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Atomic and electronic structures of group IV-VI two 

dimensional materials 

 

(IV-VI族 2次元物質の原子及び電子構造) 

Aflah Zaharo 

 

Abstract 
 

Two-dimensional materials have attracted scientific interest because of their novel 

electronic properties. Successfully phosphorene from black-phosphorus shows 

potential application on optoelectronic devices due to its moderate bandgap and 

the properties of another 2D materials in group IV-VI. In this research, we carry 

out first-principles calculations on monolayer group IV-VI 2D materials. We study 

systems consisting of group IV elements (C, Si, Ge) and group VI elements (O, S, 

Se, Te) and find that all the materials form buckled puckered geometries. We 

clarify that VI atoms tend to be located at the lower positions in the buckled 

structure when the electronegativity of the VI atom is sufficiently larger than that 

of the IV atom, which is due to the electron transfer from the IV atom to the VI 

atom. We find that all the calculated bands are doubly degenerated on the first 

Brillouin zone edge due to the symmetry of this system. The degeneracies 

originate from pairing of conventional one-dimensional irreducible representation 

or from nonconventional two-dimensional irreducible representation.  

   Keywords: Two-dimensional materials, IV-VI materials, density functional 

theory, first-principles calculation, band structure, group theory. 

 

 

 

 

 

 



    

4 

Acknowledgements 

I would like to express my sincere gratitude to my Supervisor, Professor 

Mineo Saitou, for the continuous support of my Master study and research, for his 

patience, motivation, and immense knowledge. His guidance helped me in all time 

of research and writing my dissertation. 

My sincere thank also goes to my family, father, mother, sister, and brother in 

Indonesia. Because of their pray and support, I can struggle and fulfill of 

motivation when I am studying here. I want to thank my laboratory mate, Yusuf-

san, Rifki-san, Monika-san, Manaf-san and Minami-san for the kind and warmly 

discussion. Last but not least, my sincere thank goes to Kanazawa University, who 

have given me a chance to study in Japan. 

   



    

5 

Contents 

 

Abstract…………………………………………………………………………(3) 

Acknowledgements……………………………………………………………..(4) 

Contents…………………………………………………………………………(5) 

List of Figures…………………………………………………………………..(7) 

List of Tables……………………………………………………………………(8) 

1.  Introduction  

1.1 Background and Motivation……………………………………………...(9) 

1.2 Research Objective……………………………………………………...(10) 

1.3 Thesis Outline…………………………………………………………...(11) 

2.  Theoretical Background 

2.1  Hohenberg-Kohn Theoreme…………………………………………...(12) 

2.2 The Kohn-Sham Equation……………………………………………...(13) 

2.3 Exchange Correlation Fuction 

2.3.1 Local Density Approximation (LDA)……………………….(17) 

2.3.2 Generalized Gradient Approximation (GGA)……………….(19) 

2.4 Plane-wave Basis Set…………………………………………………...(21) 

2.5 Pseudopotential…………………………………………………………(22) 

3. Group Theoretical Analysis of Band Structures 

3.1 Group Theory Representation in Band Structure………………………(26) 

3.2 Doubly degeneracy on First Brillouin Zone edge……………………...(27) 

3.2.1 Degeneracy induced by sticking two-dimensional irreducible 

representation…………………………………………………...(27) 

3.2.2 Degeneracy induced by pairing of one-dimensional irreducible 



    

6 

representation…………………………………………………...(28) 

3.3 Calculation Parameters…………………………………………………(28) 

4.  Geometry Structure of Group IV-VI Monolayers 

4.1 Optimized Structures of Monolayers Group IV-VI…………………….(30) 

4.2 Buckling Mechanism and Electron Transferred………………………..(32) 

5.  Band Structures of the Monolayer Analyze Based on the Group Theory  

6. Summary and Future Works 

6.1  Conclusion……………………………………………………………..(43) 

6.2 Future scope…………………………………………………………….(43) 

References……………………………………………………………………...(45) 

  



    

7 

List of Figures 

Fig 2.1 Procedure of self-consistent calculation of Kohn-Sham equations 

Fig.4.1 (Color line) Top (a (c)) and side (b(d)) views of the buckled puckered 

structure n (negative (positive)) buckling height and the first Brillouin 

zone (e). Blue and yellow balls represent group IV and group VI atoms, 

respectively. 

Fig.4.2. Relationship between the buckling height, h, and the difference of 

electronegativities, ξB-ξA  

Fig.4.3 (Color online) Electron density for the VBT (left-hand side) and CBB 

(right-hand side) of GeS. We integrate the electron densities over the 

energy width of 0.2 eV to the VBT (a) and from the CBB (b).  

Fig.4.4 (Color online) Electron density for the VBT (left-hand side) and CBB 

(right-hand side) of GeSe. We integrate the electron densities over the 

energy width of 0.2 eV to the VBT (a) and from the CBB (b). 

Fig.5. 1 (Color online) Band structures of buckled puckered structures of (a) CSe 

(b) CTe (c) SiO (d) SiS (e) SiSe (f) SiTe (g) GeO (h) GeS (i) GeSe (j) 

GeTe. We use Mulliken symbols for one-dimensional irreducible 

representations (A1,A2,B1,B2) for Γ, Ʃ, X line and 𝐴′, A′′ for D line. We 

denote 𝛤1 by 1 on the S-C-Y line in the figures. 

 

 

 

 

  



    

8 

List of Tables 

Table IV.1 Calculated structural parameters (a, b, 𝑅1, 𝑅2 and d) which are defined 

in Fig. 4. 1. 

Table IV.2 Geometrical parameters and the difference of the electronegativities, 

ξB-ξA, which are determined by the Pauling scale.17) The buckling 

amplitude, h, and the bond angles, 𝜃2 and 𝜃3, are defined in Fig. 4. 1. 

Table V.1 Character table for k groups. 

Table V.2 Group theoretical analysis for some k points 

 

  



    

9 

Chapter 1 

Introduction 

1.1 Background and Motivation 

Two-dimensional materials have been stimulating scientific and technological 

interests because of their novel electronic properties. At first, two-dimensional 

material was assumed to be thermodynamically unstable due to small thickness 

[1]. However, in 2004, the discovery of graphene opened the gateway into the 

field of group IV based 2D monolayer materials [1, 2]. K. S. Novoselov and and A. 

K Geim have successfully discovered graphene through mechanical exfoliation 

and it shows high electronic quality [2][3]. The small size of the material has lets 

to the strong interatomic bond that ensure the thermal stability [4]. Following 

discovery of graphene, analogues of graphene in group IV compounds have been 

produced such as silicene, [3-5], germanene [6] and stanene [7]. In particular, the 

Dirac cone in the electronic band structures characterizes the electronic properties 

of group IV materials [8, 9]. 

However, the absent of band gap in 2D group-IV materials have limits their 

application in several electronic devices. Therefore, researchers try to find 2D 

materials with finite band gap. In 2014, phosphorene was successfully synthesized 

from black phosphorus [10-12]. In sharp contrast to group IV 2D materials, it was 

found that phosphorene has a moderate band gap and is suitable for field-effect 

transistor material [13-15]. Its bandgap is larger than that of the black phosphorus 

bulk and decreases as the layer becomes thick, which was first discovered based 

on a first-principles calculation [16]. Phosphorene also shows high hole mobility 

compared to the graphene (above 10000 cm2/Vs). As well as phosphorene, other 

group V materials have been studied such as arsenene [17-20], antimonene [21-

23] and bismuthene [24-27]. The previous calculation showed that the energy 

difference between the puckered and six-member-ring structures is small [17, 28] 
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and they are candidates for optical device and thermoelectric materials [29]. All 

these properties also show high holds a great potential for future applications and 

therefore it motivates researchers to find another possible 2D monolayer materials 

in group-V compounds.  

