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Abstract

Two-dimensional structures formed by spherical triblock patchy particles are ex-

amined by performing Monte Carlo simulations. In the model, the triblock patchy

particles have two different types of patches at the polar positions. The patch sizes

are different from each other and the attractive interaction acts only between the same

type of patches. The particles translate on a flat plane and rotate three-dimensionally.

When varying the two patch sizes, the pressure, and interaction energy, various struc-

tures are observed. When the difference between two patch sizes is small, kagome lat-

tices, hexagonal structures, two-dimensional dodecagonal quasi-crystal structures are

observed. When the difference between two patch sizes is large, chain-like structures are

created. With lower temperature, sparse structures such as ring-like structures form.
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Introduction

Particles with patches whose properties are different from those of the other surface areas are

known as patchy particles, and these make promising building blocks for functional materials

such as photonic crystals.1–6 Because the anisotropy and strength of attractive interactions

can be controlled experimentally for patchy particles, by changing the patch materials and

their number and locations, unique and complicated structures are expected to be more

easily created with patchy particles than with isotropic particles.

The structures created by patchy particles with a single patch have been well studied,7–20

showing that close packed structures with complicated bonding and various open structures

can be created by controlling the patch area, the interaction length, and the interaction

strength.

When considering triblock patchy particles, which have two patches on their surfaces,

more complicated structures than those created by single-patch particles are possible in both

three-dimensional 21–26 and two-dimensional systems.27–31 As an example of an open struc-

ture, a kagome lattice can be created in a two-dimensional system.27 When the two patch

sizes are different from each other,27–31 a ring-like structure29 and some chain-like struc-

tures,30 are observed owing to the formation of a Y-shaped bonding geometry, which is not

observed in triblock patchy particles with uniformly sized patches. In three-dimensional sys-

tems 23–26 , open crystals are attractive materials, especially for use as photonic crystals,1–6

and these are created effectively in particles with two patches with different sizes where the

attractive interaction between the patches depends on the combination of patches. In the

two-dimensional systems of triblock patchy particles, not only can structures be observed in

experiments27,29,30 but also other structures which have yet to be experimentally observed

may also be created when the two patch areas are different and the attractive interaction

strength is dependent on the patch types.

Under the assumption that the two patch sizes are different and the attractive interaction

acts only between the same type of patches, isothermal-isobaric Monte Carlo simulations with
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Kern-Frenkel potential 32,33 were performed to examine how many types of two-dimensional

structures can be created when changing the two patch sizes, also examining their dependence

on the pressure P and the interaction energy ϵ.

In this report, I introduce a model to simulate triblock patchy particles and their formed

structures. Results are shown for typical snapshots, indicating dependence of structures on

patch areas and noting effects of neglecting attractive interactions between different patches.

Method

Figure 1: Schematic figure of the system used in simulations, with spherical patchy particles
on a flat plane. The diameter of the particles is given by σ. Red and blue regions, which
are in opposing directions, represent patch A and patch B, respectively. n̂i represents the
direction of patch A for the ith particle, r⃗ij represents the vector from the center of the
ith particle to the jth particle, σ is the diameter of particle, and δA and δB are the angles
indicating the sizes of patches A and B, respectively. The attractive interaction between
patches acts only between patches of the same type.

Model Figure 1 shows the system I use in my simulations; spherical triblock patchy par-

ticles translated on a flat xy-plane rotating three-dimensionally. The patchy particles have

two different types of patches, patch A and patch B, at the polar positions, with attractive

interactions acting only between the same type of patch. The interaction potential between

the patches is given by the Kern-Frenkel potential .32,33 The potential between the ith and
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jth particles, UKF(rij), is expressed as

UKF(rij) = Urep(rij) + USW(rij)f(r̂ij, n̂i, n̂j), (1)

where ni represents the unit normal vector at the center of patch A of the ith particle, ri

represents the position of the center of the ith particle, and rij = |rij| = |ri − rj|. Because

patch B is located opposite to patch A, the unit normal vector at the center of patch B is

represented by −ni. Urep(rij) is the hard-core repulsive interaction potential, which is given

by

Urep(rij) =


∞ (rij < σ)

