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SUMMARY 

This paper demonstrates numerical analysis of the dynamics and intensity noise of fiber 

grating semiconductor lasers (FGSLs). The induced phenomenon of strong optical feedback 

(OFB) is analyzed. The simulations are based on an improved time-delay rate equations 

model of a single-mode laser that takes into account the multiple round trips of the lasing 

field in the fiber cavity. The analyses are performed in terms of the temporal trajectory of 

the laser intensity, bifurcation diagram and relative intensity noise (RIN). We explore 

influence of the fiber-cavity length on the dynamics and RIN. The results show that when 

the fiber-cavity is short, the regime of strong OFB is characterized by either 

continuous-wave (CW) operation or periodic pulsation. The pulsation frequency is locked 

at the frequency separation of either the compound-cavity modes or the external fiber-cavity 

modes. The corresponding RIN level is close to or higher than the level of the solitary laser 

depending on pulse symmetry. When the fiber cavity is long, the laser exhibits unstable 

dynamics over wider range of OFB. Moreover, the strong-OFB pulsation becomes beating 

quasi-periodic at the relaxation oscillation frequency and the fiber-cavity mode-separation 

frequency.  

KEY WORS: Chaos, fiber grating laser, intensity noise, optical feedback, pulsation, 

semiconductor laser.  
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I. INTRODUCTION 

Systems of FGSL's have been employed in several applications of fiber-optic 

communications. As illustrated in the scheme of Fig. 1, a FGSL consists of a 

semiconductor laser with anti-reflection coating (ARC) on the front facet and high-

reflection coating (HRC) on the back facet. The laser is coupled with an external fiber 

cavity formed between the front facet and a fiber grating (FG). When subjected to 

intensity modulation, the FGSL, due to its structure, helps to lock the lasing mode 

stimulating the laser to operate in the so called "active mode-locking" [1,2]. These active-

mode locked lasers can be used as sources of short optical pulses with large locking range 

at a fixed control wavelength for use in high-speed optical communications [3]. Another 

typical application of FGSLs is the use as pumping sources in optical fiber amplifiers that 

are employed to compensate weakness of the transmitted optical signal along optical 

fibers in communication systems [4]. In such applications, the FGSL structure helps to fix 

the pumping wavelength at the FG peaked wavelength and to increase the pumping power. 

Due to the very low reflection coefficient (~10-4) of the AR-coated facet, the laser operates 

with an external fiber cavity of strong OFB at the lasing wavelength [5,6]. Recent 

investigations of the operation characteristics of these lasers have indicated that the device 

may operate in CW or pulsation (periodic or quasi-periodic) even when injected with dc 

current, depending on the lasing conditions and the system configuration [7,8]. A vital 

issue of FGSLs is the intensity noise on the emitted signal which measures performance of 

the application systems [4]. An important design parameter of the FGSL is the length of 

the external fiber cavity, which should be optimized to emit laser radiation with minimum 

intensity noise and stable spectrum. Most previous studies of lasers under OFB relied on 

the Lang-Kobayashi model, which treats the OFB as a perturbation of the electric field 

due to a round trip in the external cavity [9]. Although this model is suitable to weak and 
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rather moderate OFB, appropriate modifications to adopt it for cases of strong OFB have 

received little attention [7,10-12].      

In [7] an improved model of semiconductor lasers working under OFB has been proposed 

basing on a time-delay rate equation model of both the intensity and phase of the electric 

field and the number of injected electrons. A typical feature of that model is the ability of 

analyzing laser dynamics under an arbitrary OFB strength ranging from weak of very strong 

OFB [7,13]. The model has been successfully applied to investigate the dynamic 

characteristics and RIN of semiconductor lasers coupled with a long fiber cavity [7,8,14]. It 

was shown that the laser works under stable CW operation with suppressed relative 

intensity noise (RIN) in the weak OFB regime. When the OFB strength increases, the laser 

suddenly enters a region of chaos characterized by enhanced levels of RIN. This chaotic 

dynamic characterizes the regimes of intermediate and rather strong OFB [7,8,14]. Further 

increase of the OFB strength was found to bring the laser into a regime of frequency locking 

with the locked-frequency being determined by the fiber-cavity length [7]. Influence of the 

length of the external cavity on the FGSL dynamics, however, has not been considered.  