Recently, IV-VI 2D systems attractive scientific and technological attentions 

[30, 31].  The advantages of 2D group IV–VI compounds, such as unique 

orthorhombic structures, environmentally friendly features, being earth-abundant 

and low-cost further improve their properties and deepen their applications into a 

broader space. The monolayers form structures belonging to the same 

orthorhombic crystal system, and possess similar hinge-like structure like 

phosphorene, which is a typical feature distinctly different to flat graphene and 

buckled silicene. Just this unique hinge-like structure and the isolation of 2D 

forms will introduce strong anisotropic properties, making the group IV–VI 

compound monolayers very attractive for large-scale applications in photovoltaics 

and thermoelectric. The previous calculation showed the puckered structures are 

more stable than the six-member-ring one in most of the cases and monolayer 

systems are candidates for optical device materials [32-35]. Therefore, 

clarification of their electronic structures is necessary.  

1.2 Research Objective  

We in particular focus on electronic band structures of the first Brillouin zone 

edge IV atoms and group VI atoms monolayers with group IV consist of C, Si, Ge 

and group VI consist of O, S, Se, Te by employing density functional theory 

(DFT). This choice of elements would give ten possible combinations of materials, 

namely CSe, CTe, SiO, SiS, SiSe, SiTe, GeO, GeS, GeSe and GeTe. The 

properties of the binary 2D systems can be entirely different from those of 

elemental 2D systems. In this paper, we systematically study the electronic and 

atomic structures of the buckled puckered structures of group IV-VI two-

dimensional monolayers materials. We perform first-principles density-functional 

based calculations. We first optimize the geometries of buckled-puckered 
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structures of monolayer group IV-VI two-dimensional materials. Next, we clarify 

the relation between buckling height and electron transfer of buckled-puckered 

structures of monolayer group IV-VI two-dimensional materials. In the last we 

calculate the band structures and analyze them based on the group theory. 

1.3 Outline of Dissertation 

This dissertation consists of six chapters. Chapter 1 gives the background of 

the research. Chapter 2 introduces the theoretical background of density 

functional theory (DFT) and group theory analysis to identify the irreducible 

representations of band structure. Chapter 3 will perform he theoretical 

background of group theory to understand the irreducible on the several band 

structure at some k-point of first Brillouin zone. Chapter 4 presents the results 

calculation electronic structure of monolayer puckered group IV-VI materials. 

First, we clarify the relation between the buckling amplitudes and the electrons 

transfer between the IV and VI atoms. Next, we analyze the degeneracy on first 

Brillouin zonw edge of the band structures based on the group theory. Chapter 5 

summarizes the results and present the future scopes that can be considered from 

this research. 
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Chapter 2 

Theoretical Background 

The method of this research is the simulation based on the Density Functional 

Theory (DFT). DFT is one of quantum mechanical approaches to describe matter. 

The main idea of DFT is to describe the interacting electron system in the form of 

electronic density [36]. In this chapter, we describe the theory of this thesis. We 

present the basic of density functional theory for electronic calculation in section 

2.1. In the section 2.2 and 2.3 we explained the reason of the degeneracy on the 

first Brillouin zone based on the group theory. Next, we explain the application of 

DFT in Section 2.4. 

 

2.1 Hohenberg-Kohn Theorem  

The idea of DFT is based on the theory from Hohenberg and Kohn [37]. This 

theorem justified that the electron density is the central quantity to find the 

information of electronic properties. 

Theorem 1. The ground state energy from Schr𝑜̈dinger’s equation is a unique 

functional of electron density. 

The important thing of this theorem is we must know about the meaning of 

functional. Here, we can say that the functional is a function of a function. The 

theorem states that there exists a one-to-one mapping between the ground-state 

wave function and the ground-state electron density. So, we can say that the 

ground state E can be represented by 𝐸[𝑛(𝑟)] where 𝑛(𝑟) is the electron density. 

The electron density of 𝑛 electrons, is defined by using the wave function, which 

is expressed as: 
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n(r) = ∑ ∫ … ∫ 𝑑𝑟1𝑑𝑟𝑁ψ ∗ (𝑟1, … , 𝑟𝑁)𝜉(𝑟1 − 𝑟)ψ (𝑟1, … , 𝑟𝑁)                         (2.1)

𝑁

𝑖=1

 

From (2.1), we can conclude that the energy can be written as a functional of 

electron density but not the wave function. 

Theorem 2. The electron density that minimizes the energy of the overall 

functional is the true electron density corresponding to the full solution of the 

Schr𝑜̈dinger equation.  

The second theorem states that the total energy functional is expressed by: 

𝐸𝐻𝐾[𝑛] = 𝑇[𝑛] + 𝐸𝑖𝑛𝑡[𝑛] + ∫ 𝑉𝑒𝑥𝑡(𝑟)𝑛(𝑟)𝑑𝑟 + 𝐸𝑁                                              (2.2) 

𝐸𝐻𝐾[𝑛] is total energy functional, 𝑇[𝑛] is kinetic energy, 𝐸𝑖𝑛𝑡[𝑛] is the energy of 

electron’s interaction, and 𝐸𝑁  is the energy of nuclei - nuclei interaction (it is 

independent to density). 

2.2 The Kohn-Sham Equation 

The Kohn-Sham equation approach is based on replacing electron interaction by 

using the non-interacting electrons, which is under an effective potential [37]. 

Kohn and Sham suggested that the true electron density will minimize the total 

energy by calculating from a system of non-interacting electrons moving in the 

effective potential [37]. The ground state charge density for a system with non-

interaction electron can be defined as 

𝑛(𝑟) = 2 ∑|ψ(𝑟)|2

𝑁

𝑖

                                                                                                     (2.3) 

The electron density 𝑛(𝑟) can be changed by changing the ψ(𝑟). The effective 

potential consists of the external potential, the Coloumb interaction between 

electrons, and the exchange-correlation interactions. So the energy functional can 
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be expressed by: 

𝐸𝐾𝑆[𝑛(𝑟)] = 𝑇[𝑠][𝑛(𝑟)] + 𝐸𝐻[𝑛(𝑟)]+𝐸𝑋𝐶[𝑛(𝑟)] + ∫ 𝑉𝑒𝑥𝑡𝑛(𝑟)𝑑𝑟                  (2.4) 

𝑇[𝑠][𝑛(𝑟)] is the kinetic energy of non-interacting electrons. It can be expressed 

by: 

𝑇[𝑠][𝑛(𝑟)] = − ∫ ψ𝑖
∗ (𝑟)∇2ψ𝑖(𝑟)𝑑𝑟                                                                         (2.5) 

𝐸𝐻[𝑛(𝑟)] is the Hartree energy which defined as 

𝐸𝐻[𝑛(𝑟)] =
1

2
∫

𝑛(𝑟𝑛(𝑟′))

𝑟 − 𝑟′
𝑑𝑟𝑑𝑟′                                                                              (2.6) 

+𝐸𝑋𝐶[𝑛(𝑟)]  is the exchange and correlation energy terms, when all of the 

functional +𝐸𝑋𝐶[𝑛(𝑟)]is known, so the exact ground state density and the energy 

of the many body problem can be found. 

Because of the fact that Kohn-Sham energy is minimization problem with respect 

to the density, the derivation of (2.2) can be expressed by 

𝛿𝐸𝐾𝑆

𝛿ψ𝑖
∗(𝑟)

=
𝛿𝑇

𝛿ψ𝑖
∗(𝑟)

+ [
𝛿𝐸𝑒𝑥𝑡

𝛿𝑛(𝑟)
+

𝛿𝐸𝐻

𝛿𝑛(𝑟)
+

𝛿𝐸𝑋𝐶

𝛿𝑛(𝑟)
]

𝛿𝑛(𝑟)

𝛿ψ𝑖
∗(𝑟)

−
𝛿(𝜆(∫ 𝑛(𝑟)𝑑𝑟 − 𝑁))

𝛿𝑛(𝑟)
[

𝛿𝑛(𝑟)

𝛿ψ𝑖
∗(𝑟)

] = 0                                            (2.7) 

by setting that 

𝛿𝑛(𝑟)

𝛿ψ𝑖
∗(𝑟)

= 2                                                                                                                      (2.8) 

each term of (2.7) can be written as 

𝛿𝑇

𝛿ψ𝑖
∗(𝑟)

= −∇2ψ𝑖(𝑟),                                                                                                     (2.9) 
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[
𝛿𝐸𝑒𝑥𝑡

𝛿𝑛(𝑟)
+

𝛿𝐸𝐻

𝛿𝑛(𝑟)
+

𝛿𝐸𝑋𝐶

𝛿𝑛(𝑟)
]

