

人体に装着された小形無線端末用アンテナの放射特性

斎藤 裕 $^{\dagger a}$) 長野 勇 † 八木谷 聡 † 春木 宏志 $^{\dagger \dagger}$

Radiation Characteristics of an Antenna for a Small Radio Terminal in vicinity of a Human Body

Yutaka SAITO^{†a)}, Isamu NAGANO[†], Satoshi YAGITANI[†], and Hiroshi HARUKI^{††}

あらまし 本論文では、人体の様々な位置に装着される小形無線端末用アンテナの重要な設計指針を示している。初めに、代表的な装着状態として胸装着状態及び操作状態の二つに着目し、これらの状態で人体に装着されたカード型端末用 $\lambda/4$ モノポールアンテナの垂直面指向性を 2 GHz において測定した。その結果、胸装着状態において、効率はアンテナと胸との間隔 10~35 mm に対して 18~80%と変化が大きく、人体正面の垂直面指向性は自由空間と同様に水平方向がヌル点となるため、パターン平均化利得 (PAG)が $-8 \, \text{dBd}$ 以下と低い. 一方、操作状態において、効率は約 60%で一定であり、垂直面指向性は自由空間とは異なり水平方向の放射が高いため PAG が約 $-4 \, \text{dBd}$ と高いことを示した。次に、FDTD 法を用いて個々の人体部位が放射特性に及ぼす影響を解析した。その結果、胸装着状態では電力吸収及び指向性ともに胴体の影響が支配的であり、解析や測定においては胴体のみを考慮すればよい。また、操作状態では手及び腕による電力吸収と頭及び胴体による反射の影響が大きいため、解析や測定においては上半身すべてを考慮する必要があることを示した。

キーワード カード型,腕時計型,小形無線端末,効率,垂直面指向性,モノポール

1. まえがき

移動通信システムのサービスは,従来の携帯電話中 心から今後はデータ通信や情報配信サービスなどへ と多様化していく.このような非音声サービスに対応 した携帯無線端末の形状も,カード型や腕時計型など のように多様化し,かつ小型化が進むことが予想さ れる.このような新しい形態の無線端末(以下,小形 無線端末と呼ぶ)では,使用者がそれを携帯して使用 する状態が多様化する.例えば,カード型非音声情報 端末の場合は口や耳の近傍で通話を行うことはなく, 胸ポケット内に入れて使用する状態(以下,胸装着状 態と呼ぶ)や手で持って表示を見ながら操作する状態 (以下,操作状態と呼ぶ)が主な使用状態として想定 される.

従来の携帯電話では通話状態において高い通信性能

[†]金沢大学工学部,金沢市 Faculty of Engineering, Kanazawa University, Kanazawa-shi, 920-8667 Japan

- ^{††} 松下通信工業株式会社,横浜市 Matsushita Communication Industrial Co.,Ltd., Yokohamashi, 223-8639 Japan
- a) E-mail: y-saito@krd.mci.mei.co.jp

が求められるが,小形無線端末では上記のような胸装 着状態や操作状態の通信性能を確保することが要求さ れる.したがって,小形無線端末用アンテナにはこれ らの状態において高い実効利得が求められる.

端末用アンテナの実効利得を評価する指標としてパ ターン平均化利得(以下, PAG: Pattern Averaging Gain)[1]が利用されている.この PAG は到来波が低 仰角に集中することを前提として水平面指向性のみか ら求められ,最終的な評価指標として十分実用的であ る.一般的な携帯電話用ホイップアンテナを頭部近傍 で使用した通話状態の PAG は約 -6 dBd であり,こ れが小形無線端末用アンテナの目標値となる[2].これ を目標値として,胸装着状態や操作状態において端末 用アンテナの PAG を評価し改善を行ううえで,次に 示す2点の課題が考えられる.

1 点目の課題は,人体に装着された端末用アンテナ の垂直面指向性と効率の問題である.人体に近接した アンテナの PAG を決定する水平面放射強度は,人体 への電力吸収に依存する効率と垂直面指向性パターン の両方に依存する.したがって PAG の改善を検討す る際は,効率と垂直面指向性の両方に着目する必要が ある.効率を測定によって求めるためには,垂直面電 力指向性を測定して放射電力の全立体角積分を求める 必要がある[3].また,効率が一定であると仮定して, 垂直面指向性のパターンが変化すると水平面放射強度 も変化する.このように,小形無線端末用アンテナの 実効利得向上を目指すうえで,各装着状態における垂 直面指向性と効率の特徴を把握することが大変重要で ある.しかし,胸装着状態や操作状態において垂直面 指向性と効率の特徴を示した報告は従来なかった.

