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Abstract

We consider pressure Poisson equations for stationary incompressible Stokes problems and
time-dependent incompressible Navier—Stokes problems. The pressure Poisson equation
is an elliptic partial differential equation of second order and is used in various numerical
methods for incompressible viscous flows. Since there are many mechanisms that generate
flow by creating pressure differences, a Dirichlet boundary condition is often set for the
pressure Poisson equation. However, in general, the pressure of the boundary condition
for the numerical methods differs from the exact pressure solution of the original problem.

This thesis aims to provide a mathematical analysis for the pressure Poisson equa-
tion from the viewpoint of additional boundary conditions. We establish error esti-
mates in suitable norms between solutions to a stationary Stokes problem and the cor-
responding pressure Poisson problem in terms of the additional boundary condition. As
boundary conditions for the Stokes problem, we use a traction boundary condition and
a Dirichlet-type pressure boundary condition with no tangent flow. In addition, for a
pseudo-compressibility problem that interpolates the Stokes and pressure Poisson prob-
lems, we also give error estimates in suitable norms between the solutions to the pseudo-
compressibility problem, the pressure Poisson problem, and the Stokes problem for several
additional boundary condition cases.

Moreover, we propose a new additional boundary condition for the projection method
of the time-dependent Navier—Stokes problem with a Dirichlet-type pressure boundary
condition and no tangent flow. We demonstrate stability for the scheme and establish error
estimates for the velocity and pressure under suitable norms. A numerical experiment
verifies the theoretical convergence results. Furthermore, the existence of a weak solution
to the original Navier—Stokes problem is proven by using stability.
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Chapter 1

Introduction

1.1 Motivations

There are various numerical methods for incompressible viscous flows described by the
Navier—Stokes equation and the continuity equation (incompressible condition). For ex-
ample, if we use the explicit Euler method for time, we can calculate the velocity of the
next step from the Navier-Stokes equation. However, we cannot calculate the pressure
from the incompressible condition. Hence, some strategy is needed for numerical methods
for incompressible viscous flows. Thus, there are many numerical methods that solve a
pressure Poisson equation instead of the incompressibility condition, such as the marker
and cell (MAC) method [42, 64, 85], simplified MAC (SMAC) method [4, 5, 82], projec-
tion method [21, 79, 38], moving-particle semi-implicit (MPS) method [57, 58, 74], and
incompressible smoothed particle hydrodynamics (ISPH) method [49, 61, 75]. Numerical
methods are effective for the finite difference method (FDM) [30, 78, 81], finite element
method (FEM) [17, 32, 87], finite volume method (FVM) [29, 65, 83], and particle methods
[46, 58, 62| and separately solve the velocity and pressure, which are different from other
numerical schemes such as the Hood-Taylor finite element method [17, 32], the pressure
stabilization method [26, 33, 48], and the pseudo-compressibility method [20, 70, 86].

Additional boundary conditions are required for numerical methods using the pressure
Poisson equation since the pressure Poisson equation is an elliptic partial differential
equation of second order. In general, the Neumann boundary condition is imposed on
the pressure when the Dirichlet boundary condition is applied for the flow velocity. In
[35, 73], the authors show that the pressure Poisson and Navier—Stokes equations with
appropriate boundary conditions are equivalent to the original incompressible Navier—
Stokes problem. The error estimate for the projection method is first given in [76, 71].
In particular, in [71], the proof is based on the fact that the projection method can be
interpreted as a pseudo-compressibility method, such as the pressure stabilization method
(cf. [31, 70]). Many boundary conditions have been proposed to improve the order of the
error [50, 52, 59].

On the other hand, there are many mechanisms that generate flow by creating pressure
differences, such as water distribution systems, hydraulic systems, and blood circulation.
Hence, there is a motivation to impose pressure as a boundary condition in engineering.
Since one can naturally set Dirichlet boundary conditions on the pressure Poisson equa-
tion, the traction boundary condition or do-nothing boundary condition is often used in
numerical methods using the pressure Poisson equation [37, 38, 47]. However, the pres-
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2 Chapter 1. Introduction

sure of the boundary condition for the numerical method differs from the exact pressure
solution of the original problem. Although there are many good numerical results and
error estimates for the time step size and mesh size, there is no error estimate in terms
of the additional boundary condition.

We also note well-posed boundary conditions, including pressure, for the Stokes and
Navier—Stokes equations introduced in [7, 23]. There are many mathematical analyses and
discretization approaches; for example, the unique existence of the weak solution in the
steady case [24, 9, 10], extended to LP-theory [3], and unsteady nonlinear case [63, 56]. On
the other hand, applying this type of boundary condition to the pressure Poisson method
is limited; for example, the projection method [39, 40]. However, the authors assume
an outflow condition for stability and the pressure to be stationary for implementation
reasons.

1.2 Synopsis of the thesis

This thesis aims to provide a mathematical analysis for the pressure Poisson equation
from the viewpoint of additional boundary conditions. We establish error estimates in
suitable norms between solutions to a stationary Stokes problem and the corresponding
pressure Poisson problem in terms of the additional boundary condition. In addition,
for a pseudo-compressibility problem that interpolates the Stokes and pressure Poisson
problems, we also give error estimates in suitable norms between the solutions to the
pseudo-compressibility problem, the pressure Poisson problem, and the Stokes problem
for several additional boundary condition cases. Moreover, we propose a new additional
boundary condition for the projection method for the time-dependent Navier—Stokes prob-
lem with a Dirichlet-type pressure boundary condition and no tangent flow.

In Chapter 2, we prepare notations, function spaces, and their properties used in the
thesis. Chapters 3, 4, and 5 contain all our mathematical results.

In Chapter 3, we introduce a stationary Stokes problem and the corresponding pressure
Poisson equation. We establish error estimates between solutions to the Stokes problem
and the pressure Poisson problem in terms of the additional boundary condition. As
boundary conditions for the Stokes problem, we use a traction boundary condition and
the boundary condition including pressure introduced in [7, 23].

In Chapter 4, we introduce an e-Stokes problem as a pseudo-compressibility problem
that interpolates the Stokes and pressure Poisson problems. The boundary conditions
for the velocity are full Dirichlet boundary conditions, and those for the pressure are
Dirichlet, mixed, and Neumann boundary conditions. We give error estimates in suitable
norms between the solutions to the e-Stokes problem, the pressure Poisson problem, and
the Stokes problem. Several numerical examples show that several such error estimates
are optimal in €. In addition, we show that the solution to the e-Stokes problem has a
nice asymptotic structure.

In Chapter 5, we propose a new additional boundary condition for the projection
method with a Dirichlet-type total pressure boundary condition and no tangent low. We
demonstrate stability for the scheme and establish error estimates for the velocity and
pressure under suitable norms. A numerical experiment verifies the theoretical conver-
gence results. Furthermore, the existence of a weak solution to the original Navier—Stokes
problem is proven by using stability.
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In Appendix A, we define the standard Lipschitz boundary and prove the Necas in-
equality and its corollary. These results have already been proven, but we provide careful
proof.






Chapter 2

Preliminaries

In this chapter, we provide notations, function spaces, and their properties used in the
thesis.

2.1 Notations and function spaces

We provide a list of notation and function spaces used in the thesis.

General used symbols. If not stated otherwise, the symbols listed below have the
following meaning:

N : the set of positive integers.
Zsy : the set of non-negative integers.
T : a positive real number representing the final time.
R™ . m-dimensional Euclidean space for m € N.
Q a bounded Lipschitz domain in R? for d = 2 or d = 3, corresponding

to the spatial region, where the equation is solved (see Definition A.1.1
for the precise definition of Lipschitz domain).
Q . the closure of domain .
r : the boundary 02 of domain (2.
n : the outer normal vector for the boundary I'.
|- the Euclidean norm on R¢.
a-b : the inner product on R
axb : the cross product on R? or R3. For three-dimensional vectors a =
(a1, a9,a3), b = (b, by, b3), the cross product of a and b is defined by

axb:= (agbg — a3b2, CL3b1 — a1b3, a1b2 — CLle) .

For two-dimensional vectors a = (aj,az) and b = (b1, by), the cross
product of @ and b is defined by

aXxb= albg — agbl.
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A:B : the componentwise inner product of two matrices A = (a;;),B =
(bij) € R™4 and defined by

d
A:B:= Z aijbij.
ij=1
D :unknown real-valued function.
u :unknown real d-dimensional vector-valued function.
Vp . the gradient of p = p(z) with respect to spatial variables and defined
by
Ip
a—xl(m)
Ip
dp dp ap  \" ——(7)
= =——(2), =—(2),..., =— =| Ox
D) = (@) @) g0 t
Gp'
8_1:(1(x)
where T is the transpose of the vector or matrix.
Vu : the gradient of u = (ui(x),us(x),...,uq(x)) with respect to spatial
variables and the square matrix of order d defined by
8u1 8u2 aud
GO et CO B wl €
ouq Ous Oug
— :E — a’;’ DRI —_— a’/‘
8u1‘ 8“2. 8ud‘
oy Ol G oz, %)

S(u) : the matrix defined by
S(u) = Vu+ (Vu)?,

which is twice the symmetric part of the matrix Vu.
divu : the divergence of u = (u1(x), us(x), ..., uq(z)) with respect to spatial
variables and defined by

(diva)(z) =Y g;‘ ().

The divergence of o = (0;;(x)) € R¥? with respect to spatial variables
and defined by

RIS DTS ST ST
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Vxu : the rotation of u with respect to spatial variables. For a three-
dimensional vector-valued function u = (u1(x), us(x), us(x)) on three-
dimensional real Euclidean space, V xu is defined by

Uy — 8U3 _ 81@ 8%1 _ 8u3 8U2 _ (‘9u1
o 8[)32 8x3’ 8a:3 8x1’ (%1 8x2 '

For a two-dimensional vector-valued function v = (ui(z),us(z))
on two-dimensional real Euclidean space, by regarding u as
the three-dimensional vector-valued function (z1,z9,23) +—
(ur(xy, x2), us(x1,22),0), we apply the above definition and pick
up meaningful parts, i.e.,

8u2 3u1
VXU = a_xl — 8_332
VX(VXU) — 0 Ouy _ Ouy - 0 Ous B ouq .
81’2 aZL’l (9962 8x1 8x1 8x2
Ap : the Laplacian of p with respect to spatial variables, which is defined
by
d 9%p
Ap = —
Au  : the Laplacian of u with respect to spatial variables, which is defined
by
d d d T
0%uy 0%uqy 0%uy
Au = - —
“ (; o2’ — oz’ — oz | 7

For the boundary I', we assume that there exist two relatively open subsets 'y, 'y of
I' satisfying

‘F\(F1UF2)‘ :0, ’F1’,|F2’ >0, Flﬂf‘g:@, F_lzrl, F_QZFQ, (211)

where A is the closure of A C I' with respect to T, A is the interior of A with respect to
I, and |A]| is the (d — 1)-dimensional Hausdorff measure of A.

Function spaces. The following function spaces and their corresponding norms and
inner products are used in the thesis. For a Banach space E, we denote its dual space E*
and the dual product between E* and E by (-,-)g. Let Q be an open domain in R¢, and
let ke N;p>1,T > 0.

C*(Q) : the set of all functions f : @ — R such that all derivatives up to and
including k-th order exist and are continuous and can be extended to
the closure Q.

C>=(Q) : the set of all infinitely differentiable functions f : Q — R that can be

continuously extended with all their derivatives to the closure Q. ie.,
C>®(Q) = N,C*(Q).
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Co°(9)

7'(Q)
LP(Q)

Lo(9)

L2(Q)/R

Who(Q)

the set of all functions f € C*°(Q2) such that there exists a compact
set K C Q such that f vanishes on Q \ K.

the space of all distributions on ).

the set of all functions f : 2 — R such that the p-th power of the
absolute value is Lebesgue integrable and with the identification of
functions that only differ on null sets. The Lebesgue space LP(2) is a
Banach space with respect to the norm

1/p
| fllzeco) = (/Qlf(:zr)|pdx> )

In particular, L*(f2) is also a Hilbert space with respect to the inner
product

(9) = [ Falg(a)de.
Q
the set of all functions f : {2 — R such that the norm
[[f1[Loe () = esssup| f(x)]
e
exists and is finite and with the identification of functions that only

differ on null sets, which is a Banach space with respect to || - || Lo (q).
the space of all functions f € L?*() with the average of 0, i.e.,

I2(Q)/R = {m 1y e

fe LZ(@)} |

where |Q| == [,1dz.
the set of all functions f € LP(2) such that for each multi-index
a = (a,ag,...,00) € 2%, with |a|, = S0 |ai| < k, 0°f =
(0/01)* (0/0x2)2 - - - (0/Dx4)* f exists in the distribution sense and
belongs to LP(£2). The Sobolev space W*?(Q) is a Banach space with
respect to the norm

1/p

HfHW’W(Q) = Z Haaf“ip(g)

a€Zl,, a1 <k

the Sobolev space W*?2(Q2), which is a Hilbert space with respect to
the inner product

(fv g)H’“(Q) = Z (aaf7 aag).

aEZ‘éO, |1 <k



2.1. NOTATIONS AND FUNCTION SPACES 9

Haiv(©2) @ the function space defined by
Hai(Q) = {v € L2(Q)" | dive € L2(Q)},

with the norm

[0l = /10l agye + 1 div oz,

HY(Q)/R : the space of all functions f € H'(Q) with the average of 0, i.e

H(Q)/R = H'(0) 1 (L*(0)/R).
H() : the closure of C5°(Q2) in H'(Q).

For m = 1 or m = d, the dual space H'(Q)" = (H}(Q2)™)* is equipped with the
norm
1fllz-1 (@) = sup (f, )

QOE m
for f € H1(Q)™, where
Sm = {1 € Hy()" | |Vl p2(qyrsm = 1}.
For q € L*(Q), we set
. d
(Vq, @)Hé(g)d = —/Qq divdr  for all o € H ().

We remark that ¢ € H(€) satisfies that for all ¢ € HL(€)?,
(Vg ) oy = (Va, 9)-

~ We also use the following Lebesgue and Sobolev spaces defined on the open subset
I' e {T',I'1,I's} of the boundary T

L*(T)  : the Lebesgue space L?(I") with the inner product

m&nmyZLn@dﬁw,

where ds denotes the surface measure of I'.
HY2(T') : the set of all functions A € L?(I') such that the norm

1/2
o 2 n(s1 s2)[?
s = (e, + [ [ P10 0 0,)

exists and is finite, which is a Banach space with respect to || -|| g1/2(f-
H='Y2T) : the dual space (HY?(I'))*.

We remark that n* € L?*(T') can be identified with an element of the dual space
H~Y*(T) by

mammmm=/ﬁw@ for all y € H'/*(T),
I
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Let 7o : HY(Q2) — HY2(T) be the standard trace operator. The trace operator 7y is a
surjective continuous linear operator and Ker(vyy) = Hj () [32, Theorem 1.5]. For i = 1
or i = 2, the composition of the trace operator v, and the restriction H/?(I') — HY2(I;)
is a continuous map from H'(Q) to HY?(I';). By using the map H'(Q) > ¢ — ¢|r, €
H'Y2(T;), we define

Hy (Q) = {y € H'(Q) | ¥

r =0}

and then, there exists a constant ¢ > 0 such that for all p € H'(Q),
||P||H1(Q)/H}i(sz) < cllplr; [l g2,y

where [|p[| 1)/ @ = infyem (@) [P+ ¥ (). We simply write ¢ instead of ¢[r, when
there is no ambiguity. Since n is a unit vector, the maps HI(Q)d Suru-n € L*T) and
HY Q)" 5 u— ux n € L2()%4D/2 are linear and continuous. We also set
H:={peH Q) | p=0o0n L*I),p x n =0 on L*(Iy)"4-b/2}

For the open subsets I'y,I'y of the boundary I', we define the following subspaces of
HY2(T):

H (D) = 0(H, (),

HY2(T5) = oY, ().

For ¢ =1 or ¢ = 2, the space H% ?(T;) is continuously embedding in H'/2(T;) and equiva-

lent to the Lions—Magenes space HééQ(Fi), for example, if I'; is a line segment with d = 2

36, 72]. We remark that n* € L*(T;) can be identified with an element of the dual space
(H3*(T)" by

<77*’77>H%2(ri) = /F n'nds  for all n € HY/*(I).

2.2 Preliminary results

We use the following lemmas and theorems. These results can be found in [14, 16, 32, 80].

Proposition 2.2.1 (Cauchy-Schwarz). Let Q be an open subset of R%. For f, g € L*(Q),
we have the following inequality:

i

Proposition 2.2.2 (Young). Let n > 2, and ay,as,. .., a, be non-negative real numbers.
Additionally, let py,po, ..., p, be positive real numbers such that

< | fllez)llgll 2

n

—=1.
im1 i

We then have

n L. 2}

Haigzai.

i=1 =1 Di
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In particular, when n = 2, we have for all ¢ > 0,

p1 D2
cay Ay
+ —.
b1 Cp2

aray <

Proposition 2.2.3 (Hoélder). Let Q be an open subset of R? and let py,po,...,p, be
positive real numbers (possibly infinite). Additionally, let 1 < r < oo such that

n

1 1

Di T

=1

For all functions fi, fa, ..., fo with f; € LP (), the product [[\_, fi belongs to L"(€2) and

we have
n
117
i=1

Theorem 2.2.4 (Gauss divergence formula). There exists a continuous linear operator
Yo Haiy () = H™Y2(T) such that v, (v) = v-n for all v € C®(Q). Moreover, it holds
that for all v € Hyi,(),9 € HY(Q),

< H | fill ei ()-
) =1

LT(Q

/v - Vqdx + /(div 0)qdr = (Y (V), @) gr1/2(ry-
0 Q

In particular, it holds that for all v € Hl(Q)d, Y e HY(Q),

/v -Vadz + / (divv)gde = /(v - n)qds.
Q Q r

Theorem 2.2.5 (Sobolev embeddings). Let  be a bounded Lipschitz domain in RY.

(i) If 1 < p < d, then we have
Whe(Q) C L)

with continuous embedding for all 1 < q < p*, where p* is the critical exponent
associated with p:

(i1) If p=d, then we have
WP (Q) c LYQ)

with continuous embedding for all 1 < q < 0.

(iii) If d < p < oo, then we have
WhP(Q) c C°(Q)

with continuous embedding.

Theorem 2.2.6 (Rellich-Kondrachov). Let Q be a bounded Lipschitz domain in RY.

(i) If 1 < p < d, then the embedding WP(Q) C L4(Q) is compact for all 1 < q < p*(=
dp/(d — p)).
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(ii) If p = d, then the embedding WP (Q) C L1(Q) is compact for all 1 < q < oo.
(iii) If d < p < oo, then the embedding WP(Q2) C C°(Q) is compact.

Theorem 2.2.7 (Generalized Poincaré inequality). Let 2 be a bounded Lipschitz do-
main and let I’ be a subset of the boundary I' with nonzero surface measure (e.g., I' €
{T'1,T2,T}). There exists a constant ¢ > 0 such that for all ¢ € HL(Q),

lgllz2@) < cllVall 2

which implies that
gl @) < 2llVall 2 e

where ¢ .= /1 + 2.

Theorem 2.2.8 (Poincaré-Wirtinger). There exists a constant ¢ > 0 such that
lallz2e) < cllVall 12
for all g € H(Q)/R.

Theorem 2.2.9. Assume that E is a reflezive Banach space and let (x,)nen be a bounded
sequence in E. Then, there exist x € E and a subsequence (T, )ren such that

T, — T weakly in B as k — oo.

Theorem 2.2.10. Assume that E is a reflexive Banach space and let M C E be a closed
linear subspace of E. Then, M is reflexive.

Theorem 2.2.11 (Lax-Milgram). Assume that a(-,-) : H x H — R is a continuous
coercive bilinear form on a Hilbert space H. Then, given any f € H*, there exists a
unique element uw € H such that

a(u,v) = (f,v)
forallve H.

The following Theorem 2.2.12 is necessary for the existence and uniqueness of a solu-
tion to the Stokes problem.

Theorem 2.2.12. [32, Corollary 4.1] Let (X, || - ||x) and (Q, || - |lg) be two real Hilbert
spaces. Leta: X x X - R and b: X x Q — R be bilinear and continuous maps and let
f e X*. If there exist two constants o > 0 and 3 > 0 such that

(v,v) > alv|% forallveV,
)

> Plalle forallqe @,

sup
ovex ||V]|x

where V.= {v € X | b(v,q) = 0 for allq € Q}, then there exists a unique solution
(u,p) € X x @ to the following problem:

{ a(u,v) +b(v,p) = f(v) forallve X,
b(u,q) = 0 forall g € Q.
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We recall the following Theorem 2.2.13, which plays an important role in the proof
of the existence of the pressure solution of the Stokes problem; see Appendix A for the
proof.

Theorem 2.2.13. [66, Lemma 7.1] There exists a constant ¢ > 0 such that for all q €
L*(9),
lallz2@) < clllglla—(0) + Valla-1(0))-

The following two results follow from Theorem 2.2.13.

Theorem 2.2.14. [32, Corollary 2.1, 2°| There exists a constant ¢ > 0 such that for all
q € L*(Q),
llalllz2) < ellVall g

Theorem 2.2.15. [32, Corollary 2.4, 2°] The operator div : H}(Q)" — L*(Q)/R is
surjective, i.e., for all ¢ € L*(Q)/R, there exists v, € HYQ)? such that

divu, = gq.
Furthermore, there exists a constant ¢ > 0 such that for all ¢ € L*(Q)/R,

||U¢I||H1(Q)d < C||Q||L2(Q)'

Theorem 2.2.15 implies the following theorem.
Theorem 2.2.16.

(i) There exists a constant ¢ > 0 such that for all ¢ € L*(Q)/R,

1
sup @——
0£vEHL(R) ||U||H1(Q)d

/qdivvdm > cl|q|| 2
Q

(ii) Let H&(Q)d C X c HY(Q)" be a subspace. If there exists a function vy € X such
that fQ divvgdz # 0, then there exists a constant ¢ > 0 such that for all ¢ € L*(2),

1
sup

—/qdivvdx > cllqll 2@
0£veEX HU”Hl(Q)d Q

Theorem 2.2.16 (i) is well-known [2, 14, 32]. The following proof of Theorem 2.2.16 (ii)
is based on [11, Proof of Theorem 2.1] and [13, Lemma 2.7] and use only Theorem 2.2.15

and existence of vy € X. The function spaces H}: 1(Q)d and H satisfy the assumption of
(ii).

Proof. (i) By Theorem 2.2.15, for all ¢ € L*(Q)/R, there exists v, € Hj () such that
div v, = ¢. Then, it holds that for all ¢ € L*(Q)/R,

) 1
/qulvqum = ||q||%2(m > EHQHLQ(Q)HUQHHl(Q)d‘
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where the constant ¢ > 0 is used in Theorem 2.2.15. Hence, we obtain for all 0 # ¢ €
L*(Q)/R,

1 1 1
~Nallz2() < —/qdivqux < sup /qdiVUdZU-
c 1vall 1 Ja orveri@ [0yt Ja

(ii) We can assume that vy € X satisfies that [, divvodz = |Q| without loss of gener-
ality. For all ¢ € L*(Q2), we set g = ([,qdx)/|Q| and ¢; == [¢] = ¢ — qo € L*(Q)/R.
If g1 =0, ie., ¢ =qo € R, then it holds that

1 / .
ql 2 = qo| | divvedx
lallz2@) \/@| | i
il
< — qo div vodx
o 1/ 2.2.2
HUOHHI(Q)d ! /C] div vpdz 222
< 0 0
VIQL ol e 1/
100l g1 0y 1

< ————— sup —/qo div vdzx.
VI ozvex ||U||H1(Q)d Q

If ¢; # 0, then we set

A=1-— q—g/ql div vgdzx.
HQ1HL2(Q) Q

By Theorem 2.2.15, there exists v; € Hj () such that dive; = ¢;. Let 0, := qovg + Avy.
Then, we have

/q div 9 dx = /(qo + q1) div(qovo + Avq)dx
Q Q

= qg/ div vodx + )\qo/ div vy dx + qo/q1 div vodx + )\/ q1 div vy dx
Q Q Q Q

. q .
= /qua;+qo/q1 divoedz + [ 1 — —S/ql div vodz quHiz(Q)
Q Q ||q1”L2(Q) Q
Z/(QS+Qf)d$
Q

= ||Q||%2(Q)=
where we have used [, divoide = [, vy - nds = 0. Since it holds that
10g]l g y2 < laolllvoll g ye + A 01]l 1o

|90l diVU0||L2(Q)

1|20

) el o)

< (voll 1 e + eVdllvoll 2)|g0] + cllaall 2oy

1+ ceVd
WHUOHHl(Q)dHQOHL?(Q) + cllq1] L2 (o)

< laol ool oy + (1 "

= Cllall 2o
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where ¢ = \/62 +(1+ C\/E)2|]v0||§{1(md/|§2|, we obtain for all ¢ € L*(Q)/R with ¢; # 0,

1 lall72(q) 1 L 1 .
=llallz2@) < = = — /qdlvqux < sup —/qdlvvda:,
¢ HUQHHI(Q)d HUqHHl(Q)d Q 0#£veX HUHHl(Q)d Q

and hence, by (2.2.2) and ¢ > ||U0||H1(Q)d/m, we have for all ¢ € L*(Q),
1 1 '
=llall2@) £ sup ——— [ qdivodz.
¢ 0#veX HvHHl(Q)d Q

]

We define a bilinear form aq : H'()? x H(Q)? — R and a seminorm |||, on H'()",

for u,v € H ()",
ag(u,v) := /(divu)(divv)dm—i— /(qu) - (Vxv)dez,
Q Q
[ullag := v/ ao(u, u).
We will assume the following condition in Chapter 3, 5:
Hypothesis 2.2.17.

(1) The open subset T'y is piecewise C1:1-class, i.e., there exist relatively open connected
non-empty subsets I's 1, I'ao, ..., To np of I' such that for alli,j =1,2,...,Np, I'y;
is CY-class and

Nr
s\ (U Pg,k> ‘ =0, Tg;NTy;=0(i+#j).
k=1

(ii) There exists a constant § > 0 such that for allx € To;NTa; (i,j =1,2,..., Nr,i #
i), o
n'(x) - n’(x) <1 =4,
where n'(z) and n(x) are the limits of the outer normal vectors when approaching
x from I'; and I';, respectively.

Remark 2.2.18. IfI" is C*'-class or  is polygon, then Hypothesis 2.2.17 holds.

Under Hypothesis 2.2.17, the following coercivity of the bilinear form ag : H x H — R
holds.

