain{
(∇wε,∇φ) + (∇rε, φ) = −(∇(pS − pPP ), φ) for all φ ∈ H1

0 (Ω)
d
,

ε(∇rε,∇ψ) + (divwε, ψ) = 0 for all ψ ∈ Q.
(4.3.20)
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Putting φ := wε and ψ := rε and adding the two equations of (4.3.20), we get

‖∇wε‖2
L2(Ω)d×d + ε‖∇rε‖2

L2(Ω)d
≤ ‖∇(pS − pPP )‖L2(Ω)d‖w

ε‖L2(Ω)d (4.3.21)

from
∫
Ω
(∇rε) · wε dx = −

∫
Ω
(divwε)rε dx. Thus we find

‖wε‖H1(Ω)d ≤ c3‖∇(pS − pPP )‖L2(Ω)d .

Together with (4.3.19), we obtain

‖uS − uε‖H1(Ω)d = ‖wε‖H1(Ω)d ≤ c2c3‖pS − pPP‖H1/2(Γ).

Moreover, by (4.3.21), we obtain

ε‖pPP − pε‖2L2(Ω) = ε‖rε‖2L2(Ω) ≤ c4‖∇(pS − pPP )‖L2(Ω)d‖w
ε‖L2(Ω)d .

Hence, if γ0(p
S − pPP ) = 0, then pPP = pε.

Since H1
0 (Ω) 6⊂ H1(Ω)/R, Theorem 4.3.2 does not apply directly for the case of the

Neumann boundary condition (4.1.1). However, we add natural assumptions, then it leads
to (4.3.16).

Corollary 4.3.3. Suppose that pS ∈ H1(Ω) and Q = H1(Ω)/R. If G = G1 defined by
(4.2.8), then we have (4.3.16).

Proof. By (4.2.8), it holds that

(∇pPP ,∇ψ) = −(divF, ψ)

for all ψ ∈ H1
0 (Ω) from the second equation of (PP’). Hence, it leads the second equation

of (4.3.17). Using the proof of Theorem 4.3.2, we obtain (4.3.16).

We focus on the mixed boundary conditions (4.1.2), i.e., (PP2) and (ES2).

Proposition 4.3.4. If (uS, pS) satisfies pS ∈ H1(Ω) and ∆pS ∈ L2(Ω), then we have

(∇pS,∇ψ) = −(divF, ψ) +

〈
∂pS

∂n
, ψ

〉
H

1/2
γ0

(Γ1)

for all ψ ∈ H1
Γ2
(Ω).

Proof. From the first equation of (S’), we obtain

−∆uS +∇pS = F in D ′(Ω).

Taking the divergence, we get

divF = div(−∆uS +∇pS) = −∆(div uS) + ∆pS = ∆pS in D ′(Ω).

By the assumptions ∆pS ∈ L2(Ω) and divF ∈ L2(Ω), ∆pS = divF holds in L2(Ω).
Multiplying ψ ∈ H1

Γ2
(Ω) and integrating over Ω, we get

−(divF, ψ) = −(∆pS, ψ) = (∇pS,∇ψ)−
〈
∂pS

∂n
, ψ

〉
H

1/2
γ0

(Γ1)

,

which is the desired result.
Using Proposition 4.3.4, we prove the following theorem.
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Theorem 4.3.5. Let Q = H1
Γ2
(Ω) and G = G2 defined by (4.2.9). If pS ∈ H1(Ω) and

∆pS ∈ L2(Ω), there exists a constant c > 0 such that

‖uS − uPP‖H1(Ω)d ≤ c

(∥∥∥∥∂pS∂n − gb

∥∥∥∥
(H

1/2
γ0

(Γ1))∗
+ ‖pS − pb‖H1/2(Γ2)

)
,

‖uS − uε‖H1(Ω)d ≤ c

(∥∥∥∥∂pS∂n − gb

∥∥∥∥
(H

1/2
γ0

(Γ1))∗
+ ‖pS − pb‖H1/2(Γ2)

)
.

(4.3.22)

Proof. Using Proposition 4.3.4, we obtain from (S’) and (PP’),
(∇(uS − uPP ),∇φ) = (pS − pPP , φ) for all φ ∈ H1

0 (Ω)
d
,

(∇(pS − pPP ),∇ψ) =
〈
∂pS

∂n
− gb, ψ

〉
H

1/2
γ0

(Γ1)

for all ψ ∈ H1
Γ2
(Ω).

(4.3.23)

Putting φ := uS − uPP ∈ H1
0 (Ω)

d
in (4.3.23), we get

‖∇(uS − uPP )‖2
L2(Ω)d×d = (pS − pPP , div(uS − uPP ))

≤ ‖pS − pPP‖L2(Ω)‖ div(uS − uPP )‖L2(Ω)

≤
√
d‖pS − pPP‖H1(Ω)‖uS − uPP‖H1(Ω)d .

From Theorem 2.2.7, it follows that

‖uS − uPP‖H1(Ω)d ≤ c1‖pS − pPP‖H1(Ω)

for a constant c1 > 0. By the second equation of (4.3.23) and Lemma 3.3.1, there exists
a constant c2 > 0 such that

‖pS − pPP‖H1(Ω) ≤ c2

(∥∥∥∥∂pS∂n − gb

∥∥∥∥
(H

1/2
γ0

(Γ1))∗
+ ‖pS − pPP‖H1/2(Γ2)

)

= c2

(∥∥∥∥∂pS∂n − gb

∥∥∥∥
(H

1/2
γ0

(Γ1))∗
+ ‖pS − pb‖H1/2(Γ2)

)
.

Hence, we obtain the first inequality of (4.3.22) with c = c1c2. By Lemma 4.3.1, it holds
that

‖uS − uPP‖H1(Ω)d ≤ c3‖∇(pS − pPP )‖L2(Ω)d

≤ c2c3

(∥∥∥∥∂pS∂n − gb

∥∥∥∥
(H

1/2
γ0

(Γ1))∗
+ ‖pS − pb‖H1/2(Γ2)

)
.

In the same way as above, we also obtain estimates of the difference between the
solutions to (S’), (PP1) and (ES1), respectively.

Corollary 4.3.6. Let Q = H1(Ω)/R and G = G1 defined by (4.2.8). If pS ∈ H1(Ω) and
∆pS ∈ L2(Ω), there exists a constant c > 0 such that

‖uS − uPP‖H1(Ω)d ≤ c

∥∥∥∥∂pS∂n − gb

∥∥∥∥
H−1/2(Γ)

,

‖uS − uε‖H1(Ω)d ≤ c

∥∥∥∥∂pS∂n − gb

∥∥∥∥
H−1/2(Γ)

.



4.4. LINKS BETWEEN (ES) AND (PP) 43

4.4 Links between (ES) and (PP)

In this section, we show that (uε, pε) converges to (uPP , pPP ) strongly in H1(Ω)
d×H1(Ω)

as ε → ∞. We also treat the case of the regular perturbation asymptotics by exploring
the structure of the lower order terms and their effect on the convergence rate.

4.4.1 Convergence as ε→ ∞
We use the following Lemma 4.4.1 for the proofs of the theorems in this section.

Lemma 4.4.1. Let h ∈ Q∗ and (vε, qε) ∈ H1
0 (Ω)

d ×Q satisfy{
(∇vε,∇φ) + (∇qε, φ) = 0 for all φ ∈ H1

0 (Ω)
d
,

ε(∇qε,∇ψ) + (div vε, ψ) = 〈h, ψ〉Q for all ψ ∈ Q
(4.4.24)

for an arbitrarily fixed ε > 0. Then, there exists a constant c > 0 such that

‖vε‖H1(Ω)d + ‖qε‖H1(Ω) ≤
c

ε
‖h‖Q∗ .

Proof. Putting φ := vε and ψ := qε and adding two equations of (4.4.24), we obtain

‖∇vε‖2
L2(Ω)d×d + ε‖∇qε‖2

L2(Ω)d
≤ ‖h‖Q∗‖∇qε‖L2(Ω)d .

where we have used (∇qε, vε) = −(div vε, qε). Thus

‖∇qε‖L2(Ω)d ≤
1

ε
‖h‖Q∗ .

In addition, from the first equation of (4.4.24) by putting φ := vε, we have

‖∇vε‖2
L2(Ω)d

= (∇vε,∇vε) = −(∇qε, vε) ≤ ‖∇qε‖L2(Ω)d‖vε‖L2(Ω)d

≤ c‖∇qε‖L2(Ω)d‖∇vε‖L2(Ω)d×d

for a constant c > 0, and then

‖∇vε‖L2(Ω)d ≤ c‖∇qε‖L2(Ω)d ≤
c

ε
‖h‖Q∗ .

Using Lemma 4.4.1, we obtain the following theorem.

Theorem 4.4.2. There exists a constant c > 0 independent of ε > 0 such that

‖uε − uPP‖H1(Ω)d + ‖pε − pPP‖H1(Ω) ≤
c

ε
‖ div uPP‖Q∗ .

for all ε > 0. In particular, we have

uε → uPP strongly in H1(Ω)
d
, pε → pPP strongly in H1(Ω) as ε→ ∞.

Proof. Combining (PP’) and (ES’), we obtain{
(∇vε,∇φ) + (∇qε, φ) = 0 for all φ ∈ H1

0 (Ω)
d
,

ε(∇qε,∇ψ) + (div vε, ψ) = −(div uPP , ψ) for all ψ ∈ Q,
(4.4.25)

where vε := uε − uPP and qε := pε − pPP . By Lemma 4.4.1, we conclude the proof.

Corollary 4.4.3. If uPP satisfies div uPP = 0, then uε = uPP and pε = pPP hold for all
ε > 0. Furthermore, uS = uε = uPP and pS = [pε] = [pPP ] hold for all ε > 0.
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4.4.2 Regular Perturbation Asymptotics

By Theorem 4.4.2, there exists a constant c > 0 such that ‖ε(uε − uPP )‖H1(Ω)d ≤ c

and ‖ε(pε − pPP )‖H1(Ω) ≤ c for all ε > 0. It implies that there exists a subsequence of

(ε(uε − uPP ), ε(pε − pPP )) which converges weakly to (v(1), q(1)) ∈ H1
0 (Ω)

d ×Q if ε→ ∞.
The next theorem states properties of the limit functions v(1) and q(1).

Theorem 4.4.4. Let vε(1) := ε(uε − uPP ) ∈ H1
0 (Ω)

d
, qε(1) := ε(pε − pPP ) ∈ Q and let

(v(1), q(1)) ∈ H1
0 (Ω)

d ×Q satisfy{
(∇v(1),∇φ) + (∇q(1), φ) = 0 for all φ ∈ H1

0 (Ω)
d
,

(∇q(1),∇ψ) = −(div uPP , ψ) for all ψ ∈ Q.
(4.4.26)

Then, there exists a constant c > 0 independent of ε such that

‖vε(1) − v(1)‖H1(Ω)d + ‖qε(1) − q(1)‖H1(Ω) ≤
c

ε
‖ div v(1)‖Q∗ .

Proof. The existence and uniqueness of the pair (v(1), q(1)) ∈ H1
0 (Ω)

d×Q as a solution to
(4.4.26) follows from Theorem 4.2.5. As in (4.4.25), we have(∇vε(1),∇φ) + (∇qε(1), φ) = 0 for all φ ∈ H1

0 (Ω)
d
,

(∇qε(1),∇ψ) +
1

ε
(div vε(1), ψ) = −(div uPP , ψ) for all ψ ∈ Q.

(4.4.27)

Subtracting (4.4.26) from (4.4.27), it holds that(∇(vε(1) − v(1)),∇φ) + (∇(qε(1) − q(1)), φ) = 0 for all φ ∈ H1
0 (Ω)

d
,

(∇(qε(1) − q(1)),∇ψ) +
1

ε
(div vε(1), ψ) = 0 for all ψ ∈ Q.

Hence, (∇vε,∇φ) + (∇qε, φ) = 0 for all φ ∈ H1
0 (Ω)

d
,

(∇qε,∇ψ) + 1

ε
(div vε, ψ) = −(div v(1), ψ) for all ψ ∈ Q.

where vε := vε(1) − v(1) and qε := qε(1) − q(1). By Lemma 4.4.1 , there exists a constant
c > 0 independent of ε such that

‖vε(1) − v(1)‖H1(Ω)d + ‖qε(1) − q(1)‖H1(Ω) ≤
c

ε
‖ div v(1)‖Q∗

for all ε > 0.
Next, we generalize Theorem 4.4.4 to the following theorem:

Theorem 4.4.5. Let k ∈ N be arbitrary (k ≥ 1) and let v(0) := uPP . If functions v(1),

v(2), · · · , v(k) ∈ H1
0 (Ω)

d
and q(1), q(2), · · · , q(k) ∈ Q satisfy{

(∇v(i),∇φ) + (∇q(i), φ) = 0 for all φ ∈ H1
0 (Ω)

d
,

(∇q(i),∇ψ) = −(div v(i−1), ψ) for all ψ ∈ Q,
(4.4.28)
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for all 1 ≤ i ≤ k, then there exists a constant c > 0 independent of ε satisfying∥∥∥∥∥uε −
(
uPP +

1

ε
v(1) + · · ·+

(
1

ε

)k
v(k)

)∥∥∥∥∥
H1(Ω)d

≤ c

εk+1
‖ div v(k)‖Q∗ ,∥∥∥∥∥pε −

(
pPP +

1

ε
q(1) + · · ·+

(
1

ε

)k
q(k)

)∥∥∥∥∥
H1(Ω)

≤ c

εk+1
‖ div v(k)‖Q∗ .

Proof. Let (vε(i), q
ε
(i)) ∈ H1

0 (Ω)
d ×Q (1 ≤ i ≤ k) satisfy


(∇vε(i),∇φ) + (∇qε(i), φ) = 0 for all φ ∈ H1

0 (Ω)
d
,

(∇qε(i),∇ψ) +
1

ε
(div vε(i), ψ) = −(div v(i−1), ψ) for all ψ ∈ Q.

(4.4.29)

Subtracting (4.4.28) from (4.4.29), it holds that
(∇(vε(i) − v(i)),∇φ) + (∇(qε(i) − q(i)), φ) = 0 for all φ ∈ H1

0 (Ω)
d
,

(∇(qε(i) − q(i)),∇ψ) +
1

ε
(div vε(i), ψ) = 0 for all ψ ∈ Q.

Setting vε := vε(i) − v(i), q
ε := qε(i) − q(i) and h := − div v(i), we obtain from Lemma 4.4.1

that the estimates

‖vε(i) − v(i)‖H1(Ω)d + ‖qε(i) − q(i)‖H1(Ω) ≤
c

ε
‖ div v(i)‖Q∗

hold for all ε > 0. In particular, putting i := k, we obtain

‖vε(k) − v(k)‖H1(Ω)d + ‖qε(k) − q(k)‖H1(Ω) ≤
c

ε
‖ div v(k)‖Q∗

for all ε > 0. By the uniqueness of the solution to (ES’) in Theorem 4.2.6, it leads that
v(ε,i+1) = ε(vε(i) − v(i)), q

(ε,i+1) = ε(qε(i) − q(i)) for all i = 1, · · · , k − 1, and thus

vε(k) − v(k) = ε(vε(k−1) − v(k−1))− v(k)

= ε

(
vε(k−1) −

(
v(k−1) +

(
1

ε

)
v(k)

))
= · · ·

= εk−1

(
vε(1) −

(
v(1) + · · ·+

(
1

ε

)k−2

v(k−1) +

(
1

ε

)k−1

v(k)

))

= εk

(
uε −

(
uPP +

1

ε
v(1) + · · ·+

(
1

ε

)k−1

v(k−1) +

(
1

ε

)k
v(k)

))
,
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qε(k) − q(k) = ε(qε(k−1) − q(k−1))− q(k)

= ε

(
qε(k−1) −

(
q(k−1) +

(
1

ε

)
q(k)

))
= · · ·

= εk−1

(
qε(1) −

(
q(1) + · · ·+

(
1

ε

)k−2

q(k−1) +

(
1

ε

)k−1

q(k)

))

= εk

(
pε −

(
pPP +

1

ε
q(1) + · · ·+

(
1

ε

)k−1

q(k−1) +

(
1

ε

)k
q(k)

))
.

Hence it holds that∥∥∥∥∥uε −
(
uPP +

1

ε
v(1) + · · ·+

(
1

ε

)k
v(k)

)∥∥∥∥∥
H1(Ω)d

≤ c

εk+1
‖ div v(k)‖Q∗ ,

∥∥∥∥∥pε −
(
pPP +

1

ε
q(1) + · · ·+

(
1

ε

)k
q(k)

)∥∥∥∥∥
H1(Ω)

≤ c

εk+1
‖ div v(k)‖Q∗ .

Remark 4.4.6. Theorem 4.4.5 can be interpreted from the operator theory.
Let t ≥ 0, X := H1

0 (Ω)
d ×Q, Y := H−1(Ω)

d ×Q∗ be equipped with norms

‖(u, p)‖2X := ‖u‖2
H1(Ω)d

+ ‖p‖2H1(Ω),

‖(f, g)‖2Y := ‖f‖2
H−1(Ω)d

+ ‖g‖2Q∗

for (u, p) ∈ X, (f, g) ∈ Y , and let A and B be

A : X −→ Y

∈ ∈

(u, p) 7−→ (−∆u+∇p,∆p),

B : X −→ Y

∈ ∈

(u, p) 7−→ (0, div u).

Then, (uPP , pPP ) and (uε, pε) satisfy

A(uPP , pPP ) = f,

(
A+

1

ε
B

)
(uε, pε) = f,

where f = (F,G). We have A + tB ∈ Isom(X,Y ) for an arbitrary t ≥ 0 by the analogy
of Theorem 4.2.5 (t = 0) and Theorem 4.2.6 (t = 1/ε). Equation (4.4.28) states that

A(v(i), q(i)) = −B(v(i−1), q(i−1))

for i = 1, · · · , k, i.e.,
(v(i), q(i)) = −A−1B(v(i−1), q(i−1)) = · · · = (−A−1B)i(uPP , pPP )

= A−1(−BA−1)if.

By Theorem 4.4.5, there exists a constant c > 0 such that∥∥∥∥∥
(
A+

1

ε
B

)−1

f − A−1

k∑
i=0

(
−1

ε
BA−1

)i
f

∥∥∥∥∥
X

≤ c

εk+1
‖(BA−1)k+1f‖Y

for all ε > 0, f ∈ Y .
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4.5 Links between (ES) and (S)

In this section, we show that (uε, pε) converges to (uS, pS) strongly in H1(Ω)
d×(L2(Ω)/R)

as ε → 0. The outline of the proof of our convergence results (Theorems 4.5.2 and
4.5.3) is as follows. First, we prove the boundedness of the sequence ((uε, pε))ε>0 in

H1(Ω)
d × (L2(Ω)/R). By the reflexivity of H1(Ω)

d × (L2(Ω)/R), the sequence has a

subsequence converging weakly in H1(Ω)
d×(L2(Ω)/R). Next, we show that the limit pair

of functions satisfies (S’). Finally, we prove the strong convergence in H1(Ω)
d×(L2(Ω)/R).

We start this section with a useful lemma.

Lemma 4.5.1. If v ∈ H1(Ω)
d
, q ∈ L2(Ω) and f ∈ H−1(Ω)

d
satisfy

(∇v,∇φ) + 〈∇q, φ〉
H1

0 (Ω)
d = 〈f, φ〉

H1
0 (Ω)

d for all φ ∈ H1
0 (Ω)

d
,

then there exists a constant c > 0 such that

‖[q]‖L2(Ω) ≤ c(‖∇v‖L2(Ω)d×d + ‖f‖H−1(Ω)d).

Proof. Let c be the constant from Theorem 2.2.14. Then, we obtain

‖[q]‖L2(Ω) ≤ c‖∇q‖H−1(Ω)d = c sup
φ∈Sn

|〈∇q, φ〉
H1

0 (Ω)
d |

≤ c sup
φ∈Sn

(
|(∇v,∇φ)|+ |〈f, φ〉

H1
0 (Ω)

d |
)

≤ c(‖∇v‖L2(Ω)d×d + ‖f‖H−1(Ω)d).

Theorem 4.5.2. There exists a constant c > 0 independent of ε such that

‖uε‖H1(Ω)d + ‖[pε]‖L2(Ω) ≤ c for all ε > 0.

Furthermore, if the range of Q under the map [·] is dense in L2(Ω)/R, then we obtain

uε → uS strongly in H1(Ω)
d
, [pε] → pS strongly in L2(Ω)/R as ε→ 0.

Proof. We take u0 ∈ H1(Ω)
d
, f ∈ H−1(Ω)

d
and g ∈ Q∗ as (4.2.12) and (4.2.13) in the

proof of Theorem 4.2.6. We put ũε := uε − u0 ∈ H1
0 (Ω)

d
, p̃ε := pε − pb ∈ Q. Then, we

obtain {
(∇ũε,∇φ) + (∇p̃ε, φ) = 〈f, φ〉

H1
0 (Ω)

d for all φ ∈ H1
0 (Ω)

d
,

ε(∇p̃ε,∇ψ) + (div ũε, ψ) = ε〈g, ψ〉Q for all ψ ∈ Q.
(4.5.30)

Putting φ := ũε, ψ := p̃ε and adding the two equations of (4.5.30), we get

‖∇ũε‖2
L2(Ω)d×d + ε‖∇p̃ε‖2

L2(Ω)d
≤ ‖f‖H−1(Ω)d‖∇ũ

ε‖L2(Ω)d×d + ε‖g‖Q∗‖∇p̃ε‖L2(Ω)d

since (∇p̃ε, ũε) = −(div ũε, p̃ε). Hence, (‖ũε‖H1(Ω)d)0<ε<1 and (‖
√
εp̃ε‖H1(Ω))0<ε<1 are

bounded. Moreover, by Lemma 4.5.1, we obtain

‖[p̃ε]‖L2(Ω) ≤ c(‖∇ũε‖L2(Ω)d×d + ‖f‖H−1(Ω)d),
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i.e., (‖[p̃ε]‖L2(Ω))0<ε<1 is bounded. By Theorem 4.4.2, (‖uε‖H1(Ω)d)ε≥1 and (‖[p̃ε]‖L2(Ω))ε≥1

are bounded, and thus (‖uε‖H1(Ω)d)ε>0 and (‖[p̃ε]‖L2(Ω))ε>0 are bounded.

Since H1(Ω)
d × (L2(Ω)/R) is reflexive and (ũε, [p̃ε])0<ε<1 is bounded in H1(Ω)

d ×
(L2(Ω)/R), there exist (u, p) ∈ H1(Ω)

d×(L2(Ω)/R) and a subsequence of pairs (ũεk , p̃εk)k∈N
⊂ H1

0 (Ω)
d ×Q such that

ũεk ⇀ u weakly in H1(Ω)
d
, [p̃εk ]⇀ p weakly in L2(Ω)/R as k → ∞.

Hence, from (4.5.30) with ε := εk, taking k → ∞, we obtain{
(∇u,∇φ) + 〈∇p, φ〉

H1
0 (Ω)

d = 〈f, φ〉
H1

0 (Ω)
d for all φ ∈ H1

0 (Ω)
d

(div u, [ψ]) = 0 for all ψ ∈ Q,
(4.5.31)

where we have used that

|εk(∇p̃εk ,∇ψ)| ≤
√
εk‖

√
εkp̃

εk‖H1(Ω)‖ψ‖H1(Ω) → 0,

(∇p̃εk , φ) = −([p̃εk ], divφ) → −(p, divφ) = 〈∇p, φ〉
H1

0 (Ω)
d

as k → ∞. By (4.2.13), the first equation of (4.5.31) implies that for all φ ∈ H1
0 (Ω)

d
,

(∇(u+ u0),∇φ) + 〈∇(p+ pb), φ〉H1
0 (Ω)

d = (F, φ).

By the second equation of (4.5.31), if the range of Q under the map [·] is dense in L2(Ω)/R,
then it holds that for all ψ ∈ L2(Ω)/R,

(div(u+ u0), ψ) = (div u, ψ) = 0.

Hence, we obtain that (u+ u0, p + [pb]) satisfies (S’), i.e., u
S = u+ u0 and pS = p + [pb].

Then, we have

uεk − uS = uεk − u− u0 = ũεk − u ⇀ 0 weakly in H1(Ω)
d
,

[pεk ]− pS = [pεk − p− pb] = [p̃εk ]− p ⇀ 0 weakly in L2(Ω)/R

as k → ∞. Since any arbitrarily chosen subsequence of ((uε, [pε]))0<ε<1 has a subsequence
which converges to (uS, pS), we obtain

uε ⇀ uS weakly in H1(Ω)
d
, [pε]⇀ pS weakly in L2(Ω)/R as ε→ 0.

Finally, we show the strong convergences. We have from (ES’) and (S’) that{
(∇(uε − uS),∇φ)− (pε − pS, divφ) = 0 for all φ ∈ H1

0 (Ω)
d
,

ε(∇(pε − pb),∇ψ) + (div(uε − uS), ψ) = ε〈G,ψ〉Q − ε(∇pb,∇ψ) for all ψ ∈ Q.