2 点目の課題は,各装着状態のアンテナ特性評価に おける人体の取扱い方の問題である.従来の携帯電話 用アンテナの研究開発において重視されている通話状 態では,アンテナに近接する頭部,手または肩の影響 が考慮されていた[4],[5].一方,胸装着状態や操作状 態のアンテナ特性は,人体の様々な部位からの影響を 受ける可能性がある.これに関連する報告は,腹部近 傍[6] や手で保持したダイポール[7] などいくつかある が,問題が十分に整理されているとはいえない.

様々な装着状態を同一条件で評価する最も基本的な 方法は,人体全身の影響を考慮することである.この 場合,測定においては人体モデルの選択と測定方法が 問題となる.また,FDTD法などの数値解析において は全身モデルを含むことによるグリッド数増大が問題 となる.したがって,人体の各部位がアンテナ特性に 及ぼす影響を明らかにして,各装着状態個々において 考慮すべき人体モデルを特定することが必要である.

本論文の目的は、これらの課題を解決して $\lambda/4 \in J$ ポールアンテナを取り付けたカード型無線端末の 実効利得改善のための有効な指針を示すことである. 本論文の 3.では、胸装着状態及び操作状態に置かれ たアンテナの垂直面指向性を実際の人体をモデルと して用いて測定する.その結果から、各状態の垂直 面指向性、効率及び PAG の特徴を明らかにする.更 に4.では、測定結果とFDTD 法電磁界シミュレータ FIDELITY [8] を用いた計算結果の一致を確認した うえで、このシミュレータを用いて個々の人体部位が 放射特性に及ぼす影響を解析する.その結果から、各 装着状態の解析時に考慮すべき人体部位を明らかにす る.なお、アンテナの動作周波数は、今後様々な移動 通信システムで利用される2 GHz に設定した.

2. アンテナ構成と自由空間特性

本論文では,小形無線端末としてカード型情報端末 を想定した.この理由は,通話機能をもたないカード 型情報端末の普及が今後予想されることと,この形状 が最も多様な使用状態が考えられるためである.また, この端末に取り付けるアンテナとして $\lambda/4$ モノポー ルアンテナを選択した.この理由は,様々なタイプの アンテナを代表するものとして最も基本的な構成であ るからである.また,モノポール長として $\lambda/2$ ではな く $\lambda/4$ を選択した理由は,^{*}^{を会う}体上に分布する電流の 影響[9]により,人体近接時の特性変化が顕著であり, この特性変化に特に着目するためである.

図1に端末及びアンテナの構成を示す.端末の筐体は 名刺サイズのカード型端末を想定して $55 \times 90 \times 10$ mm の銅板により構成した.モノポールは長さ37.5 mm ($\lambda/4$),直径1 mm の銅線で構成した.小形発振器を筐 体内部に組み込み,その出力を 50Ω の小径同軸ケーブ ルと小形コネクタを介してアンテナに給電した.自由 空間における VSWR は2 GHz において 1.4 であった.

自由空間の E_θ 成分指向性の測定結果を図 2 に示す.

図 1 カード型端末と $\lambda/4$ モノポールアンテナ Fig. 1 Card terminal and $\lambda/4$ monopole antenna.

図 2 指向性(自由空間) Fig. 2 Radiation patterns (free space).

水平 (*XY*) 面はほぼ無指向性である.垂直(*XZ*)面 は,*X*及び -X方向にもヌル点が存在する四つ葉形 パターンとなっている.この指向性は,筐体上の電流 分布に起因する $\lambda/4$ モノポールアンテナの典型的な 形である[9].また,図2において,*FIDELITY*を 用いた FDTD 法計算結果も併記している.計算では, 図1の構成を約40,000個の不等間隔グリッドでモデ ル化した.グリッドサイズは1~5 mm である.

3. 人体装着時の放射特性

人体に近接したアンテナの特性劣化要因は,人体への吸収電力に加えて入力インピーダンスの変化による不整合損失が考えられる.本論文で示す測定により得られた指向性には,吸収電力と不整合損失の両方が含まれており,これらを含むアンテナ特性を議論することが実用上重要である.アンテナの動作利得や効率についての定義[10]において,アンテナ効率 η_a には吸収電力と不整合損失が含まれていない.そこで本論文では,文献[10]の定義を拡張して,吸収電力と不整合損失を含む効率 η_{ac} を図3を用いて定義する.図3において,

P_T:給電系から入力される電力

P_o:アンテナ入力電力

 P_r :アンテナ系の放射電力

Pa: 人体への吸収電力

 η_m : インピーダンス不整合損失による給電効率

 η_r :放射効率

 η_{ac} : 効率

である.それぞれの関係から,効率 η_{ac} は次式で示される.

$$\eta_{ac} = \eta_m \cdot \eta_r = \frac{P_o}{P_T} \cdot \frac{P_r}{P_o} = \frac{P_r}{P_T} \tag{1}$$

ここで,人体に吸収される電力 P_a は $P_o(1-\eta_r)$ となり,不整合損失電力は $P_T(1-\eta_m)$ となる.本章以降で示す人体装着時の放射特性は,これらの吸収損失と不整合損失の両方を含むものとして議論する.

