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SUMMARY 

 

A leading malaria vaccine RTS, S/AS01 is the first malaria vaccine to be recommended to 

use for children in sub-Saharan Africa with moderate to high P. falciparum malaria 

transmission, although it has only modest efficacy and short durability, and it must be 

administered in a four-dose schedule to achieve high efficacy. The development of more 

efficacious vaccines is still needed. Viral vectored vaccines have a key advantage over protein-

in-adjuvant vaccines like RTS, S, because they are capable of inducing cytotoxic CD8+T cell 

responses that are critical for the elimination of intracellular pathogens like malaria parasites. 

Adeno-associated virus (AAV) is being utilized as an attractive vehicle for delivering genes 

to various target cells and tissues. It has been shown to induce efficient and long-term transgene 

expression with minimum level of toxicity in clinical trials. Very recently, we have shown that 

boosting with adeno-associated virus serotype 1 (AAV1) can induce highly effective and long-

lasting protective immune responses against malaria when combined with a replication-

competent vaccinia virus in a rodent model. In this study, we compare the efficacy of AAV5 

with AAV1, as malaria booster vaccine following priming with vaccinia virus LC16m8Δ (m8Δ) 

strain, harboring a fusion gene encoding the pre-erythrocytic stage protein, Plasmodium 

falciparum circumsporozoite (PfCSP) and the transmission-blocking sexual stage (Pfs25). The 

two-dose heterologous prime-boost immunization regimen with m8Δ/AAV5 induce robust 

anti-PfCSP and anti-Pfs25 antibodies equivalent to m8Δ/AAV1. Regarding the protection, 

m8Δ/AAV5 achieve 100% sterile protection against malaria sporozoite challenge, compared 

with 70% protection of m8Δ/AAV1 vaccine. In contrast, the second challenge test with 

protected mice from 1st challenge showed m8Δ/AAV5 vaccine group provided 55.6% 

protection while 100% sterile protection of m8Δ/AAV1 vaccine group. Regarding the 
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transmission blockade, both m8Δ/AAV5 and m8Δ/AAV1 induced high level of the 

transmission-reducing activity (TRA: > 99%) and transmission-blocking activity (TBA: > 95%).  

Our data indicate that AAV5-based boosting vaccine is an efficacious multistage malaria 

vaccine as good as AAV1-based one when administered following an m8Δ-based vaccine. 

These results suggest that AAV5 is an alternative vaccine vector if high levels of pre-existing 

anti-AAV1 antibody prevents re-immunization with the same serotypes and transgene 

expression.                                                                                                                                          
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INTRODUCTION 

 

Malaria is a primary mosquito-borne infection with deleterious effects on global health (1). 

The World Health Organization (WHO) reported 241 million malaria cases globally, leading 

to more than 600,000 deaths in 2020. This report reflects about 14 million more cases and 

69,000 more deaths in 2020 than in 2019 (2). 

Vaccination is one of the cost-effective measures for eradicating infectious diseases (3). 

Despite decades of effort, an effective malaria vaccine has remained unavailable. The ideal 

malaria vaccine should be able to stimulate protective immune responses while also inhibiting 

parasite transmission from mosquitoes to humans (4, 5).  A leading malaria vaccine, RTS, 

S/AS01, is the first vaccine recommended for children in sub-Saharan Africa. However, it has 

only modest efficacy and short durability. Phase 3 clinical trial demonstrated that the vaccine 

efficacy was 36% over 4 years of follow-up among children aged 5-17 months. It must be 

administered in a four-dose schedule to achieve high efficacy (6, 7). On the other hand, only 

three transmission-blocking vaccines (TBV) candidate antigens – Pfs25 (P. falciparum), Pvs25 

(P. vivax), and Pfs230 (P. falciparum) – have undergone human clinical testing. One of these, 

Pfs25, induced TRA antibody in phase 1 clinical studies (8-11). Pfs25 does not appears to 

induce naturally occurring antibodies in malaria-endemic areas (12). It has stage-specific 

surface expression of zygotes and ookinetes in the mosquito vector (13, 14). Therefore, those 

two facts provide reasons to develop a more effective malaria vaccine.  

A vaccine based on viral vectors offers excellent potential for solving the obstacles to 

malaria elimination. It has a crucial advantage over protein-in-adjuvant vaccines. It can induce 

cytotoxic CD8+ T cell responses that are critical for eliminating intracellular pathogens like 

malaria parasites (15, 16). Among the available viral gene delivery systems, adeno-associated 
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viruses (AAVs) are appealing vaccine vector candidates (17-19). AAVs can target a particular 

tissue or cell type by using a specific serotype (20, 21). To date, more than hundreds of AAV 

variants have been examined in various model strategies (22, 23). Thus, AAV is the good 

candidate for the malaria vaccine. 

AAV1 has reported transducing muscle cells (24-26). AAV1 harboring Plasmodium 

falciparum circumsporozoite protein (PfCSP) or the transmission-blocking sexual stage P25 

protein (Pfs25) antigen achieved a high level of protection against sporozoite challenge (27). 

It also could achieve excellent transmission-blocking (TB) activity with sustained high-level 

antibody responses following human adenovirus serotype 5 (AdHu5) priming (27). Recently 

we established that an AAV1-based vaccine could induce robust immune responses, durable 

and high-level protection, and TB efficacy when initially primed with an LC16m8Δ (m8Δ). A 

replication-competent vaccinia virus (VV), LC16m8, has been administered to 100,000 

Japanese children without severe adverse event (28). As a genetically stable variant of the 

LC16m8 vaccine (29), the m8Δ induced about 500 times more efficient of immune responses 

than the replication-deficient Vaccinia virus (29). 

The presence and variation in pre-existing immunity to AAV serotypes suggest that no 

single AAV serotype is generally relevant for viral vector platform (30). Thus, it also important 

to utilize and develop alternate AAV serotypes for malaria vaccine candidate. AAV5 has been 

characterized as the serotype with the lowest seroprevalence of pre-existing neutralizing factors 

(31). It was a significant advantage versus other AAV serotypes in overcoming the barrier of 

pre-existing antibodies (32, 33). A systemic administration of AAV5 delivers copies of the 

human factor IX (hFIX) gene to the liver (AAV5-hFIX) successfully treated hemophilia B 

patients in the presence of detectable pre-existing anti-AAV5 neutralizing antibodies (34, 35). 

Furthermore, AAV5 has been reported to transduce muscle, liver, and lung tissue (36-39). An 

administration of AAV5 harboring human papillomavirus protein L1 (HPV-L1) could induce 
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a high level of L1-specific immune responses in mice and rhesus macaques (40). An AAV5-

based therapeutic vaccine harboring neu oncogene administration could confer a 50% survival 

rate against challenges with TUBO breast cancer cells over 100 days (41).  

The present study aimed to compare AAV5-based with AAV1-based vaccine as malaria 

multistage vaccines when initially primed by the m8Δ-based vaccine. In pursuit of this aim, we 

examined the transduction efficiency in a mammalian cell line, the ability to induce malaria 

functional antibodies, the protective efficacy, and the transmission-blocking efficacy of both 

immunization regimens. Our result supports the further evaluation of the AAV5-based vaccine 

as an alternative candidate to AAV1-based vaccine if high levels of pre-existing antibody 

prevent re-immunization with the same serotypes and transgene expression. 
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AIMS OF THE STUDY 

 

To compare the efficacy of AAV5- with AAV1-based vaccine as a multi-stage malaria booster 

vaccine when initially primed by Vaccinia virus, LC16m8Δ vaccine. In addition, the specific 

aims of the study were:  

1. To compare the transduction ability of AAV5- with AAV1-based vaccine drive malaria 

antigens in a mammalian cell line. 

2. To examine whether the AAV5 or AAV1 vectors could induce long-term luciferase 

transgene expression in murine model by intramuscular or intravenous administration. 

3. To check the humoral immune responses induced by AAV5- or AAV1-based malaria 

vaccine when initially prime with m8Δ-based vaccine. 

4. To compare the protective efficacy of prime-boost immunization regimen using 

m8Δ/AAV5-Pf(s25-CSP) with m8Δ/AAV1-Pf(s25-CSP). 

5. To assess the transmission-blocking efficacy of vaccine regimens using m8Δ/AAV5-

Pf(s25-CSP) or m8Δ/AAV1-Pf(s25-CSP). 
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MATERIALS AND METHODS 

 

Ethics Statement 

All animal protocols and handling procedures were approved by the Animal Care and Use 

Committee of Kanazawa University (No.AP-214212). All precautions were taken to minimize 

the suffering to the animals throughout the study. 

Parasites and Animals 

The transgenic parasite, P. berghei expressing PfCSP (PfCSP-Tc/Pb) was used for the 

protective efficacy study and Pfs25DR3 (PbPfs25DR3) was used for TB assays as described 

previously (26, 42, 43). Both transgenic parasites were maintained in the Laboratory of 

Vaccinology and Applied Immunology, Kanazawa University. Six-week-old female ddY and 

BALB/c mice were purchased from Japan SLC (Hamamatsu, Shizuoka, Japan). BALB/c mice 

were used to assess immune responses, protective efficacy, and transmission blocking assay. 

Anopheles stephensi mosquitoes (SDA 500 strain) were infected with the transgenic parasites 

by allowing them to feed on parasitized 6-week-old ddY mice.  

Viral Vector Construction  

For the generation of m8Δ-Pf(P7.5-s25-CSP)-HA, BHK-21 cells were infected with canarypox 

virus, and then transfected with the transfer vector encoding the Pfs25–PfCSP fusion protein 

and purified genomic DNA of LC16m8∆2. RK13 cells were exposed to the lysates of 

transfectants to develop plaques, and then incubated with the peripheral blood of a white 

leghorn chicken. For the generation of AAV1-Pf(s25-CSP) or AAV5-Pf(s25-CSP), the gene 

cassette encoding Pfs25-PfCSP was excised from pENTR-CAG-sPfs25-sPfCSP2-G2-sWPRE 

by digestion with KpnI and XhoI and then inserted into the KpnI and XhoI sites of pAAV-

CMV-sPfs25. The resulting plasmid, pAAV-CMV-sPfs25-sPfCSP2, was used to generate 
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AAV1-Pf(s25-CSP) or AAV5-Pf(s25-CSP) by transfecting HEK293 cells, as described 

elsewhere (27, 44). AAV1 or AAV5 expressing luciferase (AAV1-Luc or AAV5-Luc) were 

generated as described previously (45, 46). 

In Vivo Bioluminescence Imaging 

On day 0, AAV1 or AAV5 expressing luciferase (AAV1-Luc or AAV5-Luc) were 

administered into the right medial thigh muscles or tail veins of the BALB/c mice (n = 3; 1.0 

x 1011 viral genomes [vg]/mouse. The mice were injected with a ketamine (100 

mg/kg)/xylazine (10 mg/kg) mixture for anesthesia. Then, 10 minutes later, D-Luciferin (15 

mg/mL; OZ Biosciences, Marseille, France) was administered intraperitoneally (i.p.) 150 

ul/mouse at the appropriate time points. Luciferase expression in whole bodies was detected 

using IVIS® Lumina LT in vivo imaging system (PerkinElmer, Waltham, MA, USA) as 

described previously (45, 47).  

Immunoblotting 

To measure PfCSP and Pfs25 protein expression in mammalian cell lines infected with viral 

vector vaccine regimen, HEK293T cells were infected with LC16m8Δ vaccine at a multiplicity 

of infection (MOI) of 5 per 1x106 cells or transduced with the AAV1 or AAV5 vaccines at an 

MOI of 105 per 4x104 cells. Cells were lysed by Laemmli buffer at 24 hours for LC16m8Δ-

infected cells and 48 hours for AAV-infected cells and subjected to immunoblotting, as 

described previously (45). The cell lysates were separated and electrophoresed onto 10% 

sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) gels under reducing conditions for 

PfCSP and non-reducing conditions for Pfs25. 

 Proteins were then transferred to Immobilon FL®PVDF membranes (Merck Millipore, 

Tokyo, Japan), using a wet transfer apparatus (BioRad lab, Inc., Tokyo, Japan). The 

membranes were blocked in 5% skim milk in PBS at room temperature (R.T.) for 1 hour 



 

 

7 

containing 0.1% Tween 20 (PBS-T) and incubated overnight with the monoclonal antibody 

(mAb) anti-PfCSP 2A10 diluted 1:10,000 or anti-Pfs25 4B7 diluted 1:2,000 together with anti-

GAPDH diluted 1:10,000 in 5% skim milk at 4oC. The blots were then washed three times with 

PBST and probed with the secondary antibody, goat anti-mouse conjugated to IRDye 800 

(Rockland Immunochemicals, Limerick, PA, USA), diluted 1:20,000 in 5% skim milk at R.T. 

for 1 hour. The membrane was then visualized on an Odyssey infrared imager (LI-COR, 

Lincoln, NE, USA), according to the manufacturer’s protocol. The strength of band intensities 

was analyzed using ImageJ Java-based image processing program (LOCI, University of 

Wisconsin). 

Immunofluorescence Assay 

To assess the protein expression and localization in a mammalian cell line, the 

immunofluorescence assays (IFAs) were performed as described previously (26). HEK293T 

cells were infected with the m8Δ at an MOI of 0.1 or transduced with AAV1 or AAV5 on 

eight-well-chamber slide at an MOI of 105 for 1 hour and then incubated in growth media for 

8 hours for m8Δ or 24 hours for AAV1 and AAV5. The cells were then fixed with 100% 

methanol (permeabilized) at -20oC or 4% paraformaldehyde (non-permeabilized) at R.T. for 

15 minutes. Then, to visualize the expression of proteins, the cells were washed with ice cold 

PBS (-) and stained with R-Phycoerythrin (RPE)-conjugated 2A10 and fluorescein 

isothiocyanate (FITC)-conjugated 4B7, diluted 1:200 or 1:100, respectively, in 5% normal goat 

serum (NGS)/PBS for 1 hour at R.T. VECTASHIELD containing 4`,6-diamidino-2-

phenylindole (DAPI) was used for nuclear staining. Images were taken using a BZX710 

fluorescence microscope (Keyence Corp, Tokyo, Japan) or confocal laser scanning microscope 

(CLSM). The positive cells were count individually and percent (%) positive cells that either 

induced by AAV5 or AAV1 were calculated as follows: 100% x (the number of positive cells 

/ the total number of cells). 
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Immunization 

Six-week-old female BALB/c mice were housed in the Animal Facility of Kanazawa 

University for at least 1 week prior to vaccination experiments. We primarily used three 

regimens of two-dosage prime/boost immunization. All groups were primed by Vaccinia virus, 

m8Δ-Pf(P7.5-s25-CSP)-HA by a tail scarification (t.s.) at the dose of 1x107 plaque forming 

unit (PFU)/animal using truncated needle on the one-third proximal tail. Then, 6 weeks later, 

10 of mice in separated groups boosted by intramuscular (i.m.) inoculation of AAV1- or 

AAV5-Pf(s25-CSP) vaccination regimens into the right hindlimb at the dose of 1x1011 

vg/animal, respectively. As immunization controls, PBS was used for both priming and 

boosting administration. 