𝛿𝑛(𝑟)

𝛿ψ𝑖
∗(𝑟)

= 2(𝑉𝑒𝑥𝑡 + 𝑉𝐻 + 𝑉𝑋𝐶)ψ𝑖(𝑟)                      (2.10) 

𝛿(𝜆(∫ 𝑛(𝑟)𝑑𝑟 − 𝑁))

𝛿𝑛(𝑟)
[

𝛿𝑛(𝑟)

𝛿ψ𝑖
∗(𝑟)

] = 2 ∈𝑖 ψ𝑖(𝑟)                                                       (2.12) 

Then, we can insert (2.9), (2.10), and (2.11) to (2.7) then get the Kohn-Sham 

equation as: 

[−
1

2
∇2 + 𝑉𝐾𝑆(𝑟)ψ𝑖(𝑟) =∈𝑖 ψ𝑖(𝑟)]                                                                       (2.12) 

where 

𝑉𝐾𝑆(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) + 𝑉𝐻(𝑟)

+ 𝑉𝑋𝐶(𝑟)                                                                                                    

              = 𝑉𝑒𝑥𝑡(𝑟) +
1

2
∫

𝑛(𝑟′)

𝑟 − 𝑟′
𝑑𝑟′ + 𝑉𝑋𝐶(𝑟)                                                       (2.13) 

The many-electrons problem becomes to one electron problem when the virtual 

independent-particle system has the same ground state as the real interacting 

system. So it can be defined as 

𝑉𝐾𝑆(𝑟) = 𝑉𝑒𝑓𝑓(𝑟)                                                                                                         (2.14) 
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Fig. 2.1 Self-consistent loop for Kohn-Sham equation’s solution 

And then, the kinetic energy can be written as 

𝑇[𝑠][𝑛(𝑟)] =  ∑ ∈𝑖

𝑖

− ∫ 𝑛(𝑟)𝑉𝑒𝑓𝑓 𝑟(𝑑𝑟)                                                             (2.15) 

So, the total energy of Kohn-Sham equation is 
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𝐸𝐾𝑆[𝑛(𝑟)] = ∑ +
1

2
𝑖

∫ ∫
𝑛(𝑟)𝑛(𝑟′)

𝑟 − 𝑟′
𝑑𝑟𝑑𝑟′ + 𝐸𝑋𝐶[𝑛(𝑟)]

− ∫ 𝑛(𝑟)𝑉𝑒𝑓𝑓(𝑟)𝑑𝑟                                                                          (2.16) 

Both 𝐸𝑋𝐶 and 𝑉𝐻 depend on 𝑛(𝑟) , it means that they also depend on ψ𝑖(𝑟). By 

using the self-consistent method as shown at flowchart in Fig.2.1, the Kohn-Sham 

equation can be obtained. An initial guess of 𝑛(𝑟) is defined first, then calculates 

the 𝑉𝐻  and 𝑉𝑋𝐶  to get 𝑉𝐾𝑆 . By solving the Kohn-Sham equation, the ψ𝑖  can be 

obtain and we get new density (which is obtained by the result of ψ𝑖). The new 

density then can be used as the new guess 𝑛(𝑟) and used to calculate the new 𝑉𝐾𝑆. 

It repeated until we get the convergence result. 

2.3 Exchange Correlation Function 

In a realistic condensed matter-system frame, it is necessary to find an accurate 

exchange correlation energy functional 𝐸𝑋𝐶[𝑛(𝑟)]. In the case of homogeneous 

electronic system, the 𝐸𝑋𝐶only depends on the density. But in the case of non-

homogeneous electronic system, the functional of 𝐸𝑋𝐶[𝑛𝑟].  at point r also depend 

on the variation at near r point. 

2.3.1 Local Density Approximation (LDA) 

Hohenberg and Kohn suggested a simple approximation called LDA or in the spin 

polaraized case the local-spin-density approximation (LSDA). The exchange-

correlation energy per particle by its HEG (homogeneous electron gas) 𝑒𝑥𝑐[𝑛(𝑟)] 

is expressed by 

𝐸𝑋𝐶
𝐿𝐷𝐴[𝑛(𝑟)] = ∫ 𝑛(𝑟)𝑒𝑥𝑐

ℎ𝑜𝑚𝑜(𝑛(𝑟))𝑑𝑟                                                                          

                        = ∫ 𝑛(𝑟)[𝑒𝑋
ℎ𝑜𝑚𝑜(𝑛(𝑟)) + 𝑒𝐶

ℎ𝑜𝑚𝑜𝑛(𝑟))]𝑑𝑟                                   (2.17) 
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for the spin polarized system 

𝐸𝑋𝐶
𝐿𝐷𝐴[𝑛+(𝑟), 𝑛−(𝑟)] = ∫ 𝑛(𝑟)𝑒𝑥𝑐

ℎ𝑜𝑚𝑜(𝑛+(𝑟), 𝑛−(𝑟))𝑑𝑟                                     (2.18) 

where the exchange energy 𝑒𝑥(𝑛(𝑟)) given by 

𝑒𝑥(𝑛(𝑟)) = −
3

4𝜋
𝑘𝑓                                                                                                    (2.19) 

where 𝑘𝑓is the Fermi wave vector 𝑘𝑓 = (3𝜋2𝑛)
1

3. The correlation energy density 

of HEG at high density limit has the form 

𝑒𝑐 = 𝐴𝑙𝑛(𝑟𝑠) + 𝐵 + (𝑟𝑠)(𝐶𝑙𝑛(𝑟𝑠) + 𝐷)                                                                  (2.20) 

and the density limit 

𝑒𝑐 =
1

2
(

𝑔0

𝑟𝑠
+

𝑔0

𝑟
𝑠

3
2

+ ⋯ )                                                                                            (2.21) 

𝑟𝑠 is the Wigner-Seitz radius 𝑟𝑠 is related to the density as 

𝑟𝑠 = [
3

4𝜋𝑛
]

1
3

                                                                                                                  (2.22) 

At the spin-polarized system, the exchange energy functional is known exactly 

from the result of spin-unpolarized functional 

𝐸𝑋[𝑛+(𝑟), 𝑛−(𝑟)] =
1

2
(𝐸𝑋[2𝑛 + (𝑟)] + 𝐸𝑋[2𝑛 − (𝑟)])                                     (2.23) 

The spin-dependence of the correlation energy density is approached by the 

relative spin-polarization 

𝜀(𝑟) =
𝑛+(𝑟) − 𝑛−(𝑟)

𝑛+(𝑟) + 𝑛(𝑟)
                                                                                               (2.24) 
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The spin correlation energy density 𝑒𝑐(𝑛(𝑟), 𝜀(𝑟)) is constructed to interpolate 

extreme value 𝜀 = 0, ±1, corresponding to spin-unpolarized and ferromagnetic 

situation. The 𝑥𝑐 potential 𝑉𝑋𝐶(𝑛(𝑟)) in LDA is given by 

𝐸𝑋𝐶[𝑛]

𝛿𝑛(𝑟)
= ∫ 𝑑𝑟 [𝜖𝑋𝐶 + 𝑛

𝜕𝜖𝑋𝐶

𝜕𝑛
]                                                                             (2.25) 

𝑉𝑋𝐶(𝑟) = 𝜖𝑥𝑐 + 𝑛
𝜕𝜖𝑥𝑐

𝜕𝑛
                                                                                               (2.26) 

𝐸𝑋𝐶[𝑛] = ∫ 𝑑𝑟𝑛(𝑟)𝜖𝑥𝑐([𝑛], 𝑟)                                                                                 (2.27) 

where 𝜖𝑥𝑐([𝑛], ) is the energy per electron that depends only on density 𝑛(𝑟) 

The LDA has useful predictions of electron densities, atomic positions, and 

vibration frequencies. But, sometimes LDA also has some errors, for example the 

total energies of atoms are less realistic than those of HF approximations, and 

binding energies are overestimated, and then LDA also systematically 

underestimates the band gap. 