3.1 胸装着状態

胸装着状態の人体とアンテナの様子を図 4 (b) に示 す.この状態は,使用者が端末を左胸ポケットに垂直 に挿入している状態を想定している.この状態では, 人体とアンテナが 1/4 波長以下の間隔で近接すること になり, η_{ac} が間隔に依存して大きく変動することが 予想される [6].そこで,胸と端末の中心との間隔 d_c を $10 \sim 35 \, \mathrm{mm}$ の範囲で変化した.

図 3 効率 η_{ac} と不整合損失 Fig. 3 Efficiency and mismatch factor.

図 4 胸装着状態 (*a* = 70 mm , *b* = 200 mm) Fig. 4 Wearing on the chest (*a* = 70 mm, *b* = 200 mm).

本論文では,人体全身の影響を含む放射特性を実際 の人体を用いて電波暗室において測定した.実際の人 体を用いているため,アンテナと人体の間隔や装着位 置のわずかな差による測定偏差が予想される.そこで, 人体の服装を厚み1mm以下のシャツ1枚として,そ のシャツと端末との間げきに樹脂製のスペーサを挟む ことで間隔 dc を固定した.また,そのスペーサを樹 脂製のベルトを用いて人体に装着することで装着位置 が一定となるように注意した.また,身長や体重など の体格とアンテナの放射特性との相関は小さい[11]と 予想されるが,測定精度を高める目的で人体として身 長160~180 cm の5人を用い,この5人すべてに対し て指向性の測定を行った.

図 4 (a) に胸装着状態の E_{θ} 成分 XZ 面指向性を示 す.5人の人体による指向性の偏差は, XZ 面内の平 均レベルで 1 dB 以下であった.図 4 (a) において丸点 で示す測定結果は 5 人の平均値を示している.また, 自由空間の指向性を破線で併記している.自由空間と 胸装着状態を比較すると,人体正面側の指向性はほぼ 相似な形であることがわかる. $d_c = 10 \, \text{mm}$ の場合は 人体正面側のヌル点が約 10 度 Z 方向へ変化している が, $d_c = 35 \text{ mm}$ ではX方向にヌル点が存在し自由 空間の場合と同一である.したがって,胸装着状態で は水平面放射レベルが低くなり,この現象は3.4で述 べる PAG 低下の原因となる.

また,人体正面側(X 側)の平均放射レベルは, $d_c = 10 \text{ mm}$ では自由空間に比べて約 3 dB 低い.逆 に $d_c = 35 \text{ mm}$ では自由空間に比べ約 3 dB 高い.こ れらの現象は 3.3 で述べる効率の議論に対応してお り, $d_c = 10 \text{ mm}$ では人体による電力吸収の影響が大 きく, $d_c = 35 \text{ mm}$ において人体は反射体に近いと考 えられる.

図 4 (a) において, FDTD 法計算結果を実線で併記 している.人体全身を含む FDTD 法計算においては, (b) の状態の人体及びアンテナを約 3,000,000 個の不 等間隔グリッドでモデル化した.グリッドサイズは1~ 8 mm とした.特に,**3.3** で述べる効率の計算結果と 測定結果を一致させるために,アンテナと人体の間げ き及びアンテナに近接する人体胸部のグリッドを他の 部位より小さい1 mm 角に設定した.人体の身長は, 測定を行った人体の平均である 170 cm とした.その ほかの体格も測定した 5 人の人体の平均的な寸法とし た.人体の媒質定数は $\varepsilon_r = 49$, $\sigma = 1.6$ S/m で均一 とした.測定結果と計算結果は指向性の傾向が一致し ている.

3.2 操作状態

操作状態の人体とアンテナの様子を図 5(b) に示す. これは、使用者が端末を左手で持ち、顔の前で表示を 見ながら操作している状態を想定している.この状 態は, 腕時計型無線端末を腕に装着して顔の前にか まえた通話状態[2]と共通点があると考えられる.こ こでは,顔(顎)と端末の中心との間隔 d_h を 100~ 300mmの範囲で変化した.測定において,左手の位 置と胴体との間隔を樹脂製の支持材を用いて固定する ことで測定中一定な間隔 d_h を確保した.また,端末 の筐体と手の間に厚み5mmの樹脂製スペーサを挿入 した.これは端末の外装樹脂ケースを想定したもので ある.これに対応して FDTD 法計算では,図6に示 すように,手と端末との間に5mmの空間を確保した. 手のモデルは,親指(*Thumb*),他の4本の指を一体 化した部分 (Fingers) 及び手の甲 (Hand) によっ て構成した.また,3.3 で述べる効率の計算結果と測 定結果を一致させるために,手のモデルのグリッドを 他の部位より小さい1mm角に設定した.更に,端末 と手が重なる Z 方向の高さ(60mm)を測定と計算

図 5 操作状態 ($d_h = 200 \text{ mm}$) Fig. 5 Holding in the hand ($d_h = 200 \text{ mm}$).