 In this paper, we simulate the operation characteristics, dynamics and spectral profiles of 

RIN of 980nm-InGaAs FGSL. We are aimed at exploring the OFB parameters that 

correspond to stable operation and low RIN; Namely, the relative reflectivity of the FG 

compared with the reflectivity of the ARC-front facet, and the length of the fiber cavity. We 

consider both cases that the fiber cavity length corresponds to an external-cavity 

mode-frequency separation higher and lower than the relaxation oscillation frequency. The 

analyses are made in terms of the temporal trajectory of the photon number, the 

corresponding bifurcation diagram and the spectrum of the RIN.  The results show that the 

laser operation is almost periodic with frequency locking at the compound-cavity 

mode-separation frequency or the external-cavity mode-separation frequency under strong 

OFB depending on the length of the fiber cavity. When the fiber cavity is short, the 
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operation is almost stable characterized by either pulsation or continuous wave, and the 

route-to-chaos is almost period doubling. The regime of long-fiber cavity is characterized 

by high levels of low-frequency RIN and a quasi-periodic route-to-chaos. Lengthening the 

fiber cavity results in further promotion of the low-frequency components of RIN. 

The paper is structured as follows. The simulation model of laser dynamics and RIN is 

given in the next section. Section 3 presents the procedures of applying the proposed model 

in computer simulation. In section 4, we demonstrate variation of the power emitted from 

the FG with OFG strength, and the simulation results of laser dynamics and RIN under 

different lengths of the fiber cavity. The conclusions are given in section 5. 

 

2. COMPUTER SIMULATION MODEL 

The proposed model of analysis of OFB of a FGSL is schematically illustrated in Fig. 2. 

The light emitted from the laser front facet at a time t travels multiple round-trips in the fiber 

cavity. This cavity is characterized by the reflectivities Rf and RG of the ARC-facet and the FG. 

During each round trip, the time delayed laser light reflected by the FG injects into the laser cavity 

through the front facet. The time duration of each round-trip is cLn FF2=τ , with LF and nF as 

the length and refractive index of the fiber cavity, and c as the speed of light in vacuum. 

Therefore at a time t at the front facet, the photon number S(t) inside the cavity is 

influenced by the time-delayed photon numbers S(t-mτ), where m=1, 2, 3,.. is a roundtrip 

index. Influence of the phenomenon of OFB on laser dynamics is described by the 

following time-delay rate equations of the photon number S(t), optical  phase θ(t) and 

injected electron number N(t) [7,13]: 
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where A and B are linear and nonlinear coefficients of optical gain GD, respectively. They 

are practically given as linear functions of the electron number N [15], 

                                                          ( )gNN
V
aA −=
ξ  ,                                                             (4) 

                                                          ( )sc NNBB −=    .                                                          (5) 

The term VNaξ  in Eq. (1) indicates the rate of inclusion of the spontaneous emission into 

the lasing mode. The parameters in the above equations are defined as follows. 

a   = a tangential coefficient of linear gain A versus electron number N 
ξ    = field confinement factor in the active region 
V   = volume of the laser cavity 
LD = length of the laser cavity 
nD = spatial-average of refractive index of the cavity 
Ng = electron number at transparency 
Ns = electron number characterizing nonlinear gain coefficient B 
BBc = coefficient for nonlinear gain 
N  = time-average value of N 
λ    = emission wavelength 

2
cvR  = squared-absolute dipole moment 

Gth0 = threshold gain in the solitary laser 
α    = linewidth enhancement factor 
I     = injection current 
τs   = electron lifetime due to spontaneous emission 
τin  = intraband relaxation time 
e    = electron charge. 