Theorem 2.2.19. Under Hypothesis 2.2.17, there ezists a constant c, = ¢,(2,1'1,'3) >0
such that for all vi,ve,v € H,

1
ao(v1,v2) < [[vllaolv2llas < callonllallvallis ol < Jlollz,.
The first inequality holds from the Cauchy—-Schwarz inequality. For the proof of the
second inequality, see [12, Lemma 2.11] and [51, Lemma 5.






Chapter 3

Pressure Poisson method

This chapter is based on the following published paper:

e Matsui, K.: Sharp consistency estimates for a pressure Poisson problem with Stokes
boundary value problems. Discrete & Continuous Dynamical Systems - S 14 (3),
1001-1015 (2021). DOI 10.3934/dcdss.2020380

3.1 Introduction

Let Q be a bounded domain in R? with Lipschitz continuous boundary I satisfying (2.1.1).
The strong form of the Stokes problem is given as follows. Find v° : © — R? and
p° : 0 — R such that

— A+ Vp®=F inQ,

dive® =0 in (ST)
u’ =0 on I'y,
T, (u¥, p°) =t° on Iy,
holds, where F': Q — R? ¢* : 'y — R%,
TSSi‘::_Z J_S(si'
(U 7p )] ax] + 6371 p YR
d
To(u® p%)i =Y T, p%)un,
k=1
for all 4,5 = 1,2,...,d. Here, ¢;; is the Kronecker delta. The functions v’ and p° are

the velocity and the pressure of the flow governed by (ST), respectively. For the flow,
T(u®,p%) and T, (u®,p°) are often called the stress tensor and the normal stress on I,
respectively. Let the fourth equation of (ST) be called the traction boundary condition.
By the second equation of (ST), the first equation is equivalent to

—divT(u®,p®) = F in Q.

We refer to [14, 32, 80] for details on the Stokes problem (i.e., physical background and
corresponding mathematical analysis). Taking the divergence of the first equation, we

17
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obtain
div F' = div(=Au® + Vp¥) = —A(divu®) + Ap® = Ap”. (3.1.1)

This equation is often called the pressure Poisson equation and is used in numerical
schemes, such as the MAC, SMAC, and projection method (see, e.g., [4, 21, 25, 41, 38,
40, 60, 42, 53, 64, 68]).

We need an additional boundary condition for solving equation (3.1.1). In real-world
applications, the additional boundary condition is usually given by using experimental
or plausible values. We consider the following boundary value problem for the pressure
Poisson equation: Find uf? : Q — R? and p©* : QO — R satisfying

;

— AuP? = V(divu"") + Vp’ = F in Q,
—ApPP = —divF in €2,
uff =0 on I'y,
agzp _ on I (PPT)
T, (u?? pPPy =1t on I'y,
= on Ty,

\

where ¢° : 'y = R and p® : 'y — R are the data for the additional boundary conditions.
We call this problem the pressure Poisson problem. The second term —V (divuf?) in the
first equation of (PPT) is usually omitted since divu® = 0, but this term is necessary to
treat the traction boundary condition in a weak formulation. The idea of using (3.1.1)
instead of divu® = 0 is useful for calculating the pressure numerically in the Navier-Stokes
problem. For example, this idea is used in the MAC, SMAC, and projection methods.

As the boundary condition for the Stokes problem, we also consider the boundary
condition introduced in [7, 8, 23];

u=0 on I'y,
uxn=0 only, (3.1.2)
p=p"  onTy

(see also [12, 13, 24, 63]). On boundary I'y, the boundary value of the pressure is described,
and the velocity is parallel to the normal direction. Such a situation happens at the end
of pipes, such as blood vessels or pipelines (Fig. 3.1). The well-posedness is proven in
12, 13, 23, 24].

In this chapter, we establish error estimates between problems (PPT) and (ST) and
between problem (PPT) and the Stokes problem with the boundary condition (3.1.2) in
terms of the additional boundary conditions. In particular, since boundary conditions
that contain a Dirichlet boundary condition for the pressure often appear in engineer-
ing problems, a comparison between problem (PPT) and the Stokes problem with the
boundary condition (3.1.2) is important.

The organization of this paper is as follows. In Section 3.2, we introduce notations
and symbols used in this work and the weak form of these problems. We also prove the
well-posedness of the problems (ST) and (PPT) and show several properties of them.
In Section 3.3, we establish error estimates between solutions to the problems (ST) and
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Figure 3.1: Image of a flow in a pipe

(PPT) in terms of the additional boundary conditions. Section 3.4 is devoted to the study
of the Stokes problem with the boundary condition (3.1.2). We conclude this paper with
several comments on future works in Section 3.5.

3.2 Weak formulation and well-posedness

3.2.1 Preliminaries

For u € HY(Q)" and p € HY(Q) satisfying Au + V(divu) (= divS(u)) € L*(Q)? and
Ap (= div(Vp)) € L*(2), we set

S(un = (1 (S()r), ... 7(S(u)a)) " € H VI,

8p 1/2
2 i u(Vp) € HTA(T),

where S(u); = (S(w)i1, ..., S(u))" fori =1,...,d. Since HY/*(T;) ¢ HY2(T) fori = 1,2,
we have S(u)n € (H}/*(T5)%)* and dp/dn € (H 1/2(F1))*. By Theorem 2.2.4, it holds that

(S(u)n, @)H%z(rz)d = /Q (%S(u) 1 S(p) + (Au+ V(divu)) - <p> dr for all p € H%I(Q)d,

dp . . 1
<%,¢>H1/Q(m _ /Q (Vp- Vi + (Ap)y) da for all v € H} (€).

We remark that u € H%(Q)? and p € H?(Q) satisfy

(S, @) e, / (Z Sij(u %m) 3

2,J=1

() B
on HY2 () r, On

for all ¢ € H%I(Q)d and ¢ € Hp (Q). For u € HY(Q) and p € HYQ) satisfying
Au+ V(divu) € L*(Q), we set

d
<Tn(uap)n7 ('0>H,%2(F2)d = (S(u)n, @)Hl/Q(FQ)d - /I‘ py - nds for all we HIIH (Q) :

70

We recall Korn’s first inequality for the existence and uniqueness of a solution to the
Stokes problem.
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Theorem 3.2.1 (Korn’s first inequality). There ezists a constant ¢ > 0 such that
el @y < el S 2 (yexe-
for all ¢ € H} ()7,

See [22, Theorem 6.3.4] and [69, Corollary 4.1] for the proof.

3.2.2 Weak formulations of (PPT) and (ST)

We start by defining the weak solution to (PPT). Throughout of this paper, we assume
the following conditions;

e (HIATy)Y,  Fe Q) (3.2.3)
be (HA(), pPe HY(Q), divF e L*Q). (3.2.4)
Lemma 3.2.2. Foru € H*(Q),pe H(Q), and ¢ € H%l(Q)d,

(~Au = V(divu) + Vp,) = 5(S(u), S(6) = (b, div ¢) = {6,010,

holds, where t .= T, (u, p).

Proof. We compute

(—Au — V(div u) + Vp, p)
ou; Ou, d op
0 (Ou; Ou,
— _/Qi’jz:la (8@ )(pld:c—l—/z axlgoldx
d
B Ou;  Ouj\ 0p; _/ ou; 8%
B Z {\/Q (8IJ + 3@) 8xjdx T (8IJ * oz, (91:] (plnjds
o O r
Ou; Opi | Opj _/ D
/ Z (8:@ ) <0$]~ * 893]-) d Qp ; Ox; d
/Z 8ul au . g
8.73] ] ©i j — PP

2,7=1

=§<s<u>,s<so>> (p, div ) = (£, 0) 721,

which completes the proof. O
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For the second equation of (PPT), taking ¢ € Hf, (Q), we obtain
—(div F,¢) = —(Ap™", )
o PP
—— [ vds+ (W, V0)
r on
= _<gb7w>H}{62(F1) + (vaP7 V"‘M

Therefore, the weak form of (PPT) becomes as follows. Find uf? € H%l(Q)d and pf? e
H'(Q) such that

1 ) d
i(S(uPP)a S((,O)) - (pPP’ div (10) = (F7 90) - <tb7 (’D>H%2(F2)d for all Y e HIl‘l (Q) )
(VP V) = —(div F, ) + (6", 0) yrsae, for all v € H}, (),
ptt =pb on I's.

(PPT?)

Remark 3.2.3. If (uf? pfP) e H%l(Q)d x HY(Q) satisfies u®" € H*(Q),pPP € HY(Q)
and (PPT’), then we have for all p € H%I(Q)d and v € HL (),
(_AU’PP - V(le UPP) + vaP - F7 90) = <Tn<uPP’pPP) - tb7 (‘0>H1/2(F )
0 2

] apPP
(—=Ap"Y + div F, ) = <— o T g, .
n H%Q(Fl)

Therefore, (uPf, pt't) satisfies (PPT).

Next, we define the weak formulation of (ST). For all ¢ € H} 1(Q)d, we obtain from
the first equation of (ST),

Using this expression, the weak form of the Stokes problem becomes as follows: Find
(ut, p1) € H%l(Q)d x L*(€2) such that

1 . d
5 (SW™),S(9) = (0™, divep) = (F,0) = (¢, 0) ypsap,ya for all o € Hp, (), (ST')
(¢, divut) = 0 for all ¥ € L*(Q).

Remark 3.2.4. If (u”!,p!) € Hlll(Q)d x L2(Q) satisfies ust € H2(Q), p°t € HY(Q) and
(ST’), then we have

d
(=Au™ + Vp™ = F9) = (Tu(u™, p™) = 1',0) a0 for all ¢ € Hy, (Q),
(¢, divu®) = 0 for all ¢ € L*().

Therefore, (u!, p5') satisfies (ST).



22 Chapter 3. Pressure Poisson method

3.2.3 Well-posedness of (PPT’), (ST’)

We show the well-posedness of the problems (PPT’) and (ST’) in Theorems 3.2.5 and
3.2.6.

Theorem 3.2.5. Under the conditions (3.2.3) and (3.2.4), there exists a unique solution
(u”?,p"") € H%I(Q)d x HY(Q) satisfying (PPT’).

Proof. From the second and third equations of (PPT"), by using the Lax-Milgram theorem
and Theorem 2.2.7, pPP € HY(Q) is uniquely determined. Then, uF? € H'(Q)? is also
uniquely determined from the first equation of (PPT’) by the Lax-Milgram theorem,
where the coercivity is guaranteed from Theorem 3.2.1. [

Theorem 3.2.6. Under the condition (3.2.3), there exists a unique solution (u°',p°t) €
H%l(Q)d x L*(Q) satisfying (ST’).

Proof. By Theorems 3.2.1 and 2.2.7, the continuous bilinear form H%I(Q)d X H%I(Q)d >
(u, ) = (S(u),S(¢)) € R is coercive. By Theorems 2.2.12 and 2.2.16, there exists a
unique solution (uS', ps1) € HE ()7 x L*(Q) satisfying (ST). O

We prove the following property of the solution to (ST’).

Proposition 3.2.7. If the weak solution (uS',pS") € HE () x L2(Q) to (ST’) satisfies
pt € HY(Q) and Ap®t € L*(Q), then we have

S1 _ . 8p51
(vp av¢)__(d1VF71/})+ 8_’77Z)
n Hy(Ty)

for all ¢ € H{ (Q).

Proof. From the second equation of (ST’) and u** € HY(Q), divu®! = 0 holds in L?(12).
From the first equation of (ST’), we obtain

—Aut + Vpol = —Aut — V(dive®) + Vpl = F in 2'(Q).
Taking the divergence, we get
div F' = div(—Au® + Vp©h) = —A(dive®) + Ap™' = Ap”' in 2'(Q).

By the assumptions Ap®t € L%(Q) and divF € L?(Q), Ap°! = div F holds in L*(Q).
Multiplying v € H%Q(Q) and integrating over (), we get

S1
v E) = @) = (@ Ve - (D)
H

8n Y0 (Fl)

which is the desired result. O
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3.3 The traction boundary condition

The purpose of this paper is to give an estimate of the difference between the solutions
of the Stokes problem and the pressure Poisson problem. Roughly speaking, from (3.1.1)
and the second equation of (PPT), A(p® — pFF) = 0 holds. Hence, we get

1p° = p"F |0y < ( difference between p® and p”” on I),

where A < B means that there exists a constant ¢ > 0, independent of A and B, such
that A < ¢B. From (ST) and the second equation of (PPT), we have

AW —uFP) = —V (S — pPP).
We obtain
¥ — UPPHH1(Q)d < |IV(p® - pPP)||L2(Q)d + ( difference between p° and pt* on T).
Therefore, we have

[u® = wP [ g gye + 1p° = P71
PP _ PP

< ( difference between (u®,p®) and (u”?,pFF) on T).

In other words, if we have a good prediction for the boundary data, then (PPT) is good
approximation for (ST).

In this section, we prove these types of estimates for the weak solutions. Let the
solutions of (PPT”) and (ST’) be denoted by (u”?, p’f) and (u®1, p5'), respectively. First,
we establish a lemma.

Lemma 3.3.1. Ifp € H'(Q), f € L2(Q) and g € (HX*(T1))* satisfy

(VP.V6) = (F.4) +{9. ),y Sor all & € HL (), (335)
then there exists a constant ¢ > 0 such that

ey < ¢ (72 + lglloqenyy + I2lvaces ) -
Proof. Let py € H'(2) such that py—p € Hf, (). Putting ¢ := p—pp in (3.3.5), we have

Hv<p pO)HL2(Q

=(V(—p0),V(p—po))
= (f,p —po) +(9:p — o) 12 — (Vpo, V(p — po))

< lz@lle = ol +|rg|| ooy

12y + ||Vp0||L2(Q)de<p - pO)HL?(Q)d
< (I 2y + e lgl, wm+Hpoummup—poHme

By Theorem 2.2.7, there exists a constant c; > 0 such that
allp = ol < (12 + ealgllsqenyy + Noollinca)lp = poll o

Hence,
Il = poll ) < es(||fllzz@) + ||9||(H;(/)2(p1))* + |lpoll e (e))-
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Since [|p|lar9) = ol @) < llp = poll#1(), we obtain
1Pl o) < ealll Fllzz@) + 119l g22p, ) + Pollne)): (3.3.6)

For all py € H' () satisfying po — p € H{,(€2), (3.3.6) holds. Therefore,

HPHHl(Q) < [ f]l 2 Q) T “9” HY2(0))) + qellif%lf(m lp + fJHH1(9)>

ca([l fllz2@ JF||9|| HYA (T, *+HpHH1(Q)/H112(Q)>
< e(Ifllz2@ +||9|| w2y T IPlews):

]

Using Proposition 3.2.7, we prove the following theorem which is the main result of
this section.

Theorem 3.3.2. If p°' € H'(Q) and Ap®' € L*(Q), there exists a constant ¢ > 0 such
that

lut — PP”Hl(Q a+ p™ —pPPHHl(Q)

op*t (3.3.7)
(H ¢ 1 = Pl )
Hy (D)
Proof. Using Proposition 3.2.7, we obtain from (ST’) and (PPT"),
1 . d
(S =u), 8(p)) = (P! =" divep)  forall o € Hp, (Q),
oS! (3.3.8)

(V(pSI —pPP),V@/J) - <W _ gb7¢> ’ for all ¢ € H%Q(Q).
HL7(T1)

Putting ¢ = vl —uff € Hlll(Q)d in (3.3.8), we get

SIS = P2 s = (50 = 7 div(u® — )
< P =Pl 2@l div(u™ — u)]| 20
< Vd|p™ —pPP”Hl(Q)Hu51 - UPPHHI(Q)d-
From Theorem 3.2.1,

™ = PP P N

@ = al|p™ —

holds for a constant ¢; > 0. By the second equation of (3.3.8) and Lemma 3.3.1, there
exists a constant ¢s > 0 such that

8])31

15 = 57 o <@(H g

(H 8p51 b

||] 2 ||Hl/ (12)
(Hl/ (Fl))
70

+ [Ip™! _pb||H1/2(F2)> :
HYP ()
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Therefore, it holds that

L e Pl et il PPN

(H 0p51 b

for a constant ¢z > 0. O

Ve + [p* —PbHH1/2(F2)> ’
(H3P(T1))*

3.4 Boundary condition involving pressure

Let p® € H'(2). We consider the Stokes problem with the boundary condition (3.1.2):

~Au®+Vp® = F inQ,
dive® = 0 inQ,
u = 0 only, (3.4.9)
uxn = 0 only,
p = p® onTls.

In this section, we evaluate the difference between the solutions to (PPT) and (3.4.9)
as in (3.3.7). First, we define the weak formulation of (3.4.9) and prove the existence
and the uniqueness of the weak solution. Next, we prove a proposition and a lemma as
preparation for the proof of our main theorem: Theorem 3.4.6.

We define the weak formulation of (3.4.9). Multiplying the first equation of (3.4.9) by
v € H, integrating by parts in 2, and using the second equation of (3.4.9), we obtain

(F,v) = (V xu® V XU)—(pS,diVU)+/ pPv - nds,
T2

where we have used the following lemma.

Lemma 3.4.1. For u € H*(Q)Y,p € H(Q) and v € H, there holds
(—Au+ V(divu) + Vp,v) = (V x u,V x v) — (p,div o) +/ pv - nds.
1)

Proof. We compute
(—Au + V(divu) + Vp,v)
= (Vx(V xu)+Vp,v)

:(qu,va)—/((qu) n)-vds — (p,dive) + [ pv-nds
r

pv - nds

2

J
J

:(qu,va)—/(nxv) (V xu)ds — (p,divv) +
r

=(Vxu,V xv)—(p,divv)—i—/ pv - nds.
1)
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The weak form of the Stokes problem (3.4.9) becomes as follows: Find (u2,p°?) €
H x L?*(2) such that

(V><uS2,VXv)—(pSQ,divv):(F,v)—/pbv-nds for all v € H,
r (SP)

(¢, divu®?) = 0 for all v € L*(Q).

Remark 3.4.2. If (u”2,p%%) € H x L*(Q) satisfies u®? € H*(Q)¢,p°? € H'(Q) and (SP),
then we have

(—Au52+VpS2—F,U):/(pSQ—pb)v-nds for allv € H,

I

(¢, dive?) =0 for all ¢ € L*().

Therefore, (u°2, p5?) satisfies (3.4.9).

We establish the well-posedness of this problem (SP) in the following theorem.

Theorem 3.4.3. [23, Theorem 1.5] For F € L2(Q)" and p* € H'(Q)), under Hypothesis
2.2.17, there exists a unique solution (u°?,p°?) € H x L*(Q) to (SP).

Proof. We set

a(u,v) = ap(u,v), blv,q) = —(q,dive), f(v):=(F,0v) —/ pPv - nds

I's

for all u,v € H and q € L*(Q). Clearly, a and b are continuous and bilinear forms and
f € H*. By Theorem 2.2.19, a is coercive on {v € H | b(v,q) = 0 for all ¢ € L*(Q)} =
{v e H | dive = 0}. By Theorem 2.2.16, b satisfies the assumption of Theorem 2.2.12.
Therefore, there exists a unique solution (u®? p°?) € H x L%*() to (SP) by Theorem
2.2.12. O

From here on, let the solutions of (PPT’) and (SP) be denoted by (uf?,pf") and
(u5?, p°?), respectively. The solution (u®2, p°?) to (SP) satisfies the following property.

Proposition 3.4.4. If Au? + V(divu®?) € L2(Q)’, p52 € HY(Q) and ApS? € L2(9),

then
(1 . d
S(506), 5()) = (7%, div p) = (F,i9) = (Tu(u™ 5™), ) s o0 Jor all o € HE ()",
S2 . 8pS2 1
(Vp=, V) = —(div F,¢) + ( ——, ¢ for all ¢ € Hp, (),
371 HI/Z(F )
Y0 1
\ps2 =’ on I's.

Proof. From the second equation of (SP) and % € H'(Q), divu? = 0 holds in L%(Q).
From the first equation of (SP), we obtain

—Au™? — V(divu™?) + Vp°? = —Au? + V(divu?) + Vp¥* = F (3.4.10)
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in 2'(Q). By the assumptions AuS? + V(divus?) € L2(Q)?, p%' € HY(Q) and div F €
L?*(€2), equation (3.4.10) holds in L*(2). Multiplying ¢ € H} () and integrating over €,
we get
(F,v) = (—=Au™ — V(divu®?) + Vp*2, p)
1

= S(S(u®).5(p) = (0™, div o) + (Tu(u™, p™), ) oy

Taking the divergence of (3.4.10), we have
ApP? =divF in 2'(Q).

By the assumptions Ap%? € L%(Q) and div F € L*(Q), Ap®? = div F holds in L?().
Multiplying ¢ € H}_ (£2) and integrating over Q, we get

) S2
v D) = ~(8p0) = (T - (B}
"2 (1)

Multiplying (3.4.10) by v € H and integrating over ), we get
(F,v) = (=Au™ + V(divu®?) + Vp™2, v)

= (V x u®%,V x v) — (p*2,divv) +/ p2v - nds.

1)
By the first equation of (SP), it holds that
/ P20 -n = —(V x 0”2,V x v) + (p™,dive) + (F,v) = / pv - nds
T'a 1)
for all v € H. Hence, p°? = p’ holds in H'/?(I';). O
We establish a lemma.
Lemma 3.4.5. Ifu € H%l(Q)d, p € L*(Q) and t € H~Y2(Ty) satisfy

1

S(S(), S(9)) = (b, divep) = (1.9) yagpys Sor all € HL (D) (3.4.11)

then there exists a constant ¢ > 0 such that
[l g ye < elllpllzz@) + [t m-1/2(0,))-

Proof. Putting ¢ := u in (3.4.11), we obtain

SIS (s gy = (i) = () o
< lpll2@ll divull 2 @) + [t m-12wy) lull gz,
< (Vdlpllz2(e) + ellth m-vvea) 1l i aye
for a constant ¢; > 0. By Theorem 3.2.1, there exists a constant co > 0 such that

Co
5||U||i,1(md < (VAdlpllz2ey + e ltll -1z 1ull g1 gye-

Hence, we obtain the result with ¢ = (2/c,) max{v/d, ¢, }. O
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The next theorem is the main result of this section.

Theorem 3.4.6. If AuS? + V(divus?) € L2(Q)?, p52 € HY(Q) and ApS? € L2(R), then
there exists a constant ¢ > 0 such that

S2
)

on ()

apSQ
HUS2 _ UPPHHI(Q)d <c (H _ gb

1p™ = Py < ¢

on

52 b
(HA/2(T1))* e : H(Hm( )d)*) ’
Y0

where t9% = T, (u5%, p°?).

Proof. Using Proposition 3.4.4, we obtain from (SP) and (PPT), for all ¢ € H%l(Q)d and
v € Hy,(Q),

(1
(S =), S(p)) = (P = P, divep) = (87 =10, 0) fa o
o S2
(V™ = p""), V) = <g; - g”,w> : (3.4.12)
n H ()

\pSZ _pPP -0 on FQ,

where t°2 = T, (u®?, p°?). By the second equation of (3.4.12) and Lemma 3.3.1, there
exists a constant ¢; > 0 such that

832
1552 = 57 e < (H g +||p5‘2—pPP||H1/2<FQ>>
(H3)?(T1))*
S2
< ag — :
n (H?(T1)

By the first equation of (3.4.12) and Lemma 3.4.5,

HUSQ - uPPHHl(Q)d < ¢ <Hp52 - pPPHL2(Q) + HtSQ - th(H%Q(FQ)d)*)

apSQ
<a(a] =o)L I Pl )

on
3.5 Conclusion and future works

(H)(T1))*

We have proposed a new formulation for the pressure Poisson problem (PPT). We have
established error estimates between the solutions to (PPT’) and (ST") in Theorem 3.3.2
and between the solutions to (PPT’) and (SP) in Theorem 3.4.6. Theorems 3.3.2 and
3.4.6 state that if we have a good prediction for the boundary data (g” or p®), then the
pressure Poisson problem is a good approximation for the Stokes problem. In particular,
by using Theorem 3.4.6, we propose a new viewpoint of the pressure Poisson problem and
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the boundary condition (3.1.2). The numerical solution to the Stokes problem with the
boundary condition (3.1.2) requires delicate choices of the weak formulation and special
finite element techniques [12]. On the other hand, the pressure Poisson problem was
previously used as a simple numerical scheme. From our results, we can confirm that
the pressure Poisson problem is also available for the Stokes problem with the boundary
condition (3.1.2).

For problem (SP), a finite element scheme is proposed in [13] (under the assumption
that I'y is flat). On the other hand, in many practical problems, the projection method
is more widely used due to its ease of implementation. Numerical comparison of (PPT’)
and (SP) offers an interesting direction for future works from those points of view.

As another extension of our research, generalization of our results to the Navier—Stokes
problem is important but is still completely open.






Chapter 4

e-Stokes problem

This chapter is based on the following published paper:

e M. Kimura, K. Matsui, A. Muntean, and H. Notsu: Analysis of a projection method
for the Stokes problem using an e-Stokes approach. Japan Journal of Industrial and
Applied Mathematics 36, 959-985 (2019). DOI 10.1007/s13160-019-00373-3

e K. Matsui and A. Muntean: Asymptotic analysis of an e-Stokes problem connecting
Stokes and pressure Poisson problems. Advances in Mathematical Sciences and
Applications 27, 181-191 (2018).

4.1 Introduction

Let Q be a bounded Lipschitz domain in R¢ (d>2,deN)andlet F': Q — R? be a given
applied force field and u® : T’ := 99 — R? be given Dirichlet boundary data satisfying
Joub-nds = 0. A strong form of the Stokes problem is given as follows. Find u® : Q — R?
and p° : Q — R such that

—~Au® +Vp®=F in Q,
divu® =0 in Q, (S)

= ub on I

where u® and p® are the velocity and the pressure of the flow governed by (S), respectively.
We refer to [14, 32, 80] for details on the Stokes problem (i.e., physical background and
corresponding mathematical analysis). Taking the divergence of the first equation, we
obtain

div F' = div(—Au® + Vp¥) = —A(divu®) + Ap® = Ap”.

This equation is often called the pressure Poisson equation and is used in numerical
schemes, such as the MAC, SMAC, and projection methods (see, e.g., [4, 21, 25, 40, 42,
53, 64, 68]).

We need an additional boundary condition for solving equation (3.1.1). In real-world
applications, the additional boundary condition is usually given by using experimental or
plausible values. We consider the following problem: Find ' : Q@ — R%and p"* : Q - R

31
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satisfying
—AuP? + Vptt = F in ©,
—ApfP = —divF in Q,
uff = b on T, (PP)

+boundary condition for pf'*.