図 6 手の解析モデル(水平断面) Fig. 6 Hand model.

で一致させた.

操作状態の E_{θ} 成分 XZ 面指向性を自由空間の指 向性と比較して図 5(a) に示す. d_h が 100~300 mm の範囲で指向性の変化はわずかであったため,ここで は $d_h = 200 \text{ mm}$ の結果のみを示した.胸装着状態と 同様に 5 人の測定平均値を丸点で示し,破線が自由空 間の結果である.

この結果から,人体正面側の垂直面指向性は操作状態と自由空間とで異なる形であることがわかる.特に, 自由空間においてヌル点である X 方向が,操作状態では最大放射レベルに近くなっていることが注目される.この現象により水平面放射レベルが増大するため, 3.4 で述べるように高い PAG が得られる.また,人体後方(-X)側上方(Z側)の放射レベルは胸装着状態に比べると高いが,人体後方(-X)側下方(-Z 側)の放射レベルは低くなっている.これはアンテナから見た反射体として,頭の断面積は比較的小さいが胴体の断面積が大きいことによると考えられる.このような垂直面指向性と人体の各部位との関連については,4.で詳細に考察する.

ここまで, 各装着状態の放射特性の特徴を E_{θ} 成 分 XZ 面指向性のみを用いて示した.これは E_{θ} 成 分 XZ 面が最も特徴を明確に表しているためである. ただし, E_φ 成分や他のカット面の指向性についても 測定を行い, その結果が計算結果とほぼ一致すること を確認している.これらの結果は,次節以降の効率や PAG の算出に用いられる.

3.3 効 率 η_{ac}

効率 η_{ac} を求めるために,本論文では主平面指向性 による推定方法 [12] を用いた.離散的なアジマス角度 ϕ_i で分割された垂直面の電力指向性の θ 及び ϕ 成 分をそれぞれ $G_{\theta}(\theta, \phi_i)$ 及び $G_{\phi}(\theta, \phi_i)$ として,これ らが吸収電力と不整合損失を含むものとすると,効率 η_{ac} は次式で近似できる.

$$\eta_{ac} \simeq \frac{1}{2n} \sum_{i=1}^{n} \int_{0}^{\pi} \left[G_{\theta}(\theta, \phi_{i}) + G_{\phi}(\theta, \phi_{i}) \right] \sin \theta d\theta$$
(2)

ここで, n は 2 以上の整数であり, n/2 は垂直面数 である.n を十分大きくすると式 (2) は真値に収束す るが, n が小さいと推定誤差が大きくなる.各装着状 態における推定精度を確認するために, FDTD 法計算 により求めたアジマス角度 10 度ステップの垂直面指 向性を用いて, n を変化した場合の効率の収束状況を 計算した.その結果を図7に示す.ここでは, n = 36 の場合を真値と仮定している.上段(a) が胸装着状態 であり,下段(b) が操作状態の結果を示す.この結果 から, n が 8 以上であれば,すべての条件において効

図 7 η_{ac} の推定誤差 Fig. 7 The estimated error of the η_{ac} .

率の推定誤差が 5%以内となり,実用上十分な精度が 得られることがわかる.しかし,n=4における推定 誤差は最悪で20%以上であり,これは実用上許容でき ない誤差といえる.

上記の確認から,測定では垂直面数を4(n = 8)として η_{ac} を求めた.したがって,指向性を測定する垂直面は,XZ及びYZ面にアジマス角±45度方向を加えた計4面に設定した.このようなアジマス角度45度ステップの垂直面指向性は,端末を装着した人体を回転台の上に置いて,4種類の角度で寝かせることで測定した.指向性測定において,装着状態や人体の身長にかかわらず,常に回転中心がアンテナの位置となるようにした.

図 8 に間隔の変化に対する η_{ac} と η_m の変化を示 す. η_m は入力インピーダンスから不整合損失分を算 出して求めた.入力インピーダンスは,図 1 に示す小 形発振器を取り外して小形コネクタを介して測定した. 上段 (a) に胸装着状態,下段 (b) に操作状態の結果を 示し, P_a の範囲が人体への吸収分, P_r の範囲が放射 分を示している.また, η_m と 100% との間が不整合 損失分 $(1 - \eta_m)$ となる.5人の人体から得られた測

図 8 効 率 η_{ac} Fig. 8 Efficiency η_{ac} .