2.3.2 Generalized Gradient Approximation (GGA) 

In the case of inhomogeneous density, naturally, we have to carry out the 

expansion of electronic density in the term of gradient and higher order 

derivatives, and they are usually termed as generalized gradient approximation 

(GGA). GGAs are still local but also take into account the gradient of the density 

at the same coordinate. The definition of exchange-correlation energy functional 

of GGA is the generalized form including the corrections from density gradient 

∇𝑛(𝑟) as: 

E𝑋𝐶
𝐺𝐺𝐴[𝑛+(𝑟), 𝑛−(𝑟)]

= ∫ 𝑛(𝑟)𝑒𝑥[𝑛(𝑟)𝐹𝑋𝐶[𝑛(𝑟)+, 𝑛(𝑟)−,|∇n(𝑟)+|, |∇n(𝑟)−|, … ]𝑑𝑟                        (2.28) 
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𝐹𝑋𝐶  is the escalation factor that modifies the LDA expression according to the 

variation of density in the vicinity of the considered point, and it is dimensionless 

[38]. The exchange energy expansion will introduce a term that proportional to the 

squared gradient of density. If we considered up to fourth order, the similar term 

also appears proportional to the square of density’s Laplacian. Recently, the 

general derivation of the exchange gradient expansion has been up to sixth order 

by using second order density response theory [39]. The lowest order (fourth 

order) terms in the expansion of 𝐹𝑥  have been calculated analytically [38, 40]. 

This term is given by 

𝐹𝑋(𝑚, 𝑛) = 1 +
10

81
𝑚 +

146

2025
𝑚2 −

73

405
𝑛𝑚 + 𝐷𝑚2 + 𝑂(∇𝜌

6)                       (2.29) 

where: 

𝑚 =
|∇𝜌|

2

4(3𝜋2)
2
3𝜌

8
3

                                                                                                          (2.30) 

is the square of the reduced density gradient, and 

𝑛 =
|∇𝜌|

2

4(3𝜋2)
2
3𝜌

5
3

                                                                                                            (2.31) 

is the reduced Laplacian density 

Here some comparation between GGAs and LDA (LSDA): 

1. GGA enhances the binding energies and atomic energies. 

2. GGA enhances the bond length and bond angles. 

3. GGA enhances the energies, geometrics, and dynamical properties of water, ice, 

and water cluster. 

4. Semiconductors are marginally better described within the LDA than GGA, 
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except for the binding energies. 

5. For the 4d - 5d transition metals, the improvement of GGA over LDA is not 

clear, depends on how well the LDA does in each particular case. 

6. Lattice constant of Ag, Au, and Pt are overestimated in GGA. 

7. The improvement in the gap energy is obtained, but, it is not substantial as this 

feature related to the description of the screening of the exchange hole when one 

electron is removed, at this point is not taken into account by GGA. 

2.4 Plane-Wave Basis Set 

Plane-waves method centered throughout the complete space not only at the 

nuclei. The Kohn-Sham equation can be described by using plane waves. As the 

arrangement of the atoms within the cell is periodic in the real space, so the wave 

functions must satisfy Bloch’s theorem, which can be written by: 

ψ𝑖(𝑟) = exp(𝑖𝑘. 𝑟) 𝓊𝑘(𝑟)                                                                                          (2.32) 

𝓊𝑘(𝑟) is periodic in space with the same periodicity with the cell which can be 

expanded into a set of plane waves 

𝓊𝑖(𝑟) = ∑ 𝒸𝑖,𝐺exp (𝑖𝐺. 𝑟)

𝐺

                                                                                       (2.33) 

We can subtitute (2.33) to (2.32) so the electronic wave function can be expressed 

as: 

ψ𝑖(𝑟) = ∑ 𝒸𝑖,𝑘+𝐺𝑒𝑥𝑝 (𝑖(𝑘 + 𝐺). 𝑟)

𝐺

                                                                     (2.34)  

The Kohn-Sham equation became 

∑ [
1

2
|𝑘 + 𝐺|2𝛿]                                                                                                         (2.35)

𝐺′
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The Kohn Sham equation then substituted in terms of reciprocal space r as 

∑ [
1

2
|𝑘 + 𝐺|2𝛿𝐺,𝐺′ + 𝑉𝐾𝑆(𝐺′ − 𝐺)] 𝑐𝑖,𝑘+𝐺 = 𝜖𝑖𝒸𝑖,𝑘+𝐺                                     (2.36)

𝐺′

 

The Kohn-Sham equation’s solution can be reached by diagonalization of the 

Hamiltonian matrix. The kinetic term is at the diagonal part, otherwise are the 

potential term. The cut off energy is applied to the kinetic energy term in order to 

limit the summation over 𝐺. It can be expressed as 

𝐸𝑐𝑢𝑡 =
1

2
|𝑘 + 𝐺|2 ≊ 𝐺𝑐𝑢𝑡

2                                                                                           (2.37) 

The limitation of energy is in order to get the lower energy because the lower 

energy is more important. 

2.5 Pseudopotential 

The main application of pseudopotential in electronic structure is to replace the 

strong Cuoloumb potential of the nucleus and the effect of the tightly bound core 

electrons by an effective ionic potential acting on the valence electrons. Two types 

of famous pseudopotentials are norm conserving and ultrasoft pseudopotential. 

Norm Conserving Pseudopotential 

There are some requirements to be fulfilled in this pseudopotential [41] 

1. All the electrons and pseudo valence eigenvalues are the same as the 

selected atomic configuration. 

𝜖𝑖
𝐴𝐸 = 𝜖𝑖

𝑃𝑆                                                                                                                     (2.38) 

2. All the electrons and pseudo valence eigenvalues are in agreement in an 

external core region. 

ψ𝑖
𝐴𝐸(𝑟) = ψ𝑖

𝑃𝑆(𝑟), 𝑟 ≥ 𝑅𝑐                                                                            (2.39) 
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3. The logarithmic derivatives and their first energy derivative of real and 

pseudo wave functions match at the cut off radius 𝑅𝑐. 

𝑑

𝑑𝑟
𝑙𝑛ψ𝑖

𝐴𝐸(𝑟) =
𝑑

𝑑𝑟
𝑙𝑛ψ𝑖

𝑃𝑆(𝑟)                                                                       (2.40) 

4. The total charge inside core radius RC for each wave function must be 

same (norm conservation). 

∫ 𝑑𝑟|ψ𝑖
𝐴𝐸(𝑟)|

2
=

𝑅𝐶

0

∫ 𝑑𝑟|ψ𝑖
𝑃𝑆(𝑟)|

2

𝑅𝐶

0

                                                            (2.41) 

5. The first energy derivative of the logarithmic derivatives of all-electrons 

and pseudo wave functions must be same for 𝑟 ≥ 𝑅𝐶 

Ultrasoft Pseudopotential 

Vanderbilt obtained the ultrasoft pseudopotential to get the smoother pseudo wave 

functions, [42]. The pseudo wave functions are divided into two parts: 

1. Ultrasoft valence wave functions which omit norm conservation criteria 

Φ𝐼
𝑈𝑆. 

2. A core augmentation charge. 

𝑄𝑛𝑚(𝑟) = ψ𝑖
𝐴𝐸∗(𝑟)ψ𝑖

𝐴𝐸(𝑟) − ψ𝑛
𝑈𝑆∗(𝑟)ψ𝑚

𝑈𝑆(𝑟)                                         (2.42) 

The ultrasoft pseudopotential takes the form of 

𝑉𝑈𝑆 = 𝑉𝑙𝑜𝑐(𝑟) − ∑ 𝐷𝑚𝑛
0 |𝛽𝑛

𝑙 ⟩⟨𝛽𝑚
𝑙 |

𝑛𝑚𝑙

                                                           (2.43) 

Where β is the projector function which is expressed by 

|𝛽𝑛⟩ = ∑
|𝑋𝑚⟩

⟨𝑋𝑚|𝜙𝑛⟩
𝑚

                                                                                      (2.44) 
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they are strictly localized inside the cut off region for the wave functions since the 

𝑋-functions are defined through 

|𝑋𝑛⟩ = (𝜖𝑛 − 𝑇̂ − 𝑉𝑙𝑜𝑐)|𝜙𝑛⟩                                                                        (2.45) 

𝐷𝑛𝑚
0 =     〈𝜙𝑛〉|𝑋𝑚⟩ + 𝜖𝑚𝑞𝑛𝑚                                                                      (2.45) 