We call this problem the pressure Poisson problem. The idea of using (3.1.1) instead
of divu® = 0 is useful for calculating the pressure numerically in the Navier-Stokes
equation. For example, this idea is used in the MAC, SMAC, and projection methods.
The Dirichlet boundary condition for the pressure is used in an outflow boundary [18, 84].
See also [23, 24, 63].

We introduce an “interpolation” between problems (S) and (PP). For ¢ > 0, find
u® 1 Q — R? and p° : Q — R such that

—Au® +Vp* =F in Q,
—eAp® +divu® = —edivF  in
u® = ub on I, (ES)

+boundary condition for p®.

We call this problem the e-Stokes problem (ES). In [26, 33, 48], the authors treat this
problem as an approximation of the Stokes problem to avoid numerical instabilities. The
e-Stokes problem approximates the Stokes problem (S) as ¢ — 0 and the pressure Poisson
problem (PP) as e — oo (Fig. 4.1). As in Chapter 3, we will show that if p° € H'(),
then there exists a constant ¢ > 0 independent of € such that

lu® — UPP“HI(Q)d +[p° _pPPHHl(Q) < cllp® - pPPHH1/2(F)a

s S S __ . PP
[u” = || ga pe + 7 = Pl ) < ellp” = ™" [l 2y
From the first inequality, if we have a good predictive value for pressure on I', then u'”
is a good approximation of u®. Moreover, u¢ is also a good approximation of u° from the
second inequality.

(PP) o (5)

Ek /:0

(ES)

Figure 4.1: Sketch of the connections between problems (S), (PP) and (ES).

Next, we specify the boundary conditions for p©* and p°. We consider a Neumann

boundary condition (4.1.1) and a mixed boundary condition (4.1.2),

8 PP a £
gn = gb on T, 8}; = gb onT, (4.1.1)
apPP b apa b
= = F
on 9 vl on Y T (4.1.2)

p"" =p®  onTy, pP=p" onTy,
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pPP=pPonT, p =p"onT, (4.1.3)
where p’ : T — R and ¢® = I' — R satisfying [ ¢" = [ div F are given boundary data.
The boundary condition (4.1.2) corresponds to (4.1.1) when I'y = T",T'y = () and to (4.1.1)
when Fl = Q), FQ =T.

In this chapter, we introduce a weak solution (u®,p®) to the e-Stokes problem (ES)
and prove that (u¢, p°) strongly converges in H'(2)* x H'() to a weak solution to the
pressure Poisson problem (PP) as e — oo and weakly converges in H} (Q) x (L2(Q2)/R) to
a weak solution (u®, p¥) to the Stokes problem (S) as ¢ — 0. In addition, for the Neumann
boundary condition, we estimate the error between the weak solutions to (ES) and (S)
provided p® € H(Q). We also give an asymptotic expansion for the weak solution to
(ES). We further check this convergence result using numerical computations.

The organization of this chapter is as follows. In Section 4.2, we introduce the weak
form of these problems. We also prove the well-posedness of the problems (PP) and (ES).
In Section 4.3, we establish error estimates between solutions to the problems (PP), (ES)
and (S) in terms of the additional boundary conditions. In Section 4.4, we study that
the solution to (ES) converges to the solution to (PP) in the strong topology as ¢ — .
Here, we also explore the structure of regular perturbation asymptotics. Section 4.5 is
devoted to proving that the solution to (ES) converges to the solution to (S) in the weak
and strong topology as € — 0. In Section 4.6, we show several numerical examples of
these problems. The numerical errors between problems (ES) and (PP), and between the
problems (ES) and (S) using the P2/P1 finite element method. We conclude this chapter
with several comments on future works in Section 4.7.

4.2 Weak formulation and well-posedness

In this section, we introduce the weak form of the problems (S), (PP) and (ES), and prove
their well-posedness. We give estimates between these solutions by using a pressure error
on the boundary I

Let Q C H*(Q) be a closed subspace such that there exists a constant ¢ > 0 for which
a2y < c||Vq||L2(Q)d for all ¢ € Q. The dual space * is equipped with the norm

/]

@ = sup (f,¥)
$ESg

for f € Q*, where

4.2.1 Weak formulations of the problems (S), (PP) and (ES)

We assume the following conditions for F, uy, g, and py:

Fel*Q)'  weH72I), / w-n =0, (4.2.4)
T

g€ HYAI), divF e L*(Q), (4.2.5)
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<gb, 1>H1/2(F) = / leFdﬁ, (426)
Q

m € H(Q). (4.2.7)

We start by defining the weak solution to (S). For all ¢ € HL(€), we obtain from the
first equation of (S) that

/ -pds + (Vu® Vso)+/psso-nd8—(ps,diw)
I

%, V) +(VD®,0) 1 aye-

Using this expression, the weak form of the Stokes problem becomes as follows: Find
u$ € HY(Q)? and p® € L2(Q)/R such that

(Vu®, V) + (VD°, )y e = (Fop) for all p € HY(Q)",
(divu®, ) =0 for all 1 € L*(Q)/R, (S7)
u® =y in HY2(I)".

Remark 4.2.1. If (u5,p%) € HYQ)? x L2(Q) satisfies uS € H2(Q),p° € HY(Q) and
(S’), then we have

(—Au® +Vp® —F,0) =0 forallpc HS(Q)d7
divu® =0 in L*(9),
u® = in HY?(T)",

Therefore, (u®,p°) satisfies (S).

Next, we define the weak formulations of (PP) and (ES) first for the Neumann bound-
ary condition (4.1.1) and them for the mixed boundary condition (4.1.2). After that, we
define generalized weak formulations for (PP) and (ES) which cover both cases.

First, we apply the Neumann boundary condition (4.1.1) for (PP) and (ES). We take
a test function ¢ € H(2). From the second equation of (PP), we obtain

—(diV F7 77D) = _(Apppv ¢)
PP

_ dp PP
== | Tgnvds + (VL V0)

gy, VY g2y + (VDT V).

Hence,
(VP V) = (go, ) gz — (div F, ¢)).

We note that (gy, V) gr/ory — (div F,90) = (gs, []) gr/ory — (div F, [¢]) for all ¢ € H'(Q)
by (4.2.6). Therefore, the Weak form of the pressure P01sson problem with the Neumann
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boundary condition (4.1.1) becomes as follows. Find uF € H*(Q)* and p** € H(Q)/R
such that

(Vul? V) + (VPP ) = (F,p) for all p € HY(Q)?,

(VPP V) = (G1, ¥) oy for all ¢ € H'(Q)/R, (PPy)
u"f =, in HY2(T'),

where G, € HY(Q)" defined by for all v € HY(Q),

(G1, V) () = (gb,wm/z(p) — (div F, ). (4.2.8)

The weak form of (ES) with the Neumann boundary condition can be defined similarly
to that of (PP). Find v¢ € H'(Q)? and pf € H'(€)/R such that

(Vus, Vo) + (Vp*,p) = (F,¢) for all € H} ()",
e(VpF, Vi) + (div s, ¥) = £(Gy, V) iy for all ¥ € HY(Q)/R, (ES1)
u =y in HY2(I")".

Remark 4.2.2. If (uP,pPP) € HY(Q)" x H(Q) satisfies u"” € H2(Q)4, pPP € H(Q)
and (PPy), then we have

(—Au"P + Vp'F — F,p) = OPP for all ¢ € HY(Q)?,
9,
(—Appp+divF,1/)) = <— g —I—gb,¢> for ally € HY(Q),
n H/2(T)
uf? =y, in HY2(T)™.

Therefore, (uPf', pt't) satisfies (PP) and the Neumann boundary condition (4.1.1).
In the same way, if (us,p°) € H'(Q)? x HY(Q) satisfies v € HX(Q)?, p° € H'(Q) and
(ES, ), then we have

(—Au 4+ Vp° — F,p) =0 for all ¢ € HY(Q)",
8 £

(—eAp® +divu® +edivF,¢) = ¢ <— P +gb,w> for all € HY(Q),
on H1/2(F)

us =y in HY2(T)™.

Therefore, (u®,p®) satisfies (ES) and the Neumann boundary condition (4.1.1).

Secondly, we apply the mixed boundary condition (4.1.2) for (PP) and (ES). We take
a test function ¢ € H}, (). From the second equation of (PP), we obtain

—(dIV F7 ¢) = _(ApPP’ w>
8pPP

— PP

= _<gb,¢>H}/62(F1) + (vaP, V”Lp)

Hence,
(vaP7 qub) = <gba ¢>H$62(1‘1) - (le Fﬂﬁ)
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The weak form of the pressure Poisson problem with the mixed boundary condition (4.1.2)
becomes as follows. Find u” € H(Q)? and pF? € H'(2) such that

(Vul? V) + (VPP ) = (F,p) for all p € HY(Q)",

(VpP'?, Vip) = (G, 1/}>H%2(Q) for all ¢ € H}, (), (PP,)
uft =y in HY2(I)",
P’ =pm n HI/Z(F2),

where Gy € H} ()" defined by for all ¢ € H{ (),
<G2,¢>H§2(Q) = <9b>¢>H%2(FI) — (div F,¢). (4.2.9)

The weak form of (ES) with the mixed boundary condition (4.1.2) can be defined similarly
to that of (PP). It reads as follows. Find u¢ € H(Q)? and p° € H*(Q) such that

(Vus, Vo) + (Vp©, ) = (F, ) for all p € H}(Q)",

8(vp€7 Vw> + (le U’Ea w) = €<G27w>H%2(Q) for all w € H%Q(Q)7 (ESQ)
U= up in HY2(I')",

P° =D in HY2(Ty).

Remark 4.2.3. If (uP pPP) € HY(Q)" x HY(Q) satisfies uPT € H*(Q)4, pFP € HY(Q)
and (PPy), then we have

[ (—Au"P +VpP'T — F ) =0 for all ¢ € HL(Q)*,
apPP
(_ApPP + leFﬂb) - <_ o + gbaw> fOT all 1/J S H%Q(Q>7
" HE ()
uft =, in H1/2(F>n>
L P = in H'*(Ts).

Therefore, (u"?', pP'?") satisfies (PP) and the mized boundary condition (4.1.2).
In the same way, if (us,p°) € H'(Q)? x HY(Q) satisfies v € HX(Q)?, p* € H'(Q) and
(ES), then we have

[ (—Au + VpF — F,0) =0 for all ¢ € HX(Q)?,
a £
(—eAp® +divu® +edivF¢) =« <— b +gb,1/z> for all v € HY(Q)/R,
an Hlll(Q)
Ut = uy in H'>(D)",

\ pszpb m H1/2<F2).
Therefore, (u®,p®) satisfies (ES) and the mized boundary condition (4.1.2).

When I'y = @ and Ty = T, the mixed boundary condition (4.1.2) becomes the
full-Dirichlet boundary condition (4.1.3). Hence, the weak form of the pressure Pois-
son problem with the full-Dirichlet boundary condition (4.1.3) becomes as follows. Find
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uPP e HY(Q)" and pP? € H'(Q) such that

VuPP V) + (Vp'P, 0) = (F ) for all p € HH(Q)",

V' V) = (Gs, ) i) for all ¥ € Hy(9), (PP3)
uPP =, in HY2(I')",
P’ = in HY2(T),

where Gy € H(Q) defined by for all 1 € H} (),

(G3,9) i) = —(div F,¢). (4.2.10)

In the same way, the weak form of the e-Stokes problem with the full-Dirichlet boundary
condition (4.1.3) becomes as follows. Find u¢ € H'(Q2)? and p* € H'(2) such that

(Vu®, Vo) + (Vp©, ) = (F, @) for all ¢ € H ()",

e(Vp, Vo) + (divu®,v) = e(G3,¢) 1oy for all ¢ € Hy(Q), (ESs)
U = in HY2(I')",

P =m in HY2(I).

Finally, we generalize (PP;), (PP3), and (PP3) to an abstract pressure Poisson prob-

lem. Let @ C H'(Q2) be a closed subspace as defined in Section 4.2. Find u"* € Hl(Q)d
and pf'f € @ such that

(Vul? V) + (VPP ) = (F,p) for all p € HY(Q)",
(

VPP Vi) = (G, )q for all ¥ € Q, (PP")
uPP =, in HY2(I')",
pPP — Db € Q>

with G € @Q*. Indeed, we obtain (PP;) (resp. (PP2), (PP3)) from (PP’) by putting
Q = H'(Q)/R (resp. H} (), Hj(?)) and G == Gy (resp. G, G3).

We generalize (ES;), (ESy), and (ES3) to an abstract e-Stokes problem. Find u® €
HY(Q)% and p* € Q such that

(Vus, Vo) + (Vi7, @) = (F, ) for all ¢ € HH(Q)”,
e(Vpe, V) + (divus, ) = e(G, ) for all ¢ € Q,

ut —up € H&(Q)d,

P = €Q.

(ES’)

Indeed, we obtain (ES;) (resp. (ESy), (ES3)) from (ES’) by putting Q = H'(Q)/R (resp.
H},(Q), Hj(Q)) and G == G (resp. G, G3).
4.2.2 Well-posedness of (S’), (PP’) and (ES’)

We show the well-posedness of problems (S’), (PP’) and (ES’) in Theorems 4.2.4, 4.2.5
and 4.2.6.
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Theorem 4.2.4. Under the condition (4.2.4), there exists a unique solution (u®,p°) €
HY Q)" x (LA(Q)/R) satisfying (S).

Proof. We take arbitrary u, € Hl(Q)d with you; = up. By Theorem 2.2.15, there exists
Uy € H&(Q)d such that divuy = divu;. We put uy = u; — uo, and note that youg = uy
and divug = 0. The problem (S’) is equivalent to the following equations:

(V(u® — uo), Vip) — (p°,div ) = (F, ) — (Vuo, Vip) for all ¢ € HY(Q)",
(¢, div(u® — ug)) =0 for all v € L*(Q)/R, (4.2.11)
u® — g € H&(Q)d.

By Theorem 2.2.7, the continuous bilinear form HL(Q)? x HL(Q)? 5 (u,p) — JoVu

Vipdr € R is coercive. By Theorems 2.2.12 and 2.2.14, there exists a unique solution
(uS,p%) € HY(Q)* x (L*(Q)/R) satisfying (4.2.11). 0

Theorem 4.2.5. Under the conditions (4.2.4) and (4.2.7), for G € Q*, there exists a
unique solution (uFP, pPP) € HY(Q)" x Q satisfying (PP’).

Proof. Using the Lax-Milgram theorem, since @ x Q 3 (p,v) — [,Vp- Vipdzr € R is
a continuous and coercive bilinear form, p* € H'(Q) is uniquely determined from the

second and fourth equations of (PP’). Then, uf” € H'(Q)" is also uniquely determined
from the first and third equations, again using the Lax—Milgram theorem. O]

Theorem 4.2.6. Under the conditions (4.2.4) and (4.2.7), for e > 0 and G € Q*, there
exists a unique solution (uf,p%) € H Q)" x HY(Q) satisfying (ES’).

Proof. We take arbitrary u; € H*(Q)? with ~ouy = u,. Since div : HY(Q)? — L2(Q)/R is
surjective [32, Corollary 2.4, 2°], there exists us € HE(Q)? such that divus = divus. We
put

Ug = U — Ug, (4.2.12)

and note that youg = up and divug = 0. To simplify the notation, we set u == u® — ugy €
HY Q) p=p° — p» € Q, and define f € H1(Q)" and g € Q* by

(f, /U>H&(Q)d = (F,v) — (Vug, Vv) — (Vpp,v) forallv e Hé(Q)d,

(4.2.13)
(9.0)0 = (G,q9)g — (Vps, V@) for all ¢ € Q.
Then, (u®, p?) satisfies (ES’) if and only if (u, p) satisfies
S(Vp, Vo) + (divu, ) = £(g,1)q for all ¥ € Q.

Adding the equations in (4.2.14), we get

((3) (), = mverscmnvor o vy

= <fa Q)O)H(%(Q)d + €<g7 Qﬁ)Q
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We check that (-, -). is a continuous coercive bilinear form on HZ(Q)? x Q. The bilinearity
and continuity of (-,-). are obvious. The coercivity of (-, -). is obtained in the following
way. Take (v,q)T € H&(Q)d x (. We have the following sequence of inequalities:

(( Z ) ; ( Z )) = (Vv,Vv) +¢e(Vq,Vq) + (v,Vq) + (divv, q)
IVol3200) + €l Vall2q)
min{1, <} (Hwniz(m + HVqllim))

> cuinfl,e} (012 g + ol )

Vv

Summarizing, (-,-). is a continuous coercive bilincar form and HZ(Q)? x @ is a Hilbert
space. Therefore, the conclusion of Theorem 4.2.6 follows from the Lax—Milgram Theo-
rem. [

4.3 Error estimates in terms of the additional bound-
ary condition

In this section, as in Chapter 3, we give estimates of the difference between the solutions to
the pressure Poisson problem, the e-Stokes problem and the Stokes problem, respectively.

We prove the following lemma about estimates of the difference between the solutions
to the e-Stokes problem and the Stokes problem.

Lemma 4.3.1. If p° € HY(Q), then there exists a constant ¢ > 0 independent of € such
that

lu® — U€HH1(Q)d < dIV(p® - pPP)”L?(Q)d'

Proof. Let w® := u® — uf € H&(Q)d and 7° := p'Y —p* € Q. By (S'), (PP’) and (ES’),
we obtain

(Vu®, Vo) + (Vr€,9) = =(V(p = ™), ) for all p € H}(Q)", (43.15)
e(Vre, V) + (divas, v) = 0 for all ¥ € Q. -
Putting ¢ := w® and ¢ := r° and adding the two equations of (4.3.15), we get
R L e | 1
from [,(Vre) - w®de = — [ (divw®)r® dz. Thus we find
”wEHHl(Q)d <[V(p® - pPP)“LQ(Q)d
for a constant ¢ > 0 independent of ¢. O

By Lemma 4.3.1, if we have a good prediction for the pressure boundary data, then
(ES) is also good approximation for (S). In this section, we prove these types of estimates
for the weak solutions.
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Theorem 4.3.2. Suppose that p° € H'(Q), HY}(Q) C Q and (G,¢)g = —(div F, ) for
allp € H (). Then, there exists a constant ¢ > 0 independent of € such that

[u® — uPPHHl(Q)d < cflp” -~ pPP||H1/2(F)7
S = T (43.16)
[u” —u ||H1(Q)d < dlp? = lmem):
In particular, if p° = pt't, then (u®,p%) = (PP pPP) = (uf,p°) holds for all € > 0.

Proof. First, we prove that there exists a constant ¢ > 0 independent of ¢ such that
[w® = wPP ||y gye < ellp® = 7P ey, and if (p° — pPF) = 0, then p” = p®. Taking
the divergence of the first equation of (S’), we obtain

div F' = div(—Au® + Vp¥) = —A(divu®) + Ap® = Ap”.
in distributions sense. Since p® € H*(Q) and C§°(f2) is dense in H} (), it follows that

(Vp™, Vi) = —(div F, ¢))

for all v € Hy(2). Together with (S”), (PP’) and Hj(Q) C Q, we obtain

{ (V(u® —ul?), V) = —(V(p® = pP'),¢) for all p € HY(Q)?, (4.3.17)

(V(p® —p""), Vi) =0 for all ¢ € HL(Q)

from the assumption (G, 1) = (VF, ). Putting ¢ := u5 — uF € H}(Q)" in (4.3.17),
we get

IV(W® = uPP) 2, e = —(V (" =p™"),u” — ")
<[IV(p® — PPP)||L2(Q)d||“S - UPP”L?(Q)d'
Hence,
lu® — UPPHHl(Q)d <allve® - pPP)“L?(Q)d' (4.3.18)

From the second equation of (4.3.17) and Lemma 3.3.1 (with I'; = @) and T’y = T i.e,,
HE(Q) = Hj(R)), we obtain

lp* =™ llzrr0y < eallp® = p" [l (4.3.19)

Together with (4.3.18), we obtain ||u® — UPPHHl(Q)d < c162|lp® — P || 12y Moreover, if

%0(p® = p™") = 0 then p™" = p®.
Next, we prove that there exists a constant ¢ > 0 independent of € such that |Ju® —
W g1yt < €llp® =iz, and if 4o (p° —pP7) = 0, then p™” = p*. Let w® := u® —u® €

HLQ)? and 7= := pPP — pF € Q. By (S), (PP’) and (ES’), we obtain

{ (Vur, Vo) + (Vi€,9) = —(V(p* = p""),¢) forall o € H}(Q)", (4.3.20)

e(Vre, Vi) + (divw®, ) =0 for all ¥ € Q.
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Putting ¢ := w® and ¢ := r° and adding the two equations of (4.3.20), we get
IV gy V7 e < 1V~ sl gz (43:21)

from [,(Vr) - w® dz = — [,(divw®)r® dz. Thus we find

[l g1 eye < eslIVP = ") 2y
Together with (4.3.19), we obtain

S

[u” — UEHHl(Q)d = ||w€||H1(Q)d < cpeyp® _pPP||H1/2(F)'

Moreover, by (4.3.21), we obtain
ellp™ — p€||%2(9) = 5||7”6||%2(Q) < alV(p® - pPP)HL?(Q)dHUJEHL?(Q)d‘

Hence, if yo(p® — p™”) = 0, then p"” = p*. =

Since HJ(Q) ¢ H'(Q2)/R, Theorem 4.3.2 does not apply directly for the case of the
Neumann boundary condition (4.1.1). However, we add natural assumptions, then it leads
to (4.3.16).

Corollary 4.3.3. Suppose that p° € H'(Q) and Q = H'(Q)/R. If G = G, defined by
(4.2.8), then we have (4.3.16).

Proof. By (4.2.8), it holds that
(VP V) = —(div F, )

for all ¢» € H}(Q) from the second equation of (PP’). Hence, it leads the second equation
of (4.3.17). Using the proof of Theorem 4.3.2, we obtain (4.3.16). O

We focus on the mixed boundary conditions (4.1.2), i.e., (PP3y) and (ESs).
Proposition 4.3.4. If (u®,p°) satisfies p° € H*(Q) and Ap® € L*(2), then we have

s Y op®
(Vp°, Vo) = =(div F, ) + ( ——, 7
on H%Q(Fl)

for all ¢ € H} (Q).
Proof. From the first equation of (S’), we obtain
A+ VP =F  in2(Q).
Taking the divergence, we get
div F = div(=Au® + Vp¥) = —A(divu®) + Ap® = Ap®  in 2/(Q).
By the assumptions Ap® € L*(Q) and divF € L*(Q), Ap® = div F holds in L?().
Multiplying ¢ € H[, () and integrating over 2, we get

S
v F) = %) = (VT - (Pw)
H

on 120,

which is the desired result. O
Using Proposition 4.3.4, we prove the following theorem.
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Theorem 4.3.5. Let Q = H{ (Q) and G = G5 defined by (4.2.9). If p° € H'(Q) and
Ap® € L?(Q), there exists a constant ¢ > 0 such that

op®
||US - UPPHHl(Q)d < c ' a_ — 9 + ||pS _pb||H1/2(F2) )
" (H3* ()"
s (4.3.22)
P { F16° = pollra ) -
" (H33* (M)
Proof. Using Proposition 4.3.4, we obtain from (S’) and (PP’),
d
(V(u® —ulP), V) = (p° = pP'", p) for all ¢ € Hy(Q)",
on° 4.3.23
(V(® —p""), V) = (2 — gy ¢ for all ¢ € H, (). (43.23)
8n H%Q(Fl) 2

Putting ¢ := us — ufP € H}(Q)? in (4.3.23), we get
V(05 — PP s = (0 — PP, div(u® — uPP))
< p* = o™l 2@l div(u® — u)| 12
< \/EHPS - pPPHHl(Q)”US - uPPHHl(Q)d'
From Theorem 2.2.7, it follows that
lu® — UPPHHl(Q)d < allp® - pPP||H1(Q)

for a constant ¢; > 0. By the second equation of (4.3.23) and Lemma 3.3.1, there exists
a constant ¢y > 0 such that

op®
1p° ="l < e ’ | Ip° _pPPHH1/2(F2)>
(Hyl? (1))
8ps
- o)) . W —pb\|Hm<r2>) -
(Hy)?(T)*

Hence, we obtain the first inequality of (4.3.22) with ¢ = ¢;c. By Lemma 4.3.1, it holds
that

[0 =P ge < VT =) 2y

= CaC3 o T 9

A

on

. + [Ip° — Pb||H1/2(r2)> :
(Hyy™(T1))*

]

In the same way as above, we also obtain estimates of the difference between the
solutions to (S’), (PP;) and (ES;), respectively.

Corollary 4.3.6. Let Q = HY(Q)/R and G = G defined by (4.2.8). If p° € HY(Q) and
Ap® € L*(Q), there exists a constant ¢ > 0 such that

op®
[0 = u"P e < cll5— — o ,
Hl(Q) 87"1/5’ H_l/g(l—x)
dp
S e
u> —u < c||—/—— .
I =l < e m
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4.4 Links between (ES) and (PP)

In this section, we show that (uf,p®) converges to (u”?, pP’?’) strongly in Hl(Q)d x HY(Q)
as € — oo. We also treat the case of the regular perturbation asymptotics by exploring
the structure of the lower order terms and their effect on the convergence rate.

4.4.1 Convergence as € — 00

We use the following Lemma 4.4.1 for the proofs of the theorems in this section.
Lemma 4.4.1. Let h € Q* and (v°,¢°) € H&(Q)d X @ satisfy

{ (Vo5 Vo) + (V) = 0 for all ¢ € HY(Q)",

e(Vq", V) + (dive®, o) = (h,d)q  for all ¢ € @
for an arbitrarily fived € > 0. Then, there exists a constant ¢ > 0 such that

(4.4.24)

c
1l @ye + Nl < Zlill--

Proof. Putting ¢ := v* and ¢ := ¢° and adding two equations of (4.4.24), we obtain

90 i+ £V 2 g < 1

12(0) Q IVa [l 2y

where we have used (V¢°,v°) = —(div v, ¢°). Thus
1
IV 0 < lbllg-
In addition, from the first equation of (4.4.24) by putting ¢ := v, we have
vaaHig(Q)d = (Vo Vof) = =(V¢',0f) < ”Vqsup(g)dHU€HL2(Q)'1
< CquEHL?(Q)d||VUE||L2(Q)dXd

for a constant ¢ > 0, and then

c
||VU£||L2(Q)4 < C”annm(g)d < th’

Q-
O
Using Lemma 4.4.1, we obtain the following theorem.
Theorem 4.4.2. There exists a constant ¢ > 0 independent of € > 0 such that
s =7 s e + 157 = 7 ey < < diva™ g
for all e > 0. In particular, we have
u® — u"? strongly in HI(Q)d, p° — p" strongly in H'(Q)) as e — oo,
Proof. Combining (PP’) and (ES’), we obtain
{ (Vv°, V) + (Vg ) =0 for all p € H2(Q)", 425)
e(Vq, V) + (dive®,1p) = —(divul? +p) for all ¢ € Q,
where v¢ := u® — uP" and ¢¢ := p° — p’". By Lemma 4.4.1, we conclude the proof. O]

Corollary 4.4.3. If u?? satisfies divur® = 0, then u® = u" and p* = p'" hold for all
e > 0. Furthermore, u® = u® = ur'" and p* = [p] = [pF'F] hold for all ¢ > 0.
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4.4.2 Regular Perturbation Asymptotics

By Theorem 4.4.2, there exists a constant ¢ > 0 such that [le(u® — u™)[| g < ¢

and |le(p* — p"F)||mrq) < ¢ for all e > 0. It implies that there exists a subsequence of

(e(u® — u®?),e(p® — p¥’?")) which converges weakly to (v(1),q)) € HY Q) x Q if & — o0.