 

The OFB is counted in terms of the function U and its argument ϕ, which are defined in 

terms of the round-trip time τ as [13]: 
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where ψ  is a phase term combining the phase changes due to reflection by the FG, φG, and 

front facet, φf, and due to a round-trip in the fiber cavity, ωτ with being the circular 

frequency of the emission;  

                                                       ωτφφψ ++= fG                                                                      (7) 

The strength of OFB is measured by the coefficient , which is determined by the ratio of 

FG reflectivity R

exK

G to the front-facet reflectivity Rf as, 

                                                  ( ) fGfex RRRK η−= 1 ,                                                           (8) 

where η  is the coupling ratio of the externally reflected light into the laser cavity. The 

argument ϕ  of the complex feedback function U is obviously given by: 

                                              { } πϕ l+−= − ]Re[]Im[tan 1 UU ,                                                   (9) 

where ℓ is an integer. Determining the value of ϕ  in the two-dimensional space 

(Re[U]-Im[U]) depends on both the signs and magnitudes of Re[U] and Im[U].  

The terms FS(t), Fθ(t) and FN(t) are Langevin noise sources of a Gaussian type with zero 

means, and satisfy the following cross-correlations [16,17]: 

                                                 )'( )'( )( ttVtFtF abba −= δ    ,                                                  (10) 

where a and b stand for either S, N or θ . These random terms are added to the rate equations 

to account for the quantum noises associated with inclusion of the spontaneous emission 

and recombination processes of charge carriers into the lasing process. The correlation 
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variances Vab are determined from the steady-state solutions S  and N of Eqs. (1)-(3). 

The noise content of the photon number fluctuations is determined in terms of the RIN. 

The RIN is calculated from the fluctuations StStS −= )()(δ  of  via the following 

equation [16]: 

)(tS
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where Ω is the Fourier frequency and S  is the time-average value of S(t). 

 In applications of the FGSL as a pumping source of an optical fiber amplifier, it is 

important to examine influence of the external OFB on the power emitted from the fiber 

grating PG. This power is calculated based on a traveling wave model of the lasing field in 

the laser and external cavities as [7],  
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where X is another OFB function describing transmission of the lasing field in the external 

fiber cavity, and is given by.  
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3. PROCEDURES OF NUMERICAL CALCULATIONS 

In the present calculations, we employ parameters of a 980 nm InGaAs fiber grating laser 

shown in Fig. 1. Typical values of such parameters are listed in Table I. At a give injection 

current level I, rate equations (1)-(3) are solved numerically by means of the fourth-order 

Runge-Kutta method. The time step of integration is set as short as ps 5=Δt  to guarantee 

fine resolution of the OFB-induced dynamics. This small time step tΔ  corresponds to a 

cut-off frequency much higher than the external-cavity mode-separation frequency 

τ1=exf . Three roundtrips, m=1, 2, 3, are counted in the calculations. Counting more 

roundtrips was found not to affect the simulated laser dynamics. The integration is first solved 

without OFB (the case of the solitary laser) from time t=0 until the first round trip time τ. The 

calculated values of )0( τ→=tS  and )0( τθ →=t  are then stored for use as time delayed 

values )( τ−tS  and )( τθ −t  for integration of the rate equations over the period ττ 2→=t  

including OFB terms. Then the calculated values )( τ−tS , )2( τ−tS , )( τθ −t  and )2( τθ −t  are 

used as time delayed values for integration over the period ττ 32 →=t . This process continues for 

the third round trip. The integration is then proceeded over a long period of time T=3~4 μs during 

which the operation state is stabilized [8] by considering all terms of )( τmtS −  and 

)( τθ mt − as time delayed values. The combined phase ψ  is arbitrary and is set to zero in the 

present calculations. The RIN is then computed directly from the obtained values of by 

employing the fast Fourier transform (FFT) to integrate the discrete versions of Eq. (11) as: 

)(tS

2
2

2 )]([1
itSFFT

T
t

S
RIN δΔ

≡ ,                                                           (14) 

In order to perform the above calculations, discrete generations of the noise sources 

FS(ti), FS(ti) and Fθ(ti) at each instant ti are necessary. These processes require enough care 

in order to satisfy the mutual cross-correlations among the noise source at each time ti. 