The scattering properties of the pseudopotential can be improved by using more 

than one β projector function per angular momentum channel. It is necessary to 

use the generalized eigen value formalism. For this case we introduce the overlap 

operator 𝑆̂ 

𝑆̂ = 1 + ∑ 𝑞𝑛𝑚|𝛽𝑛
𝑙 ⟩

𝑛𝑚𝑙

⟨𝛽𝑚
𝑙 |                                                                                         (2.47) 

where 

𝑞𝑛𝑚 = ∫ 𝑑𝑟𝑄𝑛𝑚(𝑟)
𝑟𝑐

0

                                                                                                 (2.48) 

The charge density is expressed by 

𝑛𝑟 = ∑ 𝜙𝑖
∗(𝑟)𝑆̂𝜙𝑖(𝑟)

𝑖

                                                                                                             

     = ∑|𝜙𝑖(𝑟)|2 + ∑ 𝑄𝑛𝑚
𝐼 (𝑟)⟨𝜙𝑖|𝛽𝑛

𝐼 ⟩⟨𝛽𝑚
𝐼 |𝜙𝑖⟩

𝑛𝑚𝑙

                                                 

𝑖

 (2.49) 

The above-mentioned plane-wave pseudopotential method is implemented in 

PHASE/0 code [43]. PHASE is a free software developed by the members of the 

Theory Group of Joint Research Center of Atom Technology (JRCAT) in 1993-

2001. Since 2002, the development of this program is leading by Center for 

Research on Innovative Simulation Software (CISS), the Institute of Industrial 

Science (IIS), the University of Tokyo. PHASE is a first-principles electronic 

structure calculation program based on DFT. It means that no experimental results 
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use to fit the parameter. This program is using plane wave-basis to do the 

calculation. We can do calculation using pseudopotential or projected augmented 

wave (PAW). Calculation procedures start with setting of atomic position, 

wavefunction, and electron density in input file. We can also specify which 

wavefunction solver we use to update the wavefunction. Then, using 

wavefunction solver and initial wavefunction, the calculation begins. The whole 

calculations are finished where the atomic force is lower or same as threshold 

force. 

2.6 Calculation Parameters 

The puckered buckled system consists of four atoms, two atoms from group IV 

and two atoms from group VI. We carry out density functional band structure 

calculations to obtain the Bloch wavefunctions, 𝛹𝑘
𝑗(𝑟). We use the exchange-

correlation function of the generalized gradient approximation (GGA). [44, 45] 

The ultrasoft [45] and norm-conserving [46] pseudopotentials are used for carbon, 

oxygen, and tellurium and for silicon, sulfur, germanium, and selenium atoms, 

respectively. The cutoff energies of the wavefunctions are 25 (30) Rydberg and 

charge density is 225 (150) Rydberg for ultrasoft (norm-conserving). We use 

15 × 15 × 1  k sampling points in the Brillouin zone integrations and the 

optimized geometries is under the condition that the atomic forces are less than 

0.005 eVÅ−1. 

 

  



    

26 

Chapter 3 

Group Theoretical Analysis of Band 

Structures 

We analyze the calculated wave functions based on the group theory. In the first 

section of this chapter, we explain the theoretical background of group theory to 

understand the irreducible on the several band structure at some k-point on first 

Brillouin zone edge. In second section we discuss the reason of doubly 

degeneracy on the first Brillouin zone edge.  

3.1 Group Theory Representation in Band Structure 

The symmetry operation 𝑅̂𝑖 is given by:  

𝑅̂𝑖 =  {𝜃𝑖|𝜏𝑖}                                                                                                                  (3.1) 

where 𝜃𝑖 and 𝜏𝑖 represent rotation and fractional translation, respectively.[47] We 

consider a Bloch wavefunction, 𝛹𝑘
𝑗(𝑟), given by: 

𝛹𝑘
𝑗(𝑟) =

1

√𝑁𝑉
𝑒(𝑖𝑘⃗⃗•𝑟) ∑ 𝑐𝑗(𝐺⃗𝑛)𝑒(𝑖𝐺⃗𝑛•𝑟)

𝑛

                                                               (3.2) 

where 𝐺⃗𝑛  and 𝑘⃗⃗  are a reciprocal lattice vector and a wave vector in the first 

Brillouin zone, respectively. 𝑐𝑗(𝐺⃗𝑛) is a coefficient and the band index j is in the 

ascending order of energy. 𝑁 is the total number of unit cells and 𝑉 is the volume 

of each unit cell. The irreducible representations of wavefunctions are determined 

by evaluating the following expression: 

𝑄𝛼 =
1

𝑙
∑ 𝜒𝛼(𝑅𝑖)

∗

𝑖

〈𝛹|𝑅̂𝑖|𝛹〉                                                                                  (3.3) 
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where 𝑙 and 𝜒𝛼(𝑅𝑖) are the order of the group and the character of the irreducible 

representation of 𝛼, respectively, and i runs over the symmetry operations of the k 

group. When 𝑄 = 1(𝑄 = 0), the wavefunctions belong to (do not belong to) the 

lth irreducible representation. By using Eq. (3.1), Eq. (3.2) is expressed as: 

𝑄𝛼 = ∑ 𝜒́𝛼(𝑅𝑖)
∗

𝑖
∑ 𝑐𝑗(𝐺⃗𝑛) 𝑐𝑗(𝜃𝑖𝐺⃗𝑛 − 𝐺⃗′)

∗
𝑒(−𝑖(𝜃𝑖𝐺⃗𝑛− 𝐺⃗′)•𝜏⃗⃗𝑖)                        (3.4)

𝑛
 

where 𝑘⃗⃗  satisfies 𝜃𝑖 𝑘⃗⃗ = 𝑘⃗⃗ − 𝐺⃗′  for a given reciprocal lattice vector 𝐺⃗′  (𝐺⃗′ = 0 

when the k point is inside the first Brillouin zone). In the above expression, we 

introduce the irreducible ray representation whose character is given by: 

𝜒́𝛼(𝑅𝑖) = 𝜒𝛼(𝑅𝑖)𝑒(𝑖𝑘⃗⃗•𝜏⃗⃗𝑖)                                                                                            (3.5) 

This irreducible ray representation in most of the cases corresponds to those of 

the conventional irreducible representations of the point groups used in the 

analysis of molecules and thus we use the Mulliken symbols to express the 

representations. [48, 49] However, in some exceptional cases, the irreducible ray 

representations do not correspond to conventional irreducible representations as 

mentioned in the next paragraph. We implemented the above algorithm in the 

first-principles calculation code PHASE/0.[50] 

3.2 Doubly Degeneracy on The First Brillouin Zone Edge.  

We found that the degeneracy it caused by two reasons. First, the doubly 

degeneracy it caused by sticking of two-dimensional irreducible representation. 

Second, the degeneracy it caused by pairing of one-dimensional irreducible 

representation.  

3.2.1 Degeneracy Induced by Sticking Two-Dimensional 

Irreducible Representation  

In some cases of non-symmorphic systems, the sticking of bands occurs on the 

first Brillouin zone edge, i.e., only two-dimensional irreducible ray 



    

28 

representations are allowed on the zone boundary and their characters are 

different from those of the Mulliken ones. We clarify that all the bands are 

doubly degenerated on the zone edge (Fig.5.1). Here, we discuss the 

degeneracy on the S-C-Y line where the k group has the symmetry of 𝐶2𝑣 

(Table V.2) and symmetry operations {𝐶2(𝑥)|τ⃗⃗}  and { 𝜎𝑥𝑦|τ⃗⃗}  include the 

fractional translation τ⃗⃗ =
1

2
𝑎⃗ +

1

2
𝑏⃗⃗, where 𝑎⃗ and 𝑏⃗⃗ are primitive lattice vectors 

in the x and y directions, respectively. When 𝑒{𝑖(𝜃𝑖−𝑘⃗⃗)•𝜏⃗⃗𝑖} ≠ 1 for an operation 

{ 𝜃𝑖 , 𝜏𝑖}, the wavefunctions do not belong to the conventional irreducible 

representation.[50, 51] We find that 𝐷 = 𝑒{𝑖(𝐶2(𝑥)−𝑘⃗⃗)•𝜏⃗⃗} = −1 (Table V.2) and 

therefore the wavefunctions do not belong to conventional irreducible 

representation. Here we denote the irreducible representation using Γ1. 