The next theorem states properties of the limit functions vy and q(y).

Theorem 4.4.4. Let v(;y = &(u® — uf?) € H&(Q)d,qfl) = e(p® — p'") € Q and let

(vay, qy) € HY Q) x Q satisfy

(Yo, Vo) + (Vaay, ) =0 for all o € HY(Q)",
(Vquy, V) = —(div utY W) for all 4 € Q.

Then, there exists a constant ¢ > 0 independent of € such that

(4.4.26)

& .
vty = v llm@e + gy — awllme < Zlldiveog e

Proof. The existence and uniqueness of the pair (vn), gq)) € Hé(Q)d X (Q as a solution to
(4.4.26) follows from Theorem 4.2.5. As in (4.4.25), we have

(Vo) Vo) + (Vg ) = 0 for all ¢ € H(0)",
. 1, .  ep (4.4.27)
(Va(y, V) + g(le VG, ) = —(divu ", 1) for all ¥ € Q.
Subtracting (4.4.26) from (4.4.27), it holds that
€ € d
(V(v(y —vw), Vo) + (V(gh) — quy), ) =0 for all o € Hy(Q)",
1, .
(V(q€1) - CI(1)): Vi) + g(dl" Yy Y)=0 for all ¥ € Q.
Hence,
(Vo©, Vo) + (V¢ ) =0 for all p € HA(Q)?,
1
(V@ , V) + g(div v, ) = —(divuy,¢) for all ¥ € Q.
where v° = V(1) — V() and ¢° := a0y — qa)- By Lemma 4.4.1 , there exists a constant
¢ > 0 independent of € such that
13 £ C .
Ity = vl ey + gy — awllme < Zldivee lle-
for all € > 0. 0

Next, we generalize Theorem 4.4.4 to the following theorem:

Theorem 4.4.5. Let k € N be arbitrary (k > 1) and let vy = u"". If functions vg),
Uy vy € HY(Q)! and qay ey, € Q satisfy

{(vwi), Vo) + (Vaay, @) =0 for all p € HY(Q)",

‘ (4.4.28)
(Vag), Vo) = —(divo™V ) for all ) € Q,



4.4. LINKS BETWEEN (ES) AND (PP) 45

for all 1 < i <k, then there exists a constant ¢ > 0 independent of € satisfying

. 1 1\*
u — (upp+g’0<1> +oe ot (g) U(k)) < ngHdlvv ol
HY(Q)?
€ PP 1 1 :
p—|p +EQ(1)+"'+ ) d® §5k+1||dlvv wlle--
HY(Q)
Proof. Let (v, ;) € HY Q)" x Q (1< i< k) satisfy
(Vuiy, Vo) + (Vi ») =0 for all ¢ € H}(Q)",
. B (4.4.20)
(Vi) V) + (dlv Uiy, ) = —(div Y ) for all ¥ € Q.
Subtracting (4.4.28) from (4.4.29), it holds that
(V05 — ), Vo) + <V<qa> — @), @) =0 forall p € HH(Q)",
(V(gG) — 96)), V) + (leU i ¥) =0 for all ¥ € Q.
Setting v° := vfi) — Ve, ¢° = q(gi) — q() and h = —div v, we obtain from Lemma 4.4.1

that the estimates

C, ..
[0y — U(i)“Hl(Q)d + gy — a6l @) < E“ div v

hold for all € > 0. In particular, putting i := k, we obtain

Cii 4
[0Gky = vl gyt + 1146y — anllm0) < EH div o [l o-

for all ¢ > 0. By the uniqueness of the solution to (ES’) in Theorem 4.2.6, it leads that
v = e(ufy = v), ¢ = e(qf) — q) foralli =1,---  k — 1, and thus

Uiy — V) = E(U(p_1) = Vk—1)) — V(k)

- 1
= ¢ (U(k—l) — (’U(k—l) —+ (g) U(m))

1 k—2 1 k-1
. k—1 €
= ¢ (v(l) - (v(n tooot (g) Uk—1) + (g) “<k>>)
k—1 k
1 1 1
= ¢£F <u€ . (uPP + v+ (_) Uk—1) + (_) UU‘”))’
5 € €
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Uy — 400y = Q1) — Q-1) — de)

R 1
= €| qr-1) — | dk-1) + z q(k)

1\ A2 1\ 51!
= ¢! <qf1) - (qu) Tt <g) q(k-1) (g) ‘J(k)))
1 1 k—1 1 k
= ¢ (pa - (pPP RO (g) Ak—1) + (g) ‘J(k)))'

Hence it holds that

1 1\F*
Ua—<U,PP+EU(1)+"'+(E) U(k)>
1 1\*
="+ =g+ + (=) aw
g g

Remark 4.4.6. Theorem 4.4.5 can be interpreted from the operator theory.
Lett>0,X := H&(Q)d xQ,Y = H_l(Q)d x Q* be equipped with norms

< el divelo-

HY(Q)?

< 5k+1||dlvv (k)

HY(Q)

1)1 = Mlullf g0 + HP||H1 Q)"
(£ 9l = ||f||i,71 0
for (u,p) € X,(f,g9) €Y, and let A and B be

A X — Y B: X — Y
w w w w
(u,p) = (—Au+ Vp,Ap), (u,p) — (0,divu).

Then, (uPP pPT) and (uf,p®) satisfy
1
AW = 1. (44 18) ) = 1
£
where f = (F,G). We have A+ tB € Isom(X,Y) for an arbitrary t > 0 by the analogy
of Theorem 4.2.5 (t =0) and Theorem 4.2.6 (t = 1/¢). Equation (4.4.28) states that
Alvay, aw) = =B, ¢"7Y)
forio=1,---k, i.e.,
(v ay) = —ATBUY V) = = (AT B) (u"F, pPh)
=AY (—=BA7Y)f.
By Theorem 4.4.5, there exists a constant ¢ > 0 such that

1 —1 k 1 7
-1 -1
(A+EB) f—A ;:0: (—EBA ) f

foralle >0,f €Y.

IBATYf

k+1

X
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4.5 Links between (ES) and (S)

In this section, we show that (uf, p?) converges to (u®,p®) strongly in Hl(Q)d x (L*(Q)/R)
as € — 0. The outline of the proof of our convergence results (Theorems 4.5.2 and
4.5.3) is as follows. First, we prove the boundedness of the sequence ((u®,p)).s¢ in

HY(Q) x (L*(Q)/R). By the reflexivity of H(Q)? x (L2(€)/R), the sequence has a

subsequence converging weakly in H'(€)? x (L%(€2)/R). Next, we show that the limit pair

of functions satisfies (S”). Finally, we prove the strong convergence in H' ()" x (L2(Q)/R).
We start this section with a useful lemma.

Lemma 4.5.1. Ifv e H'(Q)" q € L*(Q) and f € H(Q)? satisfy
d
(VU> VSO) + <VQ7 SO)H&(Q)d = <f7 (70>H&(Q)d fOT’ (Ill SO S H& (Q) )
then there exists a constant ¢ > 0 such that

Halllz20) < e(Voll pgyaxa + 1 Fll -1 ())-

Proof. Let ¢ be the constant from Theorem 2.2.14. Then, we obtain

iz < Vel s = € 5 V4, @)ypaay
PESy, 0

< csup (1(V0, )|+ [, 9) gy o))

PpESH
< Vol a1l @ye)-

Theorem 4.5.2. There exists a constant ¢ > 0 independent of € such that
[l g2yt + PN 220) < ¢ for all e > 0.
Furthermore, if the range of Q under the map [-] is dense in L*(Q)/R, then we obtain
u® — u® strongly in HI(Q)d, [p°] — p° strongly in L*(Q)/R as e — 0.

Proof. We take ug € H'(Q)?, f € H Q)" and ¢ € Q* as (4.2.12) and (4.2.13) in the
proof of Theorem 4.2.6. We put @ := u® —uy € Hj(Q)",p° := p° — pp € Q. Then, we
obtain

Vi, Vo) + (Vi5,0) = (f,0) 1o for all o € HY(Q),
{( )+ ( ) =, o) ¢ € Hy(Q) (45.30)

e(Vp®, V) + (diva®,¢) = e(g,¢)g for all ¥ € Q.

Putting ¢ := @°,%¢ := p° and adding the two equations of (4.5.30), we get

1512 s + NV 2agge < 11 e |V g + llallar IVF e

since (Vp©,u°) = —(diva,p®). Hence, (H'&EHHl(Q)d)O<E<1 and (||v/ep®||mi(e))oce<t are
bounded. Moreover, by Lemma 4.5.1, we obtain

115722 () < (Va2 + [1F 1| g1 gye)s
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i.e., ([[[P°]llz2(@) Jo<e<1 is bounded. By Theorem 4.4.2, (|[u| 1 (gya)e>1 and ([|[p%]|[r20))e>1
are bounded, and thus (|u®[| ;1 gya)e>0 and (||[p°]]|z2(0))e>0 are bounded.

Since HY(Q)* x (L2(Q)/R) is reflexive and (@, [[¢])oce<r is bounded in H ()" x
(L%(Q)/R), there exist (u, p) € H(Q)*x(L2(Q2)/R) and a subsequence of pairs (@, 55 )ren
c HY{(Q)? x Q such that

't — u weakly in Hl(Q)d, [°*] — p weakly in L*(Q)/R as k — oc.

Hence, from (4.5.30) with € := ¢, taking k — oo, we obtain

{(Vu, Vo) VD0l gyt =, Phiype for all ¢ € Ho(2) (4.5.31)

(divu, [¢]) =0 for all ¥ € Q,

where we have used that
lex (VD™ V)| < VerllVerp™ a9l ar@) — 0,
(V™ ¢) = =([p7], divp) = =(p, div @) = (VD, ¢) 1 gy
as k — oo. By (4.2.13), the first equation of (4.5.31) implies that for all ¢ € H&(Q)d,
(V(u+u0), Vo) + (V (P + o), ) ppa gyt = (Fr )

By the second equation of (4.5.31), if the range of Q under the map [] is dense in L*(Q)/R,
then it holds that for all ¢ € L*(Q)/R,

(div(u + uo), ¥) = (divu, 1) = 0.

Hence, we obtain that (u + ug, p + [ps]) satisfies (S”), i.e., u® = u + up and p° = p + [py].
Then, we have

€k S

Ut —u” =ut —u—uyy=u"—u—0 weakly in Hl(Q)d,

] — p° = [p™* —p — p) = [p™*] — p — 0 weakly in L*(Q)/R

as k — o0o. Since any arbitrarily chosen subsequence of ((u®, [p°]))o<e<1 has a subsequence
which converges to (u®,p®), we obtain

u® — u¥ weakly in Hl(Q)d, [p°] = p° weakly in L*(Q)/R  as e — 0.
Finally, we show the strong convergences. We have from (ES’) and (S’) that

{(V(ua —u5), V) — (p — p°,dive) =0 for all p € HL(Q)",
e(V(p" — pp), V) + (div(u® — u®), ) = (G, ¥)g — e(Vpy, Vab) for all o € Q.

Putting ¢ = u® —u® € H&(Q)d, 1 :=pf — p, € Q and adding two equations, we get

(0 = w2, gy + TG = )2
=e(G,p° — g — e(Vpp, V(pF — ) — (p° — py, div(u® — u?)).
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Hence, we have

19(uF = )12, i
<e([Gllgr + VPl 2@y ) IV (07 = Do)l oyt — (0% = o, div(u® — )
—0

as € — 0, which implies that
1] = p°ll2@) = I[p° = p°]llr20) < el V(= u¥)]| poqpaxa = 0 as k = o0

by Lemma 4.5.1. O
Theorem 4.5.2 does not give the convergence rate. If Q = H'(Q)/R (corresponding to
the Neumann boundary condition (4.1.1)), then the convergence rate becomes /z.

Theorem 4.5.3. Suppose that Q = H*(Q)/R and p° € HY(Q). Then, there exists a
constant ¢ > 0 independent of € such that

[u® = w|| g e + 107 = P[220 < eVe.
Proof. We obtain from (ES’) and (S’) that
(V= u®), Vo) + (V(p* = p°),0) =0 forall p € H}(Q)",
{ e(Vp*, Vo) + (dive®,¥) = e(G, ) piayr  for all Y € H'(Q)/R.
Putting ¢ := v — uS € HL(Q)" and 1 := p* — p5 € HY(Q)/R, we get
IV (u" = w7 gy + (VD" V(5" = 7))
= —(V(pf —p°),u* —u®) — (dives,p* — p°) + (G, p° — p°) () m

(4.5.32)
= (divu® — divu’, pf — p¥) — (dives, p° — p°) + (G, p° — pS>H1(Q)/R
=e(G,p° — P°) ) m-
Subtracting £(Vp®, V(p® — p°®) from both sides of (4.5.32), we obtain
V(0 = )2 gyocs + I = ) s
= —e(Vp®,V(p* —p°)) + (G, 0" — P ) (o (4.5.33)
< e(IVD°ll g + Gl my IV (07 = )] 12 (qye-
To clarify the following estimates, we set o = ||V (u® — US>HL2(Q)d><d,B = [|V(p® —

pS)‘|L2(Q)d, a:= HVPSHLZ(Q)d + |G| (a1 (@)/r)+- The estimate (4.5.33) reads as

wreseas, () + (30 < (3)

Hence, a < ay/2/2, ie., ||V(u® _US)HLQ(Q)dxd < (\/5/2)(||Vps||L2(Q)d + |Gl (a1 () /m)+)- By
Lemma 4.5.1, we obtain

JE
19" = p¥llzzi@) < eIV = u)l|aqyona < (VP s + G ayymye)

for a constant ¢ > 0 independent of ¢. O]
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4.6 Numerical examples

For our simulations, we consider 2 = (0,1) x (0,1). We take the following boundary
conditions:

wp = (z(e —1),yly — 1)) g =(2,2)" -n

on I'. The exact solutions for (PP;) are u” = (z(z—1),y(y—1))T and p"'? = 22+ 2y —2.
We solve the problems (PP;), (ES;) and (S’) numerically by using the finite element
method with P2/P1 elements by the FreeFEM software [43]. The numerical solutions
(PP pPP), (uf,p?) (e = 1,1072 or 107*) and (u”, p°) to problems (PP;), (ES;) and (S’),
respectively, are illustrated in Fig. 4.2-4.4. From these images, we observe that (u®, p®)
seems to converge to (uff pP'f) as e — oo and to (u®,p®) as ¢ — 0 (as expected from

Theorems 4.4.2 and 4.5.2.)

Next, we compute the error estimate between the numerical solutions of (ES;) and
(PPy). The numerical errors ||u® —uPPHLQ(Q)d, N —uPP)HLQ(Q)dxd, 1p° = PP || 12(0) and
IV(p* = p")| 12 (e are shown in Fig. 4.5 and Fig. 4.6. Based on these values, we fitted
PP\ iy ~ ¢/e for large e. Fig.

PPl < /e

a constant ¢ such that [[u® —u""[| 1 e ~ ¢/e and [[p* —p
4.5 and Fig. 4.6 indicate that there exists a constant ¢ such that ||u® — u @)
and ||p* — p"F|| 1) < ¢/e, as expected from Theorem 4.4.2.

We also compute the error estimate between problems (ES;) and (S’) by numerical
calculation. The numerical error estimates ||u® — uS||L2(Q)d, |V (uf — US)”LQ(Q)dxd Al —
P°||r2@) and [[V(p° — p5)||L2(Q)d are shown in Fig. 4.7 and Fig. 4.8. Based on these
values, we fitted a constant ¢ such that ||u® — USHH1(Q)d ~ cg and |[pf — p®| r2) ~ ce
for small . Fig. 4.7 and Fig. 4.8 indicate that there exists a constant ¢ such that
|lus — USHHl(Q)d < &/ and [|pf — p¥||12(0) < EV/E, as expected from Theorem 4.5.3.

1 0.4
0.75 0.3
4
2
0
P 0.5 0.2
-4
0.25 0.1
0 0

0 0.25 0.5 0.75 1

Figure 4.2: pP'? (left) and u”? (right). The color scale indicates the length of |u”f(£)| at
each node &.
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Figure 4.3: p° (a) and u® (b) with ¢ = 1. p° (c) and v (d) with e = 1072, p° (e) and u®
(f) with e = 107%. The color scales indicate the length of |u®(£)| at each node &.
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1 0.4
0.75 0.3
4
2
0 i
2 0.5 0.2
-4
0.25 | 0.1
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Figure 4.4: p° (left) and u® (right). The color scale indicates the length of |u®(¢)| at each
node £.
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€ €

Figure 4.5: ||u® — UPPHLz(Q)d (left, solid line) and ||V (u® — uPP)”LQ(Q)dXd (right, solid line)
as functions of e.

10-10 L

1010 107° 10° 10° 100 1010 107 10° 10° 100
€ €

Figure 4.6: [[p* — p""||12(q) (left, solid line) and ||V (p® — p")| 2 (q)e (right, solid line) as
functions of ¢.
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g€ €
Figure 4.7: ||u® — uS||L2(Q)d (left, solid line) and ||V (u® — ’LLS)HLQ(Q)dxd (right, solid line) as
functions of e.
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€
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Figure 4.8: ||p® — p®||r2(q) (left, solid line) and ||V (p® — pS)HLQ(Q)d (right, solid line) as
functions of €.

4.7 Conclusion

We introduced the e-Stokes problem (ES) connecting the Stokes problem (S) and the
corresponding pressure Poisson problem (PP). For any fixed € > 0, the e-Stokes problem
has a unique weak solution (u®,p®) (Theorem 4.2.6) and u® is a good approximation as
the solution to (S), while the solutions to (S) and (PP) are close in the following sense;

Pl 7

[ @ < cllp® =" ey,

S

@ T Ip® —p

[0 = ¥l 1 e + Ip° = 2l ) < ellp® = ™ e,

see Theorems 4.3.2 and 4.3.5 and Corollary 4.3.6 for details. In other words, if we have a
good prediction for the boundary data, then (PP) and (ES) are good approximations for
(S).

We proved in Theorem 4.4.2 that a sequence ((uf, p°))e=o converges strongly in H*(€2)%x
H'(Q) to the solution to (PP) as ¢ — oo with convergence rate O(1/g). We also treated
the case of regular perturbation asymptotics by exploring the structure of the lower order
terms and their effect on the convergence rate.
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We proved in Theorem 4.5.2 that ((u, p°)).so converges strongly in H*(Q)*x (L*(Q)/R)
to the solution (u°, p%) to (S) as € — 0. By numerical examples, we observed the expected
convergences as € — oo or € — 0.

We summarize our results as follows:

e We introduce the e-Stokes problem (ES) as an interpolation between the Stokes
problem (S) and the pressure Poisson problem (PP).

e The solution (u, p°) to (ES) strongly converges in H'(Q)* x H(Q) to (uPP, pPF)
as € — oo with convergence rate O(1/¢).

e The solution (u®,p®) to (ES) weakly converges in H&(Q)d x (L*(Q)/R) to (u®,p®)
as ¢ — 0. If p° € H'(Q), then strong convergence of (uf,p?) to (u®,p°) as e — 0
holds. Furthermore, if Q@ = H'(Q)/R and p° € H'(2), then the convergence rate is

O(V2).

In this chapter, the domain of the numerical examples is in R%. Numerical comparison
of (ES), (PP) and (S) in 3D is one of our interesting future works, for example the conver-
gence rates and numerical instability. As another extension of our research, generalization
of our results to the Navier—Stokes problem is important but still remains unknown.



Chapter 5

Projection method

This chapter is based on the following paper:

e K. Matsui: A projection method for Navier-Stokes equations with a boundary con-
dition including the total pressure. arXiv:2105.13014 (submitted), 2021.

5.1 Introduction

Let T > 0 and let © be a bounded Lipschitz domain in R¢ (d = 2,3) with the bound-
ary I' satisfying (2.1.1) and Hypothesis 2.2.17. We consider the following Navier—Stokes
problem: Find two functions u : Q x [0,7] — R? and p : Q x [0,T] — R such that

( Ou 1 .
a—l—(wV)u—uAu—i——Vp:f in Qx (0,7),
p
divu =0 in Q x (0,7),
uw=0 on I'y x (0,7), (5.1.1)
uxn=0 on I'y x (0,7,
p+ Sl =p" on Ty x (0, ),
[ u(0) = up in

where v,p >0, f: Qx (0,T) = R% p®: Ty x (0,T) — R, and ug :  — RY. The functions
u and p are the velocity and the pressure of the flow governed by (5.1.1), respectively.
For I';, we assume a boundary condition including a pressure value p + £|u|?, which is
called the total pressure, stagnation pressure, or Bernoulli pressure. Usual pressure is
often called static pressure to distinguish it from the total pressure. In an experimental
measurement of the total and static pressure using a Pitot tube, the boss measurement
is dependent on the yaw angle of the Pitot tube. Then, the effect on the total pressure
p=+5|ul? is smaller than the effect on the usual pressure p [45, Section 7.15]. The boundary
condition on I'y in (5.1.1) is introduced in [7], and the existence of a weak velocity solution
is proven in [10, 55, 56]. We will show the existence in a different way (Corollary 5.3.10).
The stationary case has been studied in [8, 9, 12, 23, 55, 56]. In [12, 13], the finite element
discretization problems with this type of boundary condition are proposed.

Next, we introduce a projection method for (5.1.1). The projection method is one of
the numerical schemes for Navier—Stokes equations [21, 79]. Error analysis in the case of
the full Dirichlet boundary condition for the velocity is carried out in [6, 70, 71, 76, 77].

25



56 Chapter 5. Projection method

In the case of a boundary condition for the static pressure, the finite element analysis of
a projection method is proposed in [39, 40]. For the nonlinear term in the first equation
of (5.1.1), it holds that

1
(u-Viu=(V xu)xu+ §V|u|2

(cf. [34]). Hence, if we set D(v,w) := (V x v) x w and P = p + £|u|?, then (5.1.1) is
equivalent to the following®:

(Ou 1 .
E—l—D(u,u)—VAu—i—;VP:f in Q x (0,7),

divu =0 in Q x (0,7),

u=0 on I'y x (0,7, (5.1.2)
uxmn=0 on I'y x (0,7,

P=7p on I'y x (0,7,
Lu(0) = uo in

The first equation of (5.1.2) is called the rotation form of the Navier-Stokes equation
[19, 67]. In [19], a projection method for the rotation form using the total pressure is
introduced to avoid checkerboard oscillation of pressure in the finite difference method.
Let 7(:=T/N < 1,N € N) be a time increment and let ¢, := k7 (k. =0,1,...,N). We
set uy = up and calculate uj, ug, pr (kK =1,2,...,N) by repeatedly solving the following
problems (Step 1) and (Step 2).
(Step 1) Find uj} : © — R? such that

T e _Tuk_l + D(uj_y, up) — vAuj, = f(t) in €,

ui =0 on I'y, (5.1.3)
upxn=>0 on I'y,
\ div uz =0 on Fg.

(Step 2) Find P, :— R and u; :— R? such that

— ZAPk = —divu; in Q,

P
0P,
% _ on T, (5.1.4)
on
Pk = pb(tk> on FQ,
T .
U = Uy, — ;VPk in Q. (5.1.5)

For the velocity boundary condition on I's, we can rewrite the third and fourth equa-
tions of (5.1.3) by using x := divn = (d — 1) x (mean curvature) as stated in the following
remark.

f d = 2, then V x v and (V x v) x w denote the scalar and vector functions, respectively, defined as
follows: for all v = (vy,vy),w = (wy, wy) € R?,

V X 0= 0pvy — Oy, (VX 0) X w:= (wy(0yvy — Opvy), Wy (0pvy — Oyvy)).
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Remark 5.1.1. Ifv € CY(Q) satisfies that v x n =0 on I'y, then we have
ov

— n+krv-n=dvv on I's.

on

For the proof, see [51, Lemma 7]. Hence, the third and fourth equations of (5.1.3) are
equivalent to the following equations:

*
ouy,

xn=0, . en=0 [s.
U XN on n+ Kug N on 1y
In particular, if I's is flat, then it holds that
ous
Uy, X N " o n on la

Remark 5.1.2. By replacing ui_q1 in the first equation of (5.1.3) with (5.1.5) at the
previous step, it holds that for allk =1,2,..., N,

uy — uy_ 1 _

% + D(ul_y,ul) — vAul + ;VPk,l = f(ty)  in Q.
It follows from (5.1.4) and (5.1.5) that divug = 0 in Q, ug-n = 0 on I'y. Hence, by
(5.1.3), (5.1.4), and (5.1.5), it holds that for all k =1,2,..., N,

(' —ut 1 .
LI - ML D(up_ ) — vAug + ;Vpkfl = f(te) in
div Up = 0 m Q’
W =0 on I,
up xn =0 on I's,
Py = p"(ty) on Ly,

\

where Py := 0. Compare with (5.1.2).

In this chapter, we demonstrate the solvability (Proposition 5.2.6) and stability (The-
orem 5.3.1) of the projection method and establish error estimates in suitable norms
(Theorems 5.3.3 and 5.3.8). Furthermore, we prove the existence of a weak solution of
(5.1.1) with a different approach than [10, 55] by using the stability result (Corollary
5.3.10).