Enzyme-Linked Immunosorbent Assay 

The PfCSP- or Pfs25-specific antibody (Ab) levels were quantified by ELISA as described 

previously (26, 45). The PfCSP protein was purified using an Escherichia coli expression 

system and the Pfs25 protein was produced using a wheat germ cell-free (WGCF) protein 

expression system (Cell Free Sciences, Matsuyama, Japan)(13). Sera from immunized mice 

were collected from tail vein blood samples 1 day before boost and 1 day before challenge. 

PfCSP or Pfs25 proteins were coated onto a 96-well plate (Costar EIA/RIA polystyrene 

plates, Corning Inc., NY, USA) for 24 hours at 4oC. The plates were then blocked with 1% 

bovine serum albumin (BSA) in PBS solution for 1 hour. Coated plates were incubated for 1 

hour at R.T. with serum samples as well as with negative and positive controls mAb 2A10 or 

4B7 that had been serially diluted in PBS containing 1% BSA, then washed with 3x PBST, 1x 

PBS and then, incubated with secondary Ab, horseradish peroxidase (HRP)-conjugated anti-

mouse IgG (Bio-Rad) diluted 1:2000 in PBS containing 1% BSA at R.T. for 1 hour. The 

endpoint titer is expressed as the reciprocal of the last dilution that gave an optical density at 
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414 nm of 0.15 U above the values of the negative controls (<0.1). All mice used in our 

experiments were seronegative before immunization. 

Parasite Challenge Test 

Six or 14 weeks after the last immunization, the mice were challenged with an intravenous 

(i.v.) of PfCSP-Tc/Pb sporozoites resuspended in RPMI 1640 media (Gibco, Life Technologies, 

Tokyo, Japan). Sporozoites were prepared as described previously (48). Each mouse was 

injected via the tail vein with 100 µl of media containing 2,500 sporozoites. Infections were 

monitored from day 4 to 14 using the Giemsa staining of thin blood smears obtained from the 

tail. At least 20 fields (magnification: x1,000) were examined before a mouse was deemed to 

be malaria-infection negative. Protection was defined as the complete absence of blood-stage 

parasitemia on day 14 post-challenge. The time required to reach 1% parasitemia was 

determined as described previously (49).  

TB Assays 

TB was assessed using direct-feeding assays (DFAs) as described previously (26). At 35 days 

after boost, the mice were treated with phenyl hydrazine (PHZ) and infected i.p. with 106 P. 

berghei Pfs25DR3-parasitized red blood cells (pRBCs) 3 days later. At 3 days post-infection, 

at least 50 starved A. stephensi mosquitoes were allowed to feed on each infected mouse. At 5-

6 hours post-feeding, any unfed mosquitoes were removed. Mosquitoes were then maintained 

on fructose [8% (w/v) fructose, 0.05% (w/v) p-aminobenzoic acid] at 19-22oC and 50-80% 

relative humidity. On day 10-12 post-feeding, the mosquito midguts were dissected, and oocyst 

prevalence and intensity were recorded. For each mouse, the number of oocysts was counted, 

and the mean of oocyst intensity was calculated. For inhibition calculations, these numbers 

were compared with those of mice without immunization. Percent (%) inhibition of mean 

oocyst intensity (transmission-reducing activity; TRA) was calculated as follows: 100 x [1 – 
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(mean number of oocysts in the test group/ mean number of oocysts in the control group)]. In 

addition, the percentage of oocyst prevalence inhibition (transmission-blocking activity 

(TBA)) was evaluated as: 100 x [1 – (proportion of mosquitoes with any oocysts in the test 

group)/(proportion of mosquitoes with any oocyst in the control group)] (50).  

Statistical Analysis 

The statistical analysis for evaluating significantly results between groups was performed by 

GraphPad Prism version 8.0 for Mac OS. Man-Whitney U-test was used for analyzing 

differences between two groups. An unpaired t-test with Welch’s correction was used for 

comparing groups with unequal sample sizes. All ELISA end-point titers were log10-

transformed before analysis. The proportion of mice not reaching 1% parasitemia was analyzed 

using a Kaplan-Meier log-rank (Mantel-Cox) test.  
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RESULTS 

 

In Vitro Transduction Efficiency of AAV5 in A Mammalian Cell Line  

The malaria fusion gene, pfs25-pfcsp, was linked by a hinge peptide (Gly6Ser) between the 

pfcsp and pfs25 genes, and its expression was driven by the CMV immediate-early enhancer-

promoter (CMVie) for AAV1 or AAV5 and 7.5 promoter (P7.5) for m8Δ (Figure 1A). Our 

previous study showed that a fusion protein Pfs25-PfCSP in the cells transduced with AdHu5 

or AAV1 were visualized with both mAb 2A10 (anti-PfCSP) and 4B7 (anti-Pfs25) as a ladder 

of bands of 80-100 kDa (27).  

 

Likewise, in the present study, similar results were obtained with m8Δ (MOI = 5, lane 1) or 

AAV1 or AAV5 (MOI = 105, lane 2 and 3) also reacted with both mAb 2A10 (anti-PfCSP) and 

4B7 (anti-Pfs25) as a ladder band with relative Mr of 80-100 kDa (Figure 1B). The Pfs25-

 

Figure 1: Expression of Pfs25 and PfCSP transduced by m8Δ and AAVs. (A) Construction of 

viral-vectored vaccines. (B) Expression of the Pfs25 and PfCSP in HEK293T cells transduced or not 

(mock) by m8Δ-Pf(s25-CSP)-HA (MOI = 5) or AAV1- or AAV5-Pf(s25-CSP) (MOI = 105). Cell 

lysates were loaded onto 10% SDS-PAGE gels and immunoblotted with anti-PfCSP mAb 2A10 

(green) or anti-Pfs25 mAb 4B7 (green) and anti-GAPDH (red). pCMVie : Cytomegalovirus 

immediate-early enhancer-promoter, S : the mouse IgG signal peptide, F : FLAG tag, H : 

Hinge peptide (Gly6Ser), G : GPI anchor, WPRE : Woodchuck Hepatitis Virus (WHV) Post-

transcriptional Regulatory Element. 
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PfCSP fusion protein in the cells infected with AAV1 reacts 3.4 and 4 times stronger with both 

mAb 2A10 and 4B7, respectively, as compared to those in the cells infected with AAV5.  

An IFA analysis showed that Pfs25 and PfCSP epitopes were expressed both in the 

cytoplasm and on the surface of infected cells after m8Δ (Figure 2A) and AAVs transduction 

(Figure 2B, C). Interestingly, the localization and distribution of fusion protein induced by 

AAV5 was about 7.6 times lower than that expression induced by AAV1 (Figure 2B).  

 

 

Figure 2 | Localization and Distribution of PfCSP and Pfs25 expression in mammalian 

cells. (A-C) HEK293T cells transduced by m8Δ (MOI = 0.1) (A), or AAV1- or AAV5-Pf(s25-CSP) 

(MOI = 105) (B, C). Images were taken using a BZX710 conventional fluorescence microscope (A, 

B) and confocal microscope (C) for an optical section of the cells as determined by IFA. After 8 

hours (A) or 24 hours (B, C), cells were fixed with methanol (permeabilized) or 4% 

paraformaldehyde (non-permeabilized) and blocked with 5% normal goat sera. After being blocked, 

the cells were incubated with FITC-conjugated mAb 4B7 (green) and R-PE-conjugated 2A10 (red). 

Cell nuclei were visualized with DAPI (blue). Original magnification, 400x. Scale bars = 50 μm. 

 

Pfs25 PfCSP Merge + DAPI Pfs25 PfCSP Merge + DAPI 
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The number of positive cells that either induced by AAV5 and AAV1 were count individually 

(105/903 (11.6%) and 863/978 (88.2%); respectively). The similar pattern was confirmed with 

an optical section of the cells using a confocal microscope (Figure 2C). Although the AAV5 

vector induced a lower protein expression than AAV1 did, the fusion protein was still 

expressed on the surface of the transduced cells (Figure 2B, C left panel). 

 

AAV5 Exhibits Long-term and High-level of Luciferase Expression by i.m. 

Administration 

 

Figure 3 | Long-term Transgene Expression of AAV5-Luc and AAV1-Luc. (A) AAV5-Luc or 

AAV1-Luc was injected into the tail veins or right medial thigh muscles of BALB/c mice (n = 2; 

1.0 × 1011 vg/mouse) on day 0. Luciferase expression at different time points was detected using the 

IVIS Lumina LT Series III in vivo imaging system. The heatmap images visible in the mice represent 

the total flux of photons (p/s/cm2) in the area of interest. Rainbow scale ranges are expressed in 

radiance (p/s/cm2/sr). (B, C) The mean of total flux of photons in the region of interest (ROI) right 

hind leg from day 0 to 126 (18 weeks) after i.m. (B) or whole body from day 0 to 168 (24 weeks) 

after i.v. (C) AAV-Luc administration is shown. 
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To examine the efficient transduction and biodistribution of AAV5 or AAV1 in vivo, AAV5 

or AAV1 expressing luciferase, AAV1-Luc or AAV5-Luc was administered i.m. into the right 

medial thigh muscle of BALB/c mice or i.v. into the tail vein (1011 vg/ mouse, n = 3) on day 0. 

The luminescence signal after i.m. administration of AAV5-Luc or AAV1-Luc achieved the 

robust luciferase expression in the right hind leg (Figure 3A). It gradually increased from day 

0 to day 21 and persisted for over 126 days with the peak of total flux of 2.42 x 1010 and 3.06 

x 1010 photons/s/cm2/sr induced by AAV5-Luc and AAV1-Luc, respectively (Figure 3B). The 

luciferase activity levels did not significantly differ between these vectors. This result indicates 

that our AAV5 or AAV1 vector system were more efficiently transduced muscle cells and 

exhibited the long-term transgene expression, as shown in previous studies (26, 51). 

Conversely, the luminescence signal after i.v. administration of AAV5-Luc and AAV1-Luc 

conferred the luciferase expression ~100 and ~1000 times lower than i.m. administration, 

respectively. The peak of total flux of 1.21 x 108 and 1.31 x 107 photons/s/cm2/sr induced by 

AAV5-Luc and AAV1-Luc, respectively, at day 21 after AAVs vector administration. The 

peak of luminescence signal of both regimens persisted for up to 168 days (24 weeks) (Figure 

3A, C).  Based on the superiority of i.m. over i.v. route (Figure 3A, B) and the risk of 

unpredicting target bias of AAVs vaccine by i.v. delivery (Figure 3A, right panel), i.m. 

administration was decided to examine immunogenicity and protective efficacy. 

Induction of Robust Humoral Immune Responses by m8Δ/AAV5-Pf(s25-CSP) 

Vaccination  

The heterologous immunization regimen in mice was conducted by using the m8Δ-Pf(s25-

CSP)-HA as a prime and AAV5-Pf(s25-CSP) as a boost. M8∆/AAV1-Pf(s25-CSP) 

immunization was also conducted as a vaccination control. The result shows that either 

m8∆/AAV5-Pf(s25-CSP) and m8∆/AAV1-Pf(s25-CSP) immunization induced robust anti-
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PfCSP IgG titers (2,265,556 and 2,714,900 after boosting, respectively) or anti-Pfs25 IgG titers 

(460,571 and 717,423 after boosting, respectively). We did not observe significant differences 

in Ab production, either anti-PfCSP or anti-Pfs25 induced by m8Δ/AAV5 or m8Δ/AAV1 

(Figure 3A, B). These results indicate that m8Δ/AAV5 vaccine induced high-level PfCSP-

specific humoral immune responses and Pfs25 functional Ab at comparable level to those of 

the m8Δ/AAV1 vaccine. 
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The m8Δ/AAV5-Pf(s25-CSP) Confers Sterile Protection against Transgenic 

P. berghei Expressing PfCSP  

 

Figure 4 | Immunogenicity of the m8Δ/AAV5-Pf(s25-CSP) or m8Δ/AAV1-Pf(s25-CSP). 

BALB/c mice were immunized with the indicated regimen at a 6-week interval (n = 5 or 9 or 10). 

Individual sera were collected one day before boost and challenges. (A, B) Antibody responses 

induced by m8Δ/AAV5-Pf(s25-CSP) or m8Δ/AAV1-Pf(s25-CSP). Anti-PfCSP (A) and anti-Pfs25 

(B) were measured by ELISA. Each symbol represents a single mouse. Differences between groups 

were assessed with Mann-Whitney U-test. ns, not significant. 
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To evaluate the protective efficacy of the m8∆/AAV5-Pf(s25-CSP), immunized mice were 

exposed to two series of challenges with 2,500 PfCSP-Tc/Pb sporozoites at 40 days and 100 

days post-boost, respectively. At day 40 after the last immunization, 9/9 mice (100%, p < 

0.0001) were protected in the m8∆/AAV5-Pf(s25-CSP) group, whilst 7/10 mice (70%, p = 

0.0031) were protected in the m8∆/AAV1-Pf(s25-CSP) group (Table 1) (Figure 4A).  

Table 1 | Protective efficacies against sporozoites challenges by immunization with 

heterologous prime-boost regimens in a murine model a 

 

Prime Boost 

1st Challenge b, c 2nd Challenge b, c 

Protected/ 

Challenged 

(% Protection) 

Protected/ 

Challenged 

(% Protection) 

PBS PBS 0/10 (0) 0/10 

m8∆-Pf(P7.5-s25-CSP)-HA AAV5-Pf(s25-CSP) 9/9 (100%) 5/9 (55.6%) 

m8∆-Pf(P7.5-s25-CSP)-HA AAV1-Pf(s25-CSP) 7/10 (70%) 7/7 (100%) 

a  Mice were immunized with a scarification of 1x107 pfu of Vaccinia virus, m8∆-Pf(P7.5-s25-CSP)-

HA followed by a booster with 1x1011 vg per mouse of AAV5-Pf(s25-CSP) administered i.m. at a 6-

week interval. 

b Protective efficacy was calculated as described in the Materials and Methods. 

c Significant difference from the PBS group as a control was determined using Fisher’s exact probability 

test (****p < 0.0001, **p < 0.01, *p < 0.05). 

 

At day 100 after the last immunization, 5/9 mice (55.6%, p = 0.0108) were protected in the 

m8∆/AAV5-Pf(s25-CSP) group, whilst 7/7 mice (100%, p < 0.0001) were protected in the 

m8∆/AAV1-Pf(s25-CSP) group (Figure 4B). The vaccination regimen m8∆/AAV1-Pf(s25-

CSP) induced significantly better protection against second exposure than did the m8∆/AAV5-

Pf(s25-CSP) regimen (100% vs 55.6%, p < 0.05) (Figure 4B).  
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Figure 5 | Protective Efficacy. BALB/c mice (n = 9 or 10/ group) were immunized with indicated 

regimen at a 6-week interval. (A) Forty days after the boost, the mice were challenged with an i.v. 

injection of 2,500 transgenic PfCSP-Tc/Pb sporozoites. (B) Then, 100 days after the boost, survived 

mice from each group were rechallenged with 2,500 PfCSP-Tc/Pb sporozoites. Parasitemia was 

monitored for three consecutive days, starting from day four after the challenge, and a model 

predicting the time to reach 1% parasitemia was generated. The absence of blood-stage parasites in 

the animals was confirmed on day 14 post-challenge. The statistical analysis was performed by 

generating Kaplan-Meier survival curves, and p-values were calculated with Kaplan-Meier log-rank 

(Mantel-Cox) tests for vaccine groups versus PBS (control) group. Differences between vaccine 

groups were assessed by unpaired t-Test with Welch’s correction. ****p < 0.0001, and *p < 0.05. 
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These results indicate that m8∆-prime/AAV5-boost were still successfully eliminated twice 

exposures of high number parasites burden by induced PfCSP-specific humoral immune 

responses and protects against challenges by vaccine-specific adaptive immune responses.  

 

The m8Δ-AAV5 s25-CSP Elicits a Potent TB Effect  

A direct-feeding assay was conducted using Pfs25DR3-pRBCs 35 days after the last 

immunization (52). Mosquitoes that fed on the three control mice displayed an average 

intensity of 166.8 oocyst/midgut, while those that fed on the mice vaccinated with m8∆/AAV5-

Pf(s25-CSP) had a mean intensity of 0.1 oocysts / midgut; thus, the vaccination achieved 

significant transmission-reducing activity (TRA) of 99.94% (p < 0.0001) (Figure 5).  

 

Figure 6 | TB Efficacy. BALB/c mice were immunized with the indicated regimen at a 6-week 

interval (n = 5). Three of the mice were bitten by mosquitoes in DFA. On days 10-12 post-feeding, 

the mosquitoes’ midgut was dissected, and oocyst intensity and prevalence were determined. Each 

data point represents a single blood-fed mosquito. The x-axis columns represent individual mice. 

Horizontal lines indicate the mean number of oocysts observed [± standard errors of the means 

(SEM)].  
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The percentage of infected mosquitoes was reduced from 80.91% in the control group to 3.82% 

in the vaccinated group, achieving significant TB activity (TBA) of 95.27% (p < 0.0001). 

Similarly, m8∆/AAV1-Pf(s25-CSP) vaccination conferred TRA of 99.99% (p < 0.0001) and 

TBA of 97.94% (p < 0.0001). There were no significant differences in the TRA and TBA 

between the two groups (p = 0.1107 and p = 0.1987, respectively.  

Table 2. Transmission-blocking activity of the prime-boost immunizations regimens 
 

Group Prime Boost 

Mean 

Intensity  

SEM (oocysts 

per midgut) 

Mean 

Prevalence  

SEM (% 

infected 

mosquitoes) 

TRA 

(%)a,b 

TBA 

(%)c,d 

Control PBS PBS 158.98(129.11) 80.91 (14.40)   

G.1 

m8∆-

Pf(P7.5-

s25-CSP)-

HA 

AAV5- 

Pf(s25-

CSP) 

0.100 (0.11) 3.82 (3.56) 99.94**** 95.27**** 

G.2 

m8∆-

Pf(P7.5-

s25-CSP)-

HA 

AAV1- 

Pf(s25-

CSP) 

0.017 (0.03) 1.667 (2.89) 99.99**** 97.94**** 

a Transmission-reducing activity (TRA) was calculated by comparing with the control group, and 

significant differences were assessed using a Mann-Whitney U-test (****p < 0.0001). 
b No significant difference between the TRA of m8Δ /AAV1 and m8Δ /AAV5 vaccine regimens (p = 

0.1107).  
c Transmission-blocking activity (TBA) was calculated by comparing with the control group, and 

significant differences were assessed using a Fisher’s exact probability test (****p < 0.0001). 
d No significant difference between the TBA of m8Δ /AAV1 and m8Δ /AAV5 vaccine regimens (p = 

0.1987). 