3.2.2 Degeneracy Induced by Pairing of One-

Dimentional Irreducible Representation.  

Another type of doubly degeneracy is induced by time-reversal symmetry, 

which can be checked by calculating the Herring sum.[51] 

𝑆 = ∑ 𝜒𝛼(𝑄𝑚
2 ) = {

𝑝 (𝑐𝑎𝑠𝑒 𝑎)

0 (𝑐𝑎𝑠𝑒 𝑏)𝑚                                                                        (3.6),  

where 𝑄𝑚 is a time-reversal symmetry operation which transforms 𝑘⃗⃗ to (−𝑘⃗⃗ +

𝐺⃗𝑚)  for a given reciprocal lattice vector 𝐺⃗𝑚  and p is the number of time-

reversal symmetry operation. In the case of b, two levels belonging to different 

irreducible representations have the same energy.[52] On the other hand, this 

pairing does not occur in the case of a. We implemented the method above in 

PHASE/0, [53] so we are doing the identification of representations using 

computer. 
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Chapter 4 

Geometry Structure of Group 

IV-VI Monolayers 

4.1 Optimize Structure of Monolayer Group IV-VI 

Monolayer Materials.  

Since the system form buckled puckered structure, the two top atoms are 

placed in different planes, and they have buckling height (h). We found that there 

were two cases, case I is namely positive buckling height and case II is negative 

buckling height. We define the buckling height (h) which is positive when the VI 

atoms are located at the lower positions (Fig. 1c and 1d) as figured in the 

following figure: 
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Fig. 4.1 (Color line) Top (a (c)) and side (b(d)) views of the buckled puckered 

structure n (negative (positive)) buckling height and the first Brillouin zone (e). 

Blue and yellow balls represent group IV and group VI atoms, respectively. 

Meanwhile, the buckling amplitude (h) is negative when the VI atoms are located 

at the higher positions (Fig. 1a and 1b). For discuss what the reason of this 

buckling height, we calculate the electron density of GeS and GeSe monolayer for 

positive and negative buckling high respectively. 

We first optimize the lattice constants and internal coordinates of the atoms 

(Table IV.1). We find that the two top atoms are buckled in the optimized 

structures (Fig.4.1) and thus systems belong to the space group 𝑃𝑚𝑛21(𝐶2𝑣
7 ) as 
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well as the group V buckled puckered systems.16) Since this space group is non-

symmorphic, some symmetry operations have fractional translations as discussed 

later. Table IV.1 shows optimized structural parameters, which are close to 

previous calculational and experimental values.17, 18, 28,5 4) 

Table IV.1 Calculated structural parameters (a, b, 𝑅1, 𝑅2 and d) which are defined 

in Fig. 4. 1. 

AB a 

(Ȧ) 

b 

(Ȧ) 

𝑹𝟏 

(Ȧ) 

𝑹𝟐 

(Ȧ) 

d 

(Ȧ) 

CSe 4.07 3.03 1.96 2.01 1.84 

CTe 4.36 4.25 2.16 2.18 2.08 

SiO 4.53 2.68 1.83 1.83 1.31 

SiS 4.82 3.33 2.26 2.33 2.17 

SiSe 4.69 3.67 2.50 2.47 2.38 

SiTe 4.36 4.25 2.62 2.76 2.72 

GeO 4.45 3.06 1.99 2.00 2.00 

GeS 4.67 3.61 2.44 2.44 2.35 

GeSe 4.33 3.95 2.55 2.66 2.53 

GeTe 4.36 4.25 2.73 2.88 2.72 

4.2 Buckling Mechanism and Electron Transferred  

We define the buckling amplitude (h) which is positive when the group VI 

atoms are located at the lower positions (Fig.4.1). We find that as the difference in 

the electronegativity ξB-ξA becomes large, h tends to increase (Fig. 4.2 and Table 

IV.2), where ξA and ξB are the electronegativities of the group IV and VI atoms, 

respectively. When ξB-ξA is sufficiently large (SiO, SiS, SiSe, GeO and GeS), i.e., 

ξB-ξA > 0.54, the VI atoms are located at the lower positions and thus h is positive. 

We find that as the IV atoms has smaller bond angle if we compare to the VI 

atoms. The IV atoms tend to form p3 (900) orbital and the VI atoms tend to form 

sp3 (1200) orbitals. The IV atoms have smaller bond angle than the VI atoms. In 

addition, the VI atoms includes s orbital and thus their orbitals are energetically 
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stabilized as a consequence of large s component. Because of all this mechanism, 

we clarify the electron substantially transferred from higher position (the IV 

atoms) to the lower position (the VI atoms). 

 

Fig. 4.2 Relationship between the buckling height, h, and the difference of 

electronegativities, ξB-ξA.  

On the contrary, when ξB-ξA is negative (CTe), the VI atoms are located at the 

higher positions and h is negative. We also find that h is negative when ξB-ξA is 

positively small (CSe, SiTe, GeSe and GeTe), i.e., 0 < ξB-ξA < 0.54. The group VI 

has smaller bond angle than the IV atoms. The VI atoms tend to form p3 (900) 

orbital and group IV tend to form sp3 (1200) orbitals. Since the IV atoms includes 

s orbital and thus their orbitals are energetically stabilized as a consequence of 

large s component. In this case, the electron transferred is reduced. The VI atoms 

are favored located on the higher position and group IV on the lower position. 
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Table IV.2 Geometrical parameters and the difference of the electronegativities, 

ξB-ξA, which are determined by the Pauling scale.17) The buckling amplitude, h, 

and the bond angles, 𝜃2 and 𝜃3, are defined in Fig. 4. 1.  

 𝜽𝟐 𝜽𝟑 𝜽𝟑 − 𝜽𝟐 h ξB- ξA 

CSe 110.9 98.2 -12.7 -0.23 0.00 

CTe 109.3 90.1 -19.2 -0.37 -0.45 

SiO 94.2 132.5 38.3 0.77 1.54 

SiS 96.3 111.1 14.8 0.3 0.68 

SiSe 97.0 101.5 4.5 0.1 0.65 

SiTe 100.3 87.8 -12.5 -0.29 0.20 

GeO 91.3 126.5 35.2 0.69 1.43 

GeS 94.9 106.2 11.3 0.21 0.57 

GeSe 96.8 92.4 -4.4 -0.08 0.54 

GeTe 99.9 87.3 -12.6 -0.27 0.09 

Here we discuss the reason why the group VI atoms are located at the lower 

positions when ξB-ξA is large. Electrons substantially transfer from the IV atom to 

VI atom when ξB-ξA is large. In this case, the VI atoms are expected to be located 

at the lower positions because as Table IV.2 shows, the lower position atoms have 

larger bond angles and thus their orbitals are energetically stabilized as a 

consequence of large s component. As discussed in a previous paper,14,16,17) this 

electron transfer from the higher position atom to the lower position atom also 

occurs even when the two atoms are of the same kind; This type of electrons 

transfer occurs in the case of the buckled puckered structure of group V two-

dimensional systems.14) 

To check the validity of the above argument, we take GeS as an example and 

calculate the electron density for the valence band top (VBT) and conduction band 

bottom (CBB) (Fig. 4.3). The electronegativity of S is sufficiently larger than that 

of Ge (ξB-ξA = 0.57) and the Ge and S atoms are located at the higher and the 

lower positions, respectively. As Fig. 3.1 shows, 
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                                              VBT                                             CBB 

      

         

Fig. 4.3 (Color online) Electron density for the VBT (left-hand side) and CBB 

(right-hand side) of GeS. We integrate the electron densities over the energy width 

of 0.2 eV to the VBT (a) and from the CBB (b).  

VBT and CBB mainly consist of S and Ge orbitals, respectively, which indicates 

that electrons transfer from Ge to S. Since the bond angle of S is larger than that 

of Ge, the orbitals of S tend to form sp3 like orbitals (106.20) and Ge tend to form 

p3 like orbitals (94.90). Since the s orbitals is including in Sulfur atom so the 

orbital energetically stable and has lower energy if compared to the Germanium 

atom, and Sulfur atom is located is located in lower position (Fig. 4.1).  