The organization of this paper is as follows. In Section 5.2, we introduce the notations
used in this work, the weak formulations of the Navier-Stokes equations (5.1.2), and the
projection method (5.1.3), (5.1.4), and (5.1.5). We also prove the existence of the weak
solution to the scheme. In Section 5.3, we provide the main results. Section 5.4 is devoted
to proving that the solution to the scheme is bounded in suitable norms and converges to
the solution to (5.1.2) in a strong topology as 7 — 0. We also establish error estimates in
suitable norms between the solutions to the Navier—Stokes equations and the projection
method. In Section 5.5, we show a numerical example of the projection method and the
numerical errors between the Navier-Stokes equations and the projection method using
the P2/P1 finite element method. We conclude this paper with several comments on
future works in Section 5.6.
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5.2 Preliminaries

In this section, we introduce the notations used in this work and the weak formulations
of the Navier-Stokes equations (5.1.2) and the projection method (5.1.3), (5.1.4), and
(5.1.5).

5.2.1 Notation

Let pg be
[ 2+4¢ ifd=2,
Pa=13 3 if d =3,

where € > 0 is arbitrarily small. It follows from the Sobolev embeddings that H'(Q) C
LP4(Q)) and the embedding is continuous [14, Theorem I11.2.34]. We define a trilinear
operator a; : LP4(Q)? x H x H — R for u € LP¢(Q)? and v,w € H,

ar(u,v,w) := /u (VX (v X w))dx.
0
We note that for all u € H(Q)* and v,w € H,

al(u,v,w):—/F(uxn)-(vxw)ds—i—/

Q((V X u) X v) - wdr = /QD(u, v) - wdzx.

For a Banach space E, we employ the standard notation of Bochner spaces such as
L?*(0,T; X), H'(0,T; X) and we denote L?(0,T’; X) and Hl(O7 T; X) by L*(X) and H'(X),
respectively. In this chapter, we write the norm || - || gm(q) as || - [|m-

For two sequences (zj)h_, and (yx)h_, in a Banach space E, we define a piecewise
linear interpolant &, € W1°(0,T; E) of (z;))_, and a piecewise constant interpolant
U, € L>(0,T; E) of (yk),]gvzl, respectively, by

N t—tp_
T,(t) = zp1 + ol

(ik_ik—l) for t € [tk—lytk] and k£ = 1,2,...,N,
Ur(t) == yp for t € (tp_1,tx) and k =1,2,... N.
We define a backward difference operator by

Tr — T _
Doy, = Kk k 1’ D,y = Y — Yi—1

-
for k =1,2,...,N and | = 2,3,...,N. Then, the sequence (D,x); := D,z satisfies
%r — ( ) on (tg_1,tg) for all k = 1,2,..., N. For a function F' € C([0,T]; E), we
deﬁne F, € L=(0,T; E) as the piecewise constant interpolant of (F'(t;))y_,, i.e.,

F.(t) :== F(tx) for t € (tg—1,tx) and k=1,2,..., N.

5.2.2 Preliminary results

Lemma 5.2.1. [11, proof of Theorem 2.1] There exists a constant ¢ = ¢(Q,'1,I'y) > 0
such that for all ¢ € L*(Q2),

lqllo < ¢ sup M_
orper |l
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We prepare the following lemma to use the Aubin—Nitsche trick.
Lemma 5.2.2. We define an operator T : L2(Q)* 3 e — (w,r) € H x L2(Q) as follows:

ag(w,ap) - (Tv div 90) = (6, 90) fO?" all NS H7 (5 9 6)
divw =0 in L*(Q). o

Then, T is a linear and continuous operator and there exists a constant ¢ = ¢(,1'1,T'g) >
0 such that for all e € LA(Q)" and (w,r) = T(e),

1
lwll +llrllo < ellellz-, — —llellv- < [lwll < clle]

V.

By Lemmas 2.2.12, 5.2.1, and Theorem 2.2.19, the operator T is well-posed and con-
tinuous. See the Appendix for the proof of the inequalities. Next, we show the following
two lemmas for the operator d.

Lemma 5.2.3. It holds that for all u € LP1(Q)% v, vy, vy € H (Q)*
ai(u,v,v) =0, ai(u, vy, v9) = —ay(u, ve, v1).
By the definition of the operator aq, it is easy to check Lemma 5.2.3.
Lemma 5.2.4. There exists a constant cq = cq(2,'1,T'y) > 0 such that

callullzral|v]1||w|l1 for all u € LPa(Q)¢ v, w € H,
callullol[v|i||wl]l2 for all w € LP4(Q)4 v e H,w € HN H?*(Q)?,
ar(u,v,w) < < callullllvllllwly for all w € HY(Q)? v, w € H,
callulli||vll2llwllo for all w € HY(Q) v € HN HX(Q),w e H
(€2)

Q
callull2|[v|li|Jwl]lo for all w € H*(Q)?, v,w € H.

Proof.
(i) For all u € LP4(Q)% v,w € H, we have
\al(u,v,w)|
< / lu- ((w-V)v—(v-V)w+v divw —w dive)|dx
Q

< arllullpra(lfwl] paal[Vollo + (o] 2 [[Vewllo + o]l paa | div ewllo + [Jwl] pa || div vlfo)

< &llullpralfollillwll

for two constants ¢y, ¢; > 0, which implies the third inequality of Lemma 5.2.4.
(ii) For all u € LP¢(Q)% v € H,w € H N H*(Q)¢, we have

a1 (u, v, w)|
< eollullo(ffwl[ Lo [IVllo + vllLeal[Vevll paa + [0l ra || divwl| paq + [Jwl] oo || div v]lo)

< Gllullollvll1fwll2

for two constants ¢y, ¢y > 0.
(iii) For all u € Hl(Q)d,v € HN H?*(Q)% w e H, we have

a1 (u, v, w)| < /|((V x u) X v) - w|dr < csl|V x ullo|v]| e ||wllo < Ellulli]v]l2]lwl]o
Q
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for two constants c3, ¢z > 0.
(ix) For all u € H*(Q)%,v,w € H, we have

a1 (u, v, w)| < |V X ul| el i lwllo < Callullzl[vll]Jwlo

for two constants ¢y, ¢4 > 0. O

Finally, we recall the discrete Gronwall inequality:.

Lemma 5.2.5. [44, Lemma 5.1] Let 7,8 > 0 and let non-negative sequences (ax)y_,
(b)), ()i, ()N C {z € R | z > 0} satisfy that

an+72bk§72akak+726k+5 forallm=0,1,...,N.
k=0 k=0 k=0

If ray, <1 forallk=0,1,...,N, then we have

an+72bk§ec<720k+ﬁ> forallm=20,1,... N,
k=0 k=0

N
where C =71y ;=%

l—Tag ”

5.2.3 Weak formulations of (5.1.2), (5.1.3), (5.1.4), and (5.1.5)

We assume v = p = 1 and the following conditions for f,p®, and u:
feL*0,T;H*), p*eL*0,T;H(Q)), wuge LF(Q)". (5.2.7)

To define weak formulations of the Navier—Stokes equations (5.1.2) and the projection
method (5.1.3), (5.1.4), and (5.1.5), we prepare the following equation:

Proposition 5.2.6. It holds that for all u € H*(Q) and p € H,

—(Au, ) = ap(u, ) — / (divu)p - nds. (5.2.8)

'y

Proof. Tt holds that —Au = Vx(Vxu) — V(divu) for all u € C%(Q)4. Hence, we have
for all u € C%*(Q)? and ¢ € C1(Q)4,

(—Au, p) = ag(u, p) + /(qu) (p xn)ds — /(div w)p - nds,
r r
which also holds for all ¢ € H%(Q) and ¢ € H'() since the two spaces C?(Q2) and C'*(Q)
are dense in H*(Q) and H'(Q), respectively. By the definition of H, equation (5.2.8)
holds for all u € H*(Q) and p € H. O
S

By Proposition 5.2.6 and the Gauss divergence formula, it holds that for all «
HNH*(Q)Y P e HY(Q), and ¢ € V with divu =0 in H'(Q),

(D(u,u) — Au+ VP, p) = ao(u, p) + a1 (u, u, ) — (P, div ) + / Py - nds.
I
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Hence, a weak formulation of (5.1.2) is as follows: Find u € L*(0,7;V) and P €
LY(0,T; L*(Q)) such that 4% € L'(0,T; H*), u(0) = ug, and for all ¢ € H,

<%’%@> +a(u,¢)+d(u,u>w>—(P,diw)=<f,so>H—/ Py - nds (NS)

1)

in L'(0,7). In main convergence theorems (Theorems 5.3.3 and 5.3.8), we assume that
(NS) has a unique solution and that the solution is as smooth as needed.

On the other hand, by Proposition 5.2.6, we have for all u; , € HI(Q)d,u}; e HN
H?*(Q) and ¢ € H,

(D(up—1,up,) — Aug, 0) = ao(uy, @) + ar(wg_y, ug, ) — / (divug)p - nds.
I

Hence, a weak formulation of (5.1.3), (5.1.4), and (5.1.5) with the initial datum wuo(=: uf)
is as follows:

Problem 5.2.7. Let (fi.)Y_, € H* and (p})Y_, € HY(Q). For allk =1,2,..., N, find
(UZ7P/€’
up) € Hx HY() x LA(Q)? such that P, —p € H},(Q) and for all ¢ € H and Y € H}, (),

1 * * * *

;(uk — Uk—1, QD) + aO(uka SD) + al(uk—lv uk’ 90) = <fk7 @)H

T(V P, Vo) = —(divul, ¥) (PM)
we = u, — TV Py in LA(Q)"

Remark 5.2.8. For f € L*(0,T;H*) and p* € L*(0,T; H'(Q2)), we set for all k =
1,2,....N,

fr = %/tk f(s)ds, ph = —/tk p(s)ds. (5.2.9)

k

Here, it holds that f, € L*(0,T; H*) and p° € L*(0,T; H*(2)):

I llz2caey < N flzecy, 152 L2y < NPl L2cany.

In Theorems 5.3.8 and 5.5.8, we assume f € C([0,T]; H*),p> € C([0,T]; HY(Q)) to use
f(ty) and p°(tx) for all k = 1,2,..., N (Hypothesis 5.5.2). Then, we set for all k =
1,2,.... N,

fo=f(t), =),
which implies that f, = f. € L*(H*) and p* = p> € L*(H*(Q)). From Hypothesis 5.3.2

used in Theorems 5.3.3 and 5.5.8, the reqularity assumption of f and p° is natural.

We show the existence and uniqueness of the solution to (PM) in the following propo-
sition.

Proposition 5.2.9. For all (fu)¥_, ¢ H*, (B)N_, ¢ HY(Q)", and ug € LP2(Q)?, Problem
5.2.7 has a unique solution.
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Proof. By Theorem 2.2.19 and Lemmas 5.2.3 and 5.2.4, if u} , € LP4(Q)¢ are known,
then it holds that for all v, € H,

1 . 1 .
L(00) + o) + (02,009 < (5ot el llons ) Bollel

~(0,0) + aof0,0) + an(uf_v0) = ol

which implies that the mapping H X H 3 (v,¢) — (v, )+ ao(v, ¢) + a1(uj_y, v, ) € R
is a continuous and coercive bilinear form. On the other hand, if u;_1 € LQ(Q)d, then
the mapping H 3 ¢ — (f(tx), ©)u + 7 (ur_1, ) € R is a functional on H. By the Lax-
Milgram theorem, there exists a unique solution u} € H C LP¢(Q)? to the first equation
of (PM). Since divu} € L*(2), by the Poincaré inequality and the Lax-Milgram theorem,
the second equation of (PM) also has a unique solution P, € H*(2). Furthermore, we
obtain uy, == u} — 7VE, € L*(Q)". Therefore, since ug(= uf) € LP¢(Q)%, (PM) has a

unique solution (u}, Py, ux)h_, C H x H'(Q) x LQ(Q)d. O

Remark 5.2.10. The function space LQ(Q)d has the following orthogonal decomposition:
1@ = U e V(H,(9Q),

where U = {¢ € L2()" | dive = 0 in L*(), (T2, V) grisary = 0 for all o € HE ()}
[40, Proposition 4.1]. By the second and third equation of (PM) and the Gauss divergence
formula, it holds that for all k =1,2,..., N and ¢ € H} (),

which implies that w, € U. Since the third equation of (PM) is equivalent to

wi = TVP(t) = up + V(P — p°(t))  in LA(Q)°
Step 2 ((5.1.4) and (5.1.5)) is the projection of uj, — TV p’(t},) to the divergence-free space
U.

Remark 5.2.11. By replacing ug_y in the first equation of (PM) with the third equation
of (PM) at the previous step, it holds that for allk =1,2,...,N, ¢ € H, and € H}, (%),

1 * * * * *
;(Uk —Up_1, ) + ao(uy, ©) + ar(uy_q,up, ©) + (VP1,0) = (fr, 0)n

T(VP:, V) = —(div ug, )

where Py := 0. Ones can calculate (u}, Py)i_, without the velocity (uy)iL,. Since the cal-
culation uy, = uj,—71V Py 1s not used, this formulation is suitable for numerical calculations
such as the finite element method (see Section 5.5).

On the other hand, by replacing u; in the first term of the first equation of (PM) with
the third equation of (PM) at the same step, it holds that for allk =1,2,... N, ¢ € H,
and v € HL (Q),

1
J (e = i, @) a0 (i, ) + (VB 0) = (i ) = (s, 1, )
7(V Py, Vi) + (divaug, ) = 0 (5.2.10)

up =up — 7VP in LQ(Q)d.

This formulation is helpful to prove stability and convergence results.
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5.3 Main theorems

5.3.1 Stability and convergence

We show the stability of the projection method (PM) and establish error estimates in suit-
able norms between the solutions to the Navier—Stokes equations (NS) and the projection
method (PM).

Theorem 5.3.1. Under the condition (5.2.7), we set fi, € H* and p} € HY Q)" as (5.2.9)
forallk=1,2,...,N. Then, there exists a constant ¢ > 0 independent of T such that

— — % — % 1 — — %
|t oo (z2y + |5 || oo (r2y + |07 || L20mny + FHUT — Uy || 22
< ¢ (lluollo + 11l 2= + 18° 2y -
For a convergence theorem, we assume:

Hypothesis 5.3.2. The solution (u, P) to (NS) satisfies

we C([0,T]; HN HA(Q)Y) N HY0,T; L2(Q)%) n HX(0, T; HY),
P e C([0,T]; H()).

We also assume f € C([0,T]; H*) and p* € C([0,T]; HX(2)) and set in Problem 5.2.7 for
allk=1,2,..., N,

for=f(te),  ph=p"(t)

Theorem 5.3.3. Under Hypothesis 5.3.2, there exist two constants ¢, 79 > 0 independent
of T such that for all 0 < 7 < 79,

[ = @i || oo (r2) + [lu = @7 || oo 2y + lu — @] 2y < eV/'T,

H’U,T — ’Zj,;k_“L2(L2) <cT.

Remark 5.3.4. For regularity of the solution (u, P) to (NS), see [10, Theorem 1.3 and
[54, Theorems 4.2 and 4.3]. In the case of the homogeneous Dirichlet boundary condition
on the whole boundary I', high regularity properties of the solution to the Navier—Stokes
equations are proven in [14, Theorem V.2.10].

Remark 5.3.5. If u € C([0,T); HN H?(Q)9), then |u]* € C([0,T]; H(Q)), and hence,
p € C([0,T]; HY(RQ)) is equivalent to P = p+ 3|u|* € C([0,T]; H*(2)).

Furthermore, we assume the following regularity assumptions:

Hypothesis 5.3.6 (Regularity of the Stokes problem). There exists a constant ¢ =
C(Q7F17
I'y) > 0 such that

[w]l2 +[lrll < clle]lo.

for all e € LZ(Q)d and (w,r) =T(e).
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Hypothesis 5.3.7. The solution (u, P) to (NS) satisfies
we HY(0,T; HY(Q)") N H2(0, T; LX) N H3(0, T H*),
P e HY(0,T; H(Q)).
Then, we can improve the convergence rate:

Theorem 5.3.8. Under Hypotheses 5.3.2 and 5.3.6, there exist two constants T1,c > 0
independent of T such that for all 0 < 7 < 14,

||u — ’aTHLZ(LZ) —f- ||u — Q_L;k_”L2(L2) S CT.

Furthermore, if we also assume Hypothesis 5.3.7, then there exist two constants o, ¢ > 0
independent of T such that for all 0 < T < To(< 11),

||P — PT”LQ(LQ) S C\/F.
Remark 5.3.9. Hypothesis 5.3.6 holds, e.g., if Q is of class C*' [9, Theorem 1.2].

5.3.2 Main result for existence of a weak solution to (5.1.2)

Using Theorem 5.3.1, we prove that there exists a solution to a weak formulation of
(5.1.2) weaker than (NS). Putting ¢ := v € V in the first equation of (NS), we obtain
the following equation: for all v € V|

<@,v> + ap(u,v) + a1 (u,u,v) = (f,v)g — / pPv - nds (5.3.11)
ot % Iy

in L'(0,7).

Corollary 5.3.10. Under the condition (5.2.7), there exists a solution u € L*(0,T; V)N
L=(0,T; L)) NC([0,T); V*) to (5.3.11) with u(0) = ug such that 2 € LY/P4(0,T; V*).

Remark 5.3.11. For f € L*(0,T; L)), local existence and uniqueness of a weak
solution u to (5.3.11) with ug € H are proven in [10, Theorem 1.3]. By [51, Lemma 4J:

d
ag(u,v) = Z/QVU:VUCZLE—F/F ku-vds  for all u,v € H,

1,j=1

where k = divn = (d — 1) X (mean curvature) (c¢f. Remark 5.1.1), (5.3.11) is equivalent
d
Z /Vu : Vvda:—l—/ Ku - vds + ay (u, u, v)
Q )

to
<8u > N
ot v

:(f,v>H—/pbv-nds forallveV
I'>

(5.3.12)

in LY(0,T). It is known [55, Theorem 5.1] that there exists a weak solution u to (5.3.12)
with ug € U, where U is defined in Remark 5.2.10. We demonstrate the existence of a
weak solution uw € L2(0,T:V) N L>=(0,T: L3()") to (5.5.11) with a different approach
than [10, 55] (Corollary 5.3.10).
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5.4 Proofs

In this section, we prove that the solution to (PM) is bounded in suitable norms (Theorem
5.3.1) and error estimates (Theorems 5.3.3 and 5.3.8) in suitable norms between the
solutions to (NS) and (PM).

5.4.1 Stability

We prepare the following useful lemma for the proofs of Theorems 5.3.1, 5.3.3, and 5.3.8.

Lemma 5.4.1. Let vy € L2(Q)", (Fy, Gr, Q)Y C H*x H* x HY(Q) and let (v}, vy, i),
€ H x L*(Q)? x HY(Q) satisfy that for all k =1,2,....N, p € H, and ¢ € H}_(Q),

%(Uk — Vp—1, ) + ao(vg, ) — (qr, div @) = (F + Gy, ©) m,
7(Var, V) + (div vy, ¢) = —7(VQx, V), (5.4.13)

v = v — 7V (qk + Q) in LQ(Q)d.

If we assume that for all 6 > 0 there exist a constant As > 0 independent of k and 7, and
a sequence (B)N_; C R such that

(Grovp)n < Olloill + As(lvialls + 8%)  forallk=1,2,.... N, (5.4.14)

where v§ := vy, then there exist two constants 1y, ¢ > 0 independent of T such that for all
0< 1<y,

2

ot

— —x —% 1 — s
H’UTH%w(H) + HUTH%W(B) + HUTH%2(H1) +7 + ;HUT - UTH%2(L2)

L2(L?)

< ¢ (1eoll3 + 1B Baguaey + TIQ W aaany + 1B scory )

(5.4.15)

In particular, if (Gg,vi)p <0 forallk=1,2,...,N, then 1o =T.

Proof. Putting ¢ := v} and ¢ := ¢, and adding the two equations, we obtain for all
kE=1,2,...,N,

1 * *
— (e = e, v0) + 0illa, + TlIVarllg + 7(VQx, V)

* Ca 1 * *
= (F + Gr,vp)n < EHFkH?p + %H%Hl +(Gr, v3)m-
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Here, by Theorem 2.2.19 and the third equation of (5.4.13), it holds that

(0 = ve—1,v3) + [R5, + 7V aellg + 7(VQx, Var)

1
(vk — Vg— 1,?%) + ;(Uk - Uk—l,’UZ - Uk) + H’UZHL%O

TV (qk + Qi) — 7(VQr, V(gk + Qx))

+
> L (oullZ = loro 2+ llow — vk 2) — <o — v 2 — oo — ell? + — o2
- 27 0 8T 3T Cq
T
£V as + QOIE — 3rIVQUE ~ IV (g + Q)

1 T2 L, ., 1, .,
= o (Il = oucal 4 T N7l + 3l = ) + - 2379l

a

Hence, we have for all k =1,2,... N,

T 1 T
orlls = llve—1lIg + ZIIDT%H% +5llvi — orlle + —lloill3

Ca (5.4.16)
< CaT || Fellz + 672 VQ&|IG + 27(Gr, vi)

By summing up (5.4.16) for £k = 1,2,...,m with an arbitrary natural number m < N it
holds that

1 1
loml2 - rvo||o+rz( 1Dywell2 + \|vz—vk|r%+—||vzn%)
27 Ca

m

Z caHFk

k=1

(5.4.17)

e+ 6T||VQk||o + 2(Gh, Uk) )

From the assumption (5.4.14) with § := t;

) [vkll? [og]l? )
(Gryop)n < = AL _([lvx- 6 +87) < 4’; FHAL L (2f|vx- 116 +2lok—1 — v, 5+ 52),
we obtain
) ) m 1— 87'1441 ) 1 )
[vmllo — ||voHo+T; | Drve2 + — |Uk—vk|’0+2_ca|lka1

m—1

<r YA fulE+ 7 Z (caHFk
k=0 k=

where we have used vy — v; = 0. By the discrete Gronwall inequality, if 7 < 79 =
1/(16144#), then it holds that for all m =0,1,..., N,

e+ 6TIVQUIR+240 7).

1 * 1 *
|vm|ro+72( Do+ o = ol + 5l
AT Ca
< e (La )l +r 3 (clml
k=1

b+ 67IIVQUIE + 24,057 }
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which implies that

e+ [ (

< a{luli+ [ 070

o, |7 1, el N2 e I(2
g (s) i + ;HMS) —5(s)|lg + Hw(s)lh) ds

b+ IQ IR + B |
for all ¢t € (0,T], where ¢; := exp(16A4 1 /3) x max{c,, 6, QA%} x max{4, 2c,}. Hence,

a0, ||” 1o, -,
+ ;IIUT — 0| Fo g2y + 105 T2y < M, (5.4.18)

ot

120 e 2y < M, '

L2(L?)

whete M i= (0013 & 1B lZarey + 71 @ 2agary = 15 Bapy)- 1F (G ot < 0 for all
k=1,2,...,N, then we immediately obtain (5.4.15) for all 0 < 7 < T from (5.4.17).
Since it holds that for all m =1,2,..., N,

N
2
[op 115 < 2([[om I + lvm — v3,[I5) < 2 max_ lvellf + 7 o = i3,
""" k=1

we obtain for all 0 < 7 < 7,

10501200 (2) < 2010710 12y + ;H@T — 07 ||72(z2) < 4M.

By using Lemma 5.4.1, we prove Theorem 5.3.1.
Proof of Theorem 5.3.1. We set (Fy.)n_1, (Gr)n.y C H* defined by

<Fk7¢>H = <fk7§0>H - (Vp%@)? <Gka90>H = _al(ult:—lvult;agp)

for all K = 1,2,...,N and ¢ € H. From Problem 5.2.7 and the condition (5.2.7), if
we set q, = Py — pb, then (ul,up, q)), € H x L2(Q)* x H{, () satisfies that for all
k=1,2,... . N,

1 .
;(uk — Uk—1, 90) + (l()(u]:, (20) - (QkH div SD) = <Fk + Gk7 90>7

T(Var, V) + (divug, ¢) = —(Vpl, Vi),
up = uf — 7V (q + p) in LX)

with ug € LP4(Q)4(C LQ(Q)d). By Lemma 5.2.3, it holds that
(Gryupyy = —ag(uy_q,up,uy) =0 forall k=1,2,...,N.

Therefore, by Lemma 5.4.1 and Remark 5.2.8, we conclude the proof. O]
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5.4.2 Convergence

In this section, we assume Hypothesis 5.3.2. We calculate the error estimates in suitable
norms between the solutions to (NS) and (PM). By Hypothesis 5.3.2 and the first equation
of (NS), it holds that % € C([0,T]; H*) and, for all p € H and k =1,2,..., N,
1
—(ulte) = ulti-1), ) + aolulte), ©) + ar(up_y, wr, ¢) + (VP(t), 0)
=(f(tx) — R — Ri", ),
where Ry, R} € H* defined by

(Ry, o) = <%(tk) _ ulte) = u(tk1)790>H,

T

<R2.1.7 4:0>H = al(u<t/€)7 u(tk)’ 90) - al(ul:—h UZ, 90)

for all ¢ € H. If we put ey = 0, e, 1= u — u(ty,) € L*(Q)", er == up —u(ty) € H, and
qr == Py — P(ty) € H(Q) for k = 1,2,...,N, by (5.2.10), then it holds that for all
k=1,2,...,N, ¢ € H,and ¥ € H} (Q),

ek~ ex1,9) + anlets ) — (a1, div ) = Ry + REY, @)
7(Var, Vi) + (divey, 1) = —7(VP(t) V1), (5.4.19)

er = ¢ = V(g + P(t) in L),
where we have used (Vgi, ) = —(qx, div p).
In order to prove Theorems 5.3.3 and 5.3.8, we prepare Lemmas 5.4.2 and 5.4.3.
Lemma 5.4.2. (i) Under Hypothesis 5.3.2, we have
9%u
o
(ii) Furthermore, if Hypothesis 5.3.7 holds, then we have
N

> 7D, Rl

k=2

R [| 72y < :
( ) 3 2%)

Ol
o3

H* =~ 5 .
=3 L2(H*)

Proof. 1t holds that for all p € H and k =1,2,..., N,
u(ty) — u(tp— Ju
(b = (M=) B, o)

T

1 82
=T S——(tg—1 + sT g0> ds
[ (st vone),

b 0%u
<7 [ |Gttt o] s
2
< 7|l¢lh / s2dt (9152 tk 1+s7)||  ds
H*

)
L2(tg_1,tg; H*)

8152
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which implies that

N

> kaSO T
1R 72 ey :ZT< sup S ) Z T3

i1 \0#peH leolly P

2
0%u

ot?