These cross-correlations are manifests of the cross-correlation between S and N during the 



 9

lasing action. In this paper, we follow the self-consistent technique proposed by Ahmed et 

al. [16,17] to adopt such generation processes. The obtained forms of the noise sources 

are: 
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In the above equations, gS, gθ, and gN are three independent Gaussian random numbers 

with means of zero and variances of unity. They are obtained at each integration step by 

applying the Box-Mueller approximation [18] to a set of three uniformly distributed 

independent random numbers generated by the computer. 
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4. SIMULATION RESULTS AND DISCUSSION 

4.1. CW-based study of influence of OFB parameters on power emitted from FG 

We elucidate dependency of the power PG emitted from the FG on OFB parameters; namely, 

OFB strength Kex and fiber cavity length LF, by assuming CW operation of the laser. The 

CW operation (steady state solutions of rate equations (1)-(3)) is obtained on the condition 

that the photon number S(t) inside the laser cavity and time-delayed number S(t-mτ) are the 

same, 

                                                            ( ) ( )tSmtS =− τ                                                                  (22) 

By setting the combined phase as ψ=ωτ, i.e., phase change of the lasing field due to a 

round-trip in the fiber cavity, the summations of U and X in Eqs. (6) and (13) are collected 

as, 
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The threshold gain under OFB then becomes: 

                                                     c
DD

ththc U
Ln
cGG ln0 −=                                                   (25) 

which determines the injected electron number Nthc and injection current Ithc at threshold as: 
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At an injection current above threshold, I>Ithc, the photon number in the laser output is well 
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approximated as 

                                                                 
thc
thc

c eG
IIS −

=                                                                 (28) 

The CW emitted power PGc is then calculated via Eq. (12) using Sc, Uc and Xc. Figs. 3(a) and 

(b) plot variations of PGc with the OFB strength Kex and fiber cavity length LF, respectively, 

when I=5Ith0 with Ith0 as the threshold current of the solitary laser. Fig. 3(a) corresponds to 

fiber cavity lengths of LF=5, 20 and 50 cm. The figure shows that for LF=5 and 50 cm, the 

increase of OFB strength is associated with slow increase of PGc in the weak OFB regime 

followed by a fast increase in the strong regime up to the vicinity of Kex≈7. On the other 

hand, when LF=20 cm, PGc decreases with the increase of Kex up to Kex=0.95 at which PGc 

changes to increase up to the vicinity of Kex≈7. At this particular OFB strength, the term 

( 2)1( fexf RKR − )  in Eq. (12) becomes unity and PGc becomes zero. In the vicinity of the 

critical value of Kex, the threshold gain Gthc approaches zero. This critical value of Kex shifts 

toward weaker OFB with the increase of Rf. Fig. 3(a) shows also that further increase of Kex 

results in sharp increase of the power PGc over a narrow range followed by a rapid decrease. 

On conclusion, the strong OFB regime corresponds to effective increase of PGc with the 

variation of OFB strength. Fig. 3(b) illustrates the influence of fiber cavity length LF on PGc 

at particular OFB strengths of Kex= 0.2 and 2. The figure plots the variation of PGc with LF 

over an optical length nFLF equal to five orders of the emission wavelength. The figure 

shows the property of periodic variation of PGc with variation of LF as a manifest of the 

standing-wave pattern formed in the fiber cavity; PGc is maximum when nFLF.is an odd 

number of λ/4 and minimum when nFLF.is an even number of λ/4. The amplitude of power 

oscillation is higher for Kex=2 than for Kex=0.2 as inferred from Fig. 3(a).  
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4.2. Short fiber-cavity: time variation of laser intensity and frequency spectra of RIN 