Next, we discuss the reason why the IV atoms are located at the lower 

positions when the absolute value ξB-ξA is small i.e CSe, CTe, SiTe, GeSe and 

GeTe monolayers materials. We take CTe as an example and calculate the electron 

density for the valence band top (VBT) and conduction band bottom (CBB) (Fig. 

4. 4). The electronegativity of Te is sufficiently lower than that of C (ξB-ξA = -

0.45), the C atom favored located at the lower position and has bigger bond angle 

meanwhile then the Te atoms are favored located at the higher positions and has 

lower bond angle as Fig. 4.4 shows. In contrast to positive buckling height, in this 

case the electron transferred is small or there is no electron transferred.  

 

𝑒− 
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                               VBT                                                         CBB 

 

 

 

 

 

 

 

Fig. 4.4 (Color online) Electron density for the VBT (left-hand side) and CBB 

(right-hand side) of GeSe. We integrate the electron densities over the energy 

width of 0.2 eV to the VBT (a) and from the CBB (b).  

VBT and CBB mainly consist of C and Te orbitals, respectively. Since the bond 

angle of C is larger than that of Te, the orbitals of C tend to form sp3 like orbitals 

(109.3) and Te tend to form p3 like orbitals (90.1). Since the s orbitals is including 

in C atom so the orbital energetically stable and has lower energy than Te atom.  
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Chapter 5 

Band Structures of the 

Monolayer Analyzed Based on 

the Group Theory 

In this chapter we discuss the analysis of band structure based on the group theory. 

We calculate the band structures of the monolayer systems. In most parts of the 

Brillouin zone, wavefunctions belong to conventional irreducible representations. 

In this case, we use Mulliken symbols in Fig. 5.1.[ 45, 46] In the other cases, we 

use the numerical notations. 

 

  

 

 

 

 

 

 

 

C2v C2v C2v C𝐬 C2v C2v C2v C𝐬 C2v 

Γ Γ Ʃ X D S C Y ∆ Ʃ X D S C Y ∆ 

(a) CSe 

 

(b) CTe 
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C2v C2v C2v C𝒔 C2v C2v C2v C𝒔 C2v 

Γ Γ Ʃ X D S C Y ∆ 

C2v C2v C2v C𝒔 C2v C2v C2v C𝒔 C2v 

Γ Γ Ʃ X D S C Y ∆ 

(c) SiO (d) SiS 

C2v C2v C2v C𝒔 C2v C2v C2v C𝒔 C2v 

Γ Γ Ʃ X D S C Y ∆ 

C2v C2v C2v C𝒔 C2v C2v C2v C𝒔 C2v 

Γ Γ Ʃ X D S C Y ∆ 

(e) SiSe (f) SiTe 

C2v C2v C2v C𝒔 C2v C2v C2v C𝒔 C2v 

Γ Γ Ʃ X D S C Y ∆ 

(g) GeO (h) GeS 

C2v C2v C2v C𝒔 C2v C2v C2v C𝒔 C2v 

Γ Γ Ʃ X D S C Y ∆ 
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Fig. 5. 1 (Color online) Band structures of buckled puckered structures of (a) CSe 

(b) CTe (c) SiO (d) SiS (e) SiSe (f) SiTe (g) GeO (h) GeS (i) GeSe (j) GeTe. We 

use Mulliken symbols for one-dimensional irreducible representations 

(A1,A2,B1,B2) for Γ, Ʃ, X line and 𝐴′, A′′ for D line. We denote 𝛤1 by 1 on the S-C-

Y line in the figures. 

We clarify that all the bands are doubly degenerated on the zone edge (5. 1). 

First, we discuss the degeneracy on the S-C-Y line where the k group has the 

symmetry of 𝐶2𝑣  (Table V.2) and symmetry operations {𝐶2(𝑥)|τ⃗⃗}  and {𝜎𝑥𝑦|τ⃗⃗} 

include the fractional translation τ⃗⃗ =
1

2
𝑎⃗ +

1

2
𝑏⃗⃗, where 𝑎⃗ and 𝑏⃗⃗ are primitive lattice 

vectors in the x and y directions, respectively. When 𝑒{𝑖(𝜃𝑖−𝑘⃗⃗)•𝜏⃗𝑖} ≠ 1  for an 

operation {𝜃𝑖 , 𝜏⃗𝑖}, the wavefunctions do not belong to the conventional irreducible 

representation. [56] We find that 𝐷 = 𝑒{𝑖(𝐶2(𝑥)−𝑘⃗⃗)•𝜏⃗⃗} = −1  (Table V. 2) and 

therefore the wavefunctions do not belong to conventional irreducible 

representations; only one irreducible ray representation 𝛤1 whose characters are 

shown in Table V.1 is allowed. Since 𝛤1 is two-dimensional, the sticking of bands 

occurs on the S-C-Y line, i. e., all the bands are doubly degenerated. 

 

C2vC2v C2vC2v C2vC2v C𝒔C𝐬 C2vC2v C2vC2v C2vC2v C𝒔C𝐬 C2vC2v 

ΓΓ ΓΓ Ʃ X D S C Y ∆

(i) GeSe 

C2v C2v C2v C𝒔 C2v C2v C2v C𝒔 C2v 

Γ Γ Ʃ X D S C Y ∆ 

(j) GeTe 
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Table V.1 Character table for k groups. 

 Irreducible 

Representation 

E 𝑪𝟐(𝒙) 𝝈𝒙𝒛 𝝈𝒙𝒚 

  𝑿(𝑪𝟐𝒗) 𝐴1 

𝐴2 

𝐵1 

𝐵2 

1 

1 

1 

1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

  𝑺(𝑪𝟐𝒗) 𝛤1 2 0 0 0 

  𝑪(𝑪𝟐𝒗) 𝛤1 2 0 0 0 

   𝒀(𝑪𝟐𝒗) 𝛤1 2 0 0 0 

𝑫(𝑪𝒔) 𝐴′ 

𝐴′′ 

1 

1 

 

 

 

 

-1 

-1 

Table V.2 Group theoretical analysis for some k points. 

k point Point 

Group 

Symmetry 

operation 

D Irreducible 

Representation 

Time-reversal 

element 

Herring 

Sum 

Pairing 

Г 

 

𝑪𝟐𝒗 {𝐸|0} 

 {𝐶2(𝑥)|𝜏} 

{𝜎𝑥𝑧|0} 

{𝜎𝑥𝑦 |𝜏} 

1 𝐴1, B1, A2, B2 {𝐸|0} 

 {𝐶2(𝑥)|𝜏} 

{𝜎𝑥𝑧|0} 

{𝜎𝑥𝑦 |𝜏} 

 4 

 

No 

pairing 

Ʃ 𝑪𝟐𝒗 {𝐸|0} 

 {𝐶2(𝑥)|𝜏} 

{𝜎𝑥𝑧|0} 

{𝜎𝑥𝑦 |𝜏} 

1 𝐴1, B1, A2, B2 No time- 

reversal 

element 

- No 

pairing 

X 𝑪𝟐𝒗 {𝐸|0} 

 {𝐶2(𝑥)|𝜏} 

{𝜎𝑥𝑧|0} 

{𝜎𝑥𝑦 |𝜏} 

1 𝐴1, B1, A2, B2 {𝐸|0} 

 {𝐶2(𝑥)|𝜏} 

{𝜎𝑥𝑧|0} 

{𝜎𝑥𝑦 |𝜏} 

0 

 

(𝐴1, 𝐵1) 

(𝐴2, 𝐵2) 

 

𝑫 𝑪𝒔  {𝐶2(𝑥)|𝜏} 

{𝜎𝑥𝑦 |𝜏} 

1 𝐴′, A′′  {𝐶2(𝑥)|𝜏} 

{𝜎𝑥𝑦 |𝜏} 

0 

 

(𝐴′, 𝐴′′) 
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𝑺 𝑪𝟐𝒗 {𝐸|0} 

 {𝐶2(𝑥)|𝜏} 

{𝜎𝑥𝑧|0} 

{𝜎𝑥𝑦 |𝜏} 

-1 𝛤1 {𝐸|0} 

 {𝐶2(𝑥)|𝜏} 

{𝜎𝑥𝑧|0} 

{𝜎𝑥𝑦 |𝜏} 

4 

 