< 2

2(tg—1,tr; H*)

8752

1
-7
3

L2(H*) '

Next, we show the second inequality of the conclusion. For all ¢ € H and k =
2,3,..., N, we have

R, — Ry_
<D’TR]€7(IO>H = <k—klagp>
H

T

—/1 s@(zﬁ +517) — 8 @(t + 517) ds
= . 192 \th=1 1 L2 \tk—2 17), ¢ 1

H

Lot Pu
= 7'/ / <81w(tk—2 +817'+327')7(,0>Hd81d82

| /\

tk o+ 517+ 327') ||g0|| ds1dsy

8153

2
< 7llell / / sidsids; 3 Dty + 517 + 597)||  dsydss
at .
S|
< 7ll¢lh 8t3 tk 9+ 517) o §d§1d§2
atS tk thH)

where we have used the coordinate transformation (sq, $2) — (51, 82) 1= (81452, —s1+2).
Therefore, we obtain

N N 2
D. Ry,
S T ID Rl = :T( sup M)

po = \ozeer el
N
7|03
<73
k=2 3 8t L2(t—g,tp; H*)
<2 2 || &u )
-3 o )

Lemma 5.4.3. Let (E, (-,-)g) be a Hilbert space and let x € C([0,T); E) satisfy that 2% €
L2(0,T; E).
(i) It holds that for all k =1,2,..., N,

1Dt 2 <

LQ(tk_l,tk;E) .
(i) It holds that

Ox
ot

890

||5U - $T||L<>°(E) =~

[ = 2zl 2 ()

.
L2(B) \/_
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Proof. Tt holds that for all k =1,2,..., N and t € [t;_1, tg],

% | Oz
Jottr) ~2@lis < [ |556) = ,
t t E L2 (tk—1,ti; E)
which implies that ||z — @, | () < VT |2 ||L2 and
D7 (te) | 2 = —||1’(75k) —x(ti)|le < :
LQ(tkﬂ,tk;E)

On the other hand, we have

lo(t) — (tr) [t

S8
ool
LI

|z — J/'TH%%E) =

2

0x
ot

L2(tg—1,ti; E)

tg
ds / (ty — t)dt
te—1

oL TTMZ i Mz i Mz

8t

L2(E)
O
By using Lemmas 5.4.1, 5.4.2, and 5.4.3, we prove Theorem 5.3.3.

Proof of Theorem 5.3.3. For all 6 > 0 and k =1,2,..., N, by Lemmas 5.2.3, 5.2.4, and
5.4.3, we have

(R en)m = —ai(uj_y, ef, e) — ar(eg_y, ulte), ) + Tar(Dru(ty), ulty), ef)
< callex_llollu(te)ll2llerlls + catl| Dru(tr) |lollults) ||2]lex |y
O, cllut)lls, . 0, cllu(te)ll3
< 5”6]@”% + %II@HIIS + —||€k|!f + %TQHDTU(M)% (5.4.20)

2 | CaCoax ,  CaCE oul|?
< * max * max
< Bl + Ty 3 + e | S

L2(t—1,tx; L2 ()Y

where cnax = [[ullcom w2 By (5.4.19) and Lemmas 5.4.1, 5.4.2, and 5.4.3, there
exist two constants 7y, ¢; > 0 such that for all 0 < 7 < 79,

ezl Zoe () + 1€zl Lo 2y + NEF N2y + =llEx — Xl
-

oul)?
L2(L?)

ot
P
ot

€1 (HRTH%?(H*) + THPTH%%Hl) + 7

§01<

which implies that

82
o

ou
ot

+ 27'”P”L2(H1) +7°
2(H¥)

L2 L2)> 7

||ﬂ7 — uT||L°°(L2) + ||ﬂj_ - UT”LOO(LQ) + ||a;k— - UTHLz(Hl) S 62\/F7

||1_L7— - a:HL?(L?) S CoT

L2(HY)



5.4. PROOFS 71

for a constant co > 0, where we have used €, = u, — u, and € = 4} — u,. By the
triangle inequality and Lemma 5.4.3, it holds that |u — G| rec(r2) + [|u — k|| peo(r2) <
cov/T + 27| 24| r2(z2). To complete the first inequality of Theorem 5.3.3, it is sufficient
to prove that ||u — u||z2r1) < c34/7 for a constant ¢3 > 0. Since u(t) € H N H*(Q)* and
divu(t) =0 € HY(Q) for all t € [0, T], by Proposition 5.2.6, Theorem 2.2.19, and Lemma
5.4.3, we find that

N tr
o= el =3 [ ute) = (e

k=1 tk—1
ScaZ/k ao(u(t) —u(ty), u(t) — u(ty))dt
k=17 th—1
—0 Y /t " (= A(E) = ult), u(t) — ulty)) dt

<cq ; /t: 1A Cu(t) = ultr))lollu(t) = ulty)lodt

N th
<Viea 3" [ lult) = ut)alute) = u(e)ode
k=1 " t—1
T
§2\/C_icacmax/ ”u(t) - u<tk)H0dt
0
SQ\/ dTCacmaxHu - uT||L2(L2)

<V 2dT CoConax T Ou

ot

L2(L2) '
[l

We improve the error estimates for the velocity and pressure in the L?(L?)-norm. In
order to prove Theorem 5.3.8, we prepare Proposition 5.4.4 and Lemma 5.4.5.

Proposition 5.4.4. Under Hypothesis 5.3.6, for all e € L*(Q), the pair of functions

(w,r) =T(e) belongs to H*(Q) x HL ().

Proof. By Hypothesis 5.3.6, (w,r) € H*(Q2)? x H*(€2). Since it holds that for all ¢ € H,
0= aufu. ) — (rdive) — (e.) = [

(Vx(wa)—l—VT—e)-godx—/ ry - nds,
Q

I

we obtain r € Hp, (). O

Lemma 5.4.5. Under the assumption of Lemma 5.4.1 and Hypothesis 5.53.6, if we assume
the following conditions: if (wg,ry) := T(vx) for all k = 0,1,..., N, then for all 6 > 0
there exist a constant As > 0 independent of k and 7, and a sequence (y,)Y_, € R such
that for all k =1,2,... N,

(Grwehr < 0(llvialls + lville) + As(llwillT + %), (5.4.21)

then there exist two constants 1o, ¢ > 0 independent of T such that for all 0 < 7 < 79,

1911222y < elllvollvs + TG 1IE + 107 = 2112 + I lL2 ey + e 22 0)-
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Proof. Let (wy, i) := T(vg) for all k =0,1,..., N. It follows from Proposition 5.4.4 that
r, € Hi_(Q). The first equation of (5.4.13) implies that for all K =1,2,..., N,

1
;(Uk — Vk_1, wk) + CLQ(UZ, wk) = <Fk, wk>H + <Gk, wk>H, (5422)
where we have used divwy, = 0 in L*(Q2). By Lemma 5.2.2, we obtain

(Uk - kalvwk> = (Uk,wk) - (kalawk)
= ap(wy, wg) — (Tk, divwg) — ao(Wr—1, W) + (rp—1, divwy)

= ao(wk — Wk—1, wk)

(llwrllae = lhwr-1lIZ, + llwe — wi-1ll3,)

AN =

1
> = (lwellf = llwesl})

v |

where ¢; := min{c,,c,'}. For the second term of the left hand side of (5.4.22), by the
definition of the operator 7', we have

ao(vi, wi) = (vg, vg) + (ry, divvy)
= lokll§ + (ve, v — vi) = (Vrg, vg)

= llowll5 + (v, vi — ve) = (Vrw, v — w),
where we have used the third equation of (5.4.13) and
(Vr,on) = (Vrw, vp) = 7(Vre, Vige + Qr)) = 0
By Hypothesis 5.3.6, it holds that

[(vk, v — k) — (Vri, v — )| < (lorllo + [[Vrello) lvr — vello
< eallvrllollvr — vk llo

1
< < llollg + 3llvi — vellg
for a constant ¢, > 0. Hence, we have
21|, % 2
ao(vg, we) = —||vk|!o c3llve — ollo-

For the first term of the right hand side of (5.4.22), by Lemma 5.2.2, we have

(Fr,wiyr < || Fl

1
w1 < esl| Fil| e [[vr]lo < ZHU’“”‘% + G| Fyll7

H* i
for a constant c3 > 0. Hence, we have that for all k =1,2,..., N,
2 2 T 2 _ 2T, 9 2, 2 2
sl = n=ally + lvello < —=(ellve = vello + eall Fellzr + (G, wip)-
By summing up for £ = 1,2,...,m with an arbitrary natural number m < N, it holds
that

w1 = [lwol+ Z loxllg < Z(chvZ — vkl5 + 3l FullZ + (G wi)ar)-

k=1
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From the assumption (5.4.21) with § := ==, we obtain for all m =1,2,... N,

167

S (Grownn Z{ (oo + 1ot + Ay (ol + 42
k=1

k=1

< Lol + Zuvknow Z 2 +2)
ES 1 = * =
< gl S el o — vl + A Sl +7)
k=1 k=1
and hence,
2 — lo]l2 + ii el
201 0
< - —2A% 2 )2
<730 T+ |rvo|ro+rzc4 o = o2+ I FulE + D)
k=1 k=1

where ¢4 := 2¢; max{c +1/4,c2, A L }. By the discrete Gronwall inequality, if 7 < 7 :=
cl/A%G, then we have

lwn ¥ + Z lvel*
44,
SeXp< c116> {Ilon? I\vol\o+7204 [0k — oxllo+ [ Fl
k=1

H*+7k)}

Therefore, by Lemma 5.2.2, we obtain

o3z < es(lluol + 7IuglE + 15 = 0 Zaqze) + 1 Frlagr + 1971532 )

for a constant ¢; > 0. O

We prove the first inequality of Theorem 5.3.8

Proof of the first inequality of Theorem 5.3.8. We apply Lemmas 5.4.5 for (5.4.19). Let
(wg, i) == T(ex) for all k =0,1,..., N. It holds that for all k =1,2,... N,

(R,g LWy = —ay(eg_y, up, wi) — ar(u(ti—1), e, wr) + Tay (Dyu(ty), u(ty), wy).

Hypothesis 5.3.6 and Theorem 5.3.3 implies that there exists a constant ¢; > 0 such that
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|wglle < e1y/7 for all k =1,2,...  N. It holds that for all § > 0,

_al(ezflv U27 wk) - - a’1<62717 u(tk)ﬂ wk) - al(eth 61:7 wk)
< call€x_1llollultp)ll2llwll1 + caller_1[lollex][1]lwk2

< aCmax|lek 1 lollwells + cacrv/lleg 4 lloll ekl

* C cmax 0 * 0262
< S llex—ullo + d% ”wkH%"{'_Hek—ng ;(51 7llexll
* CQC?TI&X C
< a3+ 5 g + g7,
_al(u(tk—1)7e;’;7wk) :al(u(tk—l)awk76;§:)
< callulti-1)|l2llwell1llexllo
2 | CaCh 2
< el + S o
Tay(Dru(ty), u(ty), we) < cat || Deulte)|lol[u(te)||2]lwel
< CaCmaxT || Dru(te) o]l w1
C Cmax
< Rl [T+ 67| Dru(t) |13,
where cuax = ||ullc (o, m2(0)9)- Hence, by Lemma 5.4.3, it holds that for all & =
1,2,...,N,
(Rit wi)m < Ollei_ylls + ollexlls + cs(llwellf + rlleillF + 7% D- U(tk)Hg)
£ 2 (12 ou||?
< Olles_illo + ollexllg + cs | lwklli +Tllexlli +7 e ,
L2(ty—1,ti;L2(2)%)

where ¢; := max{c3c?,./0,c3c2/(20),8}. By Lemma 5.4.5, there exist two constants
co,To > 0 such that for all 0 < 7 < 79,
L2 L2)> .

By Lemma 5.4.2 and Theorem 5.3.3, there exists a constant c3 > 0 such that for all
0<7 <79,

ou
ot

le-lZ2 2y < c2 (IIéi — erllLaqey + 1R gy + TlEN Loy + 7

||U7— - aT“LQ(LQ) S C3T.
By Lemma 5.4.3 and Theorem 5.3.3, we obtain the first inequality of Theorem 5.3.8;
lu = Url[r2(r2) + lu — @7l 2re)

= [Ju — ur +ur — Urllp2r2) + U — Ur + Uy — Ur + Uy — US| L2022

< 2||u — UTHL?(L?) + 2||UT — ﬂT||L2(L2) + ||ﬂ7. - TL:||L2(L2)

S CyT
for a constant ¢4 > 0. [l

To prove the second inequality of Theorem 5.3.8, we prepare the following two lemmas:

Lemma 5.4.6. Under Hypothesis 5.3.2, there exists a constant ¢ > 0 independent of T
such that

[ D-e:

C
ve <evT, Dreaflo+ IDefllo < e [ Dreffly < N
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Proof. By (5.4.19) and (5.4.16) with &k := 1 in the proof of Lemma 5.4.1, we obtain

1 * T * n.l. _x
lexllo+5ller = 61||§+C—||61HfScaTHRleq*+672HVP(751)|I3+2T<R1 el

Putting k£ :=1 and ¢ := - in (5.4.20), it holds that
o oul?
(R, el 4 ||€1||1 + 2040 e
L2(0,t1:22(2)%)
where cumax = ||ull¢(jo,11;m2(0)7). Hence, by Lemma 5.4.2, we have

1 1
lealls + 5 llex = eflls + 5l

ou||?
< ot || Rullfe + 67 VP(8)[[§ + dcacicraT”
ot L2(0,t1; L2(Q) )
ou|? ou|?
< + 67—2||PH% 0,T);H! + 4Cacdcmax < 627-2
Ot || o (.75 Ot || 212
w12 D
where ¢y := ( + 43 ‘ ?TtHLz(L2) + 6HPH20([0,T];H1)7 which implies that |[Dreq|lo =

T”M%é¢anaqmg Seacyr /2 and

1D-exllo = —lletllo < —(llexllo + llex — exflo) < (1 + YONCS
On the other hand, by (5.4.19), Theorem 2.2.19, and Lemma 5.4.2,

[Drexlv-

_ ‘(61 - eO?@)l

= sup — 1~
0FpeV THSOHI

~ sup |—ao(er, ) + (q1,div @) + (R, o) m — a1(uo, €5, ) + Tar1(Dyu(ty), u(ty), ¢)|
O peV lell1

< colleill + | Rallm= + call[uollrller]ly + Tl Drults)|lolluti)|l2)

ou ou
+ CdCmax A,
L2(0,t1;H*) t L2(0,t1,L2(Q)%)

ot
S \/F {(ca + Cdcmax) V 20(162 + (_ + Cdcmax) ‘ } 5
L2(L2)

V3
Where Cmax -— ||u||C([O,T];H2(Q)‘i)' L]

< callerfl +

ou
ot

Lemma 5.4.7. Under Hypotheses 5.53.2, 5.3.6, and 5.3.7, there exist two constants ¢, 7y >
0 independent of T such that for all 0 < 7 < T,

0é,

< .
ot <eVT

L2(L?)
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Proof. By (5.4.19), it holds that (D}, D,qy, Drex), C H x Hp () x L*(Q)? and for
all k=2,3,...,N, p€ H, and ¢ € H (Q),

D e, — D,ej_ . , N
(P20 0 ) b an(Diet ) — (Drgendivg) = (Do Do RE b

T(VD,qr, V) + (div Dye;, ) = —(VD,.P(tx), Vi),
D.e, = D.,e;, — TV D, (g + P(tx)) in LZ(Q)d

(5.4.23)
with Dye; = 77 (e; —ep) = 7 tes. It holds for all k =2,3,...,N and p € H,

7—<-DTFi;cL1. <)0>H = —Tay (szm DT€Z7 Q0> —Tay (D’rusz 627 (,0) + ay (61:727 u(tk—l)u 90)
—ay(ep_1,ulte), ) — Tar(Dru(tp-—1), u(tr-1), ©) + Tar(Dru(ty), u(t), @)
(5.4.24)

Here, by Lemma 5.2.4, the right hand side except for the first and second terms are
evaluated from above for all k =2,3,..., N, ¢ € H and § > 0,

a1(€p_g u(tp—1), ¢) — ar(ep_y, ult), @)

— 1ay(Dru(ty_1), u(te—1), ) + Tar (Dyu(ty), u(ty), @)
< ca([lex—allolfu(te-1)ll2 + [lex—1llo/[u(te)]l2

+ 7{[ Druti-1)ollu(te-1)ll2 + 7l Dru(te) o] ulte)ll2) ¢l (5.4.25)
< catmax ([l€r_2llo + llez_1llo + T Drulti-1)llo + 7| Drults)lo) lh

1
5max Z (Heltfileg + TQHDTu(tkfi)Hg) 5

=0

)
<

el +

where cnax := ||ullc(jo.11;m2(0)2)- By Lemma 5.2.3, it holds that

* * *
_Tal(uk_27 DTek., Dfek) - O

By Theorem 5.3.3, there exist two constants 71, ¢; > 0 such that ||eX| 21y < ¢ for all
0 <7 <, and hence for all k =1,2,..., N, |lef]]s < ¢ and

— tay(Dyuy_q,€x, Drey)
= — 1a1(Dyu(ty_1), ex, Drey) — a1(Drex_q,€r,ex) + ar(Dref_q, e, €rq)
< cat|| Drulti—) lillei [ Dreplls + call Dreg_i [[1ller e —1 111
< cqer7 || Drulty—1) 1] Drexll + cact]| Dreg |1 llex—y 1

d %112 CZC% 2 2 2 CZC% 2
< 1D + L2 Dt 1)+ 81 Dey [+ e

Hence, by (5.4.24) with ¢ := D,e} and Lemma 54.3, forall 0 <7 <7, k =2,3,...,N
and § > 0,

1
(D Ryt Drei) < 8(| Dreillf + 1 Dreioall?) + s Y (leimimallf + 7| Drulted)17)
1=0

ou

ot

1 2
<O(||Drepll} + 1 Drerl17) + 5 > (Helt—i—l”% +7 ) :
L2(tp—i—1,te—i; H ()Y

=0
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where cs := §1(2c3c2,, + 27 cAc?). Putting 6 := 1/(4c,), by (5.4.23) and (5.4.16) in the

m ax

proof of Lemma 5.4.1, we have forall 0 <7 <7 and k =2,3,..., N,

1 T
| Deexlls = IDrexnlly + 51| Drei — Drealls + | Dreil}

a
< ¢oT|| D7 Ry
S CaTHDTRk’

2 + 672 VD P(tp)||2 + 27(D, R Doe}) i
T * *
i + 67V D P (t) |5 + =— ([ Drepll; + | D-ex 4 [I7)

2¢c,
1
oy rY (nez_i_luf br

1=0

Ju
ot

2
L2(tp—i—1,th—is HH(Q)Y)

Summing up for £ = 2,3,...,m with an arbitrary natural number m < N, by Lemmas
5.4.2 and 5.4.3, it holds that

1Demllg + —HD enlli +TZ —||D-ei; — Drexllg

<|[D-exllg + HD eills +TZ Call D= Rec||7+ + 67(|D-P(t)|7)
k=2
“ oul]?
+4c 1 TZ <||e,€||1 +7 )
at L2 1 d
k=1 (te— 17tkH @)
&u op | o
D +7(|D + + |lexl|7 ,
<af IDalf + Dl + 72 | 55 R e .

where ¢, := max{27'c; ! c,, 6,40%}. Hence, by Lemma 5.4.6, there exist two constants
cg > 0 such that for all 0 < 7 < 7,

Jex | D ekHO+TZ | Drex, — Drejlls < cs. (5.4.26)
=2 |

To use Lemma 5.4.5 for (5.4.23), we set (wg, 1) = T(Dreg) forall k =1,2,...,N. By
Hypothesis 5.3.6 and (5.4.26), there exists a constant ¢4 > 0 such that for all 0 <7 <7
and k =1,2,..., N, |[[wg|l2 < ¢4, and hence, for all 0 <7 < 7,6 >0and k£ =2,3,..., N,

—1ay(uy_o, Drep,wi) = Tay(uy_q, wg, Dr€)
cat|[ug o[t lwll2l Dreg o

<
< caca|[ug |1 || D-egllo

310421 2
= D3l + L2y
—1a1(Dyu;_q, e, wy) = —71ay(Dru(ty_1), e, wy) — Tar(Dyex_q, €5, W)

< cat|| Drulte-1) 1 llekllllwrlly + call Drei i llollekll][wkll2

< caer7|| Dru(tp—1) |1 ||wrllr + cacall Dreg_1llollerlr

2 9
CiCy

CC
lenllt + L2 Dty ) I + 81D 3 + L e 2
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By (5.4.24) and (5.4.25) with ¢ := wy, we have

(D- Ry wihy < 0(| Drejy [l + [ Dei13)

1
+ G {HwkH? + 2w} + Y (el + TZHDTU(tm)H?)} :

=0

where ¢5 := max{d,0 'cA(2¢2,.. +27 i +47'¢})}. By Lemmas 5.4.5 and 5.4.3, there exist
two constants 0 < 75 < 71 and c5 > 0 such that for all 0 < 7 < 7,

N
3 1 Drenl < %(HDT@H%* T DeelE + P ey + 11E 2y

Hence, by Theorems 5.3.1, 5.3.3, Lemmas 5.4.2, 5.4.6, and (5.4.26), it holds that for all
0<7 <1y,

oul|?

7|5

N
+7Y (I Drex — Dreplls + || D: Ry
) k=2

L2(H!

e, ||* al
. = 7|[Drer |5+ 7> |1 Drexls < crr
ot 2(L2
L2(L?) k=2
for a constant ¢; > 0, where we have used aeT = (D,e); on (tp_1,ty) forallk =1,2,..., N
]

Finally, we prove the second inequality of Theorem 5.3.8.
Proof of the second inequality of Theorem 5.3.8. By (5.4.19), Lemma 5.2.1, and Theorem
2.2.19, there exists a constant ¢; > 0 such that for all k =1,2,..., N,

(g, div )| |(Drex, ) +aoler, ) = (Rt Ry, o)
larllo<er sup —————=c; sup
0£peH ||<P||1 0#£peH ||90Hl
< 1 ([[Drexllo + callerlls + || Ril ) -
By Hypothesis 5.3.2 and Theorem 5.3.3, there exist two constants 71,co > 0 such that
Ju(te)|l2s 772 €5 22y < e2 for all 0 < 7 < 7 and k= 0,1,..., N. By Lemma 5.4.3, it
holds that forall 0 < 7 <7, k=1,2,...,N and p € H,

[0iraN=¥
= | —aulep_r, ult), o) —arle_y, ex, 9) — ar(ulte-1), ex, ) + Tar(Drulty), ulte), )|
< callex—slillutto)ll + lex-allllexll + lutte) 1kl + 7Dt llollulte)ll2) ol
< caca ([leg1 [l +2fleglh + THDTU(tk)Ho) el

< cqcs el
L2(t_1,tk,L2(2)%)

where we have used |leg||; < o for all £ =0,1,..., N. Hence, we have for all 0 <7 <7y
and k=1,2,..., N,

llarllo < cs <|

H*

at

+ || Ry,

H*
L2(tg—1,t, L2 ()%

375
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for a constant c¢3 > 0. By Lemmas 5.4.2 and 5.4.7, there exist three constants 7, ¢4, c5 > 0
such that for all 0 < 7 <7 < 7,

2

de. ||? i ou _
1P, — Pl < e (H e+ 7| 5| +||RTH%2<H*>>
L2(L2) (L?)
I oul|” 72 || 0%u <
CT 7— — || == CsT.
L2(12) ? Ot || a2y 3N ey ) ’

Therefore, by Lemma 5.4.3, we conclude the proof:

- - oP
| P — Prllr22) < |P — Prll2@ey + |1 Pr — Prllr2zy < V7T (H_

+\/_)

L2(L?)

5.4.3 Proof of Corollary 5.3.10

We prove Corollary 5.3.10 by using the boundedness from Theorem 5.3.1 and the Aubin—
Lions compactness lemma.

Proof of Corollary 5.53.10. By the first and third equations of (PM), it holds that for all
veVand k=1,2,...,N,

(D.,-uk, U) + GQ(UZ,U) + (gk,v) + (hk, VU) = <fk,’l)>H — (VPk,v)
= (fr,v)m — /F2 pro - nds,

where g;, and hy, are defined? by
e (Vo) up — g divey, by o= —up(ug )7,

which implies that for all v € V and 6 € C5°(0,7),

g o[ — % = 7 ’ F o
[ (Gre) + ont@o+ oo+ e v o= [ (4Gt = [ s ) g

(5.4.27)

Here, f, — f strongly in L?(H*) and p? — p’ strongly in L*(H*(Q2)) as 7 — 0. By
Theorem 5.3.1 and Lemma 5.4.1, there exists a constant ¢; > 0 such that

8u7
ot

HUTHLoo(L2 + HuTHLOO 2) T HukHL2(H1 +7

L2(L?)

2Here, it holds that for all 4,5 =1,...,d and k=1,2,..., N,

Zag;; (ur—1)i = (uj—1)i div ug, (hi)ij = —(up)i(up_1);-

~
—
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In particular, it holds that

luille + Tluill + ey = woll§ + [lus — will§ < e, (5.4.29)
which implies that ||u] — uollo < ||u] — uillo + ||ur — uollo < 24/c1. Furthermore, by the
first equation of (PM), Theorem 2.2.19, and Lemma 5.2.4, we have

ve = sup —— |—ao(uy,v) — ai(ug, ui,v) + (f1,v)nl
0#£veH ”UHI

[ur =

(5.4.30)

< ca[lurlh + carlfuol rallw” [l + 7 ol -
< CQ\/F.

where ¢; == /c1(cq + cal|tol|zra) + || | 2(ar+y- Let u§ :=uf, up == uj forallk =1,2,... N
and let 47 be the piecewise linear 1nterpolant of (up)_, C H.