0 (rij > σ),

(2)

where σ is the diameter of the spherical patchy particles. Urep(rij) represents the de-

pendence of the attractive interaction on the distance between two particles, given by a

square-well potential as

USW(rij) =


−ϵ (σ < rij < σ +∆)

0 (rij > σ +∆),

(3)

where ∆ and ϵ are the width and depth of the attractive potential, respectively. f(r̂ij, n̂i, n̂j)

in Eq. (1) represents anisotropy in the attractive interaction, making attraction occur only

between the same types of patch. f(r̂ij, n̂i, n̂j) is given by

f(r̂ij, n̂i, n̂j) =


1 n̂i · r̂ij ≥ α and n̂j · r̂ji ≥ α, or n̂i · r̂ij ≤ β and n̂j · r̂ji ≤ β

0 otherwise
, (4)

where α = cos δA and β = − cos δB. To examine the effect of patch sizes on structures, the

two angles δA and δB are controlled in simulations because these angles are related to the
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areas of patches A and B as πσ2(1− cos δA)/2 and πσ2(1− cos δB)/2, respectively.

Simulation settings In isothermal-isobaric Monte Carlo simulations, the number of parti-

cles N is set to 1024. Focusing on the short interaction length, ∆ was set to 0.1σ. Interaction

strength is assumed to be large when compared with temperature, and ϵ/kBT = 8, 6, or 4,

where kB is the Boltzmann constant and T is temperature.

Initially, particle positions and particle orientations are set at random. The initial sys-

tem size is large enough for the system’s volume to decrease in early stages of simulations.

Two-dimensional translation of particle positions followed by three-dimensional rotation of

particles is performed for each particle. In the three-dimensional rotation, the rotation for

the vertical meridian and for the horizontal meridian are performed at the same time with

neglecting the effect of the bottom wall. After the above trials are performed for all the

particles, the effect of changing system size is investigated. These successive trials are per-

formed 4×107 times. To avoid the accept ratios being too small or too large, the amplitudes

of transition, rotation, and system size change are tuned every 400 times trials. The accept

ratios of these trials are kept close to 0.5 during simulations.

Results and Discussion

Considering the symmetry of patchy particles, simulations are performed only for δA ≥ δB.

After typical structures and their structural units observed in simulations are illustrated,

the lowest energy structures are summarized and compared with the results of simulations.

The effect of neglecting the attractive interaction between different types of patches is also

noted.

Typical structures observed in simulations

Figure 2 shows snapshots of typical structures obtained in simulations and zoomed snapshots

for the areas surrounded by circles for several δA and δB. In these figures, the unit normal
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(g) (h)

(i) (j)

Figure 2: Snapshots of systems for (δA, δB) = (a) (20◦, 20◦), (b) (45◦, 20◦), (c) (70◦, 20◦),
(d) (80◦, 30◦), (e) (50◦, 35◦), (f) (90◦, 35◦), (g) (35◦, 35◦), (h) (60◦, 30◦), (i) (45◦, 25◦).
and (j) (80◦, 50◦), Zoomed images for the circles areas are shown to right for each system
snapshot. The pressure is set to Pσ3/kBT = 1.5 from (a) to (g), (h) 2.0, (i) 0.5, and (j) 0.5.
The interaction energy is set to ϵ/kBT = 6.0 from (a) to (h), and 8.0 for (j) and (h). Yellow
lines show attraction between particles.
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Figure 3: Ideal structural units shown in Fig. 2. (δA, δB) is (a) (20◦, 20◦), (b) (45◦, 20◦), (c)
(70◦, 20◦), (d) (80◦, 30◦), (e) (50◦, 35◦), (f) (90◦, 35◦), (g) (35◦, 35◦), (h) (60◦, 30◦), (i) (25◦,
45◦), and (j) (80◦, 50◦). (f′) shows another hexagonal structure created with δA = 60◦ and
δB = 60◦. The connections at patch A are shown by solid lines and those at patch B with
dotted lines.

vector of patch direction ni is almost parallel to the xy-plane, which is reasonable to increase

attraction between patches. Thus, when considering ideal shapes of structural units (Fig. 3),

I assume that the patch direction is parallel to the xy-plane.