定結果を矢印の範囲で示し,丸点及び四角点がその平 均値を示している.

 η_{ac} の偏差及びその平均値と計算結果の差が最も大 きいのは図 8 (a) に示す胸装着状態の $d_c = 35 \text{ mm}$ の 場合であり,計算結果が 80.8%であるの対して,測 定値は 68~80.5%で平均値は 74.3%であった.この ように胸装着状態の η_{ac} は $d_c = 35 \text{ mm}$ では高いが, $d_c = 10 \text{ mm}$ では約 18%まで劣化する.一方, η_m は 90~95%で変化が少ない. $d_c = 10 \text{ mm}$ では,電力の 約 73%が人体に吸収されており,それに対して不整合 損失分はわずかである.この結果は文献 [6] の「腹部 近接状態」に近い結果である.

操作状態では図 8(b) からわかるように, η_{ac} は間 隔 d_h によりほとんど変化せず 58~62% であり, η_m は 98% で一定である.これから,操作状態の η_{ac} は 近接する手及び腕への電力吸収に依存しており,頭及 び胴体の影響は小さいと考えられる.

3.4 パターン平均化利得 (PAG)

本節では,ここまで述べた各装着状態の放射特性を PAGを用いて評価する.PAG(*G_a*)は,水平面の電 力指向性から次式で求められる[1].

$$G_a = \frac{1}{2\pi} \int_0^{2\pi} \left[G_\theta \left(\frac{\pi}{2}, \phi \right) + \frac{1}{C_{VH}} G_\phi \left(\frac{\pi}{2}, \phi \right) \right] d\phi$$
(3)

ここで, C_{VH} はアンテナへ入射する到来波の交差 偏波電力比 (P_{θ}/P_{ϕ})であり, P_{θ} 及び P_{ϕ} はそれぞれ θ 及び ϕ 偏波の等方性アンテナで受信された移動通信 環境における平均電力である.ここでは, C_{VH} とし て市街地の一般的な値である 6 dB を用いた.

5人の人体の指向性測定結果から算出した PAG の 平均値を表 1 に示す.この結果から,胸装着状態の PAG は -8 dBd 以下と低く, dc により約 2.5 dB の 変化が見られる.この変化は ηac の変化にほぼ依存し ている.一方,操作状態の PAG は約 -4 dBd で一定 であり,胸装着状態に比較して 4~7 dB 高い.この差

表1	PAG		
Table 1	DAC		

100101111101							
胸装着状態							
$d_c [{\rm mm}]$	10	20	35				
PAG [dBd]	-11.1	-8.6	-8.6				
操作状態							
$d_h \; [mm]$	100	200	300				
PAG [dBd]	-3.7	-3.8	-4.2				

は,3.1及び3.2 で述べた垂直面指向性における水平 (X)方向の放射レベルの差に起因している.

操作状態の PAG(-4 dBd)は,一般的な携帯電話 用ホイップアンテナの通話状態の値(約-6 dBd)よ り2 dB 高く実用上十分な性能である.この値は腕時 計型無線端末用アンテナの通話状態の値[2]にほぼ近 い.これらの結果は,操作状態では近接する手及び腕 の影響をある程度おさえれば,比較的容易に高い実効 利得が得られることを示している.

-方,胸装着状態の PAG を向上するためには,ア ンテナと人体との間隔に依存する電力吸収の低減に加 えて,垂直面指向性を変化させて水平方向の放射レベ ルを向上することが必要となる.この際,垂直面指向 性が自由空間のそれと相似形であるので,カード型端 末用 λ/4 モノポールでは装着状態の評価を行うことな く,アンテナ単体の垂直面指向性に着目して指向性の 改善研究を行うことができる.

4. 人体の各部位による影響

前章までの垂直面指向性の測定はすべて実際の人体 を用いているため,大型の電波暗室と耐加重性能が高 い回転台が必要であった.仮に人体の特定部分をモデ ル化したファントムを使用できれば,測定系に求めら れるこれらの条件が緩和される.

また数値解析において人体全身を考慮すると, グ リッド数の増大による計算時間の増大とメモリ消費が 問題となる.実際に,前章で示した人体全身を含む FDTD法計算では, Pentium III 600 MHz の CPU と 512 MB のメモリを用いて 6~9 時間の計算時間を要 した.解析においてモデル化する人体の部位を限定で きれば計算時間を節約することができる.