Putting φ := uε − uS ∈ H1
0 (Ω)

d
, ψ := pε − pb ∈ Q and adding two equations, we get

‖∇(uε − uS)‖2
L2(Ω)d×d + ε‖∇(pε − pb)‖2L2(Ω)d

= ε〈G, pε − pb〉Q − ε(∇pb,∇(pε − pb))− (pS − pb, div(u
ε − uS)).
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Hence, we have

‖∇(uε − uS)‖2
L2(Ω)d×d

≤ ε(‖G‖Q∗ + ‖∇pb‖L2(Ω)d)‖∇(pε − pb)‖L2(Ω)d − (pS − pb, div(u
ε − uS))

→ 0

as ε→ 0, which implies that

‖[pε]− pS‖L2(Ω) = ‖[pε − pS]‖L2(Ω) ≤ c‖∇(uε − uS)‖L2(Ω)d×d → 0 as k → ∞

by Lemma 4.5.1.
Theorem 4.5.2 does not give the convergence rate. If Q = H1(Ω)/R (corresponding to

the Neumann boundary condition (4.1.1)), then the convergence rate becomes
√
ε.

Theorem 4.5.3. Suppose that Q = H1(Ω)/R and pS ∈ H1(Ω). Then, there exists a
constant c > 0 independent of ε such that

‖uε − uS‖H1(Ω)d + ‖pε − pS‖L2(Ω) ≤ c
√
ε.

Proof. We obtain from (ES’) and (S’) that{
(∇(uε − uS),∇φ) + (∇(pε − pS), φ) = 0 for all φ ∈ H1

0 (Ω)
d
,

ε(∇pε,∇ψ) + (div uε, ψ) = ε〈G,ψ〉H1(Ω)/R for all ψ ∈ H1(Ω)/R.

Putting φ := uε − uS ∈ H1
0 (Ω)

d
and ψ := pε − pS ∈ H1(Ω)/R, we get

‖∇(uε − uS)‖2
L2(Ω)d×d + ε(∇pε,∇(pε − pS))

= −(∇(pε − pS), uε − uS)− (div uε, pε − pS) + ε〈G, pε − pS〉H1(Ω)/R

= (div uε − div uS, pε − pS)− (div uε, pε − pS) + ε〈G, pε − pS〉H1(Ω)/R

= ε〈G, pε − pS〉H1(Ω)/R.

(4.5.32)

Subtracting ε(∇pS,∇(pε − pS) from both sides of (4.5.32), we obtain

‖∇(uε − uS)‖2
L2(Ω)d×d + ε‖∇(pε − pS)‖2

L2(Ω)d

= −ε(∇pS,∇(pε − pS)) + ε〈G, pε − pS〉H1(Ω)/R

≤ ε(‖∇pS‖L2(Ω)d + ‖G‖(H1(Ω)/R)∗)‖∇(pε − pS)‖L2(Ω)d .

(4.5.33)

To clarify the following estimates, we set α := ‖∇(uε − uS)‖L2(Ω)d×d , β := ‖∇(pε −
pS)‖L2(Ω)d , a := ‖∇pS‖L2(Ω)d + ‖G‖(H1(Ω)/R)∗ . The estimate (4.5.33) reads as

α2 + εβ2 ≤ εaβ,

(
α√
ε

)2

+
(
β − a

2

)2
≤
(a
2

)2
.

Hence, α ≤ a
√
ε/2, i.e., ‖∇(uε−uS)‖L2(Ω)d×d ≤ (

√
ε/2)(‖∇pS‖L2(Ω)d + ‖G‖(H1(Ω)/R)∗). By

Lemma 4.5.1, we obtain

‖pε − pS‖L2(Ω) ≤ c‖∇(uε − uS)‖L2(Ω)d×d ≤ c

√
ε

2
(‖∇pS‖L2(Ω)d + ‖G‖(H1(Ω)/R)∗)

for a constant c > 0 independent of ε.
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4.6 Numerical examples

For our simulations, we consider Ω = (0, 1) × (0, 1). We take the following boundary
conditions:

ub = (x(x− 1), y(y − 1))T , gb = (2, 2)T · n

on Γ. The exact solutions for (PP1) are u
PP = (x(x−1), y(y−1))T and pPP = 2x+2y−2.

We solve the problems (PP1), (ES1) and (S’) numerically by using the finite element
method with P2/P1 elements by the FreeFEM software [43]. The numerical solutions
(uPP , pPP ), (uε, pε) (ε = 1, 10−2 or 10−4) and (uS, pS) to problems (PP1), (ES1) and (S’),
respectively, are illustrated in Fig. 4.2–4.4. From these images, we observe that (uε, pε)
seems to converge to (uPP , pPP ) as ε → ∞ and to (uS, pS) as ε → 0 (as expected from
Theorems 4.4.2 and 4.5.2.)

Next, we compute the error estimate between the numerical solutions of (ES1) and
(PP1). The numerical errors ‖uε−uPP‖L2(Ω)d , ‖∇(uε−uPP )‖L2(Ω)d×d , ‖pε−pPP‖L2(Ω) and

‖∇(pε − pPP )‖L2(Ω)d are shown in Fig. 4.5 and Fig. 4.6. Based on these values, we fitted

a constant c such that ‖uε−uPP‖H1(Ω)d ∼ c/ε and ‖pε− pPP‖H1(Ω) ∼ c/ε for large ε. Fig.

4.5 and Fig. 4.6 indicate that there exists a constant c such that ‖uε − uPP‖H1(Ω)d ≤ c/ε

and ‖pε − pPP‖H1(Ω) ≤ c/ε, as expected from Theorem 4.4.2.

We also compute the error estimate between problems (ES1) and (S’) by numerical
calculation. The numerical error estimates ‖uε − uS‖L2(Ω)d , ‖∇(uε − uS)‖L2(Ω)d×d , ‖pε −
pS‖L2(Ω) and ‖∇(pε − pS)‖L2(Ω)d are shown in Fig. 4.7 and Fig. 4.8. Based on these

values, we fitted a constant c such that ‖uε − uS‖H1(Ω)d ∼ cε and ‖pε − pS‖L2(Ω) ∼ cε
for small ε. Fig. 4.7 and Fig. 4.8 indicate that there exists a constant c̃ such that
‖uε − uS‖H1(Ω)d ≤ c̃

√
ε and ‖pε − pS‖L2(Ω) ≤ c̃

√
ε, as expected from Theorem 4.5.3.
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Figure 4.2: pPP (left) and uPP (right). The color scale indicates the length of |uPP (ξ)| at
each node ξ.
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Figure 4.3: pε (a) and uε (b) with ε = 1. pε (c) and uε (d) with ε = 10−2. pε (e) and uε

(f) with ε = 10−4. The color scales indicate the length of |uε(ξ)| at each node ξ.
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Figure 4.4: pS (left) and uS (right). The color scale indicates the length of |uS(ξ)| at each
node ξ.
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Figure 4.5: ‖uε− uPP‖L2(Ω)d (left, solid line) and ‖∇(uε− uPP )‖L2(Ω)d×d (right, solid line)
as functions of ε.
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Figure 4.6: ‖pε − pPP‖L2(Ω) (left, solid line) and ‖∇(pε − pPP )‖L2(Ω)d (right, solid line) as
functions of ε.
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Figure 4.7: ‖uε− uS‖L2(Ω)d (left, solid line) and ‖∇(uε− uS)‖L2(Ω)d×d (right, solid line) as
functions of ε.
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Figure 4.8: ‖pε − pS‖L2(Ω) (left, solid line) and ‖∇(pε − pS)‖L2(Ω)d (right, solid line) as
functions of ε.

4.7 Conclusion

We introduced the ε-Stokes problem (ES) connecting the Stokes problem (S) and the
corresponding pressure Poisson problem (PP). For any fixed ε > 0, the ε-Stokes problem
has a unique weak solution (uε, pε) (Theorem 4.2.6) and uε is a good approximation as
the solution to (S), while the solutions to (S) and (PP) are close in the following sense;

‖uS − uPP‖H1(Ω)d + ‖pS − pPP‖H1(Ω) ≤ c‖pS − pPP‖H1/2(Γ),

‖uS − uε‖H1(Ω)d + ‖pS − pε‖H1(Ω) ≤ c‖pS − pPP‖H1/2(Γ),

see Theorems 4.3.2 and 4.3.5 and Corollary 4.3.6 for details. In other words, if we have a
good prediction for the boundary data, then (PP) and (ES) are good approximations for
(S).

We proved in Theorem 4.4.2 that a sequence ((uε, pε))ε>0 converges strongly inH
1(Ω)

d×
H1(Ω) to the solution to (PP) as ε → ∞ with convergence rate O(1/ε). We also treated
the case of regular perturbation asymptotics by exploring the structure of the lower order
terms and their effect on the convergence rate.
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We proved in Theorem 4.5.2 that ((uε, pε))ε>0 converges strongly inH
1(Ω)

d×(L2(Ω)/R)
to the solution (uS, pS) to (S) as ε→ 0. By numerical examples, we observed the expected
convergences as ε→ ∞ or ε→ 0.

We summarize our results as follows:

• We introduce the ε-Stokes problem (ES) as an interpolation between the Stokes
problem (S) and the pressure Poisson problem (PP).

• The solution (uε, pε) to (ES) strongly converges in H1(Ω)
d × H1(Ω) to (uPP , pPP )

as ε→ ∞ with convergence rate O(1/ε).

• The solution (uε, pε) to (ES) weakly converges in H1
0 (Ω)

d × (L2(Ω)/R) to (uS, pS)
as ε → 0. If pS ∈ H1(Ω), then strong convergence of (uε, pε) to (uS, pS) as ε → 0
holds. Furthermore, if Q = H1(Ω)/R and pS ∈ H1(Ω), then the convergence rate is
O(

√
ε).

In this chapter, the domain of the numerical examples is in R2. Numerical comparison
of (ES), (PP) and (S) in 3D is one of our interesting future works, for example the conver-
gence rates and numerical instability. As another extension of our research, generalization
of our results to the Navier–Stokes problem is important but still remains unknown.



Chapter 5

Projection method

This chapter is based on the following paper:

• K. Matsui: A projection method for Navier–Stokes equations with a boundary con-
dition including the total pressure. arXiv:2105.13014 (submitted), 2021.

5.1 Introduction

Let T > 0 and let Ω be a bounded Lipschitz domain in Rd (d = 2, 3) with the bound-
ary Γ satisfying (2.1.1) and Hypothesis 2.2.17. We consider the following Navier–Stokes
problem: Find two functions u : Ω× [0, T ] → Rd and p : Ω× [0, T ] → R such that

∂u

∂t
+ (u · ∇)u− ν∆u+

1

ρ
∇p = f in Ω× (0, T ),

div u = 0 in Ω× (0, T ),
u = 0 on Γ1 × (0, T ),
u× n = 0 on Γ2 × (0, T ),

p+
ρ

2
|u|2 = pb on Γ2 × (0, T ),

u(0) = u0 in Ω,

(5.1.1)

where ν, ρ > 0, f : Ω× (0, T ) → Rd, pb : Γ2× (0, T ) → R, and u0 : Ω → Rd. The functions
u and p are the velocity and the pressure of the flow governed by (5.1.1), respectively.
For Γ2, we assume a boundary condition including a pressure value p + ρ

2
|u|2, which is

called the total pressure, stagnation pressure, or Bernoulli pressure. Usual pressure is
often called static pressure to distinguish it from the total pressure. In an experimental
measurement of the total and static pressure using a Pitot tube, the boss measurement
is dependent on the yaw angle of the Pitot tube. Then, the effect on the total pressure
p+ ρ

2
|u|2 is smaller than the effect on the usual pressure p [45, Section 7.15]. The boundary

condition on Γ2 in (5.1.1) is introduced in [7], and the existence of a weak velocity solution
is proven in [10, 55, 56]. We will show the existence in a different way (Corollary 5.3.10).
The stationary case has been studied in [8, 9, 12, 23, 55, 56]. In [12, 13], the finite element
discretization problems with this type of boundary condition are proposed.

Next, we introduce a projection method for (5.1.1). The projection method is one of
the numerical schemes for Navier–Stokes equations [21, 79]. Error analysis in the case of
the full Dirichlet boundary condition for the velocity is carried out in [6, 70, 71, 76, 77].

55
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In the case of a boundary condition for the static pressure, the finite element analysis of
a projection method is proposed in [39, 40]. For the nonlinear term in the first equation
of (5.1.1), it holds that

(u · ∇)u = (∇× u)× u+
1

2
∇|u|2

(cf. [34]). Hence, if we set D(v, w) := (∇ × v) × w and P = p + ρ
2
|u|2, then (5.1.1) is

equivalent to the following1:

∂u

∂t
+D(u, u)− ν∆u+

1

ρ
∇P = f in Ω× (0, T ),

div u = 0 in Ω× (0, T ),

u = 0 on Γ1 × (0, T ),

u× n = 0 on Γ2 × (0, T ),

P = pb on Γ2 × (0, T ),

u(0) = u0 in Ω

(5.1.2)

The first equation of (5.1.2) is called the rotation form of the Navier–Stokes equation
[19, 67]. In [19], a projection method for the rotation form using the total pressure is
introduced to avoid checkerboard oscillation of pressure in the finite difference method.

Let τ(:= T/N < 1, N ∈ N) be a time increment and let tk := kτ (k = 0, 1, . . . , N). We
set u∗0 := u0 and calculate u∗k, uk, pk (k = 1, 2, . . . , N) by repeatedly solving the following
problems (Step 1) and (Step 2).

(Step 1) Find u∗k : Ω → Rd such that

u∗k − uk−1

τ
+D(u∗k−1, u

∗
k)− ν∆u∗k = f(tk) in Ω,

u∗k = 0 on Γ1,

u∗k × n = 0 on Γ2,

div u∗k = 0 on Γ2.

(5.1.3)

(Step 2) Find Pk :→ R and uk :→ Rd such that
− τ

ρ
∆Pk = − div u∗k in Ω,

∂Pk
∂n

= 0 on Γ1,

Pk = pb(tk) on Γ2,

(5.1.4)

uk = u∗k −
τ

ρ
∇Pk in Ω. (5.1.5)

For the velocity boundary condition on Γ2, we can rewrite the third and fourth equa-
tions of (5.1.3) by using κ := div n = (d− 1)×(mean curvature) as stated in the following
remark.

1If d = 2, then ∇× v and (∇× v)×w denote the scalar and vector functions, respectively, defined as
follows: for all v = (vx, vy), w = (wx, wy) ∈ R2,

∇× v := ∂xvy − ∂yvx, (∇× v)× w := (wy(∂yvx − ∂xvy), wx(∂xvy − ∂yvx)).
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Remark 5.1.1. If v ∈ C1(Ω) satisfies that v × n = 0 on Γ2, then we have

∂v

∂n
· n+ κv · n = div v on Γ2.

For the proof, see [51, Lemma 7]. Hence, the third and fourth equations of (5.1.3) are
equivalent to the following equations:

u∗k × n = 0,
∂u∗k
∂n

· n+ κu∗k · n = 0 on Γ2.

In particular, if Γ2 is flat, then it holds that

u∗k × n = 0,
∂u∗k
∂n

· n = 0 on Γ2.

Remark 5.1.2. By replacing uk−1 in the first equation of (5.1.3) with (5.1.5) at the
previous step, it holds that for all k = 1, 2, . . . , N ,

u∗k − u∗k−1

τ
+D(u∗k−1, u

∗
k)− ν∆u∗k +

1

ρ
∇Pk−1 = f(tk) in Ω.

It follows from (5.1.4) and (5.1.5) that div uk = 0 in Ω, uk · n = 0 on Γ1. Hence, by
(5.1.3), (5.1.4), and (5.1.5), it holds that for all k = 1, 2, . . . , N ,

u∗k − u∗k−1

τ
+D(u∗k−1, u

∗
k)− ν∆u∗k +

1

ρ
∇Pk−1 = f(tk) in Ω,

div uk = 0 in Ω,

u∗k = 0 on Γ1,

u∗k × n = 0 on Γ2,

Pk = pb(tk) on Γ2,

where P0 := 0. Compare with (5.1.2).

In this chapter, we demonstrate the solvability (Proposition 5.2.6) and stability (The-
orem 5.3.1) of the projection method and establish error estimates in suitable norms
(Theorems 5.3.3 and 5.3.8). Furthermore, we prove the existence of a weak solution of
(5.1.1) with a different approach than [10, 55] by using the stability result (Corollary
5.3.10).

The organization of this paper is as follows. In Section 5.2, we introduce the notations
used in this work, the weak formulations of the Navier–Stokes equations (5.1.2), and the
projection method (5.1.3), (5.1.4), and (5.1.5). We also prove the existence of the weak
solution to the scheme. In Section 5.3, we provide the main results. Section 5.4 is devoted
to proving that the solution to the scheme is bounded in suitable norms and converges to
the solution to (5.1.2) in a strong topology as τ → 0. We also establish error estimates in
suitable norms between the solutions to the Navier–Stokes equations and the projection
method. In Section 5.5, we show a numerical example of the projection method and the
numerical errors between the Navier–Stokes equations and the projection method using
the P2/P1 finite element method. We conclude this paper with several comments on
future works in Section 5.6.
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5.2 Preliminaries

In this section, we introduce the notations used in this work and the weak formulations
of the Navier–Stokes equations (5.1.2) and the projection method (5.1.3), (5.1.4), and
(5.1.5).

5.2.1 Notation

Let pd be

pd :=

{
2 + ε if d = 2,
3 if d = 3,

where ε > 0 is arbitrarily small. It follows from the Sobolev embeddings that H1(Ω) ⊂
Lpd(Ω) and the embedding is continuous [14, Theorem III.2.34]. We define a trilinear
operator a1 : L

pd(Ω)d ×H ×H → R for u ∈ Lpd(Ω)d and v, w ∈ H,

a1(u, v, w) :=

∫
Ω

u · (∇× (v × w))dx.

We note that for all u ∈ H1(Ω)
d
and v, w ∈ H,

a1(u, v, w) = −
∫
Γ

(u× n) · (v × w)ds+

∫
Ω

((∇× u)× v) · wdx =

∫
Ω

D(u, v) · wdx.

For a Banach space E, we employ the standard notation of Bochner spaces such as
L2(0, T ;X), H1(0, T ;X) and we denote L2(0, T ;X) andH1(0, T ;X) by L2(X) andH1(X),
respectively. In this chapter, we write the norm ‖ · ‖Hm(Ω) as ‖ · ‖m.

For two sequences (xk)
N
k=0 and (yk)

N
k=1 in a Banach space E, we define a piecewise

linear interpolant x̂τ ∈ W 1,∞(0, T ;E) of (xk)
N
k=0 and a piecewise constant interpolant

ȳτ ∈ L∞(0, T ;E) of (yk)
N
k=1, respectively, by

x̂τ (t) := xk−1 +
t− tk−1

τ
(xk − xk−1) for t ∈ [tk−1, tk] and k = 1, 2, . . . , N,

ȳτ (t) := yk for t ∈ (tk−1, tk] and k = 1, 2, . . . , N.

We define a backward difference operator by

Dτxk :=
xk − xk−1

τ
, Dτyl :=

yl − yl−1

τ

for k = 1, 2, . . . , N and l = 2, 3, . . . , N . Then, the sequence (Dτx)k := Dτxk satisfies
∂x̂τ
∂t

= (Dτx)τ on (tk−1, tk) for all k = 1, 2, . . . , N . For a function F ∈ C([0, T ];E), we
define Fτ ∈ L∞(0, T ;E) as the piecewise constant interpolant of (F (tk))

N
k=1, i.e.,

Fτ (t) := F (tk) for t ∈ (tk−1, tk] and k = 1, 2, . . . , N.

5.2.2 Preliminary results

Lemma 5.2.1. [11, proof of Theorem 2.1] There exists a constant c = c(Ω,Γ1,Γ2) > 0
such that for all q ∈ L2(Ω),

‖q‖0 ≤ c sup
0 ̸=φ∈H

|(q, divφ)|
‖φ‖1

.
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We prepare the following lemma to use the Aubin–Nitsche trick.

Lemma 5.2.2. We define an operator T : L2(Ω)
d 3 e 7→ (w, r) ∈ H × L2(Ω) as follows:{

a0(w,φ)− (r, divφ) = (e, φ) for all φ ∈ H,
divw = 0 in L2(Ω).

(5.2.6)

Then, T is a linear and continuous operator and there exists a constant c = c(Ω,Γ1,Γ2) >

0 such that for all e ∈ L2(Ω)
d
and (w, r) = T (e),

‖w‖1 + ‖r‖0 ≤ c‖e‖H∗ ,
1

c
‖e‖V ∗ ≤ ‖w‖1 ≤ c‖e‖V ∗ .

By Lemmas 2.2.12, 5.2.1, and Theorem 2.2.19, the operator T is well-posed and con-
tinuous. See the Appendix for the proof of the inequalities. Next, we show the following
two lemmas for the operator d.

Lemma 5.2.3. It holds that for all u ∈ Lpd(Ω)d, v, v1, v2 ∈ H1(Ω)
d

a1(u, v, v) = 0, a1(u, v1, v2) = −a1(u, v2, v1).

By the definition of the operator a1, it is easy to check Lemma 5.2.3.

Lemma 5.2.4. There exists a constant cd = cd(Ω,Γ1,Γ2) > 0 such that

a1(u, v, w) ≤


cd‖u‖Lpd‖v‖1‖w‖1 for all u ∈ Lpd(Ω)d, v, w ∈ H,
cd‖u‖0‖v‖1‖w‖2 for all u ∈ Lpd(Ω)d, v ∈ H,w ∈ H ∩H2(Ω)d,

cd‖u‖1‖v‖1‖w‖1 for all u ∈ H1(Ω)
d
, v, w ∈ H,

cd‖u‖1‖v‖2‖w‖0 for all u ∈ H1(Ω)
d
, v ∈ H ∩H2(Ω)d, w ∈ H

cd‖u‖2‖v‖1‖w‖0 for all u ∈ H2(Ω)d, v, w ∈ H.

Proof.
(i) For all u ∈ Lpd(Ω)d, v, w ∈ H, we have

|a1(u, v, w)|

≤
∫
Ω

|u · ((w · ∇)v − (v · ∇)w + v divw − w div v)| dx

≤ c1‖u‖Lpd (‖w‖Lq̃d‖∇v‖0 + ‖v‖Lq̃d‖∇w‖0 + ‖v‖Lq̃d‖ divw‖0 + ‖w‖Lq̃d‖ div v‖0)
≤ c̃1‖u‖Lpd‖v‖1‖w‖1

for two constants c1, c̃1 > 0, which implies the third inequality of Lemma 5.2.4.
(ii) For all u ∈ Lpd(Ω)d, v ∈ H,w ∈ H ∩H2(Ω)d, we have

|a1(u, v, w)|
≤ c2‖u‖0(‖w‖L∞‖∇v‖0 + ‖v‖Lpd‖∇w‖Lq̃d + ‖v‖Lpd‖ divw‖Lq̃d + ‖w‖L∞‖ div v‖0)
≤ c̃2‖u‖0‖v‖1‖w‖2

for two constants c2, c̃2 > 0.
(iii) For all u ∈ H1(Ω)

d
, v ∈ H ∩H2(Ω)d, w ∈ H, we have

|a1(u, v, w)| ≤
∫
Ω

|((∇× u)× v) · w|dx ≤ c3‖∇ × u‖0‖v‖L∞‖w‖0 ≤ c̃3‖u‖1‖v‖2‖w‖0
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for two constants c3, c̃3 > 0.
(ix) For all u ∈ H2(Ω)d, v, w ∈ H, we have

|a1(u, v, w)| ≤ c4‖∇ × u‖Lpd‖v‖Lq̃d‖w‖0 ≤ c̃4‖u‖2‖v‖1‖w‖0

for two constants c4, c̃4 > 0.

Finally, we recall the discrete Gronwall inequality.

Lemma 5.2.5. [44, Lemma 5.1] Let τ, β > 0 and let non-negative sequences (ak)
N
k=0,

(bk)
N
k=0, (ck)

N
k=0, (αk)

N
k=0 ⊂ {x ∈ R | x ≥ 0} satisfy that

an + τ

m∑
k=0

bk ≤ τ

m∑
k=0

αkak + τ

m∑
k=0

ck + β for all m = 0, 1, . . . , N.

If ταk < 1 for all k = 0, 1, . . . , N , then we have

an + τ

m∑
k=0

bk ≤ eC

(
τ

m∑
k=0

ck + β

)
for all m = 0, 1, . . . , N,

where C := τ
∑N

k=0
αk

1−ταk
.

5.2.3 Weak formulations of (5.1.2), (5.1.3), (5.1.4), and (5.1.5)

We assume ν = ρ = 1 and the following conditions for f, pb, and u0:

f ∈ L2(0, T ;H∗), pb ∈ L2(0, T ;H1(Ω)), u0 ∈ Lpd(Ω)d. (5.2.7)

To define weak formulations of the Navier–Stokes equations (5.1.2) and the projection
method (5.1.3), (5.1.4), and (5.1.5), we prepare the following equation:

Proposition 5.2.6. It holds that for all u ∈ H2(Ω) and φ ∈ H,

−(∆u, φ) = a0(u, φ)−
∫
Γ2

(div u)φ · nds. (5.2.8)

Proof. It holds that −∆u = ∇×(∇×u) − ∇(div u) for all u ∈ C2(Ω)d. Hence, we have
for all u ∈ C2(Ω)d and φ ∈ C1(Ω)d,

(−∆u, φ) = a0(u, φ) +

∫
Γ

(∇×u) · (φ× n)ds−
∫
Γ

(div u)φ · nds,

which also holds for all φ ∈ H2(Ω) and ψ ∈ H1(Ω) since the two spaces C2(Ω) and C1(Ω)
are dense in H2(Ω) and H1(Ω), respectively. By the definition of H, equation (5.2.8)
holds for all u ∈ H2(Ω) and φ ∈ H.