Small clusters and structures by their connection Figure 2a shows a snapshot for

δA = δB = 20◦. Straight chain-like clusters are created because both patch A and patch B

are too small for two particles to attach to each patch. The structural unit is a dimer, as

shown in Fig. 3(a). Because the numbers of particles attaching to patch A and patch B are

at most nA = 1 and nB = 1, respectively, the total number of particles attaching to a particle

was n = 2 at maximum. The structural unit, the dimer, is able to be created for δA ≥ 0

and δB ≥ 0. If the straight chain-like structure is created by the connection of dimers, the

energy gain per particle, ∆ϵ, is −ϵ.

To examine what structures are created when increasing the difference in patch sizes,

simulations are performed for larger δA, setting δB to be 20◦. Figure 2b shows a snapshot

7



for δA = 45◦ and δB = 20◦. Because δA exceeds 30◦, two particles are able to attach to

patch A and triangular trimers such as Fig. 3b are created. The trimers are able to connect

to other triangular trimers at patch B, allowing formation of heximers (as shown in the

zoomed snapshot) and other larger clusters. The structural unit, the triangular trimer, can

be created when δA > 30◦ and δB ≥ 0. nA = 2 and nB = 1 because the area of patch B is

small, so that n = 3 and ∆ϵ = −3ϵ/2 if all the bonds are connected.

For δa = 70◦ and δB = 20◦ (Fig. 2c), the structural unit is a rhomboidal tetramer,

as shown in Fig. 3(c). The structural units are able to be created when δA > 60◦ and

δB ≥ 0◦. These rhomboidal tetramers connect to each other at patch B, as shown in a

zoomed snapshot. In structural units, nA = 3 and nB = 1 for two particles and nA = 2 and

nB = 1 for the other two particles, the average value of the interacting particles per particle

is n = 3.5 and ∆ϵ = −7ϵ/4.

When δA > 60◦ and δB ≥ 0◦ zigzag chain-like clusters including rhomboids,9,30 are also

created as shown in Fig. 2d. The zigzag chains are able to connect with each other at patch B

if δB ≥ 60◦− δA as shown in Fig. 3d. In Fig. 2d, parallel zigzag chains are connected because

two angles satisfy the condition. In the structure, nA = nB = 2 as shown in Fig, 2c. Because

n = 4 and ∆ϵ = −2ϵ, ∆ϵ is larger than that for the connection of rhomboidal tetramers.

Kagome lattice A kagome lattice, which also forms when patch A and patch B are the

same, is created27 when δA ≥ 30◦ and δB ≥ 30◦ (Fig. 2e). Because a triangular trimer such

as Fig 3e becomes the structural unit, the form of the unit is the same as Fig 3b. Howerver,

the number of attachable particles per patch is different between the two cases. nA = 2 for

both units, but nB = 1 for Fig 3b and nB = 2 for Fig 3e. Because n = 4 and ∆ϵ = −2ϵ

for Fig 3e and n = 3 and ∆ϵ = −3ϵ/2 for Fig. 3b, the kagome lattice is more stable than

the connection of triangular tetramers (Fig. 3b). ∆ϵ for the formation of a kagome lattice

is the same as ∆ϵ for the formation of zigzag chains (Fig. 3d), but nA and nB are different.

Because nA = 3 and nB = 1 in Fig 3c, the connection between patch B for the zigzag chains
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is weaker than that for the kagome lattice for thermal fluctuations.

Hexagonal structures When δB ≥ 30◦ and δA ≥ 90◦, the formation of a hexagonal

lattice is possible. Fig. 2f shows a snapshot for δA = 90◦ and δB = 35◦. Because δB is

close to the critical value, the unit of this structure is a triangular trimer such as Fig 3f, in

which particles are connected at patch B. When the hexagonal lattice is created by the ideal

triangular trimers, zigzag chains can be created by the connection of particles at patch A,

which is located outside of the trimers as observed in the zoomed snapshot in Fig. 2f. Because

nA = 4 and nB = 2, n = 6 and ∆ϵ = −3ϵ. The formation of another type of hexagonal

lattice is possible when δB is increased. In the hexagonal lattice, the zigzag connections

including rhomboidal units are created for both patches A and B (Fig. 3d). This structure

can be created when δB ≥ 60◦ and δA ≥ 60◦. ∆ϵ in the hexagonal structure is the same as

that in Fig 3f.

Figure 2g shows the hexagonal lattice for δa = 35◦ and δB = 35◦, which is different from

the two hexagonal lattices mentioned above. The formation of this type of hexagonal lattice

is possible when δA > 30◦ and δB > 30◦. As shown in Fig. 3g, patch A is parallel for all

particles. For both patch A and patch B, zigzag chains not including rhomboids are created.

Because nA = nB = 2, n = 4 and ∆ϵ = −2ϵ. Thus, this hexagonal lattice is likely to be less

stable against thermal fluctuations than the other two hexagonal lattices.

Deformed honeycomb structure and ring-like structure When δB is smaller than

30◦, the zigzag chain created by patch B becomes impossible. The connections are broken

into the connections of two particles as shown in Fig 3h. However, the zigzag connections

created by patch A still remain, so that a deformed honeycomb lattice shown in Fig. 3h is

created. For Fig 2h, δB is just the critical value 30◦, so that δB is not large enough for the

connection to be stable against thermal fluctuations. Thus, the honeycomb lattice is created

as shown in the zoomed snapshot. In this structure, nA = 2 and nB = 1, so that n = 3 and

∆ϵ = −3ϵ/2.
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Because the formation of triangular trimers such as Fig. 3b is more stable at low pres-

sure,11 the pressure for creation of a deformed honeycomb structure satisfies Pσ3/kBT = 2.0,

which is larger than Pσ3/kBT = 1.5 for Fig. 3b. With the pressure, triangular trimers are

connected and small clusters are created as shown in Fig. 2b. When the pressure is much

lower and the interaction energy is larger, a regular and sparser structure is created with tri-

angular trimers. Figure 2i shows a snapshot of the sparser structure created with δA = 35◦

and δB = 25◦, where the interaction energy and pressure are given by ϵ/kBT = 8.0 and

Pσ3/kBT = 0.5, respectively. A triangular trimer, such as Fig. 3b, is the structural unit

of this structure because δA exceeds 30◦, and a mesh-like sparse structure consisting of

rings17,29,34 is created. In Fig 2i, twelve-membered rings are dominant because δB is small.

If δB becomes larger, the connection of trimers at patch B can be more flexible and different-

membered rings may be created. For the system, the formation of odd membered rings25

are also possible because the patches on the outside of trimers, which are the growth units,

are the same type, patch B. The range of δA and δB for creating the sparse structure is the

same as that for the deformed honeycomb structure, δA ≥ 30 and δB ≥ 0. In the structure,

nA = 2 and nB = 1, so that n = 3 and ∆ϵ = −3ϵ/2.

Dodecagonal quasi-crystal structure Figure 2j shows a structure with δA = 80◦ and

δB = 50◦. The structure is highly disordered with no apparent regularity. However, σ

environments consisting of square tiles and triangular tiles (Fig. 4e) are observed, as shown

in the zoomed snapshot. σ environments shown in Fig. 3j are created when δA ≥ 60◦ and

δB ≥ 30◦. For the centered particle in the σ environment, nA = 3 and nB = 2, so that n = 5

and ∆ϵ = −5ϵ/2 for the structure.

Because the formation of a σ environment may imply that the structure is a two-

dimensional dodecagonal quasi-crystal,35–37 detailed properties of the system are examined

to clarify whether the structure obtained in the simulation is a two-dimensional dodecagonal

quasi-crystal or not. As criteria for judging the formation of two-dimensional dodecagonal
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quasi-crystal, the static structure factor S(q) and the local rotational order ϕm are calculated.

These two parameters are defined as follows:

S(q) =
1

N

∑
i

∑
j

exp (2πiq · (ri − rj)) , (5)

ϕm(i) =
1

ni

∣∣∣∣∣∑
j

exp (imθij)

∣∣∣∣∣ , (6)

where ni is the number of neighboring particles for the ith particle and θij represents the

angle between rij and the x-axis. When calculating the local m-fold rotational order for

the ith particle ϕm(i), summation is performed only for the neighboring particles. The jth

particle is regarded as a neighboring particle when rij is smaller than the critical value rc,

which is set to 1.2σ in the following analyses.
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Figure 4: (a) |S(q)/S(0)|, (b) distribution of the order parameters ϕ6 and ϕ12, and (c)
distribution of numbers of interacting particles nI and that of neighboring particles for the
system shown nI. For nN = 5, the numbers of σ environments and H environments are
shown. Data for Fig. 2j is used in these figures. Red particles in (d) and (e) indicate the
particles in the σ environment and the H environment, respectively.

Figure 4(a) shows |S(q)/S(0)| for Fig. 2j. Sharp bright spots appear around (qx, qy) =

(0, 0), indicating that the structure has the long-range order with the twelve-fold rotational

symmetry. Figure 4(b) shows the distribution of ϕ6 and ϕ12 for Fig. 2j, where the y-axis
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is normalized by the total particle number in the system N . For most particles, ϕ12 is

larger than 0.7.27 Both ϕ12 and ϕ6 are high if the hexagonal lattice is created, but ϕ6 is

small for many particles, so that a hexagonal structure is not created. Figure 4c shows

the distribution of the numbers of neighboring particles nN and that of interacting particles

nI. The distributions of nN and nI are almost the same except that a few particles with

nN = 6 appear for nI. The number of particles with nN = 5 is the most numerous in

the system, which is consistent with the formation of a two-dimensional dodecagonal quasi-

crystal. With nN = 5 and high ϕ12, particles in H environments (Fig. 4e) are also possible,

prompting examination of the ratio of σ environments to H environments for the particles

with nN = 5. For particles with nN = 5, the number of the particles in σ environments is

616 of 670 particles, causing approximately 90% of the particles with nN = 5 to exist in σ

environments, with the residuals existing in H environments. Considering that δA should be

equal to or exceed 90◦ for creating H environments, it is reasonable that few H environments

are created in Fig. 2j. From these results, the structure shown in Fig 2j is judged as a

two-dimensional dodecagonal quasi-crystal.

Dependence of structures on the patch areas

Here, I show the dependence of structures on the two patch areas, as expected from ∆ϵ, and

compare this with the simulation results, indicating the relationship between structures and

the two patch areas obtained form simulations, were indicated. The effect of neglecting the

attractive interaction between two different patches on the structure is also briefly discussed.

Relationship between structures predicted from ∆ϵ and two angles Figure 5 shows

how the relationship between the structures observed in the simulations and two patch

angles is expected from ∆ϵ. The number of interacting particles is counted to determine

which structure is the most stable, because ∆ϵ is proportional to the number of interacting

particles. When 0◦ < δA ≤ 30◦ and 0◦ < δB ≤ 30◦, the straight-chain structure is expected,
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Figure 5: Dependence of the structures and their units observed in the simulations on δA
and δB, which are expected from the interaction energy. In the figure, (a) to (j) indicate the
ideal units in Fig. 3(a) to (j), respectively.

formed by Fig. 3a, where n = 2 if all possible bonding is connected.

When 30◦ ≤ δA ≤ 60◦ and 0◦ ≤ δB ≤ 30◦, the connection of triangular trimers (Fig. 3b)

or honeycomb structure (Fig. 3c) are created. A twelve-membered ring-like structure,34 as

shown in Fig. 3i, is created by the connection of triangular trimers, and acts as the unit

of the mesh-like structure shown in Fig. 2i. The structure is created when the pressure is

low and the interaction energy ϵ is large. In the region, the expected number of interacting

particles is n = 3 for all these structures.

For 60◦ ≤ δA and δA ≤ 60◦ − δB, the rhomboidal tetramer (Fig. 3c) formed as the

structural unit, and they were connected at patch B. Because there are particles with n = 3

and n = 4 with the same ratio, the average number of interacting particles is n = 3.5. When

δA ≥ 60◦− δB and δB ≤ 30◦, zigzag chains form, connected by patch A. In the zigzag chains,

the rhomboidal structure is included, and the chains are able to attach to each others via

patch B, as shown Fig. 3d. In the region, the expected number of interacting particles is

n = 4 for the structure.

For 60◦ ≤ δA ≤ 90◦ and 30◦ ≤ δB ≤ 60◦, a structure with square tiles and triangular

tiles is created (Fig. 3j), where the formation of two-dimensional dodecagonal quasi-crystal

is possible. In this region, the expected number of interacting particles is n = 5. The kagome
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lattice27 forms when 30◦ ≤ δA ≤ 60◦ and 30◦ ≤ δB ≤ 60◦ (Fig. 3e). In the above region,

a hexagonal structure with the same n is also created. In the hexagonal structure, patch

A and patch B create the zigzag chains (Fig. 3g), with an expected number of interacting

particles is n = 4 in the region. Other two types of hexagonal structures are observed in the

simulations, with one in which both patch A and B create a zigzag of rhomboids (Fig. 3f′).

This structure is created for δA ≥ 60◦ and δB > 60◦. The other hexagonal structure, which

was shown in Fig. 3f, is ossible when δA = 90◦ and δB > 60◦. n = 6 for these two structures,

causing them to both be more stable than the first hexagonal structure.

Dependence of structures on δA and δB obtained from simulations To indicate

whether the structures observed in simulations agree with Fig. 5 or not, I examine the

average number of interacting particles obtained.

Figure 6 shows the average number of interacting particles obtained from the simulations.

For ϵ/kBT = 6.0 and Pσ3/kBT = 2.0 (Fig 6c), the result agrees with Fig. 5 except for the

region with 60◦ ≤ δA ≤ 90◦ and 0◦ ≤ δA ≤ 30◦. In this region, the connection of rhomboidal

clusters or the connection of the zigzag chain of rhomboids is possible as shown in Fig. 5.

Because n = 3.5 for the connection of rhomboidal clusters and n = 4 for the connection of

the zigzag chain of rhomboids, the two structures are not distinguished in the color difference

used in this figure if the large clusters are created. Considering this ambiguity, the result is

reasonable.

With a smaller Pσ3/kBT (Figs. 6a and 6b), the average number of interacting particles

becomes smaller than that expected from Fig. 5 when δA and δB are small, meaning that ϵ

used in Figs. 6a and 6b is not large enough to create the large cluster.

For ϵ/kBT = 8.0 (Fig 6d, 6e, and 6f), the average number of interacting particles agrees

well with Fig. 5 in almost of all the regions except for the region (f) in Fig. 5. Because a

hexagonal lattice is expected in the region, n should be 5 ≤ n ≤ 6. However, the number

of interacting particles is smaller than the expected value, which is probably due to the
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creation of large vacancies in the lattice; once vacancies are created, they remain stably

against thermal fluctuations because of a large interaction energy.
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Figure 7: Distribution of the average number of interacting particles per particle for
(ϵ/kBT, Pσ3/kBT ) = (A) (6, 0.5), (B) (6, 1.5), (C) (6, 2.0), (D) (8, 0.5), (E) (8, 1.5), and
(F) (8, 2.0). (a) to (j) in these figures indicate the same structures as in Fig. 3(a) to (j) and
(j′) shows the two-dimensional dodecagonal quasi-crystal structure.

Dependence of dominant structures on δA and δB Figure 7 shows the dependence

of the dominant structures obtained from the simulations on δA and δB. The dominant

structures are determined with Fig. 6 and the snapshots. For the hexagonal lattices, such as

Figs 3f and 3f′ the parameter regions agree well with Fig. 5. The region with these structures

shows little dependence on ϵ/kBT and pσ3/kBT . For the structure created by square tiles

and triangular tiles, the structure factor S(q) and the order parameters for local rotational

symmetry, ϕ12 and ϕ6, are examined to determine whether the dodecagonal quasi-crystal
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structure is created or not. The dodecagonal quasi-crystal structure tends to form mainly

around δA = 65◦ and δB = 35◦, or δA = 85◦ and δB = 55◦.

The hexagonal lattice shown in Fig. 3g is created in a narrow parameter region when

Pσ3/kBT = 1.5 and 2.0. Instead, the kagome lattice tends to form with the same energy

as the hexagonal lattice but with a sparser structure. In higher pressure simulations, the

hexagonal structure becomes dominant, with a larger parameter region, because of closer

structure.

In the region where triangular trimers such as Fig 3b or honeycomb structures such as

Fig 3h are possible, the honeycomb structure is created at high pressure (Fig 7C and 7F)

because the particle density is able to be higher than that in the structure created with

triangular trimers. At low pressure (Fig 7D), the formation of sparse structures is possible,

and a mesh-like structure composed of twelve-membered ring-like structure such as Fig 3i

forms as a regular structure created with triangular trimers (Fig 3b). With other parameters

(Fig 7A, 7B, and 7E), a chain-like structure is caused, caused by the connection of triangular

trimers were created in the region.

Effect of neglecting the attraction between two different patches In our model,

the attraction only exists between the same type of patches, and neglecting the attraction

between the different type of patches is important for creating certain structures.

Figure 8 shows snapshots of structures with the attraction between the different types

of patches. For δA = 45◦ and δB = 25◦, the mesh-like structure, composed of the twelve-

membered ring-like structural units, is created when the attraction between the different

types of patches is neglected, but in Fig. 8a, the mesh-like structure is more disordered than

that in Fig. 2i because the size of the ring-like structure is irregular. For δA = 80◦ and

δB = 30◦, the zigzag chain including rhomboids is formed without the attraction between

the different types of patch (Fig. 2d). However, the zigzag chain-like structure is not formed,

and the structures created with square connections and triangular connections form, instead
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Figure 8: Snapshots showing the interaction between different types of patches for (δA, δB) =
(a) (45◦, 25◦) and (b) (80◦, 30◦), where Pσ3/kBT and ϵ/kBT in Fig. reffig:with-different-
patches (a) and (b) are the same as those in Fig. 2i and 2d, respectively .

(Fig. 8b). The changes in these structures are due to the increase in irregularity caused by

the connection of patches A and B in the zoomed snapshots. In experiments,29,30 the twelve-

membered ring-like structures and zigzag chain-like structures are observed in the system

with attraction between the different types of patch, but these structures may be created

more regularly when the two different patches do not attract each other.

Conclusion

In this paper, I performed isothermal-isobaric Monte Carlo simulations and examined the

two-dimensional structures formed by triblock patchy particles with two different patches

under assumption that the same type of patches attract each other. When changing the patch

areas, various structures such as a ring-like structure,17,34 zigzag-chain structure, kagome

lattice,27 and dodecagonal quasi-crystal structure35–37 are created. In the simulations, the

interaction energy was set to ϵ/kBT = 8.0 or 6.0. Experiments have been performed with

the interaction energy ϵ/kBT ≤ 10,27 so the interaction energy in these simulations is in

a feasible region. In our simulations, the different types of patches were assumed not to

interact with each other. These types of patches may be created when DNA-coated colloidal

particles are used.19,38–50 Because DNA strands are easy to design according to a purpose,
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the required interaction can be possible when two types of DNA strands, which interact with

the same type of DNA strands, are attached to the two different patches.

Even if the different patches are able to interact with each other, the ring-like structure

and zigzag chain-like structures are created by interaction between disparate patch sizes.

However, the regularity of these structures is improved if the different patches do not attract

each other, because the structural units such as triangular trimers are created more uniformly.

Therefore, controlling the interaction between two different patches is effective for creating

these complicated regular structures.

The dodecagonal quasi-crystal structure is also created in a system where particles have

five or more patches.35–37 In this study, I show that this quasi-crystal structure can be created

in a much simpler system, in which patchy particles have only two patches, and is created

when the triangular tiles and square tiles are able to form. However, the quasi-crystal is not

necessarily created when these tiles are present, and the exact formation conditions of the

quasi-crystal structure have not been determined. Clarifying these formation conditions is an

open problem to be addressed in future work. Although only primitive analyses are performed

in this paper, more quantitative characterizations are possible using other methods.51–56 For

example, for the parameter region where straight chain-like clusters are created, the cluster

classification algorithms used by Lotito et al.55 may be useful. For the analysis regarding

rhomboidal structures and the distinction of H and σ environments, voronoi tessellation and

shape factor analysis could be helpful.51,52,54 By using these methods, the structures observed

in my simulations may be classified and quantified more clearly. In this paper, I just examine

how the dominant structure depends on parameters, but I should have examined the phase

diagram21 to clarify properties of structures, which is also one of our future problems.
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