各装着状態の放射特性の評価において必ずしも全身 を含める必要がなく,影響が極めて小さい部位は測定 または計算の対象から除くことが可能であると考えら れる.そこで本章では,人体の各部位が放射特性に与 える影響をFDTD法を用いて解析し,各装着状態に おいて考慮すべき人体部位を特定する.

まず初めに,人体の各部位が指向性に及ぼす影響を 調べるために,各部位を個別に削除した場合の指向性 の変化を計算した.その結果を図 9 に示す.左側 (a) は胸装着状態 ($d_c = 10 \text{ mm}$)の結果を示している.こ こでは,人体全身が存在する状態,全身から両足を削 除した状態及び胴体を残してそれ以外すべての部位を 削除した状態を実線,点線及び破線でそれぞれ示す.

論文 / 人体に装着された小形無線端末用アンテナの放射特性

図 9 指向性の変化 Fig. 9 The variation of the radiation patterns.

この結果から,全身と胴体のみの結果は一部を除い てほぼ一致している.人体後方(-X)側の下方(-Z) において差異が見られるが,絶対レベルが低いことと, 到来波仰角が水平方向付近に集中することを考慮する と,実効利得の評価においてこの差異は無視してよい と考えられる.したがって,胸装着状態の指向性の解 析や測定では,胴体のみを考慮すればほぼ実用的な結 果が得られるといえる.

次に,図9の右側(b)に操作状態($d_h = 100 \text{ mm}$) の結果を示す.ここでは,実線が人体全身を,点線が 手及び腕のみが存在する場合を,破線が全身から両足 のみを削除した状態(以下,上半身)をそれぞれ示す. この結果から,全身と上半身の結果は下方(-Z側) の一部を除いてほぼ一致することがわかる.これから 足の影響は無視できると考えられる.

一方,上半身の結果と手及び腕のみの結果には,人 体後方(-X)において大きな差が見られる.これは 頭及び胴体の有無による差であることから,頭及び胴 体の反射の影響は無視できないと考えられる.また, 手及び腕のみの指向性には自由空間の四つ葉形パター ンに対する差異が見られる.これは,端末に近接する 手の影響により筐体上の電流分布が変化することに起 因すると考えられる.このように手,腕,頭及び胴体 による影響は実効利得の評価に際して無視できない.

次に,各部位に吸収される電力の比率に着目した.人体全身が存在する状態における各部位の吸収比率を表 2 に示す.この結果は電磁界シミュレータ FIDELITY の機能(SAR Display)を用いて算出した.この機能は損失媒質の特定部分における吸収電力の総和を算出するものである.なおこの結果は, P_T を基準とした P_a の比率として示している.

表 2	各部位の電力吸収 P。
-----	-------------

Table 2 The P_a of each body parts.

	胸装着状態		操作状態		
	$d_c = 10 \mathrm{mm}$		$d_h = 100 \mathrm{mm}$		
部位	胴体	その他	手	腕	その他
P_a (%)	72.1	0.4	26.1	6.6	6.2

この結果から,胸装着状態の電力吸収は胴体に集中 していることがわかる.この結果と上記の指向性の結 果は対応しており,胸装着状態のアンテナ特性の解析 や測定に際しては胴体のみを考慮すればよい.

次に,操作状態の電力吸収はアンテナに近接している手と腕に集中していることがわかる.この結果と図8(b)に示す η_{ac} の変化が小さいことは対応している.このように, η_{ac} は特に手への電力吸収に依存することになる. η_{ac} の測定値は $d_h = 200$ mm において55.6~61.6%であり,5人の人体の偏差は6%と比較的小さい.これは,端末と手の間隔を5 mm,端末と手のZ方向の重なりを60 mm に固定することで,手の形や大きさなどの個人差の影響をおさえたことによる.手のモデルを同一条件に設定した計算結果の η_{ac} は60.8%と測定値にほぼ一致した.この結果から,上記の条件において図6に示すモデルはほぼ妥当であると考えられる.

このように頭及び胴体による吸収は少ないが,上記 の指向性の議論において頭及び胴体による反射の影響 が無視できない.したがって,操作状態のアンテナ特 性の解析や測定においては上半身すべてを考慮する必 要がある.

5. む す び

本論文では,代表的な装着状態として胸装着状態及 び操作状態の二つに着目し,これらの状態で人体に装 着されたカード型端末用 $\lambda/4$ モノポールアンテナの垂 直面指向性を2GHzにおいて測定した.また,FDTD 法を用いて個々の人体部位が放射特性に及ぼす影響を 解析した.結果から得られる結論を以下にまとめる.

(1) 胸装着状態

効率はアンテナと胸との間隔(10~35 mm)に依存 し18~80%の範囲で変化する.間隔10 mm では電力 の約73%が人体に吸収されるが,間隔35 mm では人 体は反射体に近い.人体正面の垂直面指向性は自由空 間のそれと相似形であり,水平方向がヌル点となるた めパターン平均化利得(PAG)が-8 dBd 以下と低 い.実効利得改善に際しての重要なポイントは,効率 の改善に加えて,アンテナ単体(自由空間)の垂直面 指向性において水平方向の放射レベルを向上すること である.電力吸収及び指向性ともに胴体の影響が支配 的であり,アンテナ特性の解析や測定において考慮す べき部位は胴体のみである.

(2) 操作状態

効率は約60%で一定であり,電力吸収は手及び腕に 集中する.垂直面指向性は自由空間とは異なり,水平 方向の放射が高くPAGが約-4dBdと高い.これは 端末の筐体上電流分布の変化と頭及び胴体の反射の影 響である.実効利得改善のポイントは,手への電力吸 収の低減に加えて,手の影響による垂直面指向性の変 化を含めて水平方向の放射レベルを向上することであ る.アンテナ特性の解析や測定に際しては上半身すべ てを考慮する必要がある.

(3) 本指針の一般性に関する考察

上記の結果から得られる指針は,カード型端末用 $\lambda/4 モノポールアンテナに限定されるものである.特$ に効率と PAG の絶対値や操作状態における手の影響は,ほかの種類のアンテナでは異なる結果となると考えられる.ただし,垂直面指向性が本論文のモデルに比較的近い小形端末アンテナ全般において,特に胸装着状態の垂直面指向性や考慮すべき人体部位に関して同様な指針が適用可能であると予想される.ほかの種類のアンテナに関する研究が今後の課題である.

謝辞 本研究にあたり,有益な御助言を頂きました 松下電器産業小川晃一氏に感謝します.電波暗室にお ける測定に御協力頂きました石川県工業試験場吉村慶 之氏,金沢大学山下貴寛氏,杉浦宏和氏に感謝します. また,本研究の機会を与えて頂きました松下通信金沢 研究所専務林敏彦氏に感謝致します.本研究は,科学 技術庁の平成11年度科学技術振興調整費による地域 先導研究「地域産業の発展に寄与する電磁波技術に関 する研究(超小型携帯無線機用アンテナの放射特性)」 の一環として行われた.

文 献

- T. Taga and K. Tsunekawa, "Performance Analysis of a Built-in Planar Inverted F Antenna for 800 MHz Band Portable Radio Units," IEEE J. Select. Areas Commun., vol.SAC-5, no.5, pp.921–929, June 1987.
- [2] 斎藤 裕,西木戸友昭,春木宏志,"2 GHz 帯腕時計型携帯 無線端末用アンテナの放射特性",信学論(B),vol.J82-B, no.10, pp.1937–1941, Oct. 1999.
- [3] 陳 強,吉岡弘貴, 猪狩和久,澤谷邦男, "人体の吸収 を考慮したアンテナ放射効率の測定法についての検討"
 信学技報, EMCJ98-43, pp.23-26, Sept. 1998.

- [4] J.Toftgard, S. Hornsleth, and J.B. Andersen, "Effects on portable antennas by the presence of a person," IEEE Trans. Antennas Propag., vol.41, no.6, pp.739– 746, June 1993.
- [5] 小川晃一,松吉俊満,門間健志,"人体頭部に近接したダ イポールアンテナの多重波中実効利得特性に与える肩の影響に関する基礎的検討",信学論(B),vol.J82-B, no.10, pp.1847–1856, Oct. 1999.
- [6] H.-R. Chuang, "Human operator coupling effects on radiation characteristics of a portable communication dipole antenna," IEEE Trans. Antennas Propag., vol.20, pp.556–560, April 1994.
- [7] 武藤 輝,新井宏之,"セラミックファントムを用いた携帯 端末の特性測定",信学技報,A·P99-147, pp.17-22, Nov. 1999.
- [8] FIDELITY, User's Manual for FIDELITY, version 2.0, Zeland Inc., 1999.
- [9] R. Yamaguchi, K. Sawaya, and Y. Fujino, "Effect of dimension of conducting box on radiation pattern of a monopole antenna for portable telephone," IEICE Trans. Commun., vol.E76-B, no.12, pp.1526– 1531, Dec. 1993.
- [10] 片木孝至,山田吉英,安藤 真,"「アンテナ・電波伝搬関 連新語解説集」編纂,"信学技報,A·P94-94, p.55, Dec. 1994.
- [11] H. Arai, N. Igi, and H. Hanaoka, "Antenna-Gain Measurement of Handheld Terminais at 900 MHz," IEEE Trans. Vehicular Tech., vol.VT-46, no.3, pp.537–543, Aug. 1997.
- [12] 斎藤 裕,松吉俊満,小川晃一,"主平面指向性による 携帯機アンテナの実効利得の推定方法",1999 信学総大, SB-1-8, March 1999.
- [13] 羽石 操,平沢一紘,鈴木康夫,小型・平面アンテナ,第
 2章,電子情報通信学会,1996.

付 録

式 (2) の導出に関する補足説明を行う.両偏波成分 の指向性 $|E_{\theta}(\theta, \phi)|$ 及び $|E_{\phi}(\theta, \phi)|$ が吸収損失及び不 整合損失の両方を含むものとすれば,放射パターン積 分法により効率 η_{ac} は次式で求められる [13].

$$\eta_{ac} = \frac{\int_0^{2\pi} \int_0^{\pi} \left[\left| E_{\theta}(\theta, \phi) \right|^2 + \left| E_{\phi}(\theta, \phi) \right|^2 \right] d\Omega}{Z_o P_T}$$
(A·1)

ここで, $d\Omega = r^2 \sin \theta d\theta d\phi$ であり, r は観測点ま での距離であり, Z_o は自由空間インピーダンスであ る.両偏波成分の指向性 $|E_{\theta}(\theta, \phi)|$ 及び $|E_{\phi}(\theta, \phi)|$ か ら電力指向性 $G(\theta, \phi)$ は次式で示される [13].

$$G(\theta, \phi) = \frac{P_r}{P_T} D(\theta, \phi)$$

$$= \frac{4\pi r^2}{P_T} S_r(\theta, \phi)$$

$$= \frac{4\pi r^2}{P_T} \frac{|E_{\theta}(\theta, \phi)|^2 + |E_{\phi}(\theta, \phi)|^2}{Z_o}$$
(A·2)

ここで, $D(\theta, \phi)$ は指向性利得であり, $S_r(\theta, \phi)$ はポインティングベクトルの r 方向成分である.式 (A·2) を各偏波成分の電力指向性の和 $G_{\theta}(\theta, \phi) + G_{\phi}(\theta, \phi)$ とおくと,式 (A·1) より η_{ac} は次式で与えられる.

$$\eta_{ac} = \frac{\int_0^{2\pi} \int_0^{\pi} \left[G_{\theta}(\theta, \phi) + G_{\phi}(\theta, \phi) \right] \sin \theta d\theta d\phi}{4\pi}$$
(A.3)

式 (A·3) の $G_{\theta}(\theta, \phi)$ 及び $G_{\phi}(\theta, \phi)$ を,離散的な アジマス角度 ϕ_i で分割された垂直面の電力指向性 $G_{\theta}(\theta, \phi_i)$ 及び $G_{\phi}(\theta, \phi_i)$ で表すと,式 (A·3) は式 (2) で近似できる.

(平成 12 年 3 月 21 日受付, 5 月 11 日再受付)

八木谷 聡 (正員)

昭 63 金沢大・工・電気情報卒.平2同 大大学院修士課程了.平5 同博士課程了. 同年同大電気・情報助手,現在,同助教授. 平9~10 米国ミネソタ大客員研究員(文部 省在外研究員).科学衛星及びコンピュー タシミュレーションによる磁気圏プラズマ

波動解析の研究,火星探査衛星(のぞみ)搭載用低周波波動観 測装置の開発に従事.工博.地球電磁気・地球惑星圏学会,米 国地球物理連合(AGU)各会員.

春木 宏志 (正員)

昭41東北大・工・電気卒.同年同大・工・ 電気通信研究所助手.昭44同大大学院修 士課程了.同年松下通信工業(株)入社. 以来,主として移動体通信機器及び移動体 通信用アンテナの研究開発に従事.現在, 同社マルチメディアソリューション研究所

主席技師.

斎藤 裕 (正員)

昭 59 石川高専卒.民間企業を経て,平 3(株)松下通信金沢研究所入社.以来,主 として移動体通信機器及び移動体通信用ア ンテナの研究開発に従事.現在,同社開発 部主任技師.金沢大大学院博士後期課程在 学中.IEEE 会員.

長野 勇 (正員)

昭43 金沢大・工・電気卒.昭45 同大大 学院修士課程了.同年同大電気助手,昭62 同電気・情報工教授.昭58~59 米国ジェッ ト推進研究所 NRC研究員.異方性不均質 媒質中の電磁界計算法,VLF 波による D 層電子密度計測法の開発,衛星搭載用プラ

ズマ波計測装置の開発に従事.工博.昭62地球電磁気・地球 惑星圏学会田中賞受賞.電気学会,テレビジョン学会,地球電 磁気・地球惑星圏学会,アメリカ地球物理学会各会員.