By Proposition 5.2.6 and the Gauss divergence formula, it holds that for all u ∈
H ∩H2(Ω)d, P ∈ H1(Ω), and φ ∈ V with div u = 0 in H1(Ω),

(D(u, u)−∆u+∇P, φ) = a0(u, φ) + a1(u, u, φ)− (P, divφ) +

∫
Γ2

Pφ · nds.
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Hence, a weak formulation of (5.1.2) is as follows: Find u ∈ L2(0, T ;V ) and P ∈
L1(0, T ;L2(Ω)) such that ∂u

∂t
∈ L1(0, T ;H∗), u(0) = u0, and for all φ ∈ H,〈

∂u

∂t
, φ

〉
H

+ a(u, φ) + d(u, u, φ)− (P, divφ) = 〈f, φ〉H −
∫
Γ2

pbφ · nds (NS)

in L1(0, T ). In main convergence theorems (Theorems 5.3.3 and 5.3.8), we assume that
(NS) has a unique solution and that the solution is as smooth as needed.

On the other hand, by Proposition 5.2.6, we have for all u∗k−1 ∈ H1(Ω)
d
, u∗k ∈ H ∩

H2(Ω)d, and φ ∈ H,

(D(u∗k−1, u
∗
k)−∆u∗k, φ) = a0(u

∗
k, φ) + a1(u

∗
k−1, u

∗
k, φ)−

∫
Γ2

(div u∗k)φ · nds.

Hence, a weak formulation of (5.1.3), (5.1.4), and (5.1.5) with the initial datum u0(=: u∗0)
is as follows:

Problem 5.2.7. Let (fk)
N
k=1 ⊂ H∗ and (pbk)

N
k=1 ⊂ H1(Ω). For all k = 1, 2, . . . , N , find

(u∗k, Pk,

uk) ∈ H×H1(Ω)×L2(Ω)
d
such that Pk−pbk ∈ H1

Γ2
(Ω) and for all φ ∈ H and ψ ∈ H1

Γ2
(Ω),

1

τ
(u∗k − uk−1, φ) + a0(u

∗
k, φ) + a1(u

∗
k−1, u

∗
k, φ) = 〈fk, φ〉H

τ(∇Pk,∇ψ) = −(div u∗k, ψ)

uk = u∗k − τ∇Pk in L2(Ω)
d
.

(PM)

Remark 5.2.8. For f ∈ L2(0, T ;H∗) and pb ∈ L2(0, T ;H1(Ω)), we set for all k =
1, 2, . . . , N ,

fk :=
1

τ

∫ tk

tk−1

f(s)ds, pbk :=
1

τ

∫ tk

tk−1

pb(s)ds. (5.2.9)

Here, it holds that f̄τ ∈ L2(0, T ;H∗) and p̄bτ ∈ L2(0, T ;H1(Ω)):

‖f̄τ‖L2(H∗) ≤ ‖f‖L2(H∗), ‖p̄bτ‖L2(H1) ≤ ‖pb‖L2(H1).

In Theorems 5.3.3 and 5.3.8, we assume f ∈ C([0, T ];H∗), pb ∈ C([0, T ];H1(Ω)) to use
f(tk) and pb(tk) for all k = 1, 2, . . . , N (Hypothesis 5.3.2). Then, we set for all k =
1, 2, . . . , N ,

fk := f(tk), pbk := pb(tk),

which implies that f̄τ = fτ ∈ L2(H∗) and p̄bτ = pbτ ∈ L2(H1(Ω)). From Hypothesis 5.3.2
used in Theorems 5.3.3 and 5.3.8, the regularity assumption of f and pb is natural.

We show the existence and uniqueness of the solution to (PM) in the following propo-
sition.

Proposition 5.2.9. For all (fk)
N
k=1 ⊂ H∗, (pbk)

N
k=1 ⊂ H1(Ω)

d
, and u0 ∈ Lpd(Ω)d, Problem

5.2.7 has a unique solution.
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Proof. By Theorem 2.2.19 and Lemmas 5.2.3 and 5.2.4, if u∗k−1 ∈ Lpd(Ω)d are known,
then it holds that for all v, φ ∈ H,

1

τ
(v, φ) + a0(v, φ) + a1(u

∗
k−1, v, φ) ≤

(
1

τ
+ ca + cd‖u∗k−1‖Lpd

)
‖v‖1‖φ‖1,

1

τ
(v, v) + a0(v, v) + a1(u

∗
k−1, v, v) ≥

1

ca
‖v‖21,

which implies that the mapping H ×H 3 (v, φ) 7→ 1
τ
(v, φ)+ a0(v, φ)+ a1(u

∗
k−1, v, φ) ∈ R

is a continuous and coercive bilinear form. On the other hand, if uk−1 ∈ L2(Ω)
d
, then

the mapping H 3 φ 7→ 〈f(tk), φ〉H + τ−1(uk−1, φ) ∈ R is a functional on H. By the Lax–
Milgram theorem, there exists a unique solution u∗k ∈ H ⊂ Lpd(Ω)d to the first equation
of (PM). Since div u∗k ∈ L2(Ω), by the Poincaré inequality and the Lax–Milgram theorem,
the second equation of (PM) also has a unique solution Pk ∈ H1(Ω). Furthermore, we

obtain uk := u∗k − τ∇Pk ∈ L2(Ω)
d
. Therefore, since u0(= u∗0) ∈ Lpd(Ω)d, (PM) has a

unique solution (u∗k, Pk, uk)
N
k=1 ⊂ H ×H1(Ω)× L2(Ω)

d
.

Remark 5.2.10. The function space L2(Ω)
d
has the following orthogonal decomposition:

L2(Ω)
d
= U ⊕∇(H1

Γ2
(Ω)),

where U := {φ ∈ L2(Ω)
d | divφ = 0 in L2(Ω), 〈γnφ, ψ〉H1/2(Γ) = 0 for all ψ ∈ H1

Γ2
(Ω)}

[40, Proposition 4.1]. By the second and third equation of (PM) and the Gauss divergence
formula, it holds that for all k = 1, 2, . . . , N and ψ ∈ H1

Γ2
(Ω),

(uk,∇ψ) = (u∗k,∇ψ)− τ(∇Pk,∇ψ) = −(div u∗k, ψ)− τ(∇Pk,∇ψ) = 0,

which implies that uk ∈ U . Since the third equation of (PM) is equivalent to

u∗k − τ∇pb(tk) = uk + τ∇(Pk − pb(tk)) in L2(Ω)
d
,

Step 2 ((5.1.4) and (5.1.5)) is the projection of u∗k− τ∇pb(tk) to the divergence-free space
U .

Remark 5.2.11. By replacing uk−1 in the first equation of (PM) with the third equation
of (PM) at the previous step, it holds that for all k = 1, 2, . . . , N , φ ∈ H, and ψ ∈ H1

Γ2
(Ω),

1

τ
(u∗k − u∗k−1, φ) + a0(u

∗
k, φ) + a1(u

∗
k−1, u

∗
k, φ) + (∇Pk−1, φ) = 〈fk, φ〉H

τ(∇Pk,∇ψ) = −(div u∗k, ψ)

where P0 := 0. Ones can calculate (u∗k, Pk)
N
k=1 without the velocity (uk)

M
k=1. Since the cal-

culation uk = u∗k−τ∇Pk is not used, this formulation is suitable for numerical calculations
such as the finite element method (see Section 5.5).

On the other hand, by replacing u∗k in the first term of the first equation of (PM) with
the third equation of (PM) at the same step, it holds that for all k = 1, 2, . . . , N , φ ∈ H,
and ψ ∈ H1

Γ2
(Ω),

1

τ
(uk − uk−1, φ) + a0(u

∗
k, φ) + (∇Pk, φ) = 〈fk, φ〉H − a1(u

∗
k−1, u

∗
k, φ)

τ(∇Pk,∇ψ) + (div u∗k, ψ) = 0

uk = u∗k − τ∇Pk in L2(Ω)
d
.

(5.2.10)

This formulation is helpful to prove stability and convergence results.
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5.3 Main theorems

5.3.1 Stability and convergence

We show the stability of the projection method (PM) and establish error estimates in suit-
able norms between the solutions to the Navier–Stokes equations (NS) and the projection
method (PM).

Theorem 5.3.1. Under the condition (5.2.7), we set fk ∈ H∗ and pbk ∈ H1(Ω)
d
as (5.2.9)

for all k = 1, 2, . . . , N . Then, there exists a constant c > 0 independent of τ such that

‖ūτ‖L∞(L2) + ‖ū∗τ‖L∞(L2) + ‖ū∗τ‖L2(H1) +
1√
τ
‖ūτ − ū∗τ‖L2(L2)

≤ c
(
‖u0‖0 + ‖f‖L2(H∗) + ‖pb‖L2(H1)

)
.

For a convergence theorem, we assume:

Hypothesis 5.3.2. The solution (u, P ) to (NS) satisfies

u ∈ C([0, T ];H ∩H2(Ω)d) ∩H1(0, T ;L2(Ω)
d
) ∩H2(0, T ;H∗),

P ∈ C([0, T ];H1(Ω)).

We also assume f ∈ C([0, T ];H∗) and pb ∈ C([0, T ];H1(Ω)) and set in Problem 5.2.7 for
all k = 1, 2, . . . , N ,

fk := f(tk), pbk := pb(tk).

Theorem 5.3.3. Under Hypothesis 5.3.2, there exist two constants c, τ0 > 0 independent
of τ such that for all 0 < τ < τ0,

‖u− ūτ‖L∞(L2) + ‖u− ū∗τ‖L∞(L2) + ‖u− ū∗τ‖L2(H1) ≤ c
√
τ ,

‖ūτ − ū∗τ‖L2(L2) ≤ cτ.

Remark 5.3.4. For regularity of the solution (u, P ) to (NS), see [10, Theorem 1.3] and
[54, Theorems 4.2 and 4.3]. In the case of the homogeneous Dirichlet boundary condition
on the whole boundary Γ, high regularity properties of the solution to the Navier–Stokes
equations are proven in [14, Theorem V.2.10].

Remark 5.3.5. If u ∈ C([0, T ];H ∩ H2(Ω)d), then |u|2 ∈ C([0, T ];H1(Ω)), and hence,
p ∈ C([0, T ];H1(Ω)) is equivalent to P = p+ 1

2
|u|2 ∈ C([0, T ];H1(Ω)).

Furthermore, we assume the following regularity assumptions:

Hypothesis 5.3.6 (Regularity of the Stokes problem). There exists a constant c =
c(Ω,Γ1,
Γ2) > 0 such that

‖w‖2 + ‖r‖1 ≤ c‖e‖0.

for all e ∈ L2(Ω)
d
and (w, r) = T (e).
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Hypothesis 5.3.7. The solution (u, P ) to (NS) satisfies

u ∈ H1(0, T ;H1(Ω)
d
) ∩H2(0, T ;L2(Ω)

d
) ∩H3(0, T ;H∗),

P ∈ H1(0, T ;H1(Ω)).

Then, we can improve the convergence rate:

Theorem 5.3.8. Under Hypotheses 5.3.2 and 5.3.6, there exist two constants τ1, c > 0
independent of τ such that for all 0 < τ < τ1,

‖u− ūτ‖L2(L2) + ‖u− ū∗τ‖L2(L2) ≤ cτ.

Furthermore, if we also assume Hypothesis 5.3.7, then there exist two constants τ2, c > 0
independent of τ such that for all 0 < τ < τ2(≤ τ1),

‖P − P̄τ‖L2(L2) ≤ c
√
τ .

Remark 5.3.9. Hypothesis 5.3.6 holds, e.g., if Ω is of class C2,1 [9, Theorem 1.2].

5.3.2 Main result for existence of a weak solution to (5.1.2)

Using Theorem 5.3.1, we prove that there exists a solution to a weak formulation of
(5.1.2) weaker than (NS). Putting φ := v ∈ V in the first equation of (NS), we obtain
the following equation: for all v ∈ V ,〈

∂u

∂t
, v

〉
V

+ a0(u, v) + a1(u, u, v) = 〈f, v〉H −
∫
Γ2

pbv · nds (5.3.11)

in L1(0, T ).

Corollary 5.3.10. Under the condition (5.2.7), there exists a solution u ∈ L2(0, T ;V )∩
L∞(0, T ;L2(Ω)

d
)∩C([0, T ];V ∗) to (5.3.11) with u(0) = u0 such that ∂u

∂t
∈ L4/pd(0, T ;V ∗).

Remark 5.3.11. For f ∈ L2(0, T ;L2(Ω)
d
), local existence and uniqueness of a weak

solution u to (5.3.11) with u0 ∈ H are proven in [10, Theorem 1.3]. By [51, Lemma 4]:

a0(u, v) =
d∑

i,j=1

∫
Ω

∇u : ∇vdx+
∫
Γ2

κu · vds for all u, v ∈ H,

where κ := div n = (d − 1)×(mean curvature) (cf. Remark 5.1.1), (5.3.11) is equivalent
to 〈

∂u

∂t
, v

〉
V

+
d∑

i,j=1

∫
Ω

∇u : ∇vdx+
∫
Γ2

κu · vds+ a1(u, u, v)

=〈f, v〉H −
∫
Γ2

pbv · nds for all v ∈ V

(5.3.12)

in L1(0, T ). It is known [55, Theorem 5.1] that there exists a weak solution u to (5.3.12)
with u0 ∈ U , where U is defined in Remark 5.2.10. We demonstrate the existence of a
weak solution u ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)

d
) to (5.3.11) with a different approach

than [10, 55] (Corollary 5.3.10).
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5.4 Proofs

In this section, we prove that the solution to (PM) is bounded in suitable norms (Theorem
5.3.1) and error estimates (Theorems 5.3.3 and 5.3.8) in suitable norms between the
solutions to (NS) and (PM).

5.4.1 Stability

We prepare the following useful lemma for the proofs of Theorems 5.3.1, 5.3.3, and 5.3.8.

Lemma 5.4.1. Let v0 ∈ L2(Ω)
d
, (Fk, Gk, Qk)

N
k=1 ⊂ H∗×H∗×H1(Ω) and let (v∗k, vk, qk)

N
k=1

∈ H × L2(Ω)
d ×H1(Ω) satisfy that for all k = 1, 2, . . . , N , φ ∈ H, and ψ ∈ H1

Γ2
(Ω),


1

τ
(vk − vk−1, φ) + a0(v

∗
k, φ)− (qk, divφ) = 〈Fk +Gk, φ〉H ,

τ(∇qk,∇ψ) + (div v∗k, ψ) = −τ(∇Qk,∇ψ),

vk = v∗k − τ∇(qk +Qk) in L
2(Ω)

d
.

(5.4.13)

If we assume that for all δ > 0 there exist a constant Aδ > 0 independent of k and τ , and
a sequence (βk)

N
k=1 ⊂ R such that

〈Gk, v
∗
k〉H ≤ δ‖v∗k‖21 + Aδ(‖v∗k−1‖20 + β2

k) for all k = 1, 2, . . . , N, (5.4.14)

where v∗0 := v0, then there exist two constants τ0, c > 0 independent of τ such that for all
0 < τ < τ0,

‖v̄τ‖2L∞(L2) + ‖v̄∗τ‖2L∞(L2) + ‖v̄∗τ‖2L2(H1) + τ

∥∥∥∥∂v̂τ∂t
∥∥∥∥2
L2(L2)

+
1

τ
‖v̄τ − v̄∗τ‖2L2(L2)

≤ c
(
‖v0‖20 + ‖F̄τ‖2L2(H∗) + τ‖Q̄b

τ‖2L2(H1) + ‖β̄τ‖2L2(0,T )

)
.

(5.4.15)

In particular, if 〈Gk, v
∗
k〉H ≤ 0 for all k = 1, 2, . . . , N , then τ0 = T .

Proof. Putting φ := v∗k and ψ := qk and adding the two equations, we obtain for all
k = 1, 2, . . . , N ,

1

τ
(vk − vk−1, v

∗
k) + ‖v∗k‖2a0 + τ‖∇qk‖20 + τ(∇Qk,∇qk)

= 〈Fk +Gk, v
∗
k〉H ≤ ca

2
‖Fk‖2H∗ +

1

2ca
‖v∗k‖1 + 〈Gk, v

∗
k〉H .
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Here, by Theorem 2.2.19 and the third equation of (5.4.13), it holds that

1

τ
(vk − vk−1, v

∗
k) + ‖v∗k‖2a0 + τ‖∇qk‖20 + τ(∇Qk,∇qk)

=
1

τ
(vk − vk−1, vk) +

1

τ
(vk − vk−1, v

∗
k − vk) + ‖v∗k‖2a0

+ τ‖∇(qk +Qk)‖20 − τ(∇Qk,∇(qk +Qk))

≥ 1

2τ
(‖vk‖20 − ‖vk−1‖20 + ‖vk − vk−1‖20)−

3

8τ
‖vk − vk−1‖20 −

2

3τ
‖v∗k − vk‖20 +

1

ca
‖v∗k‖21

+ τ‖∇(qk +Qk)‖20 − 3τ‖∇Qk‖20 −
τ

12
‖∇(qk +Qk)‖20

=
1

2τ

(
‖vk‖20 − ‖vk−1‖20 +

τ 2

4
‖Dτvk‖20 +

1

2
‖v∗k − vk‖20

)
+

1

ca
‖v∗k‖21−3τ‖∇Qk‖20.

Hence, we have for all k = 1, 2, . . . , N ,

‖vk‖20 − ‖vk−1‖20 +
τ 2

4
‖Dτvk‖20 +

1

2
‖v∗k − vk‖20 +

τ

ca
‖v∗k‖21

≤ caτ‖Fk‖2H∗ + 6τ 2‖∇Qk‖20 + 2τ〈Gk, v
∗
k〉H .

(5.4.16)

By summing up (5.4.16) for k = 1, 2, . . . ,m with an arbitrary natural number m ≤ N , it
holds that

‖vm‖20 − ‖v0‖20 + τ
m∑
k=1

(
τ

4
‖Dτvk‖20 +

1

2τ
‖v∗k − vk‖20 +

1

ca
‖v∗k‖21

)
≤ τ

m∑
k=1

(
ca‖Fk‖2H∗ + 6τ‖∇Qk‖20 + 2〈Gk, v

∗
k〉H
)
.

(5.4.17)

From the assumption (5.4.14) with δ := 1
4ca

;

〈Gk, v
∗
k〉H ≤ ‖v∗k‖21

4ca
+A 1

4ca
(‖v∗k−1‖20+β2

k) ≤
‖v∗k‖21
4ca

+A 1
4ca

(2‖vk−1‖20+2‖vk−1−v∗k−1‖20+β2
k),

we obtain

‖vm‖20 − ‖v0‖20 + τ
m∑
k=1

(
τ

4
‖Dτvk‖20 +

1− 8τA 1
4ca

2τ
‖vk − v∗k‖20 +

1

2ca
‖v∗k‖21

)

≤τ
m−1∑
k=0

4A 1
4ca

‖vk‖20 + τ
m∑
k=1

(
ca‖Fk‖2H∗ + 6τ‖∇Qk‖20 + 2A 1

4ca
β2
k

)
,

where we have used v0 − v∗0 = 0. By the discrete Gronwall inequality, if τ ≤ τ0 :=
1/(16A 1

4ca
), then it holds that for all m = 0, 1, . . . , N,

‖vm‖20 + τ
m∑
k=1

(
τ

4
‖Dτvk‖20 +

1

4τ
‖vk − v∗k‖20 +

1

2ca
‖v∗k‖21

)
≤ exp

(
16

3
A 1

4ca

){
‖v0‖20 + τ

m∑
k=1

(
ca‖Fk‖2H∗ + 6τ‖∇Qk‖20 + 2A 1

4ca
β2
k

)}
,
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which implies that

‖v̄τ (t)‖20 +
∫ t

0

(
τ

∥∥∥∥∂v̂τ∂t (s)
∥∥∥∥2
0

+
1

τ
‖v̄τ (s)− v̄∗τ (s)‖20 + ‖v̄∗τ (s)‖21

)
ds

≤ c1

{
‖v0‖20 +

∫ t

0

(‖F̄τ (s)‖2H∗ + τ‖Q̄τ (s)‖21 + β̄2
τ (s))ds

}
for all t ∈ (0, T ], where c1 := exp(16A 1

4ca
/3)×max{ca, 6, 2A 1

4ca
} ×max{4, 2ca}. Hence,

‖v̄τ‖2L∞(L2) ≤M, τ

∥∥∥∥∂v̂τ∂t
∥∥∥∥2
L2(L2)

+
1

τ
‖v̄τ − v̄∗τ‖2L2(L2) + ‖v̄∗τ‖2L2(H1) ≤M, (5.4.18)

where M := c1(‖v0‖20 + ‖F̄τ‖2L2(H∗) + τ‖Q̄τ‖2L2(H1) + ‖β̄τ‖2L2(0,T )). If 〈Gk, v
∗
k〉H ≤ 0 for all

k = 1, 2, . . . , N , then we immediately obtain (5.4.15) for all 0 < τ < T from (5.4.17).

Since it holds that for all m = 1, 2, . . . , N ,

‖v∗m‖20 ≤ 2(‖vm‖20 + ‖vm − v∗m‖20) ≤ 2 max
k=1,...,N

‖vk‖20 + τ
N∑
k=1

2

τ
‖vk − v∗k‖20,

we obtain for all 0 < τ < τ0,

‖v̄∗τ‖2L∞(L2) ≤ 2‖v̄τ‖2L∞(L2) +
2

τ
‖v̄τ − v̄∗τ‖2L2(L2) ≤ 4M.

By using Lemma 5.4.1, we prove Theorem 5.3.1.

Proof of Theorem 5.3.1. We set (Fk)
N
k=1, (Gk)

N
k=1 ⊂ H∗ defined by

〈Fk, φ〉H := 〈fk, φ〉H − (∇pbk, φ), 〈Gk, φ〉H := −a1(u∗k−1, u
∗
k, φ)

for all k = 1, 2, . . . , N and φ ∈ H. From Problem 5.2.7 and the condition (5.2.7), if

we set qk := Pk − pbk, then (u∗k, uk, qk)
N
k=1 ⊂ H × L2(Ω)

d × H1
Γ2
(Ω) satisfies that for all

k = 1, 2, . . . , N ,
1

τ
(uk − uk−1, φ) + a0(u

∗
k, φ)− (qk, divφ) = 〈Fk +Gk, φ〉,

τ(∇qk,∇ψ) + (div u∗k, ψ) = −(∇pbk,∇ψ),

uk = u∗k − τ∇(qk + pbk) in L
2(Ω)

d
,

with u0 ∈ Lpd(Ω)d(⊂ L2(Ω)
d
). By Lemma 5.2.3, it holds that

〈Gk, u
∗
k〉H = −a1(u∗k−1, u

∗
k, u

∗
k) = 0 for all k = 1, 2, . . . , N.

Therefore, by Lemma 5.4.1 and Remark 5.2.8, we conclude the proof.
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5.4.2 Convergence

In this section, we assume Hypothesis 5.3.2. We calculate the error estimates in suitable
norms between the solutions to (NS) and (PM). By Hypothesis 5.3.2 and the first equation
of (NS), it holds that ∂u

∂t
∈ C([0, T ];H∗) and, for all φ ∈ H and k = 1, 2, . . . , N ,

1

τ
(u(tk)− u(tk−1), φ) + a0(u(tk), φ) + a1(u

∗
k−1, u

∗
k, φ) + (∇P (tk), φ)

=〈f(tk)−Rk −Rn.l.
k , φ〉H ,

where Rk, R
n.l.
k ∈ H∗ defined by

〈Rk, φ〉H :=

〈
∂u

∂t
(tk)−

u(tk)− u(tk−1)

τ
, φ

〉
H

,

〈Rn.l.
k , φ〉H := a1(u(tk), u(tk), φ)− a1(u

∗
k−1, u

∗
k, φ)

for all φ ∈ H. If we put e0 = 0, ek := uk − u(tk) ∈ L2(Ω)
d
, e∗k := u∗k − u(tk) ∈ H, and

qk := Pk − P (tk) ∈ H1
Γ2
(Ω) for k = 1, 2, . . . , N , by (5.2.10), then it holds that for all

k = 1, 2, . . . , N , φ ∈ H, and ψ ∈ H1
Γ2
(Ω),

1

τ
(ek − ek−1, φ) + a0(e

∗
k, φ)− (qk, divφ) = 〈Rk +Rn.l.

k , φ〉H

τ(∇qk,∇ψ) + (div e∗k, ψ) = −τ(∇P (tk)∇ψ),

ek = e∗k − τ∇(qk + P (tk)) in L
2(Ω)

d
,

(5.4.19)

where we have used (∇qk, φ) = −(qk, divφ).
In order to prove Theorems 5.3.3 and 5.3.8, we prepare Lemmas 5.4.2 and 5.4.3.