From the uniform estimates (5.4.28), one can show that there exist a sequence (7% )xen
and three functions u € L2(H)NL®(L2(Q))NWL4/Pe(V*) (in particular, u € C([0, T]; V*)),
g € LAPa(LP¢(Q)4) and h € L4/pd(L2(Q)dXd) such that 7, — 0 and

uf —u weakly in L*(H), (5.4.31)
strongly in L*(L 2(Q)d) (5.4.32)
@2 —u  strongly in LA(L*(Q)%), (5.4.33)
strongly in C([0,7T]; V"), (5.4.34)
Ur, — u  strongly in LQ(LQ(Q) ), (5.4.35)
weakly in Wh/Pa (%), (5.4.36)
Gr, — g weakly in LYPa(LPa(Q)%), (5.4.37)
hr, = h  weakly in LY7¢(L3(Q)™%), (5.4.38)

o

as k — oo. Here, we note that uy,, ﬁTk and 1, possess a common limit function. In-

deed, the weak convergence (5.4.31) of @} immediately follows from the uniform estimates
(5.4.28). Since we have 1/p; =1/2+ 1/pd7 pa/4=1/2+pa/(2Gs), and

_ _ 1
1@ | 2arvaqiray < NI N e

for a constant c3 > 0 (cf. [14, Theorem I1.5.5])3, it holds that

< sl @ |ha a2

N Pa/4
_ . 4/
G-Il zarpacrray < {T (IVupllz 1wyl zra + gy lzea || div g 22) pd}
=1

N pa/4
4
QZNWWWkn%Q
k=

1
N 1/2 N pa/(2da)
9
(rzuukul) (Tzuuzlmz/m)
k=1 k=1
<G ‘ THL2 H?) + ||UT||L2‘1d/pd(LPd) +7_pd/(jd||U0||%pd>

(I
< ca (1 3y + coll I35 s 15200 + 75/ g, )

3Since po = 2 + ¢ and p3 = 3, we have py/Go = /2 and p3/ds = 1/2.
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= pd/4
r E 4/p, 4/p
||h ||L4/1’d(L2 = ( ||uk||[{ldd||u}:—1||lé7dd>

Ppa/4
4 4
<o (Tz ||uz||1/pd||uz_1||Lézd)
2 2-2 7
< e (113 13agern) + calls 7500t N 1520 + 74/ |, )

for constants ¢, and ¢;. Hence, by (5.4.28), the weak convergences (5.4.37) and (5.4.38)
hold. Moreover, since there exists a constant c¢g > 0 such that

\(gk,v)| < ||9k||LﬁdHU”Léd < CGHgk”LﬁdHUHl

forallk=1,2,...,Nand v € HI(Q)d, we have

o
at L4/Pd(V*)

(] o
= sup ——
0 0#veV HU 1

+ (o (1), 0 — / () - nds

—ao(uz(t),v) = (9-(t),v) = (h-(t), V)

4/pd pa/4
) o}

! pa/4
= {/0 (call@z®)l + collgr )l s + Ihr )]0 + || ()] - + ||p2(t)|\1)4/pd dt}

< Callt L pamagary + ollgo | asmaguray + 1ellrmaizy + 1o llpomagarey + 1951 rmany

< Tpd/ QQd ( \/__'_ ”fHL2(H*) + Hp HL2 Hl)) + CGHgT‘|L4/pd(Lpd + Hh ||L4/pd L2)7

' L4/Pd(V*)

pa/4
= < Uil—uk+uk_1,v)|)4/pd ‘
'TEZ sup
0£veV Tlv]|1
N pa/4
VP, v)|¥/Pd
(TZ sup [V Py, v)| 7P + 7| 4/pd>
N

otvev ofly?
pa/4
1 4/pa .
: (TZ oLy ol ) + 2l

T

ot ot

pae  da,

<

[\]

IN

/ PP(te)v - nds
k=1 0FveV “U 1 s

pa/4
(an ||4/pd) {2yl

S 2||p7||L4/Pd(H1) + 20271+Pd/(26d)

< 2Tpd/(2qd)<||pb||L2(H1) + ¢ T),

and ”%HL“/IM(V*) and ||aaif||L4/pd(V*) are also bounded. Hence, (5.4.36) holds. Further-
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more, |47 || r2g1y is bounded: by (5.4.28) and (5.4.29),

o = E/‘n SNy + sul|Prds
_§j w%1m+u%ut/{1—s P+ s?)ds
k=1
2

N
2 Z (i I3+ lluzllD)

=1

w

4 * 2 * |12
< glluzllzacm + g7llull
4 _ 261
|| [ my T kS
S QCla

which implies the strong convergence (5.4.33) of 42 in L2(L2(Q)d) from the Aubin-Lions
lemma [14, Theorem I1.5.16 (i)]. Since we have for all t € (tx_1,tx),k=1,2,..., N,

20 - 20l = |
150 = i (Ollo < 10 = 5Ol + [0 = Ol < 16 = o+ 71D,

the functions u7, , @7, and i, possess a common limit function u, and the strong conver-
gences (5.4.32) and (5 4.35) hold: by (5.4.28) and (5.4.29),

luk = wj—allo < llug = wkllo + 7l Drullo + [lun— = wig_illo,

N 1/2
a7 — @2 r212) < (T > (g = urllo + 7 Drugllo + fJux—1 — uzlllo)2>
k=1
A, .
< 2V/3|| @k — Uy || 22y + V3T +V37||ug — uillo
O N2y
S 5\/ 3617’,
. D,
T — i || 222y < V2ITE — || 22y + V27 < 2V/2¢7.
Ot N2z

It also holds that

a7 = a7l < | _max (lugllo + llug-1llo) < 2v/e1.

Since |43 || oo (r2) and || % || L4/pa (v -y are bounded, we obtain the strong convergence (5.4.34)
of w2 in C([0,T];V*) [14, Theorem I1.5.16 (ii)]. In particular, @2(0) converges to u(0) in
V*. On the other hand, by (5.4.30), 42(0) = u] converges to up in V*. Through the
uniqueness of the limit in V*, we have indeed obtained that u(0) = wuy.

From (5.4.27) with € := ¢y, taking k¥ — o0, it holds that for allv € V and 6 € C§°(0,7),

/OT (<% 9U>V + aplu, 0v) + (g,00) + (h, V(ev))) gt

T
= Ov) g — “Ov - .
/0 ((f, V) g /mp v nds) dt
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Next, we show that

g = (Vu)'u —udivu, h=—u(u)’. (5.4.39)
We set 0,(t) :=uj_, for t € (ty_1,tx],k =1,2,..., N. Then, it holds that
N 1/2
107 — w7l 22y < (TZ(HUZ = ugllo + 7l Drullo + [ug—1 — UZ_1||0)2>
k=1
. o,
< 2\/§HUT - UTHLQ(L2) + \/gT
Ot a2

< 3v3aiT,

and hence it follows from (5.4.32) that o, — u strongly in L2(L2(Q)%) as k — co. Since
Vit — Vu weakly in L2(L2(Q)"?) and div @ — divu weakly in L2(L2(Q)) as k — oo,
we have
G- = (Vu)'o, —v.divi: — (Vu)'u—udive weakly in LY(L'(Q)%),
hy = —u:(v,)" — —u(u)” strongly in L*(L!(€)%*?)
as k — oo (cf. [14, Proposition 11.2.12]). On the other hand, we also know (5.4.37)
and (5.4.38). The convergence in these spaces imply the convergence in the distributions

sense, therefore (5.4.39) holds by the uniqueness of the limit in D'((0,7) x ). Hence, it
holds that for all v € V and 0 € C§°(0,T),

/OT (<Z—Z’ v>v + ao(u, v) + (Va)u — udivu, v) — (u(u)”, Vv)) ot

_ /OT ((f,fU)H _ /prv . nds) adt,

which is equivalent to the following

/OT <<%,v>v + ap(u, ) + al(u,u,v)) Ot = /OT <<f, Y /F Do nds) bdt.

5.5 Numerical examples

For our simulation, we set T'= 1 and

Qz{(rcos@,rsin9)€R2 ‘ r1<7"<7"2,91<(9<02},
I = {(TCOS@,TSinQ) e R? ‘ re{r,r} b <0< «92},
Iy = {(TCOSQ,TsiDQ) e R? ‘ r<r<ryl € {91,02}},

where r1 := 2,79 = 3,6, = 0,60, := 7/2 (Fig. 5.1), and define the following constants:

Pin = 1, Dout = —1, o = %7
2 V1
C = 1r2r2M D= _17’% logry — i logr
. 2 1'2 T% —T% ; . 2 r% _r% )



84 Chapter 5. Projection method

The following functions

u(z,y,t) = ( _(57(2)6:52:)0 > : p(z,y,t) == po()e ™,

where (r,0) = (r(x,y),0(x,y)) are the polar coordinates and
_ pin(e - 91) + pout(02 - 6)

1
Ulr)=a«a (ﬁrlogr + g + Dr) , po(0)

0y — 0, ’
satisfy (5.1.1) with v = p =1 and
2
—U—(T)e_% cosf — U(r)e *sinf ou
f(l’,yﬂf) = UQT(T) = {a‘f‘(UV)U/} (‘Tayvt)a
- e ?sinf + U(r)e ' cos
U*(r) U(r)sinf
b o —t —2t o
Pt =mo)et+ e o= (GO0

Fig. 5.2 shows the initial value ug of the velocity and the pressure p at t = 0.

I

Figure 5.1: The domain € with boundary I'y, 'y (left), and Qp, 'y 5, I'a 5, with mesh (right).

We introduce a domain €2, to approximate the domain €2, with boundary 0€), =
I'yp Uy, (Fig. 5.1). We also introduce a regular triangulation 7, to €, with h =
max e, diam(K) and ), = Uger, K. To consider the P2 and P1 element approximation
for velocity and pressure, respectively, we define the function spaces: for i =1, 2,

X} = {vn € C(W) | vnlx € P(K),VK € Ty},
Hy, = {goh € (Xi)2 | op=0o0nTIy, ¢, xn,=0on ngh} ,
Qun:={vne X, | Yn=00nTy,},

where P;(K) is the set of polynomials of degree i or less on K and ny, is the unit outward
normal vector for I'; . Here, since I'yj, is flat, the normal component of ¢, € H}, is not
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Figure 5.2: The initial value ug of the velocity (left) and the pressure p at ¢t = 0 (right).
In the left figure, the color scale indicates the length of |ug(£)| at each node €.

determined. If I'yy is not flat, then ny, is discontinuous on I'y, and ¢, = 0 on I'yy, (cf.
[13]). Let IT; : C(Q,) — X} (i = 1,2) be the Lagrange interpolation operator (on each
triangle). By replacing uy_; in the first equation of (PM) with the third equation of (PM)
at the previous step (Remark 5.2.11), we consider the following discrete problem:

Problem 5.5.1. Forallk =1,2,..., N, find (u}, P) € H,x X} such that P,—T1}p°(t;,) €
Qn and for all p € Hy and Y € Qy,
1 * * * * *
;(uk — Ug—1; 90) + aO(ulw 90) + al(ukfbuk? ()0) + (vpkfh ()0> = (f(tk)v 90)7
T(VF, Vi) = —(divuy, ¥),

(5.5.40)

where Py := 0.

For all k =1,2,..., N, we set uy := uj — 7V P;. See [39, 40] for details on uy and its
divergence.

On a mesh with h = 275 we solve the problems (5.5.40) numerically by using the
FreeFEM software [43]. We compute the error estimates between the numerical solutions
of (5.5.40) and the interpolation (ITw,II} P) of the exact solution (u, P), where P :=
p+ul?/2. In Fig. 5.3, the numerical errors ||@, —iur || 22,0, 105 =Tz 220200,
| Pr — 1L Pr | 2 (22(00))» and ||@ — | r2(m (o)1) are presented. It can be observed that
- — T ur || r2r20,)e) and || — i 12(z2(0,)) are almost of first order in 7 and that
| Pr =11} Pyl 12(12(q,,)) 1s of 0.5th order in 7, as expected from Theorem 5.3.8. Furthermore,
the error || — ITjur||z2(s1(q,)e) is almost of first order in 7, which is better than the
theoretically predicted rate (Theorem 5.3.3).

5.6 Conclusion

We have proposed the projection method (5.1.3), (5.1.4), and (5.1.5) for Navier—Stokes
equations (5.1.1) with a total pressure boundary condition. We have shown the stability
of the projection method in Theorem 5.3.1 and established error estimates for the velocity
and the pressure in suitable norms between the solution to (NS) and (PM) in Theorems
5.3.3 and 5.3.8. The convergence rates are the same as the case of the usual full-Dirichlet
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boundary condition for velocity [76]. The traction boundary condition is often used to
apply Dirichlet boundary conditions for pressure; however, the convergence rates are worse
than our case (Compare [37] and [41]).

The projection method is still evolving, and many high-convergence methods have
been proposed (e.g., [41]). The application of the boundary conditions proposed in this
paper to these methods will be a focus of our future works. As another future direction,
the case in which I'y is not flat in numerical calculations is an important problem (cf. [13]).
In addition, since the nonlinear term (V x u) X u is different from the standard advection
term (u - V)u, it cannot be applied to methods using the Lagrangian coordinates, such
as the characteristic curve method and particle methods; this problem remains open for
further study.
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Chapter A

Proofs

After defining the Lipschitz domain in Section A.1, we prove the Necas inequality (The-
orem 2.2.13) in Section A.2 and its corollaries (Theorems 2.2.14 and 2.2.15) in Section
A3.

A.1 Bounded Lipschitz domain

We introduce the notation used in this appendix.
For a, 3 > 0 and an open set U C R" !, we set

Bla) = {a'= (21, ,z,01) eER" | |[Z/| <},
K(,p) = Bla)x(0,5),
M(CK?ﬁ) = B(CY) X (_Baﬁ)a

where |2/| := /22 + -+ 22_;. A function g : U — R is called Lipschitz continuous if
there exists a constant ¢ > 0 such that

lg(z") — g(y)| < ¢|lz’ —y/| foralla’,y €U.

The constant c is called a Lipschitz constant ¢, for g.
We use the following theorems and lemmas.

Theorem A.1.1 (partition of unity). [16, Lemma 9.3] Let Q@ C R"™ be a bounded open
subset and let open subsets Uy, Uy, --- U, C R"™ satisfy Q C U~ U,. Then, there exists
functions ng,ny, - -+, Nm € C°(R™) such that

n. € C(U,)  forallr =0,1,--- ,m,
0<n(x)<1 forallr=0,1,--- ,m,z €U,

Zm(m) =1 forallxe Q.
r=0

Definition A.1.1. A bounded open set ) is called a Lipschitz domain if there exist two
real numbers «, 5 > 0, an integer m € N, systems of local charts (z;1,-+ ,Tm) (r =
1,2,-+- ,m) and Lipschitz continuous functions g, : B,(a) := {x/. € R" | |z < a,i =
1,2,-+- ;n—1} = R such that

I'= U{xr €R" [z, = (2], Trn), 27 € Br(a), Ty = gr(27)}

r=1

99
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and it follows that for all y. € B,(«)

9 W) <Y < 9 (yy) + B = (Y, Yrn) € Q,
G (V) = B < Yrn < 6 (1) = (Y., Yrn) € R\

By using systems of local charts in Definition A.1.1, we define subsets;

B(a') = {2, e R"! [ [z} <a'},
U, 8 = {x, = (2, 2,) ER" | 2. € B.()), g.-(2).) — ' < Xy < g-(2.) + '},
Ur(e,B) = {z, = (7, 2m) ER" [ 2] € B,(¢), 9,(2}) < @pn < gp(2) + 5}
for0<oa <a,0<f <Bandr=1,2,---,m.

A.2 Necas inequality on a bounded Lipschitz domain

The Necas inequality (Lemma 2.2.13) is important for the proof of the existence of the

solution to the Stokes problem and the Korn inequality, cf. [27, 32, 80]. The Necas

inequality on a bounded Lipschitz domain was proven by Necas [66]. The Necas inequality

also holds on a John domain that is a weaker condition than Lipschitz domain [1].
Necas proceeds with the proof in two steps:

1 Interior of €2. Here, the proof follows the case 2 = R".
2 Neighborhood V' near the boundary I'. Here, the proof follows the case 2 as the half

space {(z1, -+ ,x,) € R" | 2, > 0}.

There are other methods for the proof of the Necas inequality [2]. In [27], the authors
prove that

{p e HY(Q) ’ (9854 e H Q) foralli=1, - n} = L3(Q)

holds with a C'!-class boundary. The equation is equivalent to the Necas inequality. See
also [15].

The purpose of this appendix is to provide the Necas style proof. In A.2.1, we introduce
the notations and symbols used in this appendix. We prove the case 2 = R™ in A.2.2 and
the case (2 is a subset K of the half space in A.2.3. In A.2.4 we define mollifiers and show
several properties. We also make the mapping 7' : K — V using the mollifiers. In A.2.5,
we prove the Necas inequality.

A.2.1 Preliminaries
We use the following theorems and lemmas.

Lemma A.2.1. Let U C R" be a open set. We have

dp
5’xi

< \/EHVPHH—I(U)n

Vol -1y < Z
i=1

H-1(U)

for allp € L*(U).
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Proof.
"o - 0
Sl = s ()
i=1 xi H_I(U) i=1 ‘PieHl(U)’ H‘PiHHI(U):l xi
= sup (Vp, )
eeHY(UN™, lleill g y="=llenll g1 =1
< sup (Vp, v)
eeHY(UN™, ol g1 yn=vn
1
= Vn sup (Vp, —=p)
e (UY, gl =y VT
= Vn sup (Vp, )
PEH (U™, [l g1 gy =1
On the other hand,
IVl -1y = sup (Vp, 0)
0#£peHL (U)", H‘P”HI(U)TLSI
= sup (Vp, )
0EH (U)", ll6112,1 )+ Hlen 21 gy S1
“ 0
< > sup < P ,90¢>
0 eHAD), lloill i<t \ O
i=1 Oz H-1(U)
O

Lemma A.2.2. Let €2 be an open set in R™. If there exists a constant ¢ > 0 such that

Ipllz2) < clllplla-1@) + VPl a-1@)n)

then it holds that

Ipll20) < clllpllz-1@) + IVPla-10207)

Proof. For p € L*(Q), we have

1Pl -1

IVl -1

IN A

IN - IA

IN

for all p € C5°(Q),

for all p € L*(Q).

sup /pw dz
YeHF(Q), ¥l g1 (q)=1/Q

sup

YEH(Q), ¥l g1 ()=1
sup

YeH(Q), 19l g1 ()=1

1Pl 220

1PNl 2o 1Yl 220

1Pl 2@ 91|21 (<)

sup pdiv o dx

‘PGH(%(Q)nv ”@”Hl(g)":l Q
sup 1Pl 2o | div ]| 22 ()

e HY)", I9ll 1 oy =1

N sup

tpEH& (Q)nv ||‘P||H1(Q)":1

Vllpll 2 )

[Pl 22 [Vl 12 gy

Since C5°(2) is dense in L*(2), we obtain the result.
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A.2.2 Total space

If p,g : R® — R is a continuous function with compact support, its Fourier transform p
and inverse Fourier transform ¢ is defined by

1 )
H(E) = e for all £ € R"
p(&) (2m)72 /Rn e " p(x)dr for all £ € R™,
« 1 1T n
j(z) = CORE / e"q(&)de  for all x € R",

where © - & = > & It is easy to see that §(z) = ¢(—=) for all z € R™. It is well
known property of the Fourier transform that

o

O (&) =i&p(&) forallk=1,--- n.

One proves (Plancherel theorem [28, Theorem 4.3.2 (ii)]) that if p € L*(R™) then p €
L*(R™) and ||p||r2@ny = ||p|lr2@n)- By continuous extension, one can therefore define
F:L*R") > p—pe L*R") and F*: L*(R") 2 ¢ — ¢ € L*(R"). The linear isometric
mapping F is an unitary map and has the inverse map:

Theorem A.2.3. [28, Theorem 4.3.2 (i)]

[ sea@de = [ @@ for allpg € )

Theorem A.2.4. |28, Theorem 4.3.2 (iv)]
FFp=FFp=p forallpec L*(R").
For Sobolev space H'(R™), we have a lemma:

Theorem A.2.5. [28, Theorem 5.8.8]

peH'®) & [ 1RO+ ) < +oo

and we have

1/2
ol = ([ @10 +Ig)ig) - por atp e R

By using Fourier transform, we prove Theorem 2.2.13 when 2 = R".
Lemma A.2.6. There exists a constant ¢ > 0 such that
Ipll2@ey < Vallplla-1@n + VDl -1 @eyn)

for all p € L*(R™).
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Proof. Using Fourier transform, we get

HP“%%W) - B(&)]*d¢

Rn

= [ O+ IR+l de (A21)
=/\p 21+ €] 1d£+2/ )P+ %) e,

Here it follows that

(Lores) (. wdﬁ)Q

1Pl E-1gny = sup sup
otperi @) 1Pl 7n @ oyéweHlR")/ B(6)2(1 + [€2)d

(A2.2)

Putting ¢ := F (1 + [£*)71p(€)], we obtain
PP+l = [ HOPA+IeR) s < [ o) < +oo.
R" R®
By Lemma A.2.5, ¢ € H(R™), hence, it follows from (A.2.2) that

([ s @)

. [T+ 16 pEOIP A + Igf)ds 7

BEIPA+[EF)Tde.  (A2.3)

121 (ny >

On the other hand, for j =1,--- ,n, it holds that

([ ) ([ eseraeae)

= sup = sup
any opeei@) el omeenie [ o004 je?)ag
R‘IL

3p
Oz ]

Putting ¢ := Fi&;(1 + |€]?)~'p(€)], we have

§2

e d¢ < Ip( )]Pd¢ < +oo.

el = [ RO +IERdE = | 13O e

By Lemma A.2.5, we obtain ¢ € H'(R"), hence,

6’p2

af ([ i en e >d§)

AP+ |6) e
e [ i+ PR+ g

(A.2.4)
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By (A.2.1), (A.2.3) and (A.2.4),

||10||L2 ®) S ||p||H ny + Z Ir. :
= 195 -1 ey
By Lemma A.2.1, we obtain the result;
P2y < | lIpll?
H- 81’] H1 (R
< lpll -1 @)
(91:3 1 (mm)

< Vo (lpla-@m + ||Vp||H—1(Rn)”)-
]

Using Lemma A.2.6, we prove the following lemma.

Lemma A.2.7. Let Q2 C R" be an open set and let a bounded open set U C € satisfy that
U C Q. There exists a constant ¢ = ¢(Q,U) > 0 depending only on U such that

1Pl 220 < elllplla—r@) +IVPla-2 @) forallp € CF(U) (C CF°(R)).  (A.2.5)
Proof. For p € C°(2), we set

v | plx) ifzeq,
p(‘”)_{o if 2 € R\ Q.
It is easy to see that p € L*(R") and ||p||r2wn) = ||pllr2(0). One can make a function

p € C°(R™) such that
plr) =0 (x¢Q), 0<p(x)<1(xecQ), pl)=1(xecl).
Since p € H'(2) C H'(R"), there exists a constant ¢ > 0 such that
oYl (o) < cllpllaoyl¥llm@ny — for all g € H'(R™).
Thus it follows that for p € C§5°(U) (C C§())

/ﬁl/zd:v
1Pl -1gny = sup G

ozper &) |V i mn)
ppw dx
= sup

(by supp(p) C U)
0£peH (Rn) WHHI(W

/ ponp dz
ol  swp I

0£peH (R") HPW’Hl(Q)

pzﬁ dx
Q

IN

IN

cllplm@ — sup 7
ozdei @) [Ulla @)

cllpllm @ llpla—@),

IN
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and

VD -1 mnyn < cllpllar @) | VDI -1y
By Lemma A.2.6, we obtain the result;
5] 2R

< Vollpla-1@ny + IVl -1 @)
< evnllpllam @ plla-1@ + IVl a-—@n)-

Pl 220

A.2.3 Extension of K(«, () to M(«a, )

We shall consider Lemma A.2.7 on the subset K(«, ) of the half space {(xy, - ,x,) €
R™ | z,, > 0}. We prepare the following lemma.

Lemma A.2.8. Let o, >0, K = K(a,3) and M = M(a, 3). There exist an extension
operator C§°(K) 2 p— p € C(M) and a constant ¢ > 0 independent of a and 3 such
that

~||Z?||L2(K) < Bl 2 any,
||~p||H*1(M) < cllplla-1(x),
IVPlla-1anye < el VDlla-1x)n,

~

for all p € CP(K), and if p € CP(K(a
oo (M(a, 57)).

0) (0 < o < ,0 < ' < fB) then p €

Proof. Let A\i, \y are solutions of the linear system:
M+ A =1, A+ 20 = —1, (A.2.6)

(i.e., Ay =3, Ao = —2). For p € C§°(K), we define p € C3°(M) as follows:

p(2’, xy,) %f 0<x, <0,
ﬁ(l'/,l‘n) = 0 T if Ty = Oa
Ap(x', —xy,) + Aop <x’, —7") if —f<ux, <0,

for ' € B(«a) and z,, € (—f, ). It is easy to see that

PNl L2y < 1PNl 22 an

and if p € C°(K (o, f')) then p € C3°(M(/, ). Moreover, if p € C5°(K(a/,3)) then

supp(p) C M (o, B').
Forp e C°(K),v € C(M) and i =1,2,--- ;n — 1, we have

ap , ,
| SR el a)do
o 0]? 1 / 8p r ap , _wn ,
= | o (2", zn)v(2, 2 ) d +- /K_ ()\laxi (2, —zy,) +/\28xi (m, 5 >) v(2', z,)dx

= / 55 (33", l‘n) (U({L‘l’ :L‘n) + )\11}(3;'/’ _xn) + 2)\2?)(1'/, _an)) du
K [

a / /
= /Ka:fi(x,xn)Plv(x,xn)dm
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where K~ := B(a) x (—f4,0) and Pv(2, z,,) := v(2', x,,) + Mo(2, —z,) + 2 0(2', —2x,).
By (A.2.6), we obtain that for 2’ € B(«)

Pro(2',0) = v(2',0) + \o(a,0) + 2X0(2’,0) = (1 + Ay + 2X2)v(2’,0) = 0.
It implies that Pyv € Hj(K). Moreover, it follows that
||P1UHH1(K) < Cl”UHHl(M) for all v € CSO(M)

Thus we can extend P; as a bounded operator on HE (M), which satisfies that

op Op

v Oz K O

(x)v(x)dx (x)Pyv(z)dz

for all v € H}(M) and ¢ = 1,2,--- ,n — 1. The same argument works for fMﬁvda:. It
implies that

op op
8.135

C1

lli-1an) < e llpll e, ]

H=1 (M) H=H(K)

fori=1,2,--- ,n—1. For v € C§°(M), we have

aﬁ / /
y a—xn( ,xp)o(2, xy,)de

_ o, , ! op Ao Op , Ty )
- /K oz, (2', mp)v(2', 2 )d +/K< Alaxn (a', —zy,) > o (1’, 5 )) v(z', x,)dx

— gf (.Z’/, an) (U(q;/7 J;n> — /\12](1*’7 _In) . )\20(1‘/’ _an)) du
K n

dp
— / P /
/K—axn( ) Pov(2 xy,)dx

where Pov(2,x,,) := v(2/, x,) — M2, —x,) — Av(2’, —22,). By (A.2.6), we obtain that
for 2’ € B(«)

Pou(2',0) = v(2',0) — \o(a’,0) — Agv(2',0) = (1 — Ay — A2)v(2,0) = 0.
It implies that Pyv € H}(K). Moreover, it follows that
| Povll oy < callvll for all v € C5°(M).