Fig. 4 plots the simulation results of the photon number S(t) and RIN characterizing possible 

laser operations under OFB in the limit of short fiber cavity, LF=1 cm. The injection current 

I is set well above the threshold, I=5Ith0. This case of short fiber cavity corresponds to the 

case that the external cavity mode frequency separation GHz 10  2 == FFex Lncf  is higher 

than the frequency of the relaxation oscillation, GHz 4.1 ≈rf . Figs. 4(a)-(e) plot the 

temporal trajectories of S(t), while Figs. 3(f)-(j) plot the corresponding Fourier-frequency 

spectra of RIN. The RIN spectrum of the solitary laser is also plotted in Figs. 4(f)-(j) with 

dashed lines for comparison. Figs. 4(a) and (f) correspond to the CW operation 

characterizing the weak regime of OFB, Kex=0.03. Fig. 4(a) shows that the emitted photon 

number S(t) fluctuates around its average value S . The amplitude of the fluctuations is 

comparable to that of the solitary laser. Fig. 4(f) shows that the RIN spectrum is almost 

coincident with that of the solitary laser exhibiting the pronounced peak at fr. This means 

that the OFB is not strong enough to change the relaxation oscillation of the laser. 

Figs. 4(b) and (g) correspond also to the weak OFB regime but with stronger OFB, 

Kex=0.07. The figures correspond to pulsing operation; Fig. 4(b) shows regular pulsation 

with duration of 1/fr. These pulses are generated because the OFB becomes strong enough 

to reduce the damping rate of the laser and undamp the relaxation oscillation. The RIN 

spectrum shown in Fig. 4(g) exhibits very high and sharp peaks around fr and its higher 

harmonics. Compared with the RIN spectrum of the solitary laser, the low frequency (LF) 

part of the RIN spectrum is more flat (white noise) and higher (more than two orders of 

magnitude). This increase of RIN is because the laser pulses have sharp peaks but are 

broaden at the tails.  

Figs. 4(c) and (h) plot the most noisy operation suffered by the laser in the intermediate 

range of OFB, Kex=0.21. This operation state is known as chaos and is associated with 
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extreme broadening of the laser spectral line [13,19]. Fig. 4(c) indicates irregular time 

variation of S(t) with the time variation. Fig. 4(h) shows that the entire RIN spectrum is 

about four-orders of magnitude higher than that of the solitary laser, which is a typical 

feature of chaotic operation [12,13,20,21]. The high-frequency peaks of the RIN spectrum 

are well suppressed compared with those of the pulsing operation. 

Figs. 4(d) and (i) characterize another type of regular pulsation induced in the regime of 

strong OFB, Kex=2.57. Compared with the weak OFB-induced pulsation in Fig. 4(d), the 

pulsation becomes faster. The pulse duration is nearly 1/fc with ( )FFDDc LnLncf 22 +=  

as the frequency separation of the compound cavity modes (combining both the laser and 

external cavities). This result is confirmed by the frequency spectrum of RIN of Fig. 4(i) 

which exhibits very sharp and high two peaks around fc and its second-order harmonic. This 

effect indicates that the laser follows the resonance condition of the compound cavity rather 

than the laser cavity itself. The LF-part of the RIN spectrum is nearly two orders of 

magnitude higher than that of the solitary laser; it is lower than the level characterizing the 

weak OFB-induced pulsation shown in Fig. 4(g).    

Figs. 4(e) and (j) characterize the CW operation exhibited in the regime of strong OFB, 

Kex=4.0. Fig. 4(e) shows that the amplitude of fluctuations of S(t) is comparable to that of 

the solitary laser. Fig. 4(i) shows that the LF-part of the RIN spectrum is almost coincident 

with that of the solitary laser. However, the high-frequency regime of the RIN spectrum is 

characterized by a weak peak around fex not around fr that distinguishes the CW operation 

induced under weak OFB. 