Lemma 5.4.2. (i) Under Hypothesis 5.3.2, we have

‖R̄τ‖2L2(H∗) ≤
τ 2

3

∥∥∥∥∂2u∂t2
∥∥∥∥2
L2(H∗)

.

(ii) Furthermore, if Hypothesis 5.3.7 holds, then we have

N∑
k=2

τ‖DτRk‖2H∗ ≤
2

3
τ 2
∥∥∥∥∂3u∂t3

∥∥∥∥2
L2(H∗)

.

Proof. It holds that for all φ ∈ H and k = 1, 2, . . . , N ,

〈Rk, φ〉H =

〈
u(tk)− u(tk−1)

τ
− ∂u

∂t
(tk), φ

〉

= τ

∫ 1

0

〈
s
∂2u

∂t2
(tk−1 + sτ), φ

〉
H

ds

≤ τ

∫ 1

0

s

∥∥∥∥∂2u∂t2 (tk−1 + sτ)

∥∥∥∥
H∗

‖φ‖1ds

≤ τ‖φ‖1

√∫ 1

0

s2dt

√∫ 1

0

∥∥∥∥∂2u∂t2 (tk−1 + sτ)

∥∥∥∥2
H∗
ds

=

√
τ

3
‖φ‖1

∥∥∥∥∂2u∂t2
∥∥∥∥
L2(tk−1,tk;H∗)

,
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which implies that

‖R̄τ‖2L2(H∗) =
N∑
k=1

τ

(
sup

0 ̸=φ∈H

〈Rk, φ〉H
‖φ‖1

)2

≤
N∑
k=1

τ
τ

3

∥∥∥∥∂2u∂t2
∥∥∥∥2
L2(tk−1,tk;H∗)

≤ 1

3
τ 2
∥∥∥∥∂2u∂t2

∥∥∥∥2
L2(H∗)

.

Next, we show the second inequality of the conclusion. For all φ ∈ H and k =
2, 3, . . . , N , we have

〈DτRk, φ〉H =

〈
Rk −Rk−1

τ
, φ

〉
H

=

∫ 1

0

〈
s1
∂2u

∂t2
(tk−1 + s1τ)− s1

∂2u

∂t2
(tk−2 + s1τ), φ

〉
H

ds1

= τ

∫ 1

0

∫ 1

0

〈
s1
∂3u

∂t3
(tk−2 + s1τ + s2τ), φ

〉
H

ds1ds2

≤ τ

∫ 1

0

∫ 1

0

s1

∥∥∥∥∂3u∂t3 (tk−2 + s1τ + s2τ)

∥∥∥∥
H∗

‖φ‖1ds1ds2

≤ τ‖φ‖1

√∫ 1

0

∫ 1

0

s21ds1ds2

√∫ 1

0

∫ 1

0

∥∥∥∥∂3u∂t3 (tk−2 + s1τ + s2τ)

∥∥∥∥2
H∗
ds1ds2

≤ τ‖φ‖1

√
1

3

√∫ 1

−1

∫ 2

0

∥∥∥∥∂3u∂t3 (tk−2 + s̃1τ)

∥∥∥∥2
H∗

1

2
ds̃1ds̃2

=

√
τ

3
‖φ‖1

∥∥∥∥∂3u∂t3
∥∥∥∥
L2(tk−2,tk;H∗)

,

where we have used the coordinate transformation (s1, s2) 7→ (s̃1, s̃2) := (s1+s2,−s1+s2).
Therefore, we obtain

N∑
k=2

τ‖DτRk‖2H∗ =
N∑
k=2

τ

(
sup

0 ̸=φ∈H

〈DτRk, φ〉
‖φ‖1

)2

≤
N∑
k=2

τ
τ

3

∥∥∥∥∂3u∂t3
∥∥∥∥2
L2(tk−2,tk;H∗)

≤ 2

3
τ 2
∥∥∥∥∂3u∂t3

∥∥∥∥2
L2(H∗)

.

Lemma 5.4.3. Let (E, (·, ·)E) be a Hilbert space and let x ∈ C([0, T ];E) satisfy that ∂x
∂t

∈
L2(0, T ;E).
(i) It holds that for all k = 1, 2, . . . , N,

‖Dτx(tk)‖E ≤ 1√
τ

∥∥∥∥∂x∂t
∥∥∥∥
L2(tk−1,tk;E)

.

(ii) It holds that

‖x− xτ‖L∞(E) ≤
√
τ

∥∥∥∥∂x∂t
∥∥∥∥
L2(E)

, ‖x− xτ‖L2(E) ≤
τ√
2

∥∥∥∥∂x∂t
∥∥∥∥
L2(E)

.
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Proof. It holds that for all k = 1, 2, . . . , N and t ∈ [tk−1, tk],

‖x(tk)− x(t)‖E ≤
∫ tk

t

∥∥∥∥∂x∂t (s)
∥∥∥∥
E

ds ≤
√
tk − t

∥∥∥∥∂x∂t
∥∥∥∥
L2(tk−1,tk;E)

,

which implies that ‖x− xτ‖L∞(E) ≤
√
τ
∥∥∂x
∂t

∥∥
L2(E)

and

‖Dτx(tk)‖E =
1

τ
‖x(tk)− x(tk−1)‖E ≤ 1√

τ

∥∥∥∥∂x∂t
∥∥∥∥
L2(tk−1,tk;E)

.

On the other hand, we have

‖x− xτ‖2L2(E) =
N∑
k=1

∫ tk

tk−1

‖x(t)− x(tk)‖2Edt

≤
N∑
k=1

∫ tk

tk−1

(tk − t)dt

∥∥∥∥∂x∂t
∥∥∥∥2
L2(tk−1,tk;E)

=
N∑
k=1

∫ tk

tk−1

∥∥∥∥∂x∂t (s)
∥∥∥∥2
E

ds

∫ tk

tk−1

(tk − t)dt

=
1

2
τ 2
∥∥∥∥∂x∂t

∥∥∥∥2
L2(E)

.

By using Lemmas 5.4.1, 5.4.2, and 5.4.3, we prove Theorem 5.3.3.
Proof of Theorem 5.3.3. For all δ > 0 and k = 1, 2, . . . , N , by Lemmas 5.2.3, 5.2.4, and
5.4.3, we have

〈Rn.l.
k , e∗k〉H = −a1(u∗k−1, e

∗
k, e

∗
k)− a1(e

∗
k−1, u(tk), e

∗
k) + τa1(Dτu(tk), u(tk), e

∗
k)

≤ cd‖e∗k−1‖0‖u(tk)‖2‖e∗k‖1 + cdτ‖Dτu(tk)‖0‖u(tk)‖2‖e∗k‖1

≤ δ

2
‖e∗k‖21 +

c2d‖u(tk)‖22
2δ

‖e∗k−1‖20 +
δ

2
‖e∗k‖21 +

c2d‖u(tk)‖22
2δ

τ 2‖Dτu(tk)‖20

≤ δ‖e∗k‖21 +
c2dc

2
max

2δ
‖e∗k−1‖20 +

c2dc
2
max

2δ
τ

∥∥∥∥∂u∂t
∥∥∥∥2
L2(tk−1,tk;L2(Ω)d)

(5.4.20)

where cmax := ‖u‖C([0,T ],H2(Ω)d). By (5.4.19) and Lemmas 5.4.1, 5.4.2, and 5.4.3, there
exist two constants τ0, c1 > 0 such that for all 0 < τ < τ0,

‖ēτ‖2L∞(L2) + ‖ē∗τ‖2L∞(L2) + ‖ē∗τ‖2L2(H1) +
1

τ
‖ēτ − ē∗τ‖2L2(L2)

≤ c1

(
‖R̄τ‖2L2(H∗) + τ‖Pτ‖2L2(H1) + τ 2

∥∥∥∥∂u∂t
∥∥∥∥2
L2(L2)

)

≤ c1

(
τ 2

3

∥∥∥∥∂2u∂t2
∥∥∥∥2
L2(H∗)

+ 2τ‖P‖2L2(H1) + τ 3
∥∥∥∥∂P∂t

∥∥∥∥2
L2(H1)

+ τ 2
∥∥∥∥∂u∂t

∥∥∥∥2
L2(L2)

)
,

which implies that

‖ūτ − uτ‖L∞(L2) + ‖ū∗τ − uτ‖L∞(L2) + ‖ū∗τ − uτ‖L2(H1) ≤ c2
√
τ ,

‖ūτ − ū∗τ‖L2(L2) ≤ c2τ
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for a constant c2 > 0, where we have used ēτ = ūτ − uτ and ē∗τ = ū∗τ − uτ . By the
triangle inequality and Lemma 5.4.3, it holds that ‖u − ūτ‖L∞(L2) + ‖u − ū∗τ‖L∞(L2) ≤
c2
√
τ + 2

√
τ‖∂u

∂t
‖L2(L2). To complete the first inequality of Theorem 5.3.3, it is sufficient

to prove that ‖u− uτ‖L2(H1) ≤ c3
√
τ for a constant c3 > 0. Since u(t) ∈ H ∩H2(Ω)d and

div u(t) = 0 ∈ H1(Ω) for all t ∈ [0, T ], by Proposition 5.2.6, Theorem 2.2.19, and Lemma
5.4.3, we find that

‖u− uτ‖2L2(H1) =
N∑
k=1

∫ tk

tk−1

‖u(t)− u(tk)‖21dt

≤ca
N∑
k=1

∫ tk

tk−1

a0(u(t)− u(tk), u(t)− u(tk))dt

=ca

N∑
k=1

∫ tk

tk−1

(−∆(u(t)− u(tk)), u(t)− u(tk)) dt

≤ca
N∑
k=1

∫ tk

tk−1

‖∆(u(t)− u(tk))‖0‖u(t)− u(tk)‖0dt

≤
√
dca

N∑
k=1

∫ tk

tk−1

‖u(t)− u(tk)‖2‖u(t)− u(tk)‖0dt

≤2
√
dcacmax

∫ T

0

‖u(t)− u(tk)‖0dt

≤2
√
dTcacmax‖u− uτ‖L2(L2)

≤
√
2dTcacmaxτ

∥∥∥∥∂u∂t
∥∥∥∥
L2(L2)

.

We improve the error estimates for the velocity and pressure in the L2(L2)-norm. In
order to prove Theorem 5.3.8, we prepare Proposition 5.4.4 and Lemma 5.4.5.

Proposition 5.4.4. Under Hypothesis 5.3.6, for all e ∈ L2(Ω), the pair of functions
(w, r) = T (e) belongs to H2(Ω)×H1

Γ2
(Ω).

Proof. By Hypothesis 5.3.6, (w, r) ∈ H2(Ω)d ×H1(Ω). Since it holds that for all φ ∈ H,

0 = a0(w,φ)− (r, divφ)− (e, φ) =

∫
Ω

(∇× (∇× w) +∇r − e) · φdx−
∫
Γ2

rφ · nds,

we obtain r ∈ H1
Γ2
(Ω).

Lemma 5.4.5. Under the assumption of Lemma 5.4.1 and Hypothesis 5.3.6, if we assume
the following conditions: if (wk, rk) := T (vk) for all k = 0, 1, . . . , N , then for all δ > 0
there exist a constant Aδ > 0 independent of k and τ , and a sequence (γk)

N
k=1 ∈ R such

that for all k = 1, 2, . . . , N ,

〈Gk, wk〉H ≤ δ(‖v∗k−1‖20 + ‖v∗k‖20) + Aδ(‖wk‖21 + γ2k), (5.4.21)

then there exist two constants τ0, c > 0 independent of τ such that for all 0 < τ < τ0,

‖v̄τ‖2L2(L2) ≤ c(‖v0‖2V ∗ + τ‖v∗0‖20 + ‖v̄∗τ − v̄τ‖2L2(L2) + ‖F̄τ‖2L2(H∗) + ‖γ̄τ‖2L2(0,T )).
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Proof. Let (wk, rk) := T (vk) for all k = 0, 1, . . . , N . It follows from Proposition 5.4.4 that
rk ∈ H1

Γ2
(Ω). The first equation of (5.4.13) implies that for all k = 1, 2, . . . , N ,

1

τ
(vk − vk−1, wk) + a0(v

∗
k, wk) = 〈Fk, wk〉H + 〈Gk, wk〉H , (5.4.22)

where we have used divwk = 0 in L2(Ω). By Lemma 5.2.2, we obtain

(vk − vk−1, wk) = (vk, wk)− (vk−1, wk)

= a0(wk, wk)− (rk, divwk)− a0(wk−1, wk) + (rk−1, divwk)

= a0(wk − wk−1, wk)

=
1

2

(
‖wk‖2a0 − ‖wk−1‖2a0 + ‖wk − wk−1‖2a0

)
≥ c1

2

(
‖wk‖21 − ‖wk−1‖21

)
where c1 := min{ca, c−1

a }. For the second term of the left hand side of (5.4.22), by the
definition of the operator T , we have

a0(v
∗
k, wk) = (vk, v

∗
k) + (rk, div v

∗
k)

= ‖vk‖20 + (vk, v
∗
k − vk)− (∇rk, v∗k)

= ‖vk‖20 + (vk, v
∗
k − vk)− (∇rk, v∗k − vk),

where we have used the third equation of (5.4.13) and

(∇rk, vk) = (∇rk, v∗k)− τ(∇rk,∇(qk +Qk)) = 0.

By Hypothesis 5.3.6, it holds that

|(vk, v∗k − vk)− (∇rk, v∗k − vk)| ≤ (‖vk‖0 + ‖∇rk‖0)‖v∗k − vk‖0
≤ c2‖vk‖0‖v∗k − vk‖0

≤ 1

4
‖vk‖20 + c22‖v∗k − vk‖20

for a constant c2 > 0. Hence, we have

a0(v
∗
k, wk) ≥

3

4
‖vk‖20 − c22‖v∗k − vk‖20.

For the first term of the right hand side of (5.4.22), by Lemma 5.2.2, we have

〈Fk, wk〉H ≤ ‖Fk‖H∗‖wk‖1 ≤ c3‖Fk‖H∗‖vk‖0 ≤
1

4
‖vk‖20 + c23‖Fk‖2H∗

for a constant c3 > 0. Hence, we have that for all k = 1, 2, . . . , N ,

‖wk‖21 − ‖wk−1‖21 +
τ

c1
‖vk‖20 ≤

2τ

c1
(c22‖v∗k − vk‖20 + c23‖Fk‖2H∗ + 〈Gk, wk〉H).

By summing up for k = 1, 2, . . . ,m with an arbitrary natural number m ≤ N , it holds
that

‖wm‖21−‖w0‖21+
τ

c1

m∑
k=1

‖vk‖20≤
2τ

c1

m∑
k=1

(c22‖v∗k − vk‖20+c23‖Fk‖2H∗+〈Gk, wk〉H).
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From the assumption (5.4.21) with δ := 1
16
, we obtain for all m = 1, 2, . . . , N ,

m∑
k=1

〈Gk, wk〉H ≤
m∑
k=1

{
1

16
(‖v∗k−1‖20 + ‖v∗k‖20) + A 1

16
(‖wk‖21 + γ2k)

}
≤ 1

16
‖v∗0‖20 +

1

8

m∑
k=1

‖v∗k‖20 + A 1
16

m∑
k=1

(‖wk‖21 + γ2k)

≤ 1

16
‖v∗0‖20 +

1

4

m∑
k=1

(‖vk‖20 + ‖v∗k − vk‖20) + A 1
16

m∑
k=1

(‖wk‖21 + γ2k)

and hence,

‖wm‖21 − ‖w0‖21 +
τ

2c1

m∑
k=1

‖vk‖20

≤ τ

m∑
k=1

2A 1
16

c1
‖wk‖21 +

τ

8c1
‖v∗0‖20 + τ

m∑
k=1

c4(‖v∗k − vk‖20 + ‖Fk‖2H∗ + γ2k),

where c4 := 2c−1
1 max{c22 +1/4, c23, A 1

16
}. By the discrete Gronwall inequality, if τ ≤ τ0 :=

c1/A 1
16
, then we have

‖wN‖21 +
τ

2c1

N∑
k=1

‖vk‖2

≤ exp

(
4A 1

16

c1

){
‖w0‖21 +

τ

8c1
‖v∗0‖20 + τ

N∑
k=1

c4
(
‖v∗k − vk‖20+ ‖Fk‖2H∗+ γ2k

)}
.

Therefore, by Lemma 5.2.2, we obtain

‖v̄τ‖2L2(L2) ≤ c5

(
‖v0‖2V ∗ + τ‖v∗0‖20 + ‖v̄∗τ − v̄τ‖2L2(L2) + ‖Fτ‖2L2(H∗) + ‖γ̄τ‖2L2

)
for a constant c5 > 0.

We prove the first inequality of Theorem 5.3.8

Proof of the first inequality of Theorem 5.3.8. We apply Lemmas 5.4.5 for (5.4.19). Let
(wk, rk) := T (ek) for all k = 0, 1, . . . , N . It holds that for all k = 1, 2, . . . , N ,

〈Rn.l.
k , wk〉H = −a1(e∗k−1, u

∗
k, wk)− a1(u(tk−1), e

∗
k, wk) + τa1(Dτu(tk), u(tk), wk).

Hypothesis 5.3.6 and Theorem 5.3.3 implies that there exists a constant c1 > 0 such that
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‖wk‖2 ≤ c1
√
τ for all k = 1, 2, . . . , N . It holds that for all δ > 0,

−a1(e∗k−1, u
∗
k, wk) = − a1(e

∗
k−1, u(tk), wk)− a1(e

∗
k−1, e

∗
k, wk)

≤ cd‖e∗k−1‖0‖u(tk)‖2‖wk‖1 + cd‖e∗k−1‖0‖e∗k‖1‖wk‖2
≤ cdcmax‖e∗k−1‖0‖wk‖1 + cdc1

√
τ‖e∗k−1‖0‖e∗k‖1

≤ δ

2
‖e∗k−1‖20 +

c2dc
2
max

2δ
‖wk‖21 +

δ

2
‖e∗k−1‖20 +

c2dc
2
1

2δ
τ‖e∗k‖21

≤ δ‖e∗k−1‖20 +
c2dc

2
max

2δ
‖wk‖21 +

c2dc
2
1

2δ
τ‖e∗k‖21,

−a1(u(tk−1), e
∗
k, wk) = a1(u(tk−1), wk, e

∗
k)

≤ cd‖u(tk−1)‖2‖wk‖1‖e∗k‖0

≤ δ‖e∗k‖20 +
c2dc

2
max

4δ
‖wk‖21

τa1(Dτu(tk), u(tk), wk) ≤ cdτ‖Dτu(tk)‖0‖u(tk)‖2‖wk‖1
≤ cdcmaxτ‖Dτu(tk)‖0‖wk‖1

≤ c2dc
2
max

4δ
‖wk‖21 + δτ 2‖Dτu(tk)‖20,

where cmax := ‖u‖C([0,T ];H2(Ω)d). Hence, by Lemma 5.4.3, it holds that for all k =
1, 2, . . . , N ,

〈Rn.l.
k , wk〉H ≤ δ‖e∗k−1‖20 + δ‖e∗k‖20 + cδ(‖wk‖21 + τ‖e∗k‖21 + τ 2‖Dτu(tk)‖20)

≤ δ‖e∗k−1‖20 + δ‖e∗k‖20 + cδ

(
‖wk‖21 + τ‖e∗k‖21 + τ

∥∥∥∥∂u∂t
∥∥∥∥2
L2(tk−1,tk;L2(Ω)d)

)
,

where cδ := max{c2dc2max/δ, c
2
dc

2
1/(2δ), δ}. By Lemma 5.4.5, there exist two constants

c2, τ0 > 0 such that for all 0 < τ < τ0,

‖ēτ‖2L2(L2) ≤ c2

(
‖ē∗τ − ēτ‖2L2(L2) + ‖R̄τ‖2L2(H∗) + τ‖ē∗τ‖2L2(H1) + τ 2

∥∥∥∥∂u∂t
∥∥∥∥2
L2(L2)

)
.

By Lemma 5.4.2 and Theorem 5.3.3, there exists a constant c3 > 0 such that for all
0 < τ < τ0,

‖uτ − ūτ‖L2(L2) ≤ c3τ.

By Lemma 5.4.3 and Theorem 5.3.3, we obtain the first inequality of Theorem 5.3.8;

‖u− ūτ‖L2(L2) + ‖u− ū∗τ‖L2(L2)

= ‖u− uτ + uτ − ūτ‖L2(L2) + ‖u− uτ + uτ − ūτ + ūτ − ū∗τ‖L2(L2)

≤ 2‖u− uτ‖L2(L2) + 2‖uτ − ūτ‖L2(L2) + ‖ūτ − ū∗τ‖L2(L2)

≤ c4τ

for a constant c4 > 0.

To prove the second inequality of Theorem 5.3.8, we prepare the following two lemmas:

Lemma 5.4.6. Under Hypothesis 5.3.2, there exists a constant c > 0 independent of τ
such that

‖Dτe1‖V ∗ ≤ c
√
τ , ‖Dτe1‖0 + ‖Dτe

∗
1‖0 ≤ c, ‖Dτe

∗
1‖1 ≤

c√
τ
.
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Proof. By (5.4.19) and (5.4.16) with k := 1 in the proof of Lemma 5.4.1, we obtain

‖e1‖20+
1

2
‖e1 − e∗1‖20+

τ

ca
‖e∗1‖21≤caτ‖R1‖2H∗+6τ 2‖∇P (t1)‖20+2τ〈Rn.l.

1 , e∗1〉H .

Putting k := 1 and δ := 1
4ca

in (5.4.20), it holds that

〈Rn.l.
1 , e∗1〉H ≤ 1

4ca
‖e∗1‖21 + 2cac

2
dc

2
maxτ

∥∥∥∥∂u∂t
∥∥∥∥2
L2(0,t1;L2(Ω)d)

where cmax := ‖u‖C([0,T ];H2(Ω)d). Hence, by Lemma 5.4.2, we have

‖e1‖20 +
1

2
‖e1 − e∗1‖20 +

1

2ca
τ‖e∗1‖21

≤ caτ‖R1‖2H∗ + 6τ 2‖∇P (t1)‖20 + 4cac
2
dc

2
maxτ

2

∥∥∥∥∂u∂t
∥∥∥∥2
L2(0,t1;L2(Ω)d)

≤ caτ
2

3

∥∥∥∥∂u∂t
∥∥∥∥2
L2(H∗)

+ 6τ 2‖P‖2C([0,T ];H1) + 4cac
2
dc

2
maxτ

2

∥∥∥∥∂u∂t
∥∥∥∥2
L2(L2)

≤ c2τ
2

where c2 := ca(
1
3
+ 4c2dc

2
max)

∥∥∂u
∂t

∥∥2
L2(L2)

+ 6‖P‖2C([0,T ];H1), which implies that ‖Dτe1‖0 =
τ−1‖e1‖0 ≤

√
c2, ‖Dτe

∗
1‖1 ≤

√
2cac2τ

−1/2 and

‖Dτe
∗
1‖0 =

1

τ
‖e∗1‖0 ≤

1

τ
(‖e1‖0 + ‖e1 − e∗1‖0) ≤ (1 +

√
2)
√
c2.

On the other hand, by (5.4.19), Theorem 2.2.19, and Lemma 5.4.2,

‖Dτe1‖V ∗

= sup
0≠φ∈V

|(e1 − e0, φ)|
τ‖φ‖1

= sup
0≠φ∈V

|−a0(e∗1, φ) + (q1, divφ) + 〈R1, φ〉H − a1(u0, e
∗
1, φ) + τa1(Dτu(t1), u(t1), φ)|

‖φ‖1
≤ ca‖e∗1‖1 + ‖R1‖H∗ + cd(‖u0‖1‖e∗1‖1 + τ‖Dτu(t1)‖0‖u(t1)‖2)

≤ ca‖e∗1‖1 +
√
τ

3

∥∥∥∥∂u∂t
∥∥∥∥
L2(0,t1;H∗)

+ cdcmax

(
‖e∗1‖1 +

√
τ

∥∥∥∥∂u∂t
∥∥∥∥
L2(0,t1,L2(Ω)d)

)

≤
√
τ

{
(ca + cdcmax)

√
2cac2 +

(
1√
3
+ cdcmax

)∥∥∥∥∂u∂t
∥∥∥∥
L2(L2)

}
,

where cmax := ‖u‖C([0,T ];H2(Ω)d).