No 

pairing 

𝑪 𝑪𝟐𝒗 {𝐸|0} 

 {𝐶2(𝑥)|𝜏} 

{𝜎𝑥𝑧|0} 

{𝜎𝑥𝑦 |𝜏} 

-1 𝛤1 No time- 

reversal 

element 

- No 

pairing 

𝒀 𝑪𝟐𝒗 {𝐸|0} 

 {𝐶2(𝑥)|𝜏} 

{𝜎𝑥𝑧|0} 

{𝜎𝑥𝑦 |𝜏} 

-1 𝛤1 {𝐸|0} 

 {𝐶2(𝑥)|𝜏} 

{𝜎𝑥𝑧|0} 

{𝜎𝑥𝑦 |𝜏} 

4 

 

No 

pairing 

∆ 𝑪𝒔  {𝐶2(𝑥)|𝜏} 

{𝜎𝑥𝑦 |𝜏} 

1 𝐴′, A′′  {𝐶2(𝑥)|𝜏} 

{𝜎𝑥𝑦 |𝜏} 

2 

 

No 

pairing 

On the other hand, on the X-D line, the wavefunctions belong to conventional 

irreducible representations denoted by Mulliken symbols because of D=1. We 

find that all the bands belong to a one-dimensional representation since the 

symmetry is not high (𝐶2𝑣 and 𝐶𝑠) as Fig. 5.1 shows. However, we find that all the 

bands are paired because of the time-reversal symmetry. We evaluate the Herring 

sum in Eq. (6) and find that the sum equals to 0, indicating that two different 

irreducible representations are paired (Table V.2). As Table V.2 shows, 𝐴1 and 𝐵1 

(𝐴2 and 𝐵2) are paired at the X point where the symmetry is 𝐶2𝑣. 𝐴′ and 𝐴′′are 

paired on the D line where the symmetry is 𝐶𝑠. 

Based on the argument mentioned above, we conclude that the degeneracy on 

the first Brillouin zone edge is due to the symmetry of this system. The 

degeneracy on the S-C-Y line occurs due to the sticking of the bands on the first 

Brillouin zone edge. Meanwhile, for the X-D line, the degeneracy is caused by the 

time-reversal symmetry. The above-mentioned degeneracy on the Brillouin zone 

edge is expected to be detected by some experiments such as photoelectron 
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spectroscopy. This degenerated bands may split when we include the spin-orbit 

coupling. [55] 
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Chapter 6 

Summary and Future Works 

6.1 Conclusions 

We have carried out first-principles calculations of group IV-VI two-

dimensional monolayer materials. The systems form buckled geometries and thus 

the space group is 𝑃𝑚𝑛21(𝐶2𝑣
7 )  that belong to non-symmorphic group. We 

conclude that when the electronegativity difference (ξB-ξA) is large, the group VI 

atoms are located at the lower positions. The VI atoms are expected to be located 

at the lower positions because VI atoms have larger bond angles and thus their 

orbitals are energetically stabilized as a consequence of large s component. On the 

contrary, if the difference is positively small or negative, group VI atom is located 

at the higher positions.  

We use Mulliken symbols to denote the irreducible representation. When 

𝑒{𝑖(𝜃𝑖−𝑘⃗⃗)•𝜏⃗𝑖} ≠ 1  for an operation { 𝜃𝑖 , 𝜏⃗𝑖}, the wavefunctions do not belong to 

irreducible representation. In some cases, we use the numerical notations, 𝛤1 , 

caused 𝐷 = 𝑒{𝑖(𝐶2(𝑥)−𝑘⃗⃗)•𝜏⃗⃗} = −1 . We find that all the bands are doubly 

degenerated on the first Brillouin zone edge. We clarify that this degeneracy is due 

to the symmetry of this system. The degeneracy on the S-C-Y line occurs due to 

the sticking of the bands on the first Brillouin zone edge. Meanwhile, for the X-D 

line degeneracy caused by the time-reversal symmetry. 

6.2 Future Scope 

We have studied the buckling mechanism and the degeneracy on the first 

Brillouin zone of group IV-VI two-dimensional monolayer materials based on 

density functional theory. We have found that the buckling height occurs caused 

the different of electronegativity. When the electronegativity differences large, the 
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buckling height is positives and the electron substantially transfer from IV atoms 

to VI atoms. In contrary, when the buckling height become smaller, the electron 

transfer is reduced. We find that all the bands are doubly degenerated on the first 

Brillouin zone edge. We clarify that this degeneracy is due to the symmetry of this 

system. We find degeneracies on the whole or a part of first Brillouin zone edges 

and this degeneracy is analyzed based on the group theory. The degeneracies 

originate from pairing of conventional one-dimensional irreducible representation 

or from nonconventional two-dimensional irreducible representation. In the future 

research we can calculate the electronic structure of bilayer group IV-VI two 

dimensional materials. 
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Appendix A 

Optimized of Buckled-Puckered Structure Group IV-VI Two-Dimensional 

Monolayer Materials. 

In Chapter 4, we mentioned the optimized structure of group IV-VI two-

dimensional monolayers materials form the buckled-puckered structure. In the 

buckled-puckered structure, the two top atoms are placed in different plane, and 

they have buckling height (h). In this part, we figured out the different of positive 

and negative buckling height.  

a. Positive Buckling Height 

                      

                        

(a) CSe                                                                   (b) CTe 
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(c) SiTe 

 

                            

                          

                   (d) GeSe                                                                   (e) GeTe 

 

Fig.1 (Color line) Top and side views of the buckled puckered structure negative 

buckling height of CSe (a), CTe (b), SiTe (c) monolayer materials  
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b. Negative Buckling Height 

                     

                     

                         (a) SiO                                                                  (b) SiS 

 

 

 

(c) SiSe 
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                       (d) GeO                                                               (e) GeS 

 

Fig.2 (Color line) Top and side views of the buckled puckered structure positive 

buckling height of SiO(a), SiS(b), SiSe(c), GeO(d), GeS(e) monolayer materials  
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Appendix B 

Electron Density Group IV-VI Two-Dimensional Monolayer Materials. 

In the chapter. 4 we explain the reason of the buckling mechanism and the 

electron transferred. To check the validity of the above argument, we calculate the 

electron density for the valence band top (VBT) and conduction band bottom 

(CBB) of the monolayers. 

a. Negative Buckling height 

                               VBT                                                           VBB 

 

 

 

 

 

 

 

  

 

 

                                                              (a) CSe 
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                            VBT                                                             VBB 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           (b) CTe 

                            VBT                                                            VBB 

 

 

 

 

 

 

 

 

 

 

 

                                                         (c) SiTe 
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                            VBT                                                            VBB 

 

 

 

 

 

 

 

 

 

 

 

(d) GeSe 

 

                            VBT                                                            VBB 

 

 

 

 

 

 

 

 

 

 

 

(e) GeTe 

Fig. 1 Electron density for the VBT (left-hand side) and CBB (right-hand side) of 

group IV-VI two-dimensional monolayers materials. We integrate the electron 

densities over the energy width of 0.2 eV to the VBT (a) and from the CBB (b). 



    

54 

b. Positive Buckling Height  

                            VBT                                                            VBB 

 

 

 

 

 

 

 

 

 

                              (a) SiO 

 

                          VBT                                                              VBB 

 

 

 

 

 

 

 

 

 

                                                          (b) SiS 

 

 

 

 

 

 



    

55 

 

                          VBT                                                              VBB 

 

 

 

 

 

 

 

 

                                        (i)  

 

                                                         ((c) SiSe 

 

                          VBT                                                              VBB 

 

                          VBT                                                              VBB 

 

 

 

 

 

 

 

(d) GeO 
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                          VBT                                                              VBB 

 

 

 

 

 

 

 

 

 

 

 

(e) GeS 

Fig. 2 Electron density for the VBT (left-hand side) and CBB (right-hand side) of 

group IV-VI two-dimensional monolayers materials. We integrate the electron 

densities over the energy width of 0.2 eV to the VBT (a) and from the CBB (b). 