Thus we can extend P, as a bounded operator on H} (M), which satisfies that

/M B (Vo) do = / O (1) Pyo(a)da

al‘n K axn

for all v € HJ(M). Tt implies

By Lemmas A.2.7 and A.2.8, the following lemma holds.

95
oz,

dp
oz,

<
H-1 (M)

H~(K)
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Lemma A.2.9. Let0 < o' <a,0< ' < and K = K(«,3). There exists a constant
c=cla,B,d,0") >0 such that

Ipllz2r) < clllpllm-1a0) + IVPlla-15)n) — for all p € CG*(K (o, 5)).

Proof. By Lemma A.2.8, we have p € Cg°(M (<, 5')). Here, it is immediate to check that
M(o/, ") C M = M(a, ). By Lemmas A.2.7 and A.2.8, it follows that

Il 22y < 1Bl 22y < ca(lBlla—ny + IVBl -1 0nyn) < ca(llplla—1(x) + IVPI -1 (5)m)-

]

A.2.4 Local Lipschitz boundary

We shall consider a neighborhood of the boundary I'. For 0 < o/ < a and 0 < ' < j3, let
a function g : A(a) — R be Lipschitz continuous and let

U;(O/,B') ={z=(2",2,) eR" | 2’ € B(d),g(2) <z, < g(z)+ 5}

In this subsection, we make a mapping K(a/,') — US(a/, ) and extend Lemma
A.2.9 to US (a, B). The simple mapping K(a, 8) > (v, ya) = (v, 9(¥') +yn) € Uy (o, B)
is not smooth enough to prove the lemma if ¢ is not sufficient smooth, thus we define a
mapping K (o', 8') — U (o, 8) using mollifiers according to the Necas’s proof.

For f € L'(B(h)) and g € L°(B(«a)) with 0 < o/ < a and h = o — o/, one can define
the convolution product of f and g;

(f * g)( / fW)g(x' —y)dy  for ae. ' € B(d).
It is easy to see that

I * gl By < 1fllrsuyllglleeB@)- (A.2.7)

Let p1 € Cg°(R"™!) satisfy that supp(p1) C B(1), p1 = 0 on R""" and [p,, p1 = 1; for
example the function

1 :
P(] exp <|I/|2—_1> if |l’/| < 1,

0 if |[2'| > 1,

pi(2’) =

where Py =1/ fR" L exp(‘%,|2 )dz’. For h > 0, we set

1 '
11 (2)
for o/ € R* L.

We show some properties of the mollifiers.
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Proposition A.2.10. For h > 0, we have
/ pndr’ = 1. (A.2.8)
B(h)

Furthermore, there exists a constant ¢ > 0 independent of h such that

<h—cn forallh>0,2 eR" ' i=1,--- ,n—1.

Ipn, c pn ,
9a; | < ‘ah( )
Proof. We compute

1 ! 1
/ pnda’ = —— / p1 (£> dr' = — / pr ()Wt da :/ p1(2")dz' = 1.
B(h) N 10 h "=t Ja) B(1)

For ' = (21, -+ ,xp_1) € B(h) and i =1,--- ,n — 1, we have

opn . , 0 1 x 1 9p; a:’
@) = =\l 7 ) ) = -
0x; Oy 1P\ N h” ax, ’
aph noo_ _7’L—1 apl '
oW = T ’”(_) Jn—1 ( > (E
n—1
R P 7N N~z (2
- hn{<1 ")’“(h) jzlhaxj(h)}'

Since p; € C®°(R™ ') and supp(p;) C B(1), functions % (%) and p; (%) are bounded
on B(h). Therefore, there exists a constant ¢ > 0 such that

c

h"’

aph ’ aph ’
@) P ()

o forallh > 0,2 e R" Y i=1,--- ,n—1.

C
S

Lemma A.2.11. Let 0 < o/ < «a. For all Lipschitz continuous function g : B(a) — R,
there exists a constant M = M(«a, g) > 0 such that

0 0
gz (Pnx 9) (@) < M, on(pnxg)(@)| < M
forall0 <h <a—a and 2’ € B(d).
Proof. For a Lipschitz constant ¢, for g, it follows that
0
ai( )| <¢, a.e. for 2/ € B(a)
withi=1,--- . n—1. Forh> 0,2’ € B(¢/)andi=1,--- ;n—1,

a / / / / /
z —y))d
oz: o pn(y)g(z" — ' )dy

dg
/ 2 —\dy
[ g

< / %
B(h)

Prly )6%(1‘ —y)
<o [ im)lr =,
B(h)

)| =

dy’
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;)h (pn * g)(z) o

0

0

IN

< (n

. / x/_ /d/
3, P00 )

—/ Lo (L) g0 = yay
Oh Jpguy Bt \ h

dh

n—1
dg
= Z zi—(x' — h2"d
/B(l)m( )3 sy = 12)

o

1
/ Wpl(z/)g(x' — h2 )"t
B(1)

(gl — b))

n— 1

lp1(2 |Z 2]

1), / o1 ()]

B(1)

89(:5 — h2")|dZ

= (n — 1)c,.

]

Lemma A.2.12. Let 0 < o/ < «a. For all Lipschitz continuous function g : B(a) — R,

82

there exists a constant ¢ = c¢(a, g) > 0
82

\
!
i

e
n—1and 0 < h <

foralli,j=1,---,

Proof. Fori,j=1,--- ,n—1and 0 <
92

‘6@8%

(Ph * 9)
L (B(a'))

82

By Proposition A.2.10, it follows that

H aph - /
aa;] LY(B B(h)

pn* f)

Leo(B(a'))

0x;0; (pn* g)
Ph*q)

Ph*q)

such that

IA

o o o

Leo(B(a'))

IN

Leo(B(a'))

IN

L (B(a"))
a—o.

h <a—d, by (A.2.7), we obtain

_ l‘ ( %) . 99
flb 85’% O Le((e)
< _‘ Opn g
WAl 02 || 1 gy 11 O%i |l Lo (B(a))
< G 'h% |
Rl 05 || 1 pny)
< 1‘ Opn ‘ dg
= hll Oh | sy 19l s (B(a)
< 0_' Opn |
I IR ZE73 | PYPeTsy
%(1") dr < C_l/ dr = ¢|B(1)],
(9:1:j hn B(h)
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where |B(1)| is the volume of an (n — 1)-dimensional unit ball. Hence, we get

2
‘ 0 (pn* g) < —chf(l)lv
8"’3362%‘ L>(B(a)) Bl
W
Li L>=(B(a))
For all 2’ € B(a/), we have
Spona)@) = [ ()3 22 —hz)d'—n_l/ U (2% o g
an P B(1) ! = "0z, — Jpm I " by, '

Thus, it holds that

0? , 1
W(Ph *g)(z') = 3

By (A.2.7) and Proposition A.2.10, it follows that

H -
5 (Pn * g)
8h2 Lo (B(a'))

Yk / / Yk aph / /
< —pn(y dy+/ h—(y)dy}
< {/ i+ [ |

h Z B(4) |on ()] By h1

('~ 1)e,(1+ | B(1)))
3 |

O
For 0 < o’ < aand 0 < 8’ < 3, we make a mapping K (o, ) — U, (o, B) using the
mollifiers according to the Necas’s proof.

Lemma A.2.13. Let 0 < o/ < a and 0 < ' < B. For all Lipschitz continuous function
g : B(a) = R, there exist two constants 6 = 0(a, 5,a',0',9), M = M(c,g) > 0 such that
the mapping T : K(o/, 8') — U (/, B);

T(y) == (v, G, 0yn) + (1 +M)y,) fory= (v, yn) € K(/, '),

where

Gl 1) = (o2 9) W) = [ nl€)aly/ = €.
B(h)
satisfies the following statements:
e The mapping T : K(o/, ) = V(, ) :=T(K(,3)) is C*°-diffeomorphism.

o Uf(/,B") CV(,3) CUS(d,B) (Fig. A.1).
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o Let (xla o 7xn) = T(yla e 7yn) fOT’ (yla e >yn) € K(al7ﬂ/>‘ The Jacobian JaC(T)

= det(g—;;)lgmgn satisfies

1 < Jac(T) < 1+ 25M.

Figure A.1: Sketch of the mapping T

Proof. Since p;, € Cg°(R™!) and g is a Lipschitz continuous function, the function G is
infinitely differentiable on B(a/) x (0, — ). By Lemma A.2.11, there exists a constant
M > 0 such that

M < Oy )y < M (A.2.9)

forall y € B(a/) and 0 < h < a — . Let
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It is easy to see that 658" < o — o/, hence, T' is well-defined. Since G is infinitely differen-
tiable on B(a/) x (0,ac — &), T is also infinitely differentiable on K (o, ').
For y = (v, yn) € K(c/, '), by equation (A.2.9), it follows that

G
1:—5M+1+5M§@(y’,éyn)HMMgaMHMM:1+25M.

Hence, y, — T(y', y,) is strictly increasing for all ¢’ € B(a/);
1< %{G(g/,éyn) +(1+0M)y,} <1+20M for all (v,y,) € K(c/,8). (A.2.10)

Therefore, T is a bijective mapping from K (o/, 5') to V(a/, ') = T(K(a/, ')). Moreover,
T:K(,p)—V(d,p)is C®-diffeomorphism.
Integrating with respect to vy, from 0 to ', we get

B <G, 08) —gly) + (1 +M)F" < (1+26M)B" < 8

for all y* € B(a'). Hence, we obtain U/ (a/, ') C V(c/, ') C U (<, B).
Let (371,"' axn) = T(yh 7yn) for (y/7yn) = (yla"' 7yn) S K(O/,ﬁ/)- For ¢ =
1,---,n—1and j=1,---,n, it follows that

oz; . (1 ifi=4,
ox oG
o — ! A2.11
o0, ' Yn) o9, (¥, Oum), ( )
T oG

"y, = —(, dy, 1+6M.
ayn(y,y) ayn(y, Yn) + 1+

Thus, the Jacobian of T

oG
Jac(T) (Y, yn) = @(y’, yn) + 14+ 0M

satisfies
0<1<Jac(T)(y,yn) <1+20M.
O
We recall the following theorem.

Theorem A.2.14. [66, Lemma 3.2] Let U,V C R" be two bounded open sets. If a
Lipschitz continuous mapping ® : U — V is bijective and satisfies that ®~' is also a
Lipschitz continuous mapping, then the mapping H'(V) > f +— fo® € HYU) is a
homeomorphism between Banach spaces. Furthermore, the mapping HY (V) > f — fo® €
H}(U) is also a homeomorphism between Banach spaces.

By Lemma A.2.13 and Theorem A.2.14, we obtain the following lemma.

Lemma A.2.15. For the mapping T : K(o/, ") — V(d/, f') defined in Lemma A.2.13,
the mapping HY(V(a/,8')) 2 x = xoT € H}(K(d/, ")) is isomorphic between Banach
spaces. In particular, there exists a constant ¢ = c(a, B,a/, 8, g) > 0 such that

1
E”XHHl(V(a/,B’)) <Yl x o)) < cllxllarwa,sn)

for all v € HY(K(«/,3)) and x = o T .
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Proof. By (A.2.11), 3 81” is bounded in K(«/, ) and gi’] is bounded in V(«/, ") for all
i,j = 1,---,n. By Theorem A214, HY(V(a/,8) 2 x = xoT € Hy(K(«,p)) is
isomorphic. O

We give the proof of a Hardy-type inequality.

Lemma A.2.16. Let o, f > 0 and ¢ € HY (K («, B)). Then, o(x1,- -+ ,2,) /2, € L*(K (v
4 <9 ‘ O
Tnllzcsn — 119%nlli20ca )

Proof. For ¢ € C§°(K (a, B)), we have

,5))

2 p 2
12 _ / i’ / de. W_fn)
T llL2(K (a,8) B(a)
= / d:L‘/ dr, o2, @, | — (—)
B(a) s Tn \Tn
= 2 da:/ dx, —— Op (m,xn)—SO@ )
B(a) 0 81’n Tn
— 2‘ Op R
O || (s (@, 11 | 22(1¢0.00)
Hence,
@ Iy o
- <2 ‘ 5 for all p € C5°(K(a, B)).
L2 (K(e,B)) nIL2(K(,B))
Since C5°(K (a, B)) is dense in H} (K («, 3)), we obtain the result. O
We use the following lemmas.
Lemma A.2.17. For the mapping T : K(/,8') 3 (y1,- -+ ,yn) — ($1,--- n) €V, B
defined in Lemma A.2.13, there exists a constant ¢ = c(a B,a, B, g) > 0 such that
oz,
Qy; Jac 8yn L2(K) Jac 8yn L2(K
for allweHg(K) andi=1,--- ,n—1, where K := K(a,ﬁ).
Proof. We compute
‘ ox, ¥
Ayi Jac(T) || g1 k)
ox, ¢ "l o (8% Y )
< ¢
y; Jac(T) K)o ay] dy; Jac(T) L2(K)
n 0 8xn Ay; 0xy,/Oy; O
< ¢ CQH¢||L2( H_ / Yi ) ¢ ‘ / Y _¢
dy; \ Jac(T L2(K) Jac(T) 0y, L2(K)
n 0 axn/ayl
< 1 —_—
= ot (Ha (5r0) +CQMH1(K)>)
- 0,/ Oy;
< o (atnt Dol + 3| - (G202 ) o
le 8y] oz, /0y, L2(K)
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for two constants ¢y, co > 0. Here, we have
0 (&En / 0yi) y
0y; \ 0z, /0y, L2()
9%z, Ox, Oz, O0*x,

_ || 2459 Oyn_ Oyi 9y;0yn

<8xn)2
ayn L2(K)
0%x 0%z
< ¢ 1) + H "
< 8yjayi L2(K) ayjayn L2(K)
xn Y H 0z, U
= 03 + yn—_
ay]ayz Yn L2(K) ayjayn Yn L2(K)
< |y O v Y o v
= 3 n - n —
ayjayz’ L (K) Yn L2(K) ayjayn L= (K) Yn L2(K)

for a constant c3 > 0. By Lemma A.2.12, there exists a constant ¢4 > 0 such that

foralli,5 =1,--- ,n. By Lemma A.2.16, it holds that
’ P

< Cl( a(n + D[] g xe

< 2|9l (xe)-
L2(K)

<2H

Yn L2(K yn

Hence, we obtain that

Orn Y
dy; Jac(T)

( O /Oy, ) y
ayj axn/ayn LQ(K)

< G (Cz(n + Dl ey + Z(QC4||¢||H1(K) + 2C4||@/J||H1(1r<))>

j=1
= ¢(c(n+1)+ 4C4n)”¢|’H1(K)

HY(K)

for all ¢» € HJ(K) and ¢ = 1,--- ,n — 1. The following inequality can be proven in the
< s )|Y]|mx)

same way:
Y
‘ HY(K)

Jac(T)
for all ¢ € HJ(K). O

Lemma A.2.18. For the mapping T : K(</, ") — V(d/,f') defined in Lemma A.2.13,
there exists a constant ¢ = c(«, B, ¢/, 5, g) > 0 such that

lall -1y + IVall -1 < e (lpla-10vy + 1 VPl a-10)0)
for allp € C(V), where ¢ :=poT(€ C°(K)), K :== K(d/,8') and V .=V (o, ).
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Proof. For ¢ € H}(K) and y = ¢ o T~!, we obtain

[ oot = [ s G

8917] 1
Kayi (y)w(y)dy = /281’] ayl (l‘)) X(SE) (Jac(T))(T—l(x))dx
B dp , Oz, . 4 x(z)
-/ {axf D G, Dy T (9””}<Jac<T>><T—1<x>>dx’
axj 1
e - | Za% ) XO) e i

’/L

axn x(x)
- V(% L (@) 5 (o) g —da
n n n T_
ST @)
P (@)x(x)d
= x)x(x)dx
14 axn X
fori=1,--- ,n—1. By Lemmas A.2.15 and A.2.17, there exist three constants ¢y, ¢g, c3 >
0 such that
5 Xy < all¥llam
T _ X
71 < ¢ ,
‘3%‘ (Jac(T)) o T |y — 2lxllen vy (A.2.12)
X
< c
[y, < oo

for all y € H}(V) and i =1,--- ,n — 1. Thus we have

q(y)(y)dy
lall -1 sy < sup /K

oxvertx)  IYlm )

1
o W G

0#£XEHL(V) HXHHI(V)

dx

IN

1
cic3  sup Vp(x)X(x) (Jac(T))(T—(x))

0£XEHL(V) X
(Jac(T)) o T1

dx

IN

HY(V)

IN

CiC3 ||p||H*1(V)7
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dq
K ayi

(y)¥(y)dy

sup
YeHG (K)

dq
ayi

Yl & (x)

H=H(K)

() + =—

dp

) oz,
ox,,

O

Ao
sup v

8xi
0#x€HE(V)

IN

1

op .
v O

VAN

||XHH1(V)
x()

dx

(Jac(T)) (T~} (x))

1 sup
0#x€HE(V)

dp

+cy

v 61'”

HX”Hl(V)
x()

0%y .\ 4
) ey i@y ™

sup
0£XEHE (V)
dp (

v O

x)

e
x| 22 v

x()

(Jac(T))(T- dr

')

IN

C1C3
0£XxEHS (V)

sup ‘

HY(V)

o )
(T 0) e s

(
)T~ ()

dzy, x(z
dyi )

“+c1co

“(

H o ||

sup
0£xEHE(V)

Jp
a[lﬁ'i

IN

H=1(V) ‘

IN

fori=1,---.n

lgllz-10) + IVl -120)0 <

IN

<

for all p e C§°(V) and g :=poT(€ CF(K

dp
Oxy || -

0#£YpeHS(K)

1

X ox,,
(Jac(T)) o T—1 dy;

1(V)> ’

oT!

HY(V)

sup

0£XEHE (V)
Op

0Ty, || -

HV),

— 1, where ¢4 := ¢y max{cy, c3}. Finally, by Lemma A.2.1, it follows that

gl -

f}’yZ K)

Pl +Z 81:1 —(v))
vnes ([pla-v +HVpHH vyn)

)), where ¢5 :=¢; + (n — 1)cy.

]

Lemma A.2.19. Let 0 < o/ < a, 0 < 8/ < B and let g : B(a) — R be a Lipschitz

continuous function. There ezists a constant ¢ = c¢(«

Pl 2wy < clllplla-—@wy + Vol a-—@)n)

7/87 0/7/8/79
for all p € C(US (o

) > 0 such that
),
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where U = U (a, B).

Proof. Let o), ah, ] and ) satisfy o) = o < o) < «,p] = ' < p5 < B and let
K = K(a4,p5). By Lemma A.2.11, there exists a C*°-diffeomorphic map T : K —
V= V(a, By). Let us denote ¢ = po T for p € Cg°(U; (a3, B1)). We have supp(p) C
Uf(ay, By) C V, thus,

1Pl 20y = [Pl 22y (A.2.13)

Since L*(V) 2 p = poT € L*(K) is isomorphic between Banach spaces, we get the
following inequality:

Ipllr2vy < ellglrzx)- (A.2.14)

By Lemma A.2.13, we have U (o}, 81) C T(K (a4, 81)), hence, supp(q) C K(ay, 8;). By
Lemma A.2.9, there exists a constant ¢, > 0 such that

lallz2x) < c2(lgll -1y + [Vl m-1(5ym)- (A.2.15)

Moreover, by Lemma A.2.18, there exists a constant c3 > 0 such that

lallz—cx) + IVl g1y < es(llplla-1vy + I VRIlE-100)n)- (A.2.16)

Therefore, by (A.2.13), (A.2.14), (A.2.15) and (A.2.16), it follows that

crcacs(|lplla—ovy + VPl -1 (v)n)

Ipllrew) <
< accs(|lpla-rw) + IVPlla-10y)

for all p € Cg°(US (o, B1)). O

A.2.5 Original Necas inequality
We prove Lemma 2.2.13 which is the goal of this appendix.

Theorem A.2.20 (Reshown, see Lemma 2.2.13). If Q is a bounded Lipschitz domain,
then there exists a constant ¢ = ¢(2) > 0 such that

Il 2 < clllplla—@) + VPl a-1@)) for all p € L*().

Proof. By Lemma A.2.2) it is sufficient to prove that there exists a constant ¢; > 0 such
that

PNz @) < elllplla-r@) + VPl r-10)n)  for all p € C5°().
By Definition A.1.1, we have I' C |J", U,.(cv, §). We can choose two real numbers 0 < o/ <
a,0 < A" < Band an open subset Up(a/, B') (Up(c, 8') C Q) such that @ c J", U (!, B').
By Lemma A.1.1, there exist functions ng, -+ , 1, € C°(R™) such that

nr € Ogo(Ur(O/’B/)) for all r = O’ ]_’. ceom,
0 <) <1 forall ¥ = 0,1, ,m,z € U (c/, '),

an(:c) =1 z € Q.
r=0
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Let p, :==pn, € Cg°(UF (o, ")) for r =0,1,--- ,m. Then, it follows that

Pl = || Y pr < lpellzze)
r=0 L2(Q) r=0

for all p € C5°(Q). On the other hand, for ¢ € Hj (), we have

/ pbdr < lplla-relmdlae
Q

= ollpla-—@lnllm @ llla @),

and
8
(pnrw dx
ony
‘ po wdx’
T
319 ony
\ B o + ol | 50
_1(9) in HI(Q)
dp oy
< o Il + ol | ¥l
forall i =1,2,--- ,n and a constant ¢y > 0. Hence, we obtain

e[| 221 () + HVerH i

H=1(Q)

= sup pnrp dx + sup / (pnr)y dx
/Q 77 Z )71 amz

YEH(Q), [l 10y =1 =3 YeHNQ), ¥l 1

dp

IA

Pl

i=1 )
< Ve, (Ipla-@ + IVolla-1@)),

onr
ox; 1

where ¢, := ¢y (HnrHHl ytny i,

0,1,"',?71,

( )). Thus it suffices to show that for r =
Q

Iprllz2@) < es(llprella-ri@) + VDl 1)) forall pr € CG*(U," (o, ). (A.2.17)

(i) The case r = 0.

We have supp(pg) C Up(/, B') and Up(c, f') C . By Lemma A.2.7, the inequality
(A.2.17) holds with r = 0.

(i) The case r =1,2,--+ ,m

Let U, := U (a, §). By Lemma A.2.19, we obtain (A.2.17);

= HPrHH(UT)
< callplla—w) + 1IVeella-1w,n)
< calllplla-1@ + VPl z-1@)m)

for all p, € C(UF (o, 7). O

el 22 (02)
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A.3 Corollaries of the Necas inequality

Using Theorem 2.2.13, we obtain the following corollary which is important for existence
and uniqueness of the solution to the Stokes problem.

Corollary A.3.1 (Reshown, see Theorem 2.2.14). If Q is a bounded Lipschitz domain,
then there exists a constant ¢ = ¢(€2) > 0 such that

P2k < cllVplla-1r  for all p € L*(9).

Proof. This proof is based on [2, Theorem 3.1] It suffices to show that there exists a
constant ¢ > 0 such that

Hp||L2(Q) < CHVPHH—l(Q)" for all pE LQ(Q)/R

Assume that this property does not hold. Then, there exists a sequence of functions
(Pr)ken C L*(Q)/R such that ||p||12¢) =1 for all k € N and

|Vl -1 — 0 as k — oo.

Since the sequence (py)ren is bounded in L?(Q), there exists a subsequence (p;)en that
converges weakly in L?*(Q). Let ¢ € L*(Q) and § > 0 be arbitrary. Then, there exists a
constant IV, s € N such that

li,ly > Nys = [(@0, 01, — P) 2| < 6.
On the other hand, since S := {¢ € H(Q) | |l¢llu1(@ = 1} is bounded in H'(2), for
every fixed 0’ > 0, there exist functions @1, --- ,,, € S such that

SclJ{ee @) | e —pilla < '}
=1

by the Rellich-Kondrashov Theorem, i.e., there exists a number i € {1,--- ,m} such that

o — @il L2@) < 0

for all ¢ € S. Thus we obtain

(¢ = i, P, — i) 2| + (@i, P1y — Pia) 12(9)|
¢ — %HLQ(Q)HPh - p12HL2(Q) + (@i p1, — plg)LQ(Q)!
20" + 6

|(90>p11 - plz)LQ(Q)’

IAIAIA

for all ¢ € S and 3,1y > N5 := max{Ny, s, -+, Ny, s}, and then

lpn — Pl E-1(0) = sux; (0, P1, — Pia) L2 @y| < 20" + 0.
o€

It satisfies that
limsup |pi, — pilla-10) < 26

ll,l2—>00

for every & > 0, which implies that (p;)en is a Cauchy sequence in H~1(£2). Besides, by
the assumption, (Vp;)ien is also a Cauchy sequence in H~1(Q).
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Theorem 2.2.13 leads that (p;)en is a Cauchy sequence in L*(2). Thus, there exists a
function p € L*(Q) such that

e = pllL2@) = 0 as [ — oo.
We have
Vi — V|l -1 — 0 as | — oo,
since the operator V : L?(2) — H~'(Q2)" is continuous. Indeed, it holds that
(Vw, u)| = |(w, — divu) )| < |wllzoll divul| g for allw € L2(Q),u € HY(Q)",
[(Vw, u)| < vnllwllr2@) l|ull m@) for all w € L*(Q),u € H' ()",

“VWHH—l(Q)” < \/EHWHLZ(Q) for all w € LQ(Q),
HV X |’£(L2(Q),H*1(Q)) S \/ﬁ

By connectivity of the open set €2, the function p is a constant, and this constant is 0 since
Jopide =0 for all | € N. But this contradicts the relation ||p||r2@) = 1 foralll e N. O

Corollary A.3.2 (Reshown, see Theorem 2.2.15). If Q is a bounded Lipschitz domain,
then the divergence operator div maps HE(Q)" onto L*(Q)/R.

Proof. The operator V : L?(2) — H~1(Q)" satisfies
(Vw,u) = (w, —divu) 2 for allw € H'(Q),u € H'(Q)", (A.3.18)

and thus —div : H(Q)" — L*(Q)/R is the dual operator of V. By the proof of Theorem
2.2.14, V is continuous and thus closed. By Theorem 2.2.14, we deduce that the image of
V is closed, and so, the image of div is (KerV)* = R+ = L2(Q)/R. O