Lemma 5.4.7. Under Hypotheses 5.3.2, 5.3.6, and 5.3.7, there exist two constants c, τ0 >
0 independent of τ such that for all 0 < τ < τ0,∥∥∥∥∂êτ∂t

∥∥∥∥
L2(L2)

≤ c
√
τ .
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Proof. By (5.4.19), it holds that (Dτe
∗
k, Dτqk, Dτek)

N
k=2 ⊂ H ×H1

Γ2
(Ω) × L2(Ω)

d
and for

all k = 2, 3, . . . , N , φ ∈ H, and ψ ∈ H1
Γ2
(Ω),

(
Dτek −Dτek−1

τ
, φ

)
+ a0(Dτe

∗
k, φ)− (Dτqk, divφ) = 〈DτRk +DτR

n.l.
k , φ〉H ,

τ(∇Dτqk,∇ψ) + (divDτe
∗
k, ψ) = −(∇DτP (tk),∇ψ),

Dτek = Dτe
∗
k − τ∇Dτ (qk + P (tk)) in L

2(Ω)
d

(5.4.23)

with Dτe1 = τ−1(e1 − e0) = τ−1e1. It holds for all k = 2, 3, . . . , N and φ ∈ H,

τ〈DτR
n.l.
k , φ〉H = −τa1(u∗k−2, Dτe

∗
k, φ)− τa1(Dτu

∗
k−1, e

∗
k, φ) + a1(e

∗
k−2, u(tk−1), φ)

− a1(e
∗
k−1, u(tk), φ)− τa1(Dτu(tk−1), u(tk−1), φ) + τa1(Dτu(tk), u(tk), φ).

(5.4.24)

Here, by Lemma 5.2.4, the right hand side except for the first and second terms are
evaluated from above for all k = 2, 3, . . . , N , φ ∈ H and δ > 0,

a1(e
∗
k−2, u(tk−1), φ)− a1(e

∗
k−1, u(tk), φ)

− τa1(Dτu(tk−1), u(tk−1), φ) + τa1(Dτu(tk), u(tk), φ)

≤ cd(‖e∗k−2‖0‖u(tk−1)‖2 + ‖e∗k−1‖0‖u(tk)‖2
+ τ‖Dτu(tk−1)‖0‖u(tk−1)‖2 + τ‖Dτu(tk)‖0‖u(tk)‖2)‖φ‖1

≤ cdcmax

(
‖e∗k−2‖0 + ‖e∗k−1‖0 + τ‖Dτu(tk−1)‖0 + τ‖Dτu(tk)‖0

)
‖φ‖1

≤ δ

2
‖φ‖21 +

2c2dc
2
max

δ

1∑
i=0

(
‖e∗k−i−1‖20 + τ 2‖Dτu(tk−i)‖20

)
,

(5.4.25)

where cmax := ‖u‖C([0,T ];H2(Ω)d). By Lemma 5.2.3, it holds that

−τa1(u∗k−2, Dτe
∗
k, Dτe

∗
k) = 0.

By Theorem 5.3.3, there exist two constants τ1, c1 > 0 such that ‖ē∗τ‖L2(H1) ≤ c1 for all
0 < τ < τ1, and hence for all k = 1, 2, . . . , N , ‖e∗k‖1 ≤ c1 and

− τa1(Dτu
∗
k−1, e

∗
k, Dτe

∗
k)

= − τa1(Dτu(tk−1), e
∗
k, Dτe

∗
k)− a1(Dτe

∗
k−1, e

∗
k, e

∗
k) + a1(Dτe

∗
k−1, e

∗
k, e

∗
k−1)

≤ cdτ‖Dτu(tk−1)‖1‖e∗k‖1‖Dτe
∗
k‖1 + cd‖Dτe

∗
k−1‖1‖e∗k‖1‖e∗k−1‖1

≤ cdc1τ‖Dτu(tk−1)‖1‖Dτe
∗
k‖1 + cdc1‖Dτe

∗
k−1‖1‖e∗k−1‖1

≤ δ

2
‖Dτe

∗
k‖21 +

c2dc
2
1

2δ
τ 2‖Dτu(tk−1)‖21 + δ‖Dτe

∗
k−1‖21 +

c2dc
2
1

4δ
‖e∗k−1‖21.

Hence, by (5.4.24) with φ := Dτe
∗
k and Lemma 5.4.3, for all 0 < τ < τ1, k = 2, 3, . . . , N

and δ > 0,

τ〈DτR
n.l.
k , Dτe

∗
k〉H ≤ δ(‖Dτe

∗
k‖21 + ‖Dτe

∗
k−1‖21) + cδ

1∑
i=0

(
‖e∗k−i−1‖21 + τ 2‖Dτu(tk−i)‖21

)
≤ δ(‖Dτe

∗
k‖21 + ‖Dτe

∗
k−1‖21) + cδ

1∑
i=0

(
‖e∗k−i−1‖21 + τ

∥∥∥∥∂u∂t
∥∥∥∥2
L2(tk−i−1,tk−i;H1(Ω)d)

)
,
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where cδ := δ−1(2c2dc
2
max + 2−1c2dc

2
1). Putting δ := 1/(4ca), by (5.4.23) and (5.4.16) in the

proof of Lemma 5.4.1, we have for all 0 < τ < τ1 and k = 2, 3, . . . , N ,

‖Dτek‖20 − ‖Dτek−1‖20 +
1

2
‖Dτe

∗
k −Dτek‖20 +

τ

ca
‖Dτe

∗
k‖21

≤ caτ‖DτRk‖2H∗ + 6τ 2‖∇DτP (tk)‖20 + 2τ〈DτR
n.l.
k , Dτe

∗
k〉H

≤ caτ‖DτRk‖2H∗ + 6τ 2‖∇DτP (tk)‖20 +
τ

2ca
(‖Dτe

∗
k‖21 + ‖Dτe

∗
k−1‖21)

+ 2c 1
4ca
τ

1∑
i=0

(
‖e∗k−i−1‖21 + τ

∥∥∥∥∂u∂t
∥∥∥∥2
L2(tk−i−1,tk−i;H1(Ω)d)

)
.

Summing up for k = 2, 3, . . . ,m with an arbitrary natural number m ≤ N , by Lemmas
5.4.2 and 5.4.3, it holds that

‖Dτem‖20 +
τ

2ca
‖Dτe

∗
m‖21 + τ

m∑
k=2

1

2τ
‖Dτe

∗
k −Dτek‖20

≤‖Dτe1‖20 +
τ

2ca
‖Dτe

∗
1‖21 + τ

m∑
k=2

(ca‖DτRk‖2H∗ + 6τ‖DτP (tk)‖21)

+ 4c 1
4ca
τ

m∑
k=1

(
‖e∗k‖21 + τ

∥∥∥∥∂u∂t
∥∥∥∥2
L2(tk−1,tk;H1(Ω)d)

)

≤ c2

{
‖Dτe1‖20 + τ‖Dτe

∗
1‖21 + τ 2

∥∥∥∥∂3u∂t3
∥∥∥∥2
L2(H∗)

+ τ

∥∥∥∥∂P∂t
∥∥∥∥2
L2(H1)

+ ‖ē∗τ‖2L2(H1) + τ 2
∥∥∥∥∂u∂t

∥∥∥∥2
L2(H1)

}
,

where c2 := max{2−1c−1
a , ca, 6, 4c 1

4ca
}. Hence, by Lemma 5.4.6, there exist two constants

c3 > 0 such that for all 0 < τ < τ1,

max
k=1,...,N

‖Dτek‖20 + τ
N∑
k=2

1

τ
‖Dτek −Dτe

∗
k‖20 ≤ c3. (5.4.26)

To use Lemma 5.4.5 for (5.4.23), we set (wk, rk) = T (Dτek) for all k = 1, 2, . . . , N . By
Hypothesis 5.3.6 and (5.4.26), there exists a constant c4 > 0 such that for all 0 < τ < τ1
and k = 1, 2, . . . , N , ‖wk‖2 ≤ c4, and hence, for all 0 < τ < τ1, δ > 0 and k = 2, 3, . . . , N ,

−τa1(u∗k−2, Dτe
∗
k, wk) = τa1(u

∗
k−2, wk, Dτe

∗
k)

≤ cdτ‖u∗k−2‖1‖wk‖2‖Dτe
∗
k‖0

≤ cdc4τ‖u∗k−2‖1‖Dτe
∗
k‖0

= δ‖Dτe
∗
k‖20 +

c2dc
2
4

4δ
τ 2‖u∗k−2‖21,

−τa1(Dτu
∗
k−1, e

∗
k, wk) = −τa1(Dτu(tk−1), e

∗
k, wk)− τa1(Dτe

∗
k−1, e

∗
k, wk)

≤ cdτ‖Dτu(tk−1)‖1‖e∗k‖1‖wk‖1 + cd‖Dτe
∗
k−1‖0‖e∗k‖1‖wk‖2

≤ cdc1τ‖Dτu(tk−1)‖1‖wk‖1 + cdc4‖Dτe
∗
k−1‖0‖e∗k‖1

≤ δ

2
‖wk‖21 +

c2dc
2
1

2δ
τ 2‖Dτu(tk−1)‖21 + δ‖Dτe

∗
k−1‖20 +

c2dc
2
4

4δ
‖e∗k−1‖21.
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By (5.4.24) and (5.4.25) with φ := wk, we have

〈DτR
n.l.
k , wk〉H ≤ δ(‖Dτe

∗
k−1‖20 + ‖Dτe

∗
k‖20)

+ c̃δ

{
‖wk‖21 + τ 2‖u∗k−2‖21 +

1∑
i=0

(
‖e∗k−i−1‖21 + τ 2‖Dτu(tk−i)‖21

)}
,

where c̃δ := max{δ, δ−1c2d(2c
2
max+2−1c21+4−1c24)}. By Lemmas 5.4.5 and 5.4.3, there exist

two constants 0 < τ2 ≤ τ1 and c5 > 0 such that for all 0 < τ < τ2,

τ
N∑
k=2

‖Dτek‖20 ≤ c5

(
‖Dτe1‖2V ∗ + τ‖Dτe

∗
1‖20 + τ 2‖ū∗τ‖2L2(H1) + ‖ē∗τ‖2L2(H1)

+ τ 2
∥∥∥∥∂u∂t

∥∥∥∥2
L2(H1)

+ τ
N∑
k=2

(‖Dτek −Dτe
∗
k‖20 + ‖DτRk‖2H∗)

)
.

Hence, by Theorems 5.3.1, 5.3.3, Lemmas 5.4.2, 5.4.6, and (5.4.26), it holds that for all
0 < τ < τ2, ∥∥∥∥∂êτ∂t

∥∥∥∥2
L2(L2)

= τ‖Dτe1‖20 + τ
N∑
k=2

‖Dτek‖20 ≤ c7τ

for a constant c7 > 0, where we have used ∂êτ
∂t

= (Dτe)τ on (tk−1, tk) for all k = 1, 2, . . . , N

Finally, we prove the second inequality of Theorem 5.3.8.
Proof of the second inequality of Theorem 5.3.8. By (5.4.19), Lemma 5.2.1, and Theorem
2.2.19, there exists a constant c1 > 0 such that for all k = 1, 2, . . . , N ,

‖qk‖0≤c1 sup
0 ̸=φ∈H

|(qk, divφ)|
‖φ‖1

=c1 sup
0 ̸=φ∈H

∣∣(Dτek, φ)+a0(e
∗
k, φ)−〈Rk+R

n.l.
k , φ〉H

∣∣
‖φ‖1

≤ c1
(
‖Dτek‖0 + ca‖e∗k‖1 + ‖Rk‖H∗ + ‖Rn.l.

k ‖H∗
)
.

By Hypothesis 5.3.2 and Theorem 5.3.3, there exist two constants τ1, c2 > 0 such that
‖u(tk)‖2, τ−1/2‖ē∗τ‖L2(H1) ≤ c2 for all 0 < τ < τ1 and k = 0, 1, . . . , N . By Lemma 5.4.3, it
holds that for all 0 < τ < τ1, k = 1, 2, . . . , N and φ ∈ H,

|〈Rn.l.
k , φ〉H |

= | − a1(e
∗
k−1, u(tk), φ)− a1(e

∗
k−1, e

∗
k, φ)− a1(u(tk−1), e

∗
k, φ) + τa1(Dτu(tk), u(tk), φ)|

≤ cd
(
‖e∗k−1‖1‖u(tk)‖1 + ‖e∗k−1‖1‖e∗k‖1 + ‖u(tk−1)‖1‖e∗k‖1 + τ‖Dτu(tk)‖0‖u(tk)‖2

)
‖φ‖1

≤ cdc2
(
‖e∗k−1‖1 + 2‖e∗k‖1 + τ‖Dτu(tk)‖0

)
‖φ‖1

≤ cdc2

(
‖e∗k−1‖1 + 2‖e∗k‖1 +

√
τ

∥∥∥∥∂u∂t
∥∥∥∥
L2(tk−1,tk,L2(Ω)d)

)
‖φ‖1,

where we have used ‖ek‖1 ≤ c2 for all k = 0, 1, . . . , N . Hence, we have for all 0 < τ < τ1
and k = 1, 2, . . . , N ,

‖qk‖0 ≤ c3

(
‖Dτek‖0 + ‖e∗k−1‖1 + ‖e∗k‖1 +

√
τ

∥∥∥∥∂u∂t
∥∥∥∥
L2(tk−1,tk,L2(Ω)d)

+ ‖Rk‖H∗

)
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for a constant c3 > 0. By Lemmas 5.4.2 and 5.4.7, there exist three constants τ2, c4, c5 > 0
such that for all 0 < τ < τ2 ≤ τ1,

‖P̄τ − Pτ‖2L2(L2) ≤ c4

(∥∥∥∥∂êτ∂t
∥∥∥∥2
L2(L2)

+ ‖ē∗τ‖2L2(H1) + τ 2
∥∥∥∥∂u∂t

∥∥∥∥2
L2(L2)

+ ‖R̄τ‖2L2(H∗)

)

≤ c4

(∥∥∥∥∂êτ∂t
∥∥∥∥2
L2(L2)

+ c22τ + τ 2
∥∥∥∥∂u∂t

∥∥∥∥2
L2(L2)

+
τ 2

3

∥∥∥∥∂2u∂t2
∥∥∥∥2
L2(H∗)

)
≤ c5τ.

Therefore, by Lemma 5.4.3, we conclude the proof:

‖P − P̄τ‖L2(L2) ≤ ‖P − Pτ‖L2(L2) + ‖Pτ − P̄τ‖L2(L2) ≤
√
τ

(∥∥∥∥∂P∂t
∥∥∥∥
L2(L2)

+
√
c5

)
.

5.4.3 Proof of Corollary 5.3.10

We prove Corollary 5.3.10 by using the boundedness from Theorem 5.3.1 and the Aubin–
Lions compactness lemma.

Proof of Corollary 5.3.10. By the first and third equations of (PM), it holds that for all
v ∈ V and k = 1, 2, . . . , N ,

(Dτuk, v) + a0(u
∗
k, v) + (gk, v) + (hk,∇v) = 〈fk, v〉H − (∇Pk, v)

= 〈fk, v〉H −
∫
Γ2

pbkv · nds,

where gk and hk are defined2 by

gk := (∇u∗k)Tu∗k−1 − u∗k−1 div u
∗
k, hk := −u∗k(u∗k−1)

T ,

which implies that for all v ∈ V and θ ∈ C∞
0 (0, T ),∫ T

0

((
∂ûτ
∂t

, v

)
+ a0(ū

∗
τ , v) + (ḡτ , v) + (h̄τ ,∇v)

)
θdt=

∫ T

0

(
〈f̄τ , v〉H −

∫
Γ2

p̄bτv · nds
)
θdt.

(5.4.27)

Here, f̄τ → f strongly in L2(H∗) and p̄bτ → pb strongly in L2(H1(Ω)) as τ → 0. By
Theorem 5.3.1 and Lemma 5.4.1, there exists a constant c1 > 0 such that

‖ūτ‖2L∞(L2) + ‖ū∗τ‖2L∞(L2) + ‖ū∗k‖2L2(H1) + τ

∥∥∥∥∂ûτ∂t
∥∥∥∥2
L2(L2)

+
1

τ
‖ūτ − ū∗τ‖2L2(L2) ≤ c1.

(5.4.28)

2Here, it holds that for all i, j = 1, . . . , d and k = 1, 2, . . . , N ,

(gk)i :=

d∑
l=1

∂(u∗
k)l

∂xi
(u∗

k−1)l − (u∗
k−1)i div u

∗
k, (hk)ij := −(u∗

k)i(u
∗
k−1)j .
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In particular, it holds that

‖u∗1‖20 + τ‖u∗1‖21 + ‖u1 − u0‖20 + ‖u1 − u∗1‖20 ≤ c1, (5.4.29)

which implies that ‖u∗1 − u0‖0 ≤ ‖u∗1 − u1‖0 + ‖u1 − u0‖0 ≤ 2
√
c1. Furthermore, by the

first equation of (PM), Theorem 2.2.19, and Lemma 5.2.4, we have

‖u∗1 − u0‖V ∗ = sup
0 ̸=v∈H

τ

‖v‖1
|−a0(u∗1, v)− a1(u0, u

∗
1, v) + 〈f1, v〉H |

≤ caτ‖u∗1‖1 + cdτ‖u0‖Lpd‖u∗‖1 + τ‖f1‖H∗

≤ c2
√
τ .

(5.4.30)

where c2 :=
√
c1(ca+ cd‖u0‖Lpd )+‖f‖L2(H∗). Let u

◦
0 := u∗1, u

◦
k := u∗k for all k = 1, 2, . . . , N

and let û◦τ be the piecewise linear interpolant of (u◦k)
N
k=0 ⊂ H.

From the uniform estimates (5.4.28), one can show that there exist a sequence (τk)k∈N
and three functions u ∈ L2(H)∩L∞(L2(Ω)

d
)∩W 1,4/pd(V ∗) (in particular, u ∈ C([0, T ];V ∗)),

g ∈ L4/pd(Lp̃d(Ω)d) and h ∈ L4/pd(L2(Ω)
d×d

) such that τk → 0 and

ū∗τk → u weakly in L2(H), (5.4.31)

strongly in L2(L2(Ω)
d
), (5.4.32)

û◦τk → u strongly in L2(L2(Ω)
d
), (5.4.33)

strongly in C([0, T ];V ∗), (5.4.34)

ûτk → u strongly in L2(L2(Ω)
d
), (5.4.35)

weakly in W 1,4/pd(V ∗), (5.4.36)

ḡτk ⇀ g weakly in L4/pd(Lp̃d(Ω)d), (5.4.37)

h̄τk ⇀ h weakly in L4/pd(L2(Ω)
d×d

), (5.4.38)

as k → ∞. Here, we note that ū∗τk , û
◦
τk

and ûτk possess a common limit function. In-
deed, the weak convergence (5.4.31) of ū∗τ immediately follows from the uniform estimates
(5.4.28). Since we have 1/p̃d = 1/2 + 1/pd, pd/4 = 1/2 + pd/(2q̃d), and

‖ū∗τ‖L2q̃d/pd (Lpd ) ≤ ‖ū∗τ‖
pd/q̃d
L2(Lq̃d )

‖ū∗τ‖
1−pd/q̃d
L∞(L2) ≤ c3‖ū∗τ‖

pd/q̃d
L2(H1)‖ū

∗
τ‖

1−pd/q̃d
L∞(L2)

for a constant c3 > 0 (cf. [14, Theorem II.5.5])3, it holds that

‖ḡτ‖L4/pd (Lp̃d ) ≤

{
τ

N∑
k=1

(
‖∇u∗k‖L2‖u∗k−1‖Lpd + ‖u∗k−1‖Lpd‖ div u∗k‖L2

)4/pd}pd/4

≤ c4

(
τ

N∑
k=1

‖u∗k‖
4/pd
1 ‖u∗k−1‖

4/pd
Lpd

)pd/4

≤ c4

(
τ

N∑
k=1

‖u∗k‖21

)1/2(
τ

N∑
k=1

‖u∗k−1‖
2q̃d/pd
Lpd

)pd/(2q̃d)

≤ c4

(
‖ū∗τ‖2L2(H1) + ‖ū∗τ‖2L2q̃d/pd (Lpd )

+ τ pd/q̃d‖u0‖2Lpd

)
≤ c4

(
‖ū∗τ‖2L2(H1) + c3‖ū∗τ‖

2pd/q̃d
L2(H1)‖ū

∗
τ‖

2−2pd/q̃d
L∞(L2) + τ pd/q̃d‖u0‖2Lpd

)
,

3Since p2 = 2 + ε and p3 = 3, we have p2/q̃2 = ε/2 and p3/q̃3 = 1/2.
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‖h̄τ‖L4/pd (L2) ≤

(
τ

N∑
k=1

‖u∗k‖
4/pd
Lq̃d

‖u∗k−1‖
4/pd
Lpd

)pd/4

≤ c5

(
τ

N∑
k=1

‖u∗k‖
4/pd
1 ‖u∗k−1‖

4/pd
Lpd

)pd/4

≤ c5

(
‖ū∗τ‖2L2(H1) + c3‖ū∗τ‖

2pd/q̃d
L2(H1)‖ū

∗
τ‖

2−2pd/q̃d
L∞(L2) + τ pd/q̃d‖u0‖2Lpd

)
for constants c4 and c5. Hence, by (5.4.28), the weak convergences (5.4.37) and (5.4.38)
hold. Moreover, since there exists a constant c6 > 0 such that

|(gk, v)| ≤ ‖gk‖Lp̃d‖v‖Lq̃d ≤ c6‖gk‖Lp̃d‖v‖1

for all k = 1, 2, . . . , N and v ∈ H1(Ω)
d
, we have∥∥∥∥∂ûτ∂t

∥∥∥∥
L4/pd (V ∗)

=

{∫ T

0

(
sup

0 ̸=v∈V

1

‖v‖1

∣∣∣∣−a0(ū∗τ (t), v)− (ḡτ (t), v)− (h̄τ (t),∇v)

+ 〈fτ (t), v〉H −
∫
Γ2

pbτ (t)v · nds
∣∣∣∣)4/pd

dt

}pd/4
=

{∫ T

0

(
ca‖ū∗τ (t)‖1 + c6‖ḡτ (t)‖Lp̃d + ‖h̄τ (t)‖0 + ‖fτ (t)‖H∗ + ‖pbτ (t)‖1

)4/pd dt}pd/4
≤ ca‖ū∗τ‖L4/pd (H1) + c6‖ḡτ‖L4/pd (Lp̃d ) + ‖h̄τ‖L4/pd (L2) + ‖fτ‖L4/pd (H∗) + ‖pbτ‖L4/pd (H1)

≤ T pd/(2q̃d)(ca
√
c1 + ‖f‖L2(H∗) + ‖pb‖L2(H1)) + c6‖ḡτ‖L4/pd (Lp̃d ) + ‖h̄τ‖L4/pd (L2),∥∥∥∥∂û◦τ∂t − ∂ûτ
∂t

∥∥∥∥
L4/pd (V ∗)

=

{
τ

N∑
k=1

(
sup

0 ̸=v∈V

|(u◦k − u◦k−1 − uk + uk−1, v)|
τ‖v‖1

)4/pd
}pd/4

≤ 2

(
τ

N∑
k=1

sup
0 ̸=v∈V

|(∇Pk, v)|4/pd

‖v‖4/pd1

+ τ‖u∗1 − u0‖4/pdV ∗

)pd/4

≤ 2

(
τ

N∑
k=1

sup
0 ̸=v∈V

1

‖v‖4/pd1

∣∣∣∣∫
Γ2

pb(tk)v · nds
∣∣∣∣4/pd

)pd/4

+ 2τ pd/4‖u∗1 − u0‖V ∗

≤ 2

(
τ

N∑
k=1

‖pb(tk)‖4/pd1

)pd/4

+ 2c2τ
pd/4+1/2

≤ 2‖p̄bτ‖L4/pd (H1) + 2c2τ
1+pd/(2q̃d)

≤ 2T pd/(2q̃d)(‖pb‖L2(H1) + c2T ),

and ‖∂ûτ
∂t

‖L4/pd (V ∗) and ‖∂û
◦
τ

∂t
‖L4/pd (V ∗) are also bounded. Hence, (5.4.36) holds. Further-



82 Chapter 5. Projection method

more, ‖û◦τ‖L2(H1) is bounded: by (5.4.28) and (5.4.29),

‖û◦τ‖2L2(H1) =
N∑
k=1

∫ 1

0

‖(1− s)u◦k−1 + su◦k‖21τds

≤
N∑
k=1

τ(‖u◦k−1‖21 + ‖u◦k‖21)
∫ 1

0

{(1− s)2 + s2}ds

=
2

3

N∑
k=1

τ(‖u∗k−1‖21 + ‖u∗k‖21)

≤ 4

3
‖ū∗τ‖L2(H1) +

2

3
τ‖u∗1‖21

≤ 4

3
‖ū∗τ‖2L2(H1) +

2c1
3

≤ 2c1,

which implies the strong convergence (5.4.33) of û◦τ in L2(L2(Ω)
d
) from the Aubin–Lions

lemma [14, Theorem II.5.16 (i)]. Since we have for all t ∈ (tk−1, tk), k = 1, 2, . . . , N ,

‖ū∗τ (t)− û◦τ (t)‖0 =
∣∣∣∣tk − t

τ

∣∣∣∣ ‖u◦k − u◦k−1‖0 ≤ ‖u◦k − uk‖0 + τ‖Dτuk‖0 + ‖uk−1 − u◦k−1‖0,

‖ū∗τ (t)− ûτ (t)‖0 ≤ ‖ū∗τ (t)− ūτ (t)‖0 + ‖ūτ (t)− ûτ (t)‖0 ≤ ‖u∗k − uk‖0 + τ‖Dτuk‖0,

the functions ū∗τk , û
◦
τk

and ûτk possess a common limit function u, and the strong conver-
gences (5.4.32) and (5.4.35) hold: by (5.4.28) and (5.4.29),

‖ū∗τ − û◦τ‖L2(L2) ≤

(
τ

N∑
k=1

(‖u◦k − uk‖0 + τ‖Dτuk‖0 + ‖uk−1 − u◦k−1‖0)2
)1/2

≤ 2
√
3‖ū∗τ − ūτ‖L2(L2) +

√
3τ

∥∥∥∥∂ûτ∂t
∥∥∥∥
L2(L2)

+
√
3τ‖u0 − u∗1‖0

≤ 5
√
3c1τ ,

‖ū∗τ − ûτ‖L2(L2) ≤
√
2‖ū∗τ − ūτ‖L2(L2) +

√
2τ

∥∥∥∥∂ûτ∂t
∥∥∥∥
L2(L2)

≤ 2
√
2c1τ .

It also holds that

‖ū∗τ − û◦τ‖L∞(L2) ≤ max
k=1,2,...,N

(‖u◦k‖0 + ‖u◦k−1‖0) ≤ 2
√
c1.

Since ‖û◦τ‖L∞(L2) and ‖∂û
◦
τ

∂t
‖L4/pd (V ∗) are bounded, we obtain the strong convergence (5.4.34)

of û◦τ in C([0, T ];V ∗) [14, Theorem II.5.16 (ii)]. In particular, û◦τ (0) converges to u(0) in
V ∗. On the other hand, by (5.4.30), û◦τ (0) = u∗1 converges to u0 in V ∗. Through the
uniqueness of the limit in V ∗, we have indeed obtained that u(0) = u0.

From (5.4.27) with ε := εk, taking k → ∞, it holds that for all v ∈ V and θ ∈ C∞
0 (0, T ),∫ T

0

(〈
∂u

∂t
, θv

〉
V

+ a0(u, θv) + (g, θv) + (h,∇(θv))

)
dt

=

∫ T

0

(
〈f, θv〉H −

∫
Γ2

pbθv · nds
)
dt.
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Next, we show that

g = (∇u)Tu− u div u, h = −u(u)T . (5.4.39)

We set v̄τ (t) := u∗k−1 for t ∈ (tk−1, tk], k = 1, 2, . . . , N . Then, it holds that

‖v̄τ − ū∗τ‖L2(L2) ≤

(
τ

N∑
k=1

(‖u∗k − uk‖0 + τ‖Dτuk‖0 + ‖uk−1 − u∗k−1‖0)2
)1/2

≤ 2
√
3‖ū∗τ − ūτ‖L2(L2) +

√
3τ

∥∥∥∥∂ûτ∂t
∥∥∥∥
L2(L2)

≤ 3
√
3c1τ ,

and hence it follows from (5.4.32) that v̄τk → u strongly in L2(L2(Ω)
d
) as k → ∞. Since

∇ū∗τ ⇀ ∇u weakly in L2(L2(Ω)
d×d

) and div ū∗τ ⇀ div u weakly in L2(L2(Ω)) as k → ∞,
we have

ḡτ = (∇ū∗τ )T v̄τ − v̄τ div ū
∗
τ ⇀ (∇u)Tu− u div u weakly in L1(L1(Ω)d),

h̄τ = −ū∗τ (v̄τ )T → −u(u)T strongly in L1(L1(Ω)d×d)

as k → ∞ (cf. [14, Proposition II.2.12]). On the other hand, we also know (5.4.37)
and (5.4.38). The convergence in these spaces imply the convergence in the distributions
sense, therefore (5.4.39) holds by the uniqueness of the limit in D′((0, T )× Ω). Hence, it
holds that for all v ∈ V and θ ∈ C∞

0 (0, T ),∫ T

0

(〈
∂u

∂t
, v

〉
V

+ a0(u, v) + ((∇u)u− u div u, v)− (u(u)T ,∇v)
)
θdt

=

∫ T

0

(
〈f, v〉H −

∫
Γ2

pbv · nds
)
θdt,

which is equivalent to the following∫ T

0

(〈
∂u

∂t
, v

〉
V

+ a0(u, v) + a1(u, u, v)

)
θdt =

∫ T

0

(
〈f, v〉H −

∫
Γ2

pbv · nds
)
θdt.

5.5 Numerical examples

For our simulation, we set T = 1 and

Ω =
{
(r cos θ, r sin θ) ∈ R2

∣∣ r1 < r < r2, θ1 < θ < θ2
}
,

Γ1 =
{
(r cos θ, r sin θ) ∈ R2

∣∣ r ∈ {r1, r2}, θ1 < θ < θ2
}
,

Γ2 =
{
(r cos θ, r sin θ) ∈ R2

∣∣ r1 < r < r2, θ ∈ {θ1, θ2}
}
,

where r1 := 2, r2 = 3, θ1 = 0, θ2 := π/2 (Fig. 5.1), and define the following constants:

pin := 1, pout := −1, α :=
pin − pout
θ2 − θ1

,

C :=
1

2
r21r

2
2

log θ2 − log θ1
r22 − r21

, D := −1

2

r22 log r2 − r21 log r1
r22 − r21

.
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The following functions

u(x, y, t) :=

(
U(r)e−t sin θ
−U(r)e−t cos θ

)
, p(x, y, t) := p0(θ)e

−t,

where (r, θ) = (r(x, y), θ(x, y)) are the polar coordinates and

U(r) = α

(
1

2
r log r +

C

r
+Dr

)
, p0(θ) =

pin(θ − θ1) + pout(θ2 − θ)

θ2 − θ1
,

satisfy (5.1.1) with ν = ρ = 1 and

f(x, y, t) :=

 −U
2(r)

r
e−2t cos θ − U(r)e−t sin θ

−U
2(r)

r
e−2t sin θ + U(r)e−t cos θ

 =

{
∂u

∂t
+ (u · ∇)u

}
(x, y, t),

pb(x, y, t) := p0(θ)e
−t +

U2(r)

2
e−2t, u0(x, y) :=

(
U(r) sin θ
−U(r) cos θ

)
.

Fig. 5.2 shows the initial value u0 of the velocity and the pressure p at t = 0.
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Figure 5.1: The domain Ω with boundary Γ1,Γ2 (left), and Ωh,Γ1,h,Γ2,h with mesh (right).

We introduce a domain Ωh to approximate the domain Ω, with boundary ∂Ωh =
Γ1,h ∪ Γ2,h (Fig. 5.1). We also introduce a regular triangulation Th to Ωh, with h =
maxK∈Th diam(K) and Ωh = ∪K∈ThK. To consider the P2 and P1 element approximation
for velocity and pressure, respectively, we define the function spaces: for i = 1, 2,

X i
h :=

{
ψh ∈ C(Ωh)

∣∣ φh|K ∈ Pi(K), ∀K ∈ Th
}
,

Hh :=
{
φh ∈ (X2

h)
2
∣∣ φh = 0 on Γ1,h, φh × nh = 0 on Γ2,h

}
,

Qh :=
{
ψh ∈ X1

h

∣∣ ψh = 0 on Γ2,h

}
,

where Pi(K) is the set of polynomials of degree i or less on K and nh is the unit outward
normal vector for Γ2,h. Here, since Γ2,h is flat, the normal component of φh ∈ Hh is not
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Figure 5.2: The initial value u0 of the velocity (left) and the pressure p at t = 0 (right).
In the left figure, the color scale indicates the length of |u0(ξ)| at each node ξ.

determined. If Γ2,h is not flat, then nh is discontinuous on Γ2,h and φh = 0 on Γ2,h (cf.
[13]). Let Πi

h : C(Ωh) → X i
h (i = 1, 2) be the Lagrange interpolation operator (on each

triangle). By replacing uk−1 in the first equation of (PM) with the third equation of (PM)
at the previous step (Remark 5.2.11), we consider the following discrete problem:

Problem 5.5.1. For all k = 1, 2, . . . , N , find (u∗k, Pk) ∈ Hh×X1
h such that Pk−Π1

hp
b(tk) ∈

Qh and for all φ ∈ Hh and ψ ∈ Qh,
1

τ
(u∗k − u∗k−1, φ) + a0(u

∗
k, φ) + a1(u

∗
k−1, u

∗
k, φ) + (∇Pk−1, φ) = (f(tk), φ),

τ(∇Pk,∇ψ) = −(div u∗k, ψ),
(5.5.40)

where P0 := 0.

For all k = 1, 2, . . . , N , we set uk := u∗k − τ∇Pk. See [39, 40] for details on uk and its
divergence.

On a mesh with h = 2−6, we solve the problems (5.5.40) numerically by using the
FreeFEM software [43]. We compute the error estimates between the numerical solutions
of (5.5.40) and the interpolation (Π2

hu,Π
1
hP ) of the exact solution (u, P ), where P :=

p+ |u|2/2. In Fig. 5.3, the numerical errors ‖ūτ −Π2
huτ‖L2(L2(Ωh)d), ‖ū∗τ −Π2

huτ‖L2(L2(Ωh)d),
‖P̄τ −Π1

hPτ‖L2(L2(Ωh)), and ‖ū∗τ −Π2
huτ‖L2(H1(Ωh)d) are presented. It can be observed that

‖ūτ − Π2
huτ‖L2(L2(Ωh)d) and ‖ū∗τ − Π2

huτ‖L2(L2(Ωh)d) are almost of first order in τ and that
‖P̄τ−Π1

hPτ‖L2(L2(Ωh)) is of 0.5th order in τ , as expected from Theorem 5.3.8. Furthermore,
the error ‖ū∗τ − Π2

huτ‖L2(H1(Ωh)d) is almost of first order in τ , which is better than the
theoretically predicted rate (Theorem 5.3.3).

5.6 Conclusion

We have proposed the projection method (5.1.3), (5.1.4), and (5.1.5) for Navier–Stokes
equations (5.1.1) with a total pressure boundary condition. We have shown the stability
of the projection method in Theorem 5.3.1 and established error estimates for the velocity
and the pressure in suitable norms between the solution to (NS) and (PM) in Theorems
5.3.3 and 5.3.8. The convergence rates are the same as the case of the usual full-Dirichlet
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Figure 5.3: The errors of the log scale: ‖ūτ − Π2
huτ‖L2(L2(Ωh)d), ‖ū∗τ − Π2

huτ‖L2(L2(Ωh)d)

(left), ‖P̄τ − Π1
hPτ‖L2(L2(Ωh)), and ‖ū∗τ − Π2

huτ‖L2(H1(Ωh)d) (right). The triangles show the
slope of O(τ) and O(

√
τ).

boundary condition for velocity [76]. The traction boundary condition is often used to
apply Dirichlet boundary conditions for pressure; however, the convergence rates are worse
than our case (Compare [37] and [41]).

The projection method is still evolving, and many high-convergence methods have
been proposed (e.g., [41]). The application of the boundary conditions proposed in this
paper to these methods will be a focus of our future works. As another future direction,
the case in which Γ2 is not flat in numerical calculations is an important problem (cf. [13]).
In addition, since the nonlinear term (∇×u)×u is different from the standard advection
term (u · ∇)u, it cannot be applied to methods using the Lagrangian coordinates, such
as the characteristic curve method and particle methods; this problem remains open for
further study.
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104(2), 207–226 (2015). DOI 10.1016/j.matpur.2014.11.007

[3] Amrouche, C., Seloula, N.E.H.: Lp-theory for the Navier–Stokes equations with pres-
sure boundary conditions. Discrete & Continuous Dynamical Systems - S 6(5), 1113–
1137 (2013). DOI 10.3934/dcdss.2013.6.1113

[4] Amsden, A.A., Harlow, F.H.: A simplified MAC technique for incompressible fluid
flow calculations. Journal of Computational Physics 6(2), 322–325 (1970). DOI
10.1016/0021-9991(70)90029-X

[5] Amsden, A.A., Harlow, F.H.: The SMAC method: A numerical technique for calcu-
lating incompressible fluid flows. Tech. Rep. LA-4370, Los Alamos National Labora-
tory (1970)

[6] Badia, S., Codina, R.: Convergence analysis of the FEM approximation of the first
order projection method for incompressible flows with and without the inf-sup condi-
tion. Numerische Mathematik 107, 533–557 (2007). DOI 10.1007/s00211-007-0099-5

[7] Begue, C., Conca, C., Murat, F., Pironneau, O.: A nouveau sur les equations de
Stokes et de Navier-Stokes avec des conditions aux limites sur la pression. C. R.
Acad. Sc. Paris, Serie I 304, 23–28 (1987)

[8] Begue, C., Conca, C., Murat, F., Pironneau, O.: Les équations de Stokes et de
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[63] Marušić, S.: On the Navier–Stokes system with pressure boundary condition. Annali
dell’Universita’ di Ferrara 53(2), 319–331 (2007). DOI 10.1007/s11565-007-0024-y
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Chapter A

Proofs

After defining the Lipschitz domain in Section A.1, we prove the Nečas inequality (The-
orem 2.2.13) in Section A.2 and its corollaries (Theorems 2.2.14 and 2.2.15) in Section
A.3.

A.1 Bounded Lipschitz domain

We introduce the notation used in this appendix.
For α, β > 0 and an open set U ⊂ Rn−1, we set

B(α) :=
{
x′ = (x1, · · · , xn−1) ∈ Rn−1

∣∣ |x′| < α
}
,

K(α, β) := B(α)× (0, β),
M(α, β) := B(α)× (−β, β),

where |x′| :=
√
x21 + · · ·+ x2n−1. A function g : U → R is called Lipschitz continuous if

there exists a constant c > 0 such that

|g(x′)− g(y′)| ≤ c|x′ − y′| for all x′, y′ ∈ U.

The constant c is called a Lipschitz constant cg for g.
We use the following theorems and lemmas.

Theorem A.1.1 (partition of unity). [16, Lemma 9.3] Let Ω ⊂ Rn be a bounded open
subset and let open subsets U0, U1, · · · , Um ⊂ Rn satisfy Ω ⊂

⋃m
r=0 Ur. Then, there exists

functions η0, η1, · · · , ηm ∈ C∞(Rn) such that

ηr ∈ C∞
0 (Ur) for all r = 0, 1, · · · ,m,

0 ≤ ηr(x) ≤ 1 for all r = 0, 1, · · · ,m, x ∈ Ur,
m∑
r=0

ηr(x) = 1 for all x ∈ Ω.

Definition A.1.1. A bounded open set Ω is called a Lipschitz domain if there exist two
real numbers α, β > 0, an integer m ∈ N, systems of local charts (xr1, · · · , xrn) (r =
1, 2, · · · ,m) and Lipschitz continuous functions gr : Br(α) := {x′r ∈ Rn−1 | |xri| ≤ α, i =
1, 2, · · · , n− 1} → R such that

Γ =
m⋃
r=1

{xr ∈ Rn | xr = (x′r, xrn), x
′
r ∈ Br(α), xrn = gr(x

′
r)}
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and it follows that for all y′r ∈ Br(α)

gr(y
′
r) < yrn < gr(y

′
r) + β ⇒ (y′r, yrn) ∈ Ω,

gr(y
′
r)− β < yrn < gr(y

′
r) ⇒ (y′r, yrn) ∈ Rn\Ω.

By using systems of local charts in Definition A.1.1, we define subsets;

Br(α
′) := {x′r ∈ Rn−1 | |x′r| < α′},

Ur(α
′, β′) := {xr = (x′r, xrn) ∈ Rn | x′r ∈ Br(α

′), gr(x
′
r)− β′ < xrn < gr(x

′
r) + β′},

U+
r (α

′, β′) := {xr = (x′r, xrn) ∈ Rn | x′r ∈ Br(α
′), gr(x

′
r) < xrn < gr(x

′
r) + β′}

for 0 < α′ ≤ α, 0 < β′ ≤ β and r = 1, 2, · · · ,m.

A.2 Nečas inequality on a bounded Lipschitz domain

The Nečas inequality (Lemma 2.2.13) is important for the proof of the existence of the
solution to the Stokes problem and the Korn inequality, cf. [27, 32, 80]. The Nečas
inequality on a bounded Lipschitz domain was proven by Nečas [66]. The Nečas inequality
also holds on a John domain that is a weaker condition than Lipschitz domain [1].

Nečas proceeds with the proof in two steps:

1 Interior of Ω. Here, the proof follows the case Ω = Rn.

2 Neighborhood V near the boundary Γ. Here, the proof follows the case Ω as the half

space {(x1, · · · , xn) ∈ Rn | xn > 0}.

There are other methods for the proof of the Nečas inequality [2]. In [27], the authors
prove that {

p ∈ H−1(Ω)

∣∣∣∣ ∂p∂xi ∈ H−1(Ω) for all i = 1, · · · , n
}

= L2(Ω)

holds with a C1,1-class boundary. The equation is equivalent to the Nečas inequality. See
also [15].

The purpose of this appendix is to provide the Nečas style proof. In A.2.1, we introduce
the notations and symbols used in this appendix. We prove the case Ω = Rn in A.2.2 and
the case Ω is a subset K of the half space in A.2.3. In A.2.4 we define mollifiers and show
several properties. We also make the mapping T : K → V using the mollifiers. In A.2.5,
we prove the Nečas inequality.

A.2.1 Preliminaries

We use the following theorems and lemmas.

Lemma A.2.1. Let U ⊂ Rn be a open set. We have

‖∇p‖H−1(U)n ≤
n∑
i=1

∥∥∥∥ ∂p∂xi
∥∥∥∥
H−1(U)

≤
√
n‖∇p‖H−1(U)n

for all p ∈ L2(U).
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Proof.
n∑
i=1

∥∥∥∥ ∂p∂xi
∥∥∥∥
H−1(U)

=
n∑
i=1

sup
φi∈H1(U), ∥φi∥H1(U)=1

〈
∂p

∂xi
, φi

〉
= sup

φ∈H1(U)n, ∥φ1∥H1(U)=···=∥φn∥H1(U)=1

〈∇p, φ〉

≤ sup
φ∈H1(U)n, ∥φ∥H1(U)n=

√
n

〈∇p, φ〉

=
√
n sup
φ∈H1(U)n, ∥φ∥H1(U)n=

√
n

〈∇p, 1√
n
φ〉

=
√
n sup
φ∈H1(U)n, ∥φ∥H1(U)n=1

〈∇p, φ〉

=
√
n‖∇p‖H−1(U)n .

On the other hand,

‖∇p‖H−1(U)n = sup
0 ̸=φ∈H1(U)n, ∥φ∥H1(U)n≤1

〈∇p, φ〉

= sup
0 ̸=φ∈H1(U)n, ∥φ1∥2

H1(U)
+···+∥φn∥2

H1(U)
≤1

〈∇p, φ〉

≤
n∑
i=1

sup
0 ̸=φi∈H1(U), ∥φi∥H1(U)≤1

〈
∂p

∂xi
, φi

〉
=

n∑
i=1

∥∥∥∥ ∂p∂xi
∥∥∥∥
H−1(U)

.

Lemma A.2.2. Let Ω be an open set in Rn. If there exists a constant c > 0 such that

‖p‖L2(Ω) ≤ c(‖p‖H−1(Ω) + ‖∇p‖H−1(Ω)n) for all p ∈ C∞
0 (Ω),

then it holds that

‖p‖L2(Ω) ≤ c(‖p‖H−1(Ω) + ‖∇p‖H−1(Ω)n) for all p ∈ L2(Ω).

Proof. For p ∈ L2(Ω), we have

‖p‖H−1(Ω) = sup
ψ∈H1

0 (Ω), ∥ψ∥H1(Ω)=1

∫
Ω

pψ dx

≤ sup
ψ∈H1

0 (Ω), ∥ψ∥H1(Ω)=1

‖p‖L2(Ω)‖ψ‖L2(Ω)

≤ sup
ψ∈H1

0 (Ω), ∥ψ∥H1(Ω)=1

‖p‖L2(Ω)‖ψ‖H1(Ω)

= ‖p‖L2(Ω),

‖∇p‖H−1(Ω)n = sup
φ∈H1

0 (Ω)
n
, ∥φ∥H1(Ω)

n=1

∫
Ω

p divφdx

≤ sup
φ∈H1

0 (Ω)
n
, ∥φ∥H1(Ω)

n=1

‖p‖L2(Ω)‖ divφ‖L2(Ω)

≤
√
n sup
φ∈H1

0 (Ω)
n
, ∥φ∥H1(Ω)

n=1

‖p‖L2(Ω)‖∇φ‖L2(Ω)n×n

≤
√
n‖p‖L2(Ω).

Since C∞
0 (Ω) is dense in L2(Ω), we obtain the result.
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A.2.2 Total space

If p, q : Rn → R is a continuous function with compact support, its Fourier transform p̂
and inverse Fourier transform q̌ is defined by

p̂(ξ) :=
1

(2π)n/2

∫
Rn

e−ix·ξp(x)dx for all ξ ∈ Rn,

q̌(x) :=
1

(2π)n/2

∫
Rn

eix·ξq(ξ)dξ for all x ∈ Rn,

where x · ξ =
∑n

k=1 xkξk. It is easy to see that q̂(x) = q̌(−x) for all x ∈ Rn. It is well
known property of the Fourier transform that

∂̂p

∂xk
(ξ) = iξkp̂(ξ) for all k = 1, · · · , n.

One proves (Plancherel theorem [28, Theorem 4.3.2 (ii)]) that if p ∈ L2(Rn) then p̂ ∈
L2(Rn) and ‖p̂‖L2(Rn) = ‖p‖L2(Rn). By continuous extension, one can therefore define
F : L2(Rn) 3 p → p̂ ∈ L2(Rn) and F∗ : L2(Rn) 3 q → q̌ ∈ L2(Rn). The linear isometric
mapping F is an unitary map and has the inverse map:

Theorem A.2.3. [28, Theorem 4.3.2 (i)]∫
Rn

p(x)q(x)dx =

∫
Rn

p̂(ξ)q̂(ξ)dξ for all p, q ∈ L2(Rn),

Theorem A.2.4. [28, Theorem 4.3.2 (iv)]

FF∗p = F∗Fp = p for all p ∈ L2(Rn).

For Sobolev space H1(Rn), we have a lemma:

Theorem A.2.5. [28, Theorem 5.8.8]

p ∈ H1(Rn) ⇔
∫
Rn

|p̂(ξ)|(1 + |ξ|2)dξ < +∞

and we have

‖p‖H1(Rn) =

(∫
Rn

|p̂(ξ)|(1 + |ξ|2)dξ
)1/2

for all p ∈ H1(Rn).

By using Fourier transform, we prove Theorem 2.2.13 when Ω = Rn.

Lemma A.2.6. There exists a constant c > 0 such that

‖p‖L2(Rn) ≤
√
n(‖p‖H−1(Rn) + ‖∇p‖H−1(Rn)n)

for all p ∈ L2(Rn).



A.2. NEČAS INEQUALITY ON A BOUNDED LIPSCHITZ DOMAIN 103

Proof. Using Fourier transform, we get

‖p‖2L2(Rn) =

∫
Rn

|p̂(ξ)|2dξ

=

∫
Rn

|p̂(ξ)|2(1 + |ξ|2)(1 + |ξ|2)−1dξ

=

∫
Rn

|p̂(ξ)|2(1 + |ξ|2)−1dξ +
n∑
j=1

∫
Rn

|ξj p̂(ξ)|2(1 + |ξ|2)−1dξ.

(A.2.1)

Here it follows that

‖p‖2H−1(Rn) = sup
0 ̸=φ∈H1(Rn)

(∫
Rn

pφ dx

)2

‖φ‖2H1(Rn)

= sup
0 ̸=φ∈H1(Rn)

(∫
Rn

p̂ φ̂ dξ

)2

∫
Rn

|φ̂(ξ)|2(1 + |ξ|2)dξ
. (A.2.2)

Putting φ := F−1[(1 + |ξ|2)−1p̂(ξ)], we obtain∫
Rn

|φ̂(ξ)|2(1 + |ξ|2)dξ =
∫
Rn

|p̂(ξ)|2(1 + |ξ|2)−1dξ ≤
∫
Rn

|p̂(ξ)|2dξ < +∞.

By Lemma A.2.5, φ ∈ H1(Rn), hence, it follows from (A.2.2) that

‖p‖2H−1(Rn) ≥

(∫
Rn

p̂(ξ)(1 + |ξ|2)−1p̂(ξ)dξ

)2

∫
Rn

|(1 + |ξ|2)−1p̂(ξ)|2(1 + |ξ|2)dξ
=

∫
Rn

|p̂(ξ)|2(1 + |ξ|2)−1dξ. (A.2.3)

On the other hand, for j = 1, · · · , n, it holds that

∥∥∥∥ ∂p∂xj
∥∥∥∥2
H−1(Rn)

= sup
0 ̸=φ∈H1(Rn)

(∫
Rn

∂p

∂xj
φdx

)2

‖φ‖2H1(Rn)

= sup
0 ̸=φ∈H1(Rn)

(∫
Rn

iξj p̂(ξ)φ̂(ξ)dξ

)2

∫
Rn

|φ̂(ξ)|2(1 + |ξ|2)dξ

Putting φ := F−1[iξj(1 + |ξ|2)−1p̂(ξ)], we have

‖φ‖2H1(Rn) =

∫
Rn

|φ̂(ξ)|2(1 + |ξ|2)dξ =
∫
Rn

|p̂(ξ)|2
ξ2j

1 + |ξ|2
dξ ≤

∫
Rn

|p̂(ξ)|2dξ < +∞.