 

4.3. Short Fiber-Cavity: Bifurcation diagram and low-frequency RIN 

In this subsection we numerically classify the influence of the OFB on the laser 

dynamics in terms of the bifurcation diagram. The bifurcation diagram is a convenient 
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method to analyze the laser dynamics and explore the OFB range corresponding to possible 

states of laser operation [20]. The diagram is calculated numerically at a constant current of 

5Ith0, and is constructed by picking up the peaks Speak(t) of the time-varying photon number 

S(t) normalized by the time-average value S  at each OFB strength Kex. It has been common 

to drop the Langevin noise sources in such calculations. However it has been shown that the 

intrinsic fluctuations of S, θ, and N represented by the instantaneous generations of these 

noise sources may dramatically change the state of laser output [8]. In the present 

calculations, we include such random generations seeking more general analysis. The 

simulated bifurcation diagram is shown in Fig. 5(a). The figure shows that the laser still 

operates stably in CW under small values of Kex. These CW dynamics are plotted in the 

figures as points with small values of Speak that represent small fluctuations of S(t) around S . 

At a certain value of Kex=0.043, which represents a Hopf-bifurcation point, the laser output 

becomes periodic as the relaxation oscillations become undampled. The result is then 

plotted as a single point in the bifurcation diagram (or several closed points that represent 

fluctuations of Speak(t) as manifest of the Langevin noise sources). As discussed above, this 

pulsation is characterized with the relaxation oscillation frequency fr. At another critical 

OFB strength Kex≈0.078, the point last point of periodic pulsation bifurcates into two points 

indicating that the laser emits pulses with period doubling. The pulsation in the period 

doubling region (Kex=0.078~0.088) is characterized with the sub-harmonic frequency fr/2. 

With further increase of Kex, bifurcation into multiple paths occurs enhancing dynamic 

irregularities in the laser output and bring the laser into chaotic dynamics. This description 

is known as period-doubling route-to-chaos and characterizes the case of short-external 

cavity case [21]. The chaos region ends when Kex≈0.22 at which the laser changes suddenly 

to CW operation. By further increase of the OFB strength, the laser enters a region of 

frequency locking at which the laser operates with regular pulsation as characterized in Figs. 
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4(d) and (i). The most far points of this region (with strongest OFB) are characterized with 

fex as a locking frequency. 

In Fig. 5(b), we plot the corresponding variation of the LF-RIN averaged over the 

Fourier-frequencies f<100 MHz. The figure shows that the regions of CW operation are 

characterized with lowest LF-RIN levels (-175dB/GHz), while the region of chaotic 

operation (Kex=0.11~0.22) is described by the most enhanced LF-RIN levels 

(-155~-135dB/GHz). The regions of periodic pulsation in either weak or strong OFB limit 

are characterized in general by high LF-RIN levels in the range (-165~-155dB/GHz). 

However, at some OFB strengths the LF-RIN levels approach the level of the CW operation. 

In such cases, the produced pulses are symmetric with respect to the mean photon number. 

 

4.4. Influence of Fiber-Cavity Length on Laser dynamics 

We also use the bifurcation diagram to study influence of the length of the fiber cavity LF 

on the laser dynamics at arbitrary strength of the OFB. The simulated bifurcation diagrams 

corresponding to different cavity lengths of LF=10, 20 and 80 cm are shown in Fig. 7(a)-(c), 

respectively. When the fiber length LF is 10 cm, Fig. 6(a) shows that the period doubling 

disappears and the route-to-chaos becomes quasi-periodic because fex becomes 1 GHz 

which is lower than fr≈4.1 GHz [21]. In this case the range of OFB strength, 

Kex≈0.043~0.056, over which the laser emits regular pulsation on the route-to-chaos 

becomes narