
Deductive Schedulability Verification
Methodology of Real-Time Software using both
Refinement Verification and Hybrid Automata

言語: eng

出版者:

公開日: 2017-10-03

キーワード (Ja):

キーワード (En):

作成者:

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/2297/6708URL

Deductive Schedulability Verification Methodology of Real-Time Software using
both Refinement Verification and Hybrid Automata

Satoshi Yamane
Dept. of Information Engineering

Kanazawa University
Kanazawa City, Japan

Tel:+81.76.234.4856, Fax:+81.76.234.4900
Email:syamane@is.t.kanazawa-u.ac.jp

Abstract

Real-time software runs over real-time operating systems,
and guaranteeing qualities is difficult. As timing constraints
and resource allocations are strict, it is necessary to verify
schedulability, safety and liveness properties. In this paper,
we formally specify real-time software using hybrid automata
and verify its schedulability using both deductive refinement
theory and scheduling theory. In this case, the above real-time
software consists of periodic processes and a fixed-priority
preemptive scheduling policy on one CPU. Using our pro-
posed methods, we can uniformally and easily specify real-
time software and verify its schedulability based on hybrid
automata. Moreover, we can verify its schedulability at de-
sign stage.

1 Introduction

Recently almost microprocessors are used in embedded
systems. Real-time software runs in embedded systems. As
real-time software is reactive and concurrent, and its timing
conditions are strict, it is difficult to design real-time software.

In this paper, we formally specify real-time software us-
ing hybrid automata, and propose verification method of its
schedulability using both deductive refinement theory and
scheduling theory. Using our proposed methods, we can uni-
formally and easily specify real-time software and verify its
schedulability based on hybrid automata. Moreover, we can
verify its schedulability at design stage.

In this paper, we model real-time software consisting of
periodic tasks and a preemptive scheduling with fixed priori-
ties. In order to easily specify real-time software and verify
its schedulability, we do not consider resource allocations and
delays of dispatches. Moreover, we assume that tasks are in-
dependent. But we can easily extend our real-time software
with these restrictions. By our proposed methods, we can
combine specification of real-time software with its schedula-
bility verification based on hybrid automata.

Recently many researches about formal specification and
verification of real-time software have been studied. Existing
main researches are as follows:

1. R. Alur and T.A. Henzinger have specified a preemptive

scheduler by hybrid automata [1]. Moreover, they have
verified the safety and liveness properties using model
checking. By hybrid automata, we can easily specify a
preemptive scheduler. But they have not proposed the
schedulability verification.

2. S. Vestal has proposed restricted hybrid automata and
showed the reachability problem is decidable [2]. He has
showed the schedulability verification by verifying the
reachability problem of a preemptively scheduled task.
But he has not divided tasks and schedulers from pre-
emptively scheduled tasks.

3. V. Braberman has proposed automatic schedulability
verification of a preemptive scheduler based on timed
automata [3]. As he has specified time constraints as
maximun and minimum distances between events, his
method is a conservative.

4. J. Sifakis has proposed timed automata with priorities.
He has specified scheduling policies by priority rules [4].
He has not directly specified schedulers.

5. Z. Liu has specified and verified real-time software and
schedulers by deductive verification based on TLA [5].
As he has specified preemptive schedulers by TLA, it is
very difficult to specify and verify them.

As we proposed the schedulability verification method
of real-time software by the integration of refinement and
scheduling theory based on hybrid automata, our study is
quite different from existing studies.

In general, in order to specify a preemptive scheduler,
we must record accumulated computer time. If we specify
recording accumulated computer time by hybrid automata, we
can easily and simply specify it. (At design stage, we must
assume computer time.) But if we specify recording accumu-
lated computer time by timed automata, we must conserva-
tively specify it by complex styles. In this paper, we model
real-time software consisting of periodic tasks and a preemp-
tive scheduling with fixed priorities. We specify this real-time
software by hybrid automata, and propose the schedulability
verification method based on hybrid automata.

The paper is organized as follows: In section 2, we present
specification of real-time software. In section 3, we present

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

our schedulability verification method. Finally, in section 4,
we present conclusions.

2 Specification of real-time software

In this section, we introduce hybrid automata, and specify
real-time software.

2.1 Hybrid automata

We extend hybrid automaton [1] by distinguishing observ-
able variables and unobservable variables.

First, we define hybrid automata.

Definition 1 Hybrid automaton A is a 10-tuple
(�x, V, local, inv, dif, E, act, Label, syn, EΘ) as follows:

1. Data variables : A finite vector �x = (x1, x2, . . . , xn)
of real-valued data variables. The size of n of �x is
called the dimension of A. A data state is a point �s =
(s1, . . . , sn), equivalently, a function that assigns to
each data variable xi a real value si ∈ R. A data pred-
icate p defines the data region � p �⊆ Rn, where
�s ∈� p � iff p[�x := �s] is true. For each data vari-
able xi, we use the dotted variable ẋi to denote the first
derivative of xi. A differential inclusion is a convex poly-
hedron in Rn. A rate predicate is a convex linear for-
mula over the vector �̇x = (ẋ1, . . . , ẋn) of dotted vari-
ables. The rate predicate r defines the differential inclu-
sion � r �⊆ Rn, where �̇s ∈� r � iff r[�̇x := �̇s] is
true.

2. Control locations : A finite set V of vertices called con-
trol locations.

3. Local variables : local is a finite set of local variables.
local is a part of �x. local is not observable from other
automata.

4. Location invariants : A labeling function inv that as-
signs to each control location v ∈ V a convex data pred-
icate inv(v), the invariant of v.

5. Continuous activities : A labeling function dif(v) that
assigns to each control location v ∈ V a rate predi-
cate dif(v), the activity of v. The activities constrain
the rates at which the values of data variables change:
while the automaton control resides in the location v,
the first derivatives of all data variables stay within the
differential inclusion � dif(v) �.

6. Transitions : A finite multiset E of edges called transi-
tions. Each transition (v, v′) identifies a source location
v ∈ V and a target location v′ ∈ V .

7. Discrete actions : A labeling function act that assigns
to each transition e ∈ E an action predicate act(e), the
action of e. The automaton control can proceed from the
location v to the location v′ via the transition e = (v, v′)
only when the action act(e) is enabled. If act(e) is en-
abled in the data state �s, then the values of all data vari-
ables change nondeterministically from �s to some point
in the data region � act(e) � (�s).

8. Synchronization labels : A finite set Label of synchro-
nization labels and a labeling function syn that assigns
to each transition e ∈ E a set of synchronization labels
from Label. The set Label is called the alphabet of A.
The synchronization labels are used to define the paral-
lel composition of two automata. If both automata share
a synchronization label a, then each a-transition of one
automaton must be accompanied by an a-transition of
the other automaton.

9. Entry edge : An entry edge, EΘ, that has no originating
location, but an entry location vi ∈ V . EΘ is labeled by
the form x1 = c1 ∧ x2 = c2 ∧ . . . ∧ xn = cn, where
c1, c2, . . . , cn are real values.

Next, we define parallel composition of hybrid automata.

Definition 2 Let A1 = (�x1, V1, local1, inv1, dif1, E1, act1,
Label1, syn1, EΘ1) and A2 =
(�x2, V2, local2, inv2, dif2, E2, act2, Label2, syn2, EΘ2)
be two hybrid automata of dimensions n1 and n2, respec-
tively. The parallel composition of A1 and A2 is A =
(�x1 ∪ �x2, V1 ×V2, local1 ∪ local2, inv, dif, E, act, Label1∪
Label2, syn, EΘ).

1. Each location (v, v′) in V1 × V2 has the invariant
inv(v, v′) = inv1(v) ∧ inv2(v′) and the activities
dif(v, v′) = dif1(v) ∧ dif2(v′).