 

These results indicate that both vaccine regimens induced a high level of anti-Pfs25 IgG titer, 

which was enough to inhibit oocysts formation in mosquito’s midgut. Thus, the AAV5-based 

vaccine is a promising transmission-blocking vaccine candidate which able to confer high-

level and potent TB activity as good as AAV1-based vaccine. 
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DISCUSSION 

 

The present study demonstrates that AAV5-based is efficacious malaria boosting vaccine as 

good as AAV1-based one when initially prime with m8∆-based vaccine. It can induce robust 

humoral immune responses and sustained after the challenge against transgenic malaria 

parasites. Notably, it confers sterile protection after initial challenge with transgenic 

sporozoites expressing PfCSP. In contrast, AAV1-based is still a superior vectored vaccine 

when it can sustain complete protection of survived mice after the second malaria parasites 

challenge. Regarding the transmission blockade, both m8∆/AAV5 and m8∆/AAV1 induce 

high level of the TB efficacy. 

Malaria vaccine based on AAV vectors could induce a high level of malaria-specific 

immune responses, protective efficacy, and transmission blocking activity in murine model (26, 

53). An AAV1-based single or multistage malaria vaccines conferred potent and durable 

protection as well as TB efficacy when administered following an AdHu5 priming vaccine (26, 

27). A liver directed pre-erythrocytic vaccine (PEV) based on AAV8 improved humoral and 

cellular immune responses and achieved sterile protection against sporozoites challenge (53). 

The most current study showed that m8Δ-prime/AAV1-boost achieved life-long sterile 

protection and high-level transmission blocking efficacy after multiple malaria parasites 

exposures. Here, we showed that the AAV5-Pf(s25-CSP) induced immunogenicity and 

protective efficacy as strong as AAV1-Pf(s25-CSP) did. This finding may provide an 

alternative AAV vector-based malaria vaccines because natural immunity to AAV5 is rare (38). 

In addition, AAV5 vectors has low seroprevalence of pre-existing neutralizing antibodies (54). 

 The sterile protection achieved by m8∆/AAV5 vaccine after initial sporozoites challenge 

was due to the high level of Ab production and might be related with activation of cytotoxic T 

cell to eliminate intracellular parasites as well. AAV5 vectors can efficiently transduce 
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dendritic cells (DCs) and produce stronger antigen-specific immune responses than other AAV 

vectors (44). DCs are stimulators of T and B lymphocytes. It is mainly responsible for 

stimulating naïve T lymphocytes and initiating a cytotoxic T lymphocytes (CTL) response (55). 

Furthermore, it activates and expands T-helper cells, which induce B-cell growth and Ab 

production (55). After the second challenge, the complete protection of survived mice 

immunized by AAV1 tended to have better induction and maintenance of adaptive immune 

responses than AAV5. It means that not only humoral immune responses, but also other 

immune mechanism required for AAVs to induce long term protection. Our current study 

exhibited that a boosting of AAV1-Pf(s25-CSP) after initially prime with m8∆-based vaccine 

could sustain sterile protection against three times repeated sporozoites challenges. Prior work 

documented that regulatory T cell (Tregs) and exhausted T cells were responsible for 

controlling a cytotoxic immune response led to persisting long-term transgene expression after 

AAV1 delivery (56). Therefore, it requires further investigation in future studies. 

 Regarding the use of these vaccination regimens as transmission-blocking vaccine (TBV), 

the high level of TB activity conferred by the m8∆/AAV5-Pf(s25-CSP) or m8∆/AAV1-Pf(s25-

CSP) vaccination regimen is strongly correlated with the induction of high-level of anti-Pfs25 

total IgG titer. As shown in previous studies, AAV1-based vaccine initially prime with either 

AdHu5 (26, 27) or m8∆ successfully elicited durable anti-Pfs25 with induced a high level TRA 

and TBA. Currently, TBV studies almost develop vaccine using Pfs25, a 25-kDa antigen that 

express on the surface of zygotes and ookinetes (57). The production of high level of anti-Pfs25 

IgG achieved a significant transmission-blocking activity (10, 58, 59). In this study, our new 

vaccine regimen, m8∆/AAV5-Pf(s25-CSP) achieved high expected outcome. The combination 

of PE and TB immunity of this regimen with high-level efficacies is a superiority over the PEV 

RTS, S/AS01 and TBV ChAd3/MVA Pfs25-IMX313 for a new-generation malaria vaccine 

(57). The m8∆/AAV5-based vaccine may provide an alternative tool to the m8∆/AAV1-based 
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for reducing mortality against malaria infection in endemic areas (12) and supporting malaria 

elimination program to meet the goals for 2030 set by WHO malaria vaccine roadmap (5).  

 In summary, this is the first report shows immunogenicity and protective efficacy of AAV5 

vectors as a malaria booster vaccine regimen. AAV5-based malaria vaccine can induce robust 

Ab responses against two major malaria stage’s antigens, achieves high-level protection rate, 

and provides strong TB activity as good as AAV1-based vaccine. Overall, AAV5-based 

malaria vaccine deserves further evaluation as an alternative vaccine vector if pre-existing anti-

AAV1 antibody avoid vaccine re-administration with the same serotype and transgene 

expression. 
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