By Lemma A.2.5, we obtain φ ∈ H1(Rn), hence,

∥∥∥∥ ∂p∂xj
∥∥∥∥2
H−1(Rn)

≥

(∫
Rn

iξj p̂(ξ)iξj(1 + |ξ|2)−1p̂(ξ)dξ

)2

∫
Rn

|iξj(1 + |ξ|2)−1p̂(ξ)|2(1 + |ξ|2)dξ
=

∫
Rn

|ξj p̂(ξ)|2(1 + |ξ|2)−1dξ.

(A.2.4)
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By (A.2.1), (A.2.3) and (A.2.4),

‖p‖2L2(Rn) ≤ ‖p‖2H−1(Rn) +
n∑
j=1

∥∥∥∥ ∂p∂xj
∥∥∥∥2
H−1(Rn)

.

By Lemma A.2.1, we obtain the result;

‖p‖L2(Rn) ≤

√√√√‖p‖2H−1(Rn) +
n∑
j=1

∥∥∥∥ ∂p∂xj
∥∥∥∥2
H−1(Rn)

≤ ‖p‖H−1(Rn) +
n∑
j=1

∥∥∥∥ ∂p∂xj
∥∥∥∥
H−1(Rn)

≤
√
n
(
‖p‖H−1(Rn) + ‖∇p‖H−1(Rn)n

)
.

Using Lemma A.2.6, we prove the following lemma.

Lemma A.2.7. Let Ω ⊂ Rn be an open set and let a bounded open set U ⊂ Ω satisfy that
U ⊂ Ω. There exists a constant c = c(Ω, U) > 0 depending only on U such that

‖p‖L2(Ω) ≤ c(‖p‖H−1(Ω) + ‖∇p‖H−1(Ω)n) for all p ∈ C∞
0 (U) (⊂ C∞

0 (Ω)). (A.2.5)

Proof. For p ∈ C∞
0 (Ω), we set

p̃(x) =

{
p(x) if x ∈ Ω,
0 if x ∈ Rn \ Ω.

It is easy to see that p̃ ∈ L2(Rn) and ‖p̃‖L2(Rn) = ‖p‖L2(Ω). One can make a function
ρ ∈ C∞

0 (Rn) such that

ρ(x) = 0 (x /∈ Ω), 0 ≤ ρ(x) ≤ 1 (x ∈ Ω), ρ(x) = 1 (x ∈ U).

Since ρ ∈ H1(Ω) ⊂ H1(Rn), there exists a constant c > 0 such that

‖ρψ‖H1(Ω) ≤ c‖ρ‖H1(Ω)‖ψ‖H1(Rn) for all ψ ∈ H1(Rn).

Thus it follows that for p ∈ C∞
0 (U) (⊂ C∞

0 (Ω))

‖p̃‖H−1(Rn) = sup
0 ̸=ψ∈H1(Rn)

∫
Rn

p̃ψ dx

‖ψ‖H1(Rn)

= sup
0 ̸=ψ∈H1(Rn)

∫
Ω

pρψ dx

‖ψ‖H1(Rn)

(by supp(p) ⊂ U)

≤ c‖ρ‖H1(Ω) sup
0 ̸=ψ∈H1(Rn)

∫
Ω

pρψ dx

‖ρψ‖H1(Ω)

≤ c‖ρ‖H1(Ω) sup
0 ̸=ψ̃∈H1

0 (Ω)

∫
Ω

pψ̃ dx

‖ψ̃‖H1(Ω)

≤ c‖ρ‖H1(Ω)‖p‖H−1(Ω),
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and
‖∇p̃‖H−1(Rn)n ≤ c‖ρ‖H1(Ω)‖∇p̃‖H−1(Ω)n .

By Lemma A.2.6, we obtain the result;

‖p‖L2(Ω) = ‖p̃‖L2(Rn)

≤
√
n(‖p̃‖H−1(Rn) + ‖∇p̃‖H−1(Rn)n)

≤ c
√
n‖ρ‖H1(Ω)(‖p‖H−1(Ω) + ‖∇p‖H−1(Ω)n).

A.2.3 Extension of K(α, β) to M(α, β)

We shall consider Lemma A.2.7 on the subset K(α, β) of the half space {(x1, · · · , xn) ∈
Rn | xn > 0}. We prepare the following lemma.

Lemma A.2.8. Let α, β > 0, K = K(α, β) and M =M(α, β). There exist an extension
operator C∞

0 (K) 3 p 7→ p̃ ∈ C∞
0 (M) and a constant c > 0 independent of α and β such

that
‖p‖L2(K) ≤ ‖p̃‖L2(M),

‖p̃‖H−1(M) ≤ c‖p‖H−1(K),
‖∇p̃‖H−1(M)n ≤ c‖∇p‖H−1(K)n ,

for all p ∈ C∞
0 (K), and if p ∈ C∞

0 (K(α′, β′)) (0 < α′ < α, 0 < β′ < β) then p̃ ∈
C∞

0 (M(α′, β′)).

Proof. Let λ1, λ2 are solutions of the linear system:

λ1 + λ2 = 1, λ1 + 2λ2 = −1, (A.2.6)

(i.e., λ1 = 3, λ2 = −2). For p ∈ C∞
0 (K), we define p̃ ∈ C∞

0 (M) as follows:

p̃(x′, xn) =


p(x′, xn) if 0 < xn < β,
0 if xn = 0,

λ1p(x
′,−xn) + λ2p

(
x′,−xn

2

)
if − β < xn < 0,

for x′ ∈ B(α) and xn ∈ (−β, β). It is easy to see that

‖p‖L2(K) ≤ ‖p̃‖L2(M)

and if p ∈ C∞
0 (K(α′, β′)) then p̃ ∈ C∞

0 (M(α′, β′)). Moreover, if p ∈ C∞
0 (K(α′, β′)) then

supp(p̃) ⊂M(α′, β′).
For p ∈ C∞

0 (K), v ∈ C∞
0 (M) and i = 1, 2, · · · , n− 1, we have∫

M

∂p̃

∂xi
(x′, xn)v(x

′, xn)dx

=

∫
K

∂p

∂xi
(x′, xn)v(x

′, xn)dx+

∫
K−

(
λ1
∂p

∂xi
(x′,−xn) + λ2

∂p

∂xi

(
x′,−xn

2

))
v(x′, xn)dx

=

∫
K

∂p

∂xi
(x′, xn) (v(x

′, xn) + λ1v(x
′,−xn) + 2λ2v(x

′,−2xn)) dx

=

∫
K

∂p

∂xi
(x′, xn)P1v(x

′, xn)dx
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where K− := B(α)× (−β, 0) and P1v(x
′, xn) := v(x′, xn)+λ1v(x

′,−xn)+2λ2v(x
′,−2xn).

By (A.2.6), we obtain that for x′ ∈ B(α)

P1v(x
′, 0) = v(x′, 0) + λ1v(x

′, 0) + 2λ2v(x
′, 0) = (1 + λ1 + 2λ2)v(x

′, 0) = 0.

It implies that P1v ∈ H1
0 (K). Moreover, it follows that

‖P1v‖H1(K) ≤ c1‖v‖H1(M) for all v ∈ C∞
0 (M).

Thus we can extend P1 as a bounded operator on H1
0 (M), which satisfies that∫

M

∂p̃

∂xi
(x)v(x)dx =

∫
K

∂p

∂xi
(x)P1v(x)dx

for all v ∈ H1
0 (M) and i = 1, 2, · · · , n − 1. The same argument works for

∫
M
p̃vdx. It

implies that

‖p̃‖H−1(M) ≤ c1‖p‖H−1(K),

∥∥∥∥ ∂p̃∂xi
∥∥∥∥
H−1(M)

≤ c1

∥∥∥∥ ∂p∂xi
∥∥∥∥
H−1(K)

for i = 1, 2, · · · , n− 1. For v ∈ C∞
0 (M), we have∫

M

∂p̃

∂xn
(x′, xn)v(x

′, xn)dx

=

∫
K

∂p

∂xn
(x′, xn)v(x

′, xn)dx+

∫
K−

(
−λ1

∂p

∂xn
(x′,−xn)−

λ2
2

∂p

∂xn

(
x′,−xn

2

))
v(x′, xn)dx

=

∫
K

∂p

∂xn
(x′, xn) (v(x

′, xn)− λ1v(x
′,−xn)− λ2v(x

′,−2xn)) dx

=

∫
K

∂p

∂xn
(x′, xn)P2v(x

′, xn)dx

where P2v(x
′, xn) := v(x′, xn)− λ1v(x

′,−xn)− λ2v(x
′,−2xn). By (A.2.6), we obtain that

for x′ ∈ B(α)

P2v(x
′, 0) = v(x′, 0)− λ1v(x

′, 0)− λ2v(x
′, 0) = (1− λ1 − λ2)v(x

′, 0) = 0.

It implies that P2v ∈ H1
0 (K). Moreover, it follows that

‖P2v‖H1(K) ≤ c2‖v‖H1(M) for all v ∈ C∞
0 (M).

Thus we can extend P2 as a bounded operator on H1
0 (M), which satisfies that∫

M

∂p̃

∂xn
(x)v(x)dx =

∫
K

∂p

∂xn
(x)P2v(x)dx

for all v ∈ H1
0 (M). It implies∥∥∥∥ ∂p̃∂xn

∥∥∥∥
H−1(M)

≤ c2

∥∥∥∥ ∂p∂xn
∥∥∥∥
H−1(K)

.

By Lemmas A.2.7 and A.2.8, the following lemma holds.
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Lemma A.2.9. Let 0 < α′ < α, 0 < β′ < β and K = K(α, β). There exists a constant
c = c(α, β, α′, β′) > 0 such that

‖p‖L2(K) ≤ c(‖p‖H−1(K) + ‖∇p‖H−1(K)n) for all p ∈ C∞
0 (K(α′, β′)).

Proof. By Lemma A.2.8, we have p̃ ∈ C∞
0 (M(α′, β′)). Here, it is immediate to check that

M(α′, β′) ⊂M =M(α, β). By Lemmas A.2.7 and A.2.8, it follows that

‖p‖L2(K) ≤ ‖p̃‖L2(M) ≤ c1(‖p̃‖H−1(M) + ‖∇p̃‖H−1(M)n) ≤ c2(‖p‖H−1(K) + ‖∇p‖H−1(K)n).

A.2.4 Local Lipschitz boundary

We shall consider a neighborhood of the boundary Γ. For 0 < α′ ≤ α and 0 < β′ ≤ β, let
a function g : ∆(α) → R be Lipschitz continuous and let

U+
g (α

′, β′) := {x = (x′, xn) ∈ Rn | x′ ∈ B(α′), g(x′) < xn < g(x′) + β′}.

In this subsection, we make a mapping K(α′, β′) → U+
g (α

′, β) and extend Lemma
A.2.9 to U+

g (α, β). The simple mapping K(α, β) 3 (y′, yn) 7→ (y′, g(y′) + yn) ∈ U+
g (α, β)

is not smooth enough to prove the lemma if g is not sufficient smooth, thus we define a
mapping K(α′, β′) → U+

g (α
′, β) using mollifiers according to the Nečas’s proof.

For f ∈ L1(B(h)) and g ∈ L∞(B(α)) with 0 < α′ < α and h = α− α′, one can define
the convolution product of f and g;

(f ∗ g)(x′) :=
∫
B(h)

f(y′)g(x′ − y′)dy′ for a.e. x′ ∈ B(α′).

It is easy to see that

‖f ∗ g‖L∞(B(α′)) ≤ ‖f‖L1(B(h))‖g‖L∞(B(α)). (A.2.7)

Let ρ1 ∈ C∞
0 (Rn−1) satisfy that supp(ρ1) ⊂ B(1), ρ1 ≥ 0 on Rn−1 and

∫
B(1)

ρ1 = 1; for

example the function

ρ1(x
′) :=

 P0 exp

(
1

|x′|2 − 1

)
if |x′| < 1,

0 if |x′| ≥ 1,

where P0 = 1/
∫
Rn−1 exp(

1
|x′|2−1

)dx′. For h > 0, we set

ρh(x
′) :=

1

hn−1
ρ1

(
x′

h

)
for x′ ∈ Rn−1.

We show some properties of the mollifiers.
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Proposition A.2.10. For h > 0, we have∫
B(h)

ρh dx
′ = 1. (A.2.8)

Furthermore, there exists a constant c > 0 independent of h such that∣∣∣∣∂ρh∂xi
(x′)

∣∣∣∣ < c

hn
,

∣∣∣∣∂ρh∂h (x′)

∣∣∣∣ < c

hn
for all h > 0, x′ ∈ Rn−1, i = 1, · · · , n− 1.

Proof. We compute∫
B(h)

ρh dx
′ =

1

hn−1

∫
B(h)

ρ1

(
x′

h

)
dx′ =

1

hn−1

∫
B(1)

ρ1(x
′)hn−1dx′ =

∫
B(1)

ρ1(x
′)dx′ = 1.

For x′ = (x1, · · · , xn−1) ∈ B(h) and i = 1, · · · , n− 1, we have

∂ρh
∂xi

(x′) =
∂

∂xi

(
1

hn−1
ρ1

(
x′

h

))
=

1

hn
∂ρ1
∂xi

(
x′

h

)
,

∂ρh
∂h

(x′) = −n− 1

hn
ρ1

(
x′

h

)
+

1

hn−1

n−1∑
j=1

(
−xj
h2

) ∂ρ1
∂xj

(
x′

h

)
=

1

hn

{
(1− n)ρ1

(
x′

h

)
−

n−1∑
j=1

xj
h

∂ρ1
∂xj

(
x′

h

)}
.

Since ρ1 ∈ C∞(Rn−1) and supp(ρ1) ⊂ B(1), functions ∂ρ1
∂xi

(
x′

h

)
and ρ1

(
x′

h

)
are bounded

on B(h). Therefore, there exists a constant c > 0 such that∣∣∣∣∂ρh∂xi
(x′)

∣∣∣∣ < c

hn
,

∣∣∣∣∂ρh∂h (x′)

∣∣∣∣ < c

hn
for all h > 0, x′ ∈ Rn−1, i = 1, · · · , n− 1.

Lemma A.2.11. Let 0 < α′ < α. For all Lipschitz continuous function g : B(α) → R,
there exists a constant M =M(α, g) > 0 such that∣∣∣∣ ∂∂xi (ρh ∗ g)(x′)

∣∣∣∣ < M,

∣∣∣∣ ∂∂h(ρh ∗ g)(x′)
∣∣∣∣ < M

for all 0 < h < α− α′ and x′ ∈ B(α′).

Proof. For a Lipschitz constant cg for g, it follows that∣∣∣∣ ∂g∂xi (x′)
∣∣∣∣ ≤ cg a.e. for x′ ∈ B(α)

with i = 1, · · · , n− 1. For h > 0, x′ ∈ B(α′) and i = 1, · · · , n− 1,∣∣∣∣ ∂∂xi (ρh ∗ g)(x′)
∣∣∣∣ =

∣∣∣∣ ∂∂xi
∫
B(h)

ρh(y
′)g(x′ − y′)dy′

∣∣∣∣
=

∣∣∣∣∫
B(h)

ρh(y
′)
∂g

∂xi
(x′ − y′)dy′

∣∣∣∣
≤

∫
B(h)

∣∣∣∣ρh(y′) ∂g∂xi (x′ − y′)

∣∣∣∣ dy′
≤ cg

∫
B(h)

|ρh(y′)|dy′ = cg,
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∣∣∣∣ =

∣∣∣∣ ∂∂h
∫
B(h)

ρh(y
′)g(x′ − y′)dy′

∣∣∣∣
=

∣∣∣∣ ∂∂h
∫
B(h)

1

hn−1
ρ1

(
y′

h

)
g(x′ − y′)dy′

∣∣∣∣
=

∣∣∣∣ ∂∂h
∫
B(1)

1

hn−1
ρ1(z

′)g(x′ − hz′)hn−1dz′
∣∣∣∣

=

∣∣∣∣∫
B(1)

∂

∂h
{ρ1(z′)g(x′ − hz′)}dz′

∣∣∣∣
=

∣∣∣∣∣
∫
B(1)

ρ1(z
′)
n−1∑
j=1

zj
∂g

∂zj
(x′ − hz′)dz′

∣∣∣∣∣
≤

∫
B(1)

|ρ1(z′)|
n−1∑
j=1

|zj|
∣∣∣∣ ∂g∂zj (x′ − hz′)

∣∣∣∣ dz′
≤ (n− 1)cg

∫
B(1)

|ρ1(z′)|dz′ = (n− 1)cg.

Lemma A.2.12. Let 0 < α′ < α. For all Lipschitz continuous function g : B(α) → R,
there exists a constant c = c(α, g) > 0 such that∥∥∥∥ ∂2

∂xi∂xj
(ρh ∗ g)

∥∥∥∥
L∞(B(α′))

≤ c

h
,∥∥∥∥ ∂2

∂xi∂h
(ρh ∗ g)

∥∥∥∥
L∞(B(α′))

≤ c

h
,∥∥∥∥ ∂2∂h2 (ρh ∗ g)

∥∥∥∥
L∞(B(α′))

≤ c

h

for all i, j = 1, · · · , n− 1 and 0 < h < α− α′.

Proof. For i, j = 1, · · · , n− 1 and 0 < h < α− α′, by (A.2.7), we obtain∥∥∥∥ ∂2

∂xi∂xj
(ρh ∗ g)

∥∥∥∥
L∞(B(α′))

=
1

h

∥∥∥∥(h∂ρh∂xj

)
∗ ∂g

∂xi

∥∥∥∥
L∞(B(α′))

≤ 1

h

∥∥∥∥h∂ρh∂xj

∥∥∥∥
L1(B(h))

∥∥∥∥ ∂g∂xi
∥∥∥∥
L∞(B(α))

≤ cg
h

∥∥∥∥h∂ρh∂xj

∥∥∥∥
L1(B(h))

,∥∥∥∥ ∂2

∂xi∂h
(ρh ∗ f)

∥∥∥∥
L∞(B(α′))

≤ 1

h

∥∥∥∥h∂ρh∂h
∥∥∥∥
L1(B(h))

∥∥∥∥ ∂g∂xi
∥∥∥∥
L∞(B(α))

≤ cg
h

∥∥∥∥h∂ρh∂xj

∥∥∥∥
L1(B(h))

.

By Proposition A.2.10, it follows that∥∥∥∥h∂ρh∂xj

∥∥∥∥
L1(B(h))

= h

∫
B(h)

∣∣∣∣∂ρh∂xj
(x′)

∣∣∣∣ dx ≤ c

hn−1

∫
B(h)

dx = c|B(1)|,
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where |B(1)| is the volume of an (n− 1)-dimensional unit ball. Hence, we get∥∥∥∥ ∂2

∂xi∂xj
(ρh ∗ g)

∥∥∥∥
L∞(B(α′))

≤ ccg|B(1)|
h

,∥∥∥∥ ∂2

∂xi∂h
(ρh ∗ g)

∥∥∥∥
L∞(B(α′))

≤ ccg|B(1)|
h

.

For all x′ ∈ B(α′), we have

∂

∂h
(ρh ∗ g)(x′) =

∫
B(1)

ρ1(z
′)
n−1∑
k=1

zi
∂g

∂zk
(x′ − hz′)dz′ =

n−1∑
k=1

∫
B(h)

yk
h
ρh(y

′)
∂g

∂yk
(x′ − y′)dy′.

Thus, it holds that

∂2

∂h2
(ρh ∗ g)(x′) =

1

h

n−1∑
k=1

∫
B(h)

(
−yk
h
ρh(y

′) +
yk
h
h
∂ρh
∂h

(y′)

)
∂g

∂yk
(x′ − y′)dy′.

By (A.2.7) and Proposition A.2.10, it follows that∥∥∥∥ ∂2∂h2 (ρh ∗ g)
∥∥∥∥
L∞(B(α′))

≤ 1

h

n−1∑
k=1

∥∥∥∥ ∂g∂yk
∥∥∥∥
L∞(B(α))

{∫
B(h)

∣∣∣yk
h
ρh(y

′)
∣∣∣ dy′ + ∫

B(h)

∣∣∣∣ykh h∂ρh∂h (y′)

∣∣∣∣ dy′}
≤ cg

h

n−1∑
k=1

{∫
B(h)

|ρh(y′)|dy′ +
∫
B(h)

c

hn−1
dy′
}

=
(n− 1)cg(1 + c|B(1)|)

h
.

For 0 < α′ < α and 0 < β′ < β, we make a mapping K(α′, β′) → U+
g (α

′, β) using the
mollifiers according to the Nečas’s proof.

Lemma A.2.13. Let 0 < α′ < α and 0 < β′ < β. For all Lipschitz continuous function
g : B(α) → R, there exist two constants δ = δ(α, β, α′, β′, g),M = M(α, g) > 0 such that
the mapping T : K(α′, β′) → U+

g (α
′, β);

T (y) := (y′, G(y′, δyn) + (1 + δM)yn) for y = (y′, yn) ∈ K(α′, β′),

where

G(y′, h) := (ρh ∗ g)(y′) =
∫
B(h)

ρh(ξ
′)g(y′ − ξ′)dξ′,

satisfies the following statements:

• The mapping T : K(α′, β′) → V (α′, β′) := T (K(α′, β′)) is C∞-diffeomorphism.

• U+
g (α

′, β′) ⊂ V (α′, β′) ⊂ U+
g (α

′, β) (Fig. A.1).
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• Let (x1, · · · , xn) = T (y1, · · · , yn) for (y1, · · · , yn) ∈ K(α′, β′). The Jacobian Jac(T )
:= det(∂xi

∂yj
)1≤i,j≤n satisfies

1 ≤ Jac(T ) ≤ 1 + 2δM.

Figure A.1: Sketch of the mapping T

Proof. Since ρh ∈ C∞
0 (Rn−1) and g is a Lipschitz continuous function, the function G is

infinitely differentiable on B(α′)× (0, α− α′). By Lemma A.2.11, there exists a constant
M > 0 such that

−M ≤ ∂G

∂h
(y′, h) ≤M (A.2.9)

for all y′ ∈ B(α′) and 0 < h < α− α′. Let

δ := min

{
1

2M

(
β

β′ − 1

)
,
α− α′

β′

}
.
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It is easy to see that δβ′ ≤ α− α′, hence, T is well-defined. Since G is infinitely differen-
tiable on B(α′)× (0, α− α′), T is also infinitely differentiable on K(α′, β′).

For y = (y′, yn) ∈ K(α′, β′), by equation (A.2.9), it follows that

1 = −δM + 1 + δM ≤ ∂G

∂yn
(y′, δyn) + 1 + δM ≤ δM + 1 + δM = 1 + 2δM.

Hence, yn 7→ T (y′, yn) is strictly increasing for all y′ ∈ B(α′);

1 ≤ ∂

∂yn
{G(y′, δyn) + (1 + δM)yn} ≤ 1 + 2δM for all (y′, yn) ∈ K(α′, β′). (A.2.10)

Therefore, T is a bijective mapping from K(α′, β′) to V (α′, β′) = T (K(α′, β′)). Moreover,
T : K(α′, β′) → V (α′, β′) is C∞-diffeomorphism.

Integrating with respect to yn from 0 to β′, we get

β′ ≤ G(y′, δβ′)− g(y′) + (1 + δM)β′ ≤ (1 + 2δM)β′ ≤ β

for all y′ ∈ B(α′). Hence, we obtain U+
g (α

′, β′) ⊂ V (α′, β′) ⊂ U+
g (α

′, β).
Let (x1, · · · , xn) = T (y1, · · · , yn) for (y′, yn) = (y1, · · · , yn) ∈ K(α′, β′). For i =

1, · · · , n− 1 and j = 1, · · · , n, it follows that

∂xi
∂yj

(y′, yn) =

{
1 if i = j,
0 if i 6= j,

∂xn
∂yi

(y′, yn) =
∂G

∂yi
(y′, δyn),

∂xn
∂yn

(y′, yn) =
∂G

∂yn
(y′, δyn) + 1 + δM.

(A.2.11)

Thus, the Jacobian of T ;

Jac(T )(y′, yn) =
∂G

∂yn
(y′, δyn) + 1 + δM

satisfies
0 < 1 ≤ Jac(T )(y′, yn) ≤ 1 + 2δM.

We recall the following theorem.

Theorem A.2.14. [66, Lemma 3.2] Let U, V ⊂ Rn be two bounded open sets. If a
Lipschitz continuous mapping Φ : U → V is bijective and satisfies that Φ−1 is also a
Lipschitz continuous mapping, then the mapping H1(V ) 3 f 7→ f ◦ Φ ∈ H1(U) is a
homeomorphism between Banach spaces. Furthermore, the mapping H1

0 (V ) 3 f 7→ f ◦Φ ∈
H1

0 (U) is also a homeomorphism between Banach spaces.

By Lemma A.2.13 and Theorem A.2.14, we obtain the following lemma.

Lemma A.2.15. For the mapping T : K(α′, β′) → V (α′, β′) defined in Lemma A.2.13,
the mapping H1

0 (V (α′, β′)) 3 χ 7→ χ ◦ T ∈ H1
0 (K(α′, β′)) is isomorphic between Banach

spaces. In particular, there exists a constant c = c(α, β, α′, β′, g) > 0 such that

1

c
‖χ‖H1(V (α′,β′)) ≤ ‖ψ‖H1(K(α′,β′)) ≤ c‖χ‖H1(V (α′,β′))

for all ψ ∈ H1
0 (K(α′, β′)) and χ = ψ ◦ T−1.
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Proof. By (A.2.11), ∂xi
∂yj

is bounded in K(α′, β′) and ∂yi
∂xj

is bounded in V (α′, β′) for all

i, j = 1, · · · , n. By Theorem A.2.14, H1
0 (V (α′, β′)) 3 χ 7→ χ ◦ T ∈ H1

0 (K(α′, β′)) is
isomorphic.

We give the proof of a Hardy-type inequality.

Lemma A.2.16. Let α, β > 0 and φ ∈ H1
0 (K(α, β)). Then, φ(x1, · · · , xn)/xn ∈ L2(K(α, β))

and ∥∥∥∥ φxn
∥∥∥∥
L2(K(α,β))

≤ 2

∥∥∥∥ ∂φ∂xn
∥∥∥∥
L2(K(α,β))

.

Proof. For φ ∈ C∞
0 (K(α, β)), we have∥∥∥∥ φxn
∥∥∥∥2
L2(K(α,β))

=

∫
B(α)

dx′
∫ β

0

dxn

∣∣∣∣φ(x′, xn)xn

∣∣∣∣2
= −

∫
B(α)

dx′
∫ β

0

dxn|φ(x′, xn)|2
d

dxn

(
1

xn

)
= 2

∫
B(α)

dx′
∫ β

0

dxn
∂φ

∂xn
(x′, xn)

φ(x′, xn)

xn

= 2

∥∥∥∥ ∂φ∂xn
∥∥∥∥
L2(K(α,β))

∥∥∥∥ φxn
∥∥∥∥
L2(K(α,β))

.

Hence, ∥∥∥∥ φxn
∥∥∥∥
L2(K(α,β))

≤ 2

∥∥∥∥ ∂φ∂xn
∥∥∥∥
L2(K(α,β))

for all φ ∈ C∞
0 (K(α, β)).

Since C∞
0 (K(α, β)) is dense in H1

0 (K(α, β)), we obtain the result.

We use the following lemmas.

Lemma A.2.17. For the mapping T : K(α′, β′) 3 (y1, · · · , yn) 7→ (x1, · · · , xn) ∈ V (α′, β′)
defined in Lemma A.2.13, there exists a constant c = c(α, β, α′, β′, g) > 0 such that∥∥∥∥∂xn∂yi

ψ

Jac(T )

∥∥∥∥
H1(K)

≤ c

∥∥∥∥ ∂ψ∂yn
∥∥∥∥
L2(K)

,

∥∥∥∥ ψ

Jac(T )

∥∥∥∥
H1(K)

≤ c

∥∥∥∥ ∂ψ∂yn
∥∥∥∥
L2(K)

for all ψ ∈ H1
0 (K) and i = 1, · · · , n− 1, where K := K(α′, β′).

Proof. We compute∥∥∥∥∂xn∂yi

ψ

Jac(T )

∥∥∥∥
H1(K)

≤ c1

(∥∥∥∥∂xn∂yi

ψ

Jac(T )

∥∥∥∥
L2(K)

+
n∑
j=1

∥∥∥∥ ∂

∂yj

(
∂xn
∂yi

ψ

Jac(T )

)∥∥∥∥
L2(K)

)

≤ c1

(
c2‖ψ‖L2(K) +

n∑
j=1

(∥∥∥∥ ∂

∂yj

(
∂xn/∂yi
Jac(T )

)
ψ

∥∥∥∥
L2(K)

+

∥∥∥∥∂xn/∂yiJac(T )

∂ψ

∂yj

∥∥∥∥
L2(K)

))

≤ c1

(
c2‖ψ‖H1(K) +

n∑
j=1

(∥∥∥∥ ∂

∂yj

(
∂xn/∂yi
∂xn/∂yn

)
ψ

∥∥∥∥
L2(K)

+ c2‖ψ‖H1(K)

))

≤ c1

(
c2(n+ 1)‖ψ‖H1(K) +

n∑
j=1

∥∥∥∥ ∂

∂yj

(
∂xn/∂yi
∂xn/∂yn

)
ψ

∥∥∥∥
L2(K)

)
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for two constants c1, c2 > 0. Here, we have∥∥∥∥ ∂

∂yj

(
∂xn/∂yi
∂xn/∂yn

)
ψ

∥∥∥∥
L2(K)

=

∥∥∥∥∥∥∥∥∥
∂2xn
∂yj∂yi

∂xn
∂yn

− ∂xn
∂yi

∂2xn
∂yj∂yn(

∂xn
∂yn

)2 ψ

∥∥∥∥∥∥∥∥∥
L2(K)

≤ c3

(∥∥∥∥ ∂2xn
∂yj∂yi

ψ

∥∥∥∥
L2(K)

+

∥∥∥∥ ∂2xn
∂yj∂yn

ψ

∥∥∥∥
L2(K)

)

= c3

(∥∥∥∥yn ∂2xn
∂yj∂yi

ψ

yn

∥∥∥∥
L2(K)

+

∥∥∥∥yn ∂2xn
∂yj∂yn

ψ

yn

∥∥∥∥
L2(K)

)

≤ c3

(∥∥∥∥yn ∂2xn
∂yj∂yi

∥∥∥∥
L∞(K)

∥∥∥∥ ψyn
∥∥∥∥
L2(K)

+

∥∥∥∥yn ∂2xn
∂yj∂yn

∥∥∥∥
L∞(K)

∥∥∥∥ ψyn
∥∥∥∥
L2(K)

)
for a constant c3 > 0. By Lemma A.2.12, there exists a constant c4 > 0 such that∥∥∥∥yn ∂2xn

∂yj∂yi

∥∥∥∥
L∞(K)

≤ c4

for all i, j = 1, · · · , n. By Lemma A.2.16, it holds that∥∥∥∥ ψyn
∥∥∥∥
L2(K)

≤ 2

∥∥∥∥ ∂ψ∂yn
∥∥∥∥
L2(K)

≤ 2‖ψ‖H1(K).

Hence, we obtain that∥∥∥∥∂xn∂yi

ψ

Jac(T )

∥∥∥∥
H1(K)

≤ c1

(
c2(n+ 1)‖ψ‖H1(K) +

n∑
j=1

∥∥∥∥ ∂

∂yj

(
∂xn/∂yi
∂xn/∂yn

)
ψ

∥∥∥∥
L2(K)

)

≤ c1

(
c2(n+ 1)‖ψ‖H1(K) +

n∑
j=1

(2c4‖ψ‖H1(K) + 2c4‖ψ‖H1(K))

)
= c1(c2(n+ 1) + 4c4n)‖ψ‖H1(K)

for all ψ ∈ H1
0 (K) and i = 1, · · · , n − 1. The following inequality can be proven in the

same way: ∥∥∥∥ ψ

Jac(T )

∥∥∥∥
H1(K)

≤ c5‖ψ‖H1(K)

for all ψ ∈ H1
0 (K).

Lemma A.2.18. For the mapping T : K(α′, β′) → V (α′, β′) defined in Lemma A.2.13,
there exists a constant c = c(α, β, α′, β′, g) > 0 such that

‖q‖H−1(K) + ‖∇q‖H−1(K)n ≤ c
(
‖p‖H−1(V ) + ‖∇p‖H−1(V )n

)
for all p ∈ C∞

0 (V ), where q := p ◦ T (∈ C∞
0 (K)), K := K(α′, β′) and V := V (α′, β′).
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Proof. For ψ ∈ H1
0 (K) and χ = ψ ◦ T−1, we obtain

∫
K

q(y)ψ(y)dy =

∫
V

p(x)χ(x)
1

(Jac(T ))(T−1(x))
dx,∫

K

∂q

∂yi
(y)ψ(y)dy =

∫
V

n∑
j=1

∂p

∂xj
(x)

∂xj
∂yi

(T−1(x)) χ(x)
1

(Jac(T ))(T−1(x))
dx

=

∫
V

{
∂p

∂xi
(x) +

∂p

∂xn
(x)

∂xn
∂yi

(T−1(x))

}
χ(x)

(Jac(T ))(T−1(x))
dx,∫

K

∂q

∂yn
(y)ψ(y)dy =

∫
V

n∑
j=1

∂p

∂xj
(x)

∂xj
∂yn

(T−1(x)) χ(x)
1

(Jac(T ))(T−1(x))
dx

=

∫
V

∂p

∂xn
(x)

∂xn
∂yn

(T−1(x))
χ(x)

∂xn
∂yn

(T−1(x))

dx

=

∫
V

∂p

∂xn
(x)χ(x)dx

for i = 1, · · · , n−1. By Lemmas A.2.15 and A.2.17, there exist three constants c1, c2, c3 >
0 such that

‖χ‖H1(V ) ≤ c1‖ψ‖H1(K)∥∥∥∥∂xn∂yi
◦ T−1 χ

(Jac(T )) ◦ T−1

∥∥∥∥
H1(V )

≤ c2‖χ‖H1(V ),∥∥∥∥ χ

(Jac(T )) ◦ T−1

∥∥∥∥
H1(V )

≤ c3‖χ‖H1(V )

(A.2.12)

for all χ ∈ H1
0 (V ) and i = 1, · · · , n− 1. Thus we have

‖q‖H−1(K) ≤ sup
0 ̸=ψ∈H1

0 (K)

∫
K

q(y)ψ(y)dy

‖ψ‖H1(K)

≤ c1 sup
0 ̸=χ∈H1

0 (V )

∫
V

p(x)χ(x)
1

(Jac(T ))(T−1(x))
dx

‖χ‖H1(V )

≤ c1c3 sup
0 ̸=χ∈H1

0 (V )

∫
V

p(x)χ(x)
1

(Jac(T ))(T−1(x))
dx∥∥∥∥ χ

(Jac(T )) ◦ T−1

∥∥∥∥
H1(V )

≤ c1c3‖p‖H−1(V ),
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∥∥∥∥ ∂q∂yi
∥∥∥∥
H−1(K)

≤ sup
ψ∈H1

0 (K)

∫
K

∂q

∂yi
(y)ψ(y)dy

‖ψ‖H1(K)

≤ c1 sup
0 ̸=χ∈H1

0 (V )

∫
V

{
∂p

∂xi
(x) +

∂p

∂xn
(x)

∂xn
∂yi

(T−1(x))

}
χ(x)

(Jac(T ))(T−1(x))
dx

‖χ‖H1(V )

≤ c1 sup
0 ̸=χ∈H1

0 (V )

∫
V

∂p

∂xi
(x)

χ(x)

(Jac(T ))(T−1(x))
dx

‖χ‖H1(V )

+c1 sup
0 ̸=χ∈H1

0 (V )

∫
V

∂p

∂xn
(x)

∂xn
∂yi

(T−1(x))
χ(x)

(Jac(T ))(T−1(x))
dx

‖χ‖H1(V )

≤ c1c3 sup
0 ̸=χ∈H1

0 (V )

∫
V

∂p

∂xi
(x)

χ(x)

(Jac(T ))(T−1(x))
dx∥∥∥∥ χ

(Jac(T )) ◦ T−1

∥∥∥∥
H1(V )

+c1c2 sup
0 ̸=χ∈H1

0 (V )

∫
V

∂p

∂xn
(x)

∂xn
∂yi

(T−1(x))
χ(x)

(Jac(T ))(T−1(x))
dx∥∥∥∥ χ

(Jac(T )) ◦ T−1

∂xn
∂yi

◦ T−1

∥∥∥∥
H1(V )

≤ c4

(∥∥∥∥ ∂p∂xi
∥∥∥∥
H−1(V )

+

∥∥∥∥ ∂p∂xn
∥∥∥∥
H−1(V )

)
,

∥∥∥∥ ∂q∂yn
∥∥∥∥
H−1(K)

≤ sup
0 ̸=ψ∈H1

0 (K)

∫
K

∂q

∂yn
(y)ψ(y)dy

‖ψ‖H1(K)

≤ c1 sup
0 ̸=χ∈H1

0 (V )

∫
V

∂p

∂xn
(x)χ(x)dx

‖χ‖H1(V )

= c1

∥∥∥∥ ∂p∂xn
∥∥∥∥
H−1(V ),

for i = 1, · · · , n− 1, where c4 := c1 max{c2, c3}. Finally, by Lemma A.2.1, it follows that

‖q‖H−1(K) + ‖∇q‖H−1(K)n ≤ ‖q‖H−1(K) +
n∑
i=1

∥∥∥∥ ∂q∂yi
∥∥∥∥
H−1(K)

≤ c5

(
‖p‖H−1(V ) +

n∑
i=1

∥∥∥∥ ∂p∂xi
∥∥∥∥
H−1(V )

)
≤

√
nc5
(
‖p‖H−1(V ) + ‖∇p‖H−1(V )n

)
for all p ∈ C∞

0 (V ) and q := p ◦ T (∈ C∞
0 (K)), where c5 := c1 + (n− 1)c4.

Lemma A.2.19. Let 0 < α′ < α, 0 < β′ < β and let g : B(α) → R be a Lipschitz
continuous function. There exists a constant c = c(α, β, α′, β′, g) > 0 such that

‖p‖L2(U) ≤ c(‖p‖H−1(U) + ‖∇p‖H−1(U)n) for all p ∈ C∞
0 (U+

g (α
′, β′)),
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where U = U+
g (α, β).

Proof. Let α′
1, α

′
2, β

′
1 and β′

2 satisfy α′
1 := α′ < α′

2 < α, β ′
1 := β′ < β′

2 < β and let
K := K(α′

2, β
′
2). By Lemma A.2.11, there exists a C∞-diffeomorphic map T : K →

V := V (α′
2, β

′
2). Let us denote q = p ◦ T for p ∈ C∞

0 (U+
g (α

′
1, β

′
1)). We have supp(p) ⊂

U+
g (α

′
2, β

′
2) ⊂ V , thus,

‖p‖L2(U) = ‖p‖L2(V ). (A.2.13)

Since L2(V ) 3 p 7→ p ◦ T ∈ L2(K) is isomorphic between Banach spaces, we get the
following inequality:

‖p‖L2(V ) ≤ c1‖q‖L2(K). (A.2.14)

By Lemma A.2.13, we have U+
g (α

′
1, β

′
1) ⊂ T (K(α′

1, β
′
1)), hence, supp(q) ⊂ K(α′

1, β
′
1). By

Lemma A.2.9, there exists a constant c2 > 0 such that

‖q‖L2(K) ≤ c2(‖q‖H−1(K) + ‖∇q‖H−1(K)n). (A.2.15)

Moreover, by Lemma A.2.18, there exists a constant c3 > 0 such that

‖q‖H−1(K) + ‖∇q‖H−1(K)n ≤ c3(‖p‖H−1(V ) + ‖∇p‖H−1(V )n). (A.2.16)

Therefore, by (A.2.13), (A.2.14), (A.2.15) and (A.2.16), it follows that

‖p‖L2(U) ≤ c1c2c3(‖p‖H−1(V ) + ‖∇p‖H−1(V )n)
≤ c1c2c3(‖p‖H−1(U) + ‖∇p‖H−1(U)n)

for all p ∈ C∞
0 (U+

g (α
′
1, β

′
1)).

A.2.5 Original Nečas inequality

We prove Lemma 2.2.13 which is the goal of this appendix.

Theorem A.2.20 (Reshown, see Lemma 2.2.13). If Ω is a bounded Lipschitz domain,
then there exists a constant c = c(Ω) > 0 such that

‖p‖L2(Ω) ≤ c(‖p‖H−1(Ω) + ‖∇p‖H−1(Ω)n) for all p ∈ L2(Ω).

Proof. By Lemma A.2.2, it is sufficient to prove that there exists a constant c1 > 0 such
that

‖p‖L2(Ω) ≤ c1(‖p‖H−1(Ω) + ‖∇p‖H−1(Ω)n) for all p ∈ C∞
0 (Ω).

By Definition A.1.1, we have Γ ⊂
⋃m
r=1 Ur(α, β). We can choose two real numbers 0 < α′ <

α, 0 < β′ < β and an open subset U0(α
′, β′) (U0(α′, β′) ⊂ Ω) such that Ω ⊂

⋃m
r=0 Ur(α

′, β′).
By Lemma A.1.1, there exist functions η0, · · · , ηm ∈ C∞(Rn) such that

ηr ∈ C∞
0 (Ur(α

′, β′)) for all r = 0, 1, · · · ,m,
0 ≤ ηr(x) ≤ 1 for all r = 0, 1, · · · ,m, x ∈ Ur(α

′, β′),
m∑
r=0

ηr(x) = 1 x ∈ Ω.
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Let pr := pηr ∈ C∞
0 (U+

r (α
′, β′)) for r = 0, 1, · · · ,m. Then, it follows that

‖p‖L2(Ω) =

∥∥∥∥∥
m∑
r=0

pr

∥∥∥∥∥
L2(Ω)

≤
m∑
r=0

‖pr‖L2(Ω)

for all p ∈ C∞
0 (Ω). On the other hand, for ψ ∈ H1

0 (Ω), we have∫
Ω

pηrψ dx ≤ ‖p‖H−1(Ω)‖ηrψ‖H1(Ω)

= c2‖p‖H−1(Ω)‖ηr‖H1(Ω)‖ψ‖H1(Ω),

and ∫
Ω

∂

∂xi
(pηr)ψ dx

≤
∣∣∣∣∫

Ω

∂p

∂xi
ηrψ dx

∣∣∣∣+ ∣∣∣∣∫
Ω

p
∂ηr
∂xi

ψ dx

∣∣∣∣
≤

∥∥∥∥ ∂p∂xi
∥∥∥∥
H−1(Ω)

‖ηrψ‖H1(Ω) + ‖p‖H−1(Ω)

∥∥∥∥∂ηr∂xi
ψ

∥∥∥∥
H1(Ω)

≤ c2

(∥∥∥∥ ∂p∂xi
∥∥∥∥
H−1(Ω)

‖ηr‖H1(Ω) + ‖p‖H−1(Ω)

∥∥∥∥∂ηr∂xi

∥∥∥∥
H1(Ω)

)
‖ψ‖H1(Ω)

for all i = 1, 2, · · · , n and a constant c2 > 0. Hence, we obtain

‖pr‖H−1(Ω) + ‖∇pr‖H−1(Ω)n

≤ ‖pηr‖H−1(Ω) +
n∑
i=1

∥∥∥∥ ∂

∂xi
(pηr)

∥∥∥∥
H−1(Ω)

= sup
ψ∈H1

0 (Ω), ∥ψ∥H1(Ω)=1

∫
Ω

pηrψ dx+
n∑
i=1

sup
ψ∈H1

0 (Ω), ∥ψ∥H1(Ω)=1

∫
Ω

∂

∂xi
(pηr)ψ dx

≤ c2,r

(
‖p‖H−1(Ω) +

n∑
i=1

∥∥∥∥ ∂p∂xi
∥∥∥∥
H−1(Ω)

)
≤

√
nc2,r(‖p‖H−1(Ω) + ‖∇p‖H−1(Ω)n),

where c2,r := c2

(
‖ηr‖H1(Ω) + n

∑n
i=1

∥∥∥∂ηr∂xi

∥∥∥
H1(Ω)

)
. Thus it suffices to show that for r =

0, 1, · · · ,m,

‖pr‖L2(Ω) ≤ c3(‖pr‖H−1(Ω) + ‖∇pr‖H−1(Ω)n) for all pr ∈ C∞
0 (U+

r (α
′, β′)). (A.2.17)

(i) The case r = 0.
We have supp(p0) ⊂ U0(α

′, β′) and U0(α′, β′) ⊂ Ω. By Lemma A.2.7, the inequality
(A.2.17) holds with r = 0.

(i) The case r = 1, 2, · · · ,m.
Let Ur := U+

r (α, β). By Lemma A.2.19, we obtain (A.2.17);

‖pr‖L2(Ω) = ‖pr‖L2(Ur)

≤ c4(‖pr‖H−1(Ur) + ‖∇pr‖H−1(Ur)n)
≤ c4(‖pr‖H−1(Ω) + ‖∇pr‖H−1(Ω)n)

for all pr ∈ C∞
0 (U+

r (α
′, β′)).
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A.3 Corollaries of the Nečas inequality

Using Theorem 2.2.13, we obtain the following corollary which is important for existence
and uniqueness of the solution to the Stokes problem.

Corollary A.3.1 (Reshown, see Theorem 2.2.14). If Ω is a bounded Lipschitz domain,
then there exists a constant c = c(Ω) > 0 such that

‖p‖L2(Ω)/R ≤ c‖∇p‖H−1(Ω)n for all p ∈ L2(Ω).

Proof. This proof is based on [2, Theorem 3.1] It suffices to show that there exists a
constant c > 0 such that

‖p‖L2(Ω) ≤ c‖∇p‖H−1(Ω)n for all p ∈ L2(Ω)/R.

Assume that this property does not hold. Then, there exists a sequence of functions
(pk)k∈N ⊂ L2(Ω)/R such that ‖pk‖L2(Ω) = 1 for all k ∈ N and

‖∇pk‖H−1(Ω)n → 0 as k → ∞.

Since the sequence (pk)k∈N is bounded in L2(Ω), there exists a subsequence (pl)l∈N that
converges weakly in L2(Ω). Let φ ∈ L2(Ω) and δ > 0 be arbitrary. Then, there exists a
constant Nφ,δ ∈ N such that

l1, l2 ≥ Nφ,δ ⇒ |(φ, pl1 − pl2)L2(Ω)| < δ.

On the other hand, since S := {φ ∈ H1(Ω) | ‖φ‖H1(Ω) = 1} is bounded in H1(Ω), for
every fixed δ′ > 0, there exist functions φ1, · · · , φm ∈ S such that

S ⊂
m⋃
i=1

{
φ ∈ L2(Ω)

∣∣ ‖φ− φi‖L2(Ω) < δ′
}

by the Rellich–Kondrashov Theorem, i.e., there exists a number i ∈ {1, · · · ,m} such that

‖φ− φi‖L2(Ω) < δ′

for all φ ∈ S. Thus we obtain

|(φ, pl1 − pl2)L2(Ω)| ≤ |(φ− φi, pl1 − pl2)L2(Ω)|+ |(φi, pl1 − pl2)L2(Ω)|
≤ ‖φ− φi‖L2(Ω)‖pl1 − pl2‖L2(Ω) + |(φi, pl1 − pl2)L2(Ω)|
≤ 2δ′ + δ

for all φ ∈ S and l1, l2 ≥ Nδ := max{Nφ1,δ, · · · , Nφm,δ}, and then

‖pl1 − pl2‖H−1(Ω) = sup
φ∈S

|(φ, pl1 − pl2)L2(Ω)| ≤ 2δ′ + δ.

It satisfies that
lim sup
l1,l2→∞

‖pl1 − pl2‖H−1(Ω) ≤ 2δ′

for every δ′ > 0, which implies that (pl)l∈N is a Cauchy sequence in H−1(Ω). Besides, by
the assumption, (∇pl)l∈N is also a Cauchy sequence in H−1(Ω).
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Theorem 2.2.13 leads that (pl)l∈N is a Cauchy sequence in L2(Ω). Thus, there exists a
function p ∈ L2(Ω) such that

‖pl − p‖L2(Ω) → 0 as l → ∞.

We have
‖∇pl −∇p‖H−1(Ω)n → 0 as l → ∞,

since the operator ∇ : L2(Ω) → H−1(Ω)
n
is continuous. Indeed, it holds that

|〈∇ω, u〉| = |(ω,− div u)L2(Ω)| ≤ ‖ω‖L2(Ω)‖ div u‖L2(Ω) for all ω ∈ L2(Ω), u ∈ H1(Ω)
n
,

|〈∇ω, u〉| ≤
√
n‖ω‖L2(Ω)‖u‖H1(Ω)n for all ω ∈ L2(Ω), u ∈ H1(Ω)

n
,

‖∇ω‖H−1(Ω)n ≤
√
n‖ω‖L2(Ω) for all ω ∈ L2(Ω),

‖∇ ∗ ‖L(L2(Ω),H−1(Ω)) ≤
√
n.

By connectivity of the open set Ω, the function p is a constant, and this constant is 0 since∫
Ω
pl dx = 0 for all l ∈ N. But this contradicts the relation ‖pl‖L2(Ω) = 1 for all l ∈ N.

Corollary A.3.2 (Reshown, see Theorem 2.2.15). If Ω is a bounded Lipschitz domain,
then the divergence operator div maps H1

0 (Ω)
n
onto L2(Ω)/R.

Proof. The operator ∇ : L2(Ω) → H−1(Ω)
n
satisfies

〈∇ω, u〉 = (ω,− div u)L2(Ω) for all ω ∈ H1(Ω), u ∈ H1(Ω)
n
, (A.3.18)

and thus − div : H1(Ω)
n → L2(Ω)/R is the dual operator of ∇. By the proof of Theorem

2.2.14, ∇ is continuous and thus closed. By Theorem 2.2.14, we deduce that the image of
∇ is closed, and so, the image of div is (Ker∇)⊥ = R⊥ = L2(Ω)/R.