2. EΘ = EΘ1 ∧ EΘ2.

3. E contains e = ((v1, v1′), (v2, v2′)) iff

(a) v1 = v1′ and there is a transition e2 = (v2, v2′) ∈
E2 with Label1 ∩ syn2(e2) = ∅ ,where act(e) =
act2(e2) and syn(e) = syn2(e2); or

(b) there is a transition e2 = (v2, v2′) ∈ E2 with
Label1 ∩ syn2(e2) = ∅, and v2 = v2′ ,where
act(e) = act1(e1) and syn(e) = syn1(e1); or

(c) there is a transition e1 = (v1, v1′) ∈ E1 and
e2 = (v2, v2′) ∈ E2 such that syn1(e1)∩Label2 =
syn2(e2) ∩ Label1 , where if act1(e1) = (�y1, q1′)
and act2(e2) = (�y2, q2′), then act(e) = (�y1 ∪
�y2, q1′ ∧ q2′) and syn(e) = syn1(e1) ∪ syn2(e2).

2.2 Specification

In this paper, we model real-time software consisting of
periodic tasks and a preemptive scheduling with fixed priori-
ties.

2.2.1 Specification of periodic tasks

First, we specify periodic tasks by hybrid automata. If we
determine period, execution time and deadline of a periodic
task, we can specify the periodic task. Two periodic tasks are
shown in figure 1.

1. Figure 1 (1) represents as a hybrid automaton a periodic
task1 of period T1, execution time E1, and deadline D1
(0 < E1 ≤ D1 ≤ T 1). Figure 1 (2) represents as a hy-
brid automaton a periodic task2 of period T2, execution
time E2, and deadline D2 (0 < E2 ≤ D2 ≤ T 2).

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

2. The periodic task1 has three states, sleep1, wait1, and ex-
ecute1 where task1 is respectively, sleeping, waiting and
executing. The periodic task2 has four states, sleep2,
wait2, execute2, and preempt2 where task2 is respec-
tively, sleeping, waiting, executing, and preemptive.

3. The periodic task1 has three events, arrive1, begin1, and
end1 where arrive1 means the arrival of execution re-
quirement, begin1 means the start of execution, and end1
means the end of execution. The periodic task2 has three
events, arrive2, begin2, and end2 where arrive2 means
the arrival of execution requirement, begin2 means the
start of execution, and end2 means the end of execution.

4. The timer x1 and x2 are used to measure execution time
while the timer t1 and t2 are used to measure the time
elapsed since task arrivals.

In this case, task1 has higher priority than task2.

2.2.2 Specification of preemptive scheduler

Next, we specify a preemptive scheduler, which controls both
task1 and task2 as shown in figure 2. In this figure 2, rate
monotonic scheduler [6] is specified by hybrid automaton.
The preemptive scheduler has four states, idle, task1, task2,
and preempt where tasks are idle, task1 or task2 is executing
and task1 is preemptive.

2.2.3 Timing diagram

Next, we show the behaviors of task1 and task2 by timing
diagram in figure 3. In this case, task1 has higher priority
than task2. Execution of task2 is pre-empted by task1.

3 Schedulability verification of real-time soft-
ware

In this section, we introduce refinement verification
method of hybrid automata and define schedulability verifi-
cation method.

3.1 Refinement verification method of hybrid au-
tomata

We transform hybrid automaton into phase transition sys-
tem, and verify refinement over phase transition systems [7].

3.1.1 Basic concept

Let V ar be a set of typed variables. The allowed types in-
clude boolean, integer and real. We view the booleans and
the integers as subsets of the reals. Let Rn be the set of real
numbers. A state σ : V ar → Rn is a type-consistent inter-
pretation of the variables in V ar. We write ΣV for the set of
states. Time is modeled by the nonnegative real line R+. An
interval [a, b), where a, b ∈ R+ and a < b, is the set of points
t ∈ R+ such that a ≤ t < b. Let I = [a, b) be an interval. A
function f : I → Rn is piecewise smooth on I if

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

1. At a, the right limit and all right derivatives of f exist;

2. At all points t ∈ I , the right and left limits and all right
and left derivatives of f exist, and f is continuous either
from the right or from the left;

3. At b, the left limit and all left derivatives of f exist.

The function f, g : I → Rn are indistinguishable on I if
they agree on almost all points t ∈ I .

A phase P =< I, f > over V is a pair consisting of

1. a nonempty left-closed right-open interval I = [a, b)

2. a type-consistent family f = {fx|x ∈ V ar} of functions
fx : I → Rn that are piecewise smooth in I and assign
to each point t ∈ I a value for the variable x ∈ V ar

It follows that the phase P assigns to every real-valued
time t ∈ I a state f(t) ∈ ΣV .

We write

−→
P = limt→a{f (t)|a < t < b} (1)

for the left-end limit state
−→
P ∈ ΣV of the phase P , and

←−
P = limt→b{f (t)|a < t < b} (2)

for the right-end limit state
←−
P ∈ ΣV of P .

3.1.2 Phase transition system

We extend Pnueli’s phase transition system [8] by distinguish-
ing observable variables and unobservable variables.

Definition 3 Phase transition system M = (V ar, L, Φ, Θ, T)
consists of five components:

1. A finite set V ar of state variables.

2. A finite set L ⊆ V ar of local variables, which are unob-
servable variables.

3. A finite set Φ of phase invariants over V ar. Each phase
invariant φ ∈ Φ is presented by an assertion of the form
ρφ(V ar, V̇ ar), referring to the state variables and their
derivatives.

4. An initial condition, Θ, which is a state formula over V
that specifies the initial value of the variables at the left
end of the first phase in computations.

5. A set T of transitions. Each transition τ ∈ T is asso-
ciated with an assertion ρτ (V ar, V ar′), relating values
at the right-end limit state of a phase to the values at the
left-end of a successor phase.

A phase sequence P = P0, P1, P2, . . . is a finite or infinite
sequence of adjacent phases, where Pi =< [ai, ai+1), fi >
for all i ≥ 0.

A phase sequence is a computation(run) of the M if it is
equivalent to a phase sequence P = P0, P1, P2, . . . that satis-
fies the following conditions:

1. Initiality : If P0 = [a, b) then Θ holds at a.

2. Continuous activities : For all 0 ≤ i < |P |, there is a
phase invariant ρφ ∈ Φ such that Pi is a φ-phase.

3. Discrete transitions : For all 0 ≤ i < |P | − 1, there
is a transition τ ∈ T such that ρτ (−→Pi[V ar]←−−Pi+1[V ar])
holds.

4. Divergence : P is divergent.

Next, we define the transformation of hybrid automaton
into phase transition system.

Definition 4 Hybrid automaton A =
(�x, V, local, inv, dif, E, act, Label, syn, EΘ) is trans-
formed into phase transition system M = (V ar, L, Φ, Θ, T)
as follows:

1. V ar = π ∪ �x, where π is a variable, which denotes
location V .

2. L = local.

3. Φ = {φli |li ∈ V }, where for each li ∈ V ,

ρφli
: inv(li) ∧ (π = li) ∧ dif(li)

4. Θ = (x1 = c1∧. . .∧xn = cn)∧(π = li)∧inv(li), where
li is the entry location and (x1 = c1 ∧ . . . ∧ xn = cn) is
a label of the entry edge.

5. T = {τ(li,lj)|(li, lj) ∈ E}, where for e = (li, lj) ∈ E
such that syn(e) = label ∈ Label,

ρτ(li,lj) : act(e) ∧ π = li ∧ π′ = lj

3.1.3 Axioms of refinement verification

Consider two phase transition systems, MC and MA, to
which we refer as the concrete and abstract specification,
wishing to prove that MC refines MA. Phase transition sys-
tem M is a 5-tuple (V ar, L, Φ, Θ, T). L ⊆ V ar is a finite
set of local variables, which are unobservable from other sys-
tems. In this paper, we assume that only internal behaviors of
abstract specification are refined into concrete specification.
If both every observable phase of MC is some phase of MA

and every observable transition of MC is some transition of
MA, MC refines MA , and we denotes it by MC � MA.

Definition 5 For MC = (V arC , LC , ΦC , ΘC , T C) and MA

= (V arA, LA, ΦA, ΘA, T A), and a substitution α: LA ←
ε(V arC),

1. ΘC → ΘA[α]
2. For each φi

C ∈ ΦC and τj
C ∈ T C , (i = 1, . . . , n,

j = 1, . . . , m)!’
∃k. ρφi

C = ρφk
A [α]

and
∃l. ρτj

C → ρτl
A [α]

3. −−−−−−−−−−−−−−−−−−−−−−−−−−−
4. MC � MA

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

If some α exists , and 1. and 2. are satisfied, 4. such as �
can be defined.

Premise 1 requires that ΘC implies ΘA[α]. Premise 2
ensures that every phase invariant of ρφi

C is equal to some
phase invariant of ρφk

A [α], and ensures that every transition
of ρτC can be simulated by some transition of ρτA [α]. Con-
clusion 4 means MC � MA.

Let α: LA ← ε(V arC) be a substitution that replaces each
local abstract variable X ∈ LA by an expression ε(V arC)
over the concrete variables. We denote Xα(V arC) when we
assign an expression ε(V arC) over the concrete variables to
X ∈ LA.

α can give a mapping over phases as follows: Let PC be
a phase which appears in a computation of MC . We refer to
PC as a concrete phase. The abstract PA = mα(PC) cor-
responding to the concrete phase PC is such that the value
of each local abstract variable X ∈ LA in PA is the value
of the expression Xα(V arC) when evaluated in PC . We say
that mα is a refinement mapping from MC to MA. This re-
finement mapping is equal to Abadi’s refinement mapping [9].

3.2 Schedulability verification

We will combine specification of real-time software with
scheduling theory based on hybrid automata. In order to ver-
ify schedulability, we integrate refinement verification with
scheduling theory.

First, we present existing scheduling theory [10]. We rep-
resents as a hybrid automaton a periodic task i of period T i,
execution time Ei, and deadline Di(i = 1, . . . , n). Mathai
Joseph has proposed the worst-case response time Ri of task
i as recursive equation. The (n + 1)th worst-case response
time Ri(n+1) for task i is as follows:

Ri(n+1) = Ei +
i−1∑
j=1

�Ri(n)

T j
� × Ej

,where Ri(0)=Ei and Ri = limn→∞ Ri(n).

Definition 6 Real-time software is schedulable if the follow-
ing two conditions are satisfied:

1. For ∀i, Ri ≤ Di(i=1,..,n) holds true.

2. MC � MA, where MA is the parallel composition of
periodic tasks, MC is the parallel composition of peri-
odic tasks and scheduler.

3.3 Example

We show example of schedulability verification of periodic
tasks in section 2.

3.3.1 Phase transition system of periodic tasks

First, we construct parallel composition of hybrid automata of
periodic tasks as shown in figure 4.

Next, we construct phase transition system from parallel
composition of hybrid automata. The phase transition system
of periodic tasks MA = (V arA, LA, ΦA, ΘA, T A) consists of
five components as follows:

1. V arA = {t1, t2, x1, x2, π1
A, π2

A}.

2. LA = {π1
A, π2

A}.

3. ΦA = {φ(sleep1,sleep2), φ(sleep1,wait2), φ(sleep1 ,execute2),
. , φ(execute1,execute2), φ(execute1,preempt2)}.

(a) ρφ(sleep1,sleep2)
A : π1

A = sleep1∧π2
A = sleep2∧

0 ≤ t1 ∧0 ≤ t2∧0 ≤ x1∧0 ≤ x2 ∧ ṫ1 = 1∧ ṫ2 =
1 ∧ ẋ1 = 0 ∧ ẋ2 = 0

(b) ρφ(sleep1,wait2)
A : π1

A = sleep1 ∧ π2
A = wait2 ∧

0 ≤ t1 ∧0 ≤ t2∧0 ≤ x1∧0 ≤ x2 ∧ ṫ1 = 1∧ ṫ2 =
1 ∧ ẋ1 = 0 ∧ ẋ2 = 0
. .
. .

4. ΘA : π1
A = sleep1 ∧ π2

A = sleep2 ∧ t1 = 0 ∧ t2 =
0∧x1 = 0∧x2 = 0∧ ṫ1 = 0∧ ṫ2 = 0∧ ẋ1 = 0∧ ẋ2 = 0

5. T A = {τ(sleep1,sleep2)(sleep1,wait2)
A,

τ(sleep1,wait2)(sleep1 ,execute2)
A,

. , τ(wait1,preempt2)(execute1,preempt2)
A}.

(a) ρτ(sleep1,sleep2)(sleep1,wait2)
A : π1

A = sleep1 ∧
π2

A = sleep2 ∧ π1
A′ = sleep1 ∧ π2

A′ = wait2 ∧
0 ≤ t1∧t2 = T2∧0 ≤ x1∧0 ≤ x2∧ ṫ1 = 1∧ ṫ2 =
1 ∧ ẋ1 = 0 ∧ ẋ2 = 0 ∧ 0 ≤ t1′ ∧ t2′ = 0 ∧ 0 ≤
x1′∧x2′ = 0∧ ˙t1′ = 1∧ ˙t2′ = 1∧ ˙x1′ = 0∧ ˙x2′ = 0

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

(b) ρτ(sleep1,wait2)(sleep1,execute2)
A : π1

A = sleep1 ∧
π2

A = wait2 ∧ π1
A′ = sleep1 ∧ π2

A′ =
execute2∧0 ≤ t1∧ t2 ≤ D2−E2∧0 ≤ x1∧0 ≤
x2 ∧ ṫ1 = 1 ∧ ṫ2 = 1 ∧ ẋ1 = 0 ∧ ẋ2 = 0 ∧ 0 ≤
t1′ ∧ t2′ ≤ D2 − E2 ∧ 0 ≤ x1′ ∧ x2′ = 0 ∧ ˙t1′ =
1 ∧ ˙t2′ = 1 ∧ ˙x1′ = 0 ∧ ˙x2′ = 1
. .

. .

3.3.2 Phase transition system of real-time software

First, we construct parallel composition of hybrid automata of
periodic tasks and scheduler as shown in figure 5.

Next, we construct phase transition system from par-
allel composition of hybrid automata. The phase tran-
sition system of periodic tasks and scheduler MC =
(V arC , LC , ΦC , ΘC , T C) consists of five components as fol-
lows:

1. V arC = {t1, t2, x1, x2, π1
C , π2

C , π3
C}.

2. LC = {π1
C , π2

C , π3
C}.

3. ΦC = {φ(sleep1,sleep2,idle), φ(wait1,sleep2,idle),
. , φ(sleep1 ,execute2,task2)}.

(a) ρφ(sleep1,sleep2,idle)
C : π1

C = sleep1 ∧ π2
C =

sleep2 ∧ π3
C = idle ∧ 0 ≤ t1 ∧ 0 ≤ t2 ∧ 0 ≤

x1 ∧ 0 ≤ x2 ∧ ṫ1 = 1 ∧ ṫ2 = 1∧ ẋ1 = 0 ∧ ẋ2 = 0

(b) ρφ(wait1 ,sleep2,idle)
C : π1

C = wait1 ∧ π2
C =

sleep2 ∧ π3
C = idle ∧ 0 ≤ t1 ∧ 0 ≤ t2 ∧ 0 ≤

x1 ∧ 0 ≤ x2 ∧ ṫ1 = 1 ∧ ṫ2 = 1∧ ẋ1 = 0 ∧ ẋ2 = 0
. .

. .

4. ΘC : π1
C = sleep1∧π2

C = sleep2∧π3
C = idle∧t1 =

0∧ t2 = 0∧ x1 = 0∧ x2 = 0∧ ṫ1 = 0∧ ṫ2 = 0∧ ẋ1 =
0 ∧ ẋ2 = 0

5. T C = {τ(sleep1,sleep2,idle)(wait1,sleep2,idle)
C ,

τ(sleep1,sleep2,idle)(sleep1 ,wait2,idle)
C ,

. ,
τ(execute1,sleep2,task1)(execute1,wait2,task1)

C}.

(a) ρτ(sleep1,sleep2,idle)(wait1 ,sleep2,idle)
C : π1

C =
sleep1 ∧ π2

C = sleep2 ∧ π3
C = idle ∧ π1

C ′ =
wait1 ∧ π2

C ′ = sleep2 ∧ π3
C ′ = idle ∧ t1 =

T1 ∧ 0 ≤ t2 ∧ 0 ≤ x1 ∧ 0 ≤ x2 ∧ ṫ1 = 1 ∧ ṫ2 =
1 ∧ ẋ1 = 0 ∧ ẋ2 = 0 ∧ t1′ = 0 ∧ 0 ≤ t2′ ∧ x1′ =
0∧0 ≤ x2′∧ ṫ1′ = 1∧ ṫ2′ = 1∧ ẋ1′ = 0∧ ẋ2′ = 0

(b) ρτ(sleep1,sleep2,idle)(sleep1,wait2,idle)
C : π1

C =
sleep1 ∧ π2

C = sleep2 ∧ π3
C = idle ∧ π1

C ′ =
sleep1 ∧ π2

C ′ = wait2 ∧ π3
C ′ = idle ∧ 0 ≤

t1 ∧ t2 = T2 ∧ 0 ≤ x1 ∧ 0 ≤ x2 ∧ ṫ1 = 1 ∧ ṫ2 =
1 ∧ ẋ1 = 0 ∧ ẋ2 = 0 ∧ 0 ≤ t1′ ∧ t2′ = 0 ∧ 0 ≤
x1′∧x2′ = 0∧ṫ1′ = 1∧ṫ2′ = 1∧ẋ1′ = 0∧ẋ2′ = 0
. .

. .

3.3.3 Schedulability verification

Next, we verify whether MC = (V arC , LC , ΦC , ΘC , T C) re-
fines MA = (V arA, LA, ΦA,
ΘA, T A) or not.

Here we define α as follows:
α : (π1

A, π2
A) →

if (π1
C , π2

C , π3
C) = (sleep1, sleep2, idle)

then (sleep1, sleep2)
elseif (π1

C , π2
C , π3

C) = (wait1, sleep2, idle)
then (wait1, sleep2)
elseif (π1

C , π2
C , π3

C) = (sleep1, wait2, idle)
then (sleep1, wait2, idle)
elseif (π1

C , π2
C , π3

C) = (wait1, wait2, idle)
then (wait1, wait2)
elseif (π1

C , π2
C , π3

C) = (wait1, execute2, task2)
then (wait1, execute2)
elseif (π1

C , π2
C , π3

C) = (sleep1, execute2, task2)
then (sleep1, execute2)
elseif (π1

C , π2
C , π3

C) = (execute1, sleep2, task1)
then (execute1, sleep2)
elseif (π1

C , π2
C , π3

C) = (execute1, wait2, task1)
then (execute1, wait2)
elseif (π1

C , π2
C , π3

C) = (execute1, preempt2, preempt)
then (execute1, preempt2)

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

1. ΘC → ΘA[α]:
We can define ΘC and ΘA as follows:

ΘC : π1
C = sleep1∧π2

C = sleep2∧π3
C = idle∧t1 =

0∧ t2 = 0∧ x1 = 0∧ x2 = 0∧ ṫ1 = 0∧ ṫ2 = 0∧ ẋ1 =
0 ∧ ẋ2 = 0.

ΘA : π1
A = sleep1 ∧ π2

A = sleep2 ∧ t1 = 0 ∧ t2 =
0∧x1 = 0∧x2 = 0∧ ṫ1 = 0∧ ṫ2 = 0∧ẋ1 = 0∧ẋ2 = 0.

Moreover, we can define ΘA[α] as follows:

ΘA[α] : π1
C = sleep1 ∧ π2

C = sleep2 ∧ π3
C = idle∧

t1 = 0 ∧ t2 = 0 ∧ x1 = 0 ∧ x2 = 0 ∧ ṫ1 = 0 ∧ ṫ2 =
0 ∧ ẋ1 = 0 ∧ ẋ2 = 0.

We can conclude that ΘC → ΘA[α] holds true.

2. For each φi
C ∈ ΦC and τj

C ∈ T C , (i = 1, . . . , n,
j = 1, . . . , m)!’
∃k. ρφi

C = ρφk
A [α] and ∃l. ρτj

C → ρτl
A [α]

(a)We can define ρφ(sleep1,sleep2,idle)
C and

ρφ(sleep1,sleep2)
A as follows:

ρφ(sleep1,sleep2,idle)
C : π1

C = sleep1 ∧ π2
C = sleep2 ∧

π3
C = idle∧ 0 ≤ t1 ∧ 0 ≤ t2 ∧ 0 ≤ x1 ∧ 0 ≤ x2 ∧ ṫ1 =

1 ∧ ṫ2 = 1 ∧ ẋ1 = 0 ∧ ẋ2 = 0.

ρφ(sleep1,sleep2)
A : π1

A = sleep1 ∧ π2
A = sleep2 ∧ 0 ≤

t1 ∧ 0 ≤ t2 ∧ 0 ≤ x1 ∧ 0 ≤ x2 ∧ ṫ1 = 1∧ ṫ2 = 1∧ ẋ1 =
0 ∧ ẋ2 = 0.

Moreover, we can define ρφ(sleep1,sleep2)
A[α] as follows:

ρφ(sleep1,sleep2)
A[α] : π1

C = sleep1 ∧ π2
C = sleep2 ∧

π3
C = idle∧ ẋ2 = 0∧ 0 ≤ t1 ∧ 0 ≤ t2 ∧ 0 ≤ x1 ∧ 0 ≤

x2 ∧ ṫ1 = 1 ∧ ṫ2 = 1 ∧ ẋ1 = 0 ∧ ẋ2 = 0.

We can conclude that ρφ(idle1,idle2,idle)
C =

ρφ(idle1,idle2)
A[α] holds true.

. .

. .

From (1) and (2), we can conclude that MC � MA holds
true.

Next, we will verify whether, for ∀i, Ri ≤ Di(i = 1, .., n)
holds true or not. We represents a periodic task i of period
T i, execution time Ei, and deadline Di(i = 1, . . . , n). The
(n + 1)th worst-case response time Ri(n+1) for task i is as
follows:

Ri(n+1) = Ei +
i−1∑
j=1

�Ri(n)

T j
� × Ej

, where Ri(0)=Ei and Ri = limn→∞ Ri(n).
By Joseph’ method [10], we will calculate Ri, where T 1 =

300, E1 = 30, D1 = 250, priority of task1=1, T 2 = 500,
E1 = 100, D1 = 450, priority of task2=2. Task1 has higher
priority than task2.

We can verify whether R1 ≤ D1 holds true or not. We
could conclude that R1 ≤ D1 holds true. We can conclude
that R2 ≤ D2 holds true,too. Because of lack of space, we
omit the details.

We can conclude that MC is schedulable.

4 Conclusion

In this paper, we proposed the schedulability verification
method of real-time software by the integration of refinement
and scheduling theory based on hybrid automata. We may
model real-time software consisting of periodic tasks and a
preemptive scheduling with fixed priorities. Using our pro-
posed methods, we can uniformally and easily specify real-
time software and verify its schedulability based on hybrid
automata. Moreover, we can verify its schedulability at de-
sign stage. To the best our knowledge, ours is the first pro-
posal to verify the schedulability of real-time software by the
integration of refinement and scheduling theory based on hy-
brid automata.

References

[1] R. Alur, T.A. Henzinger, P.-H. Ho. Automatic symbolic
verification of embedded systems. IEEE Trans. on SE,
22(3), pp.181-201, 1996.

[2] S. Vestal. Modeling and verification of real-time soft-
ware using extended linear hybrid automata. 5th NASA
Workshop, pp.95-106, 2000.

[3] V. Braberman, M. Felder. Verification of real-time de-
signs. LNCS 1687, pp.494-510, 1999.

[4] K. Altisen, G. Goessler, J. Sifakis. Scheduler modeling
based on the controller synthesis paradigm. Journal of
RTS, No.23, pp.55-84, 2002.

[5] Z. Liu, M. Joseph. Specification and verification of
fault-tolerance, timing and scheduling, ACM TOPLAS,
Vol.21, No.1, pp.46-89, 1999.

[6] J. Lehoczky, et-al. The rate monotonic scheduling algo-
rithm: Exact characterization and average case behavior,
RTS, pp.166-171, IEEE, 1989.

[7] S. Yamane. Refinement Theory of Embedded systems
based on Hybrid models. The 2002 IKE, pp.455-461,
CSREA Press, 2002

[8] O. Maler, Z. Manna, A. Pnueli. From timed to hybrid
systems. LNCS 600, pp.447-484, 1992.

[9] M. Abadi, L. Lamport. The existence of refinement
mappings. TCS, 82(2):253-284, 1991.

[10] M. Joseph. Real-Time Systems: Specification, Verifica-
tion and Analysis. Prentice Hall Intl., 1996.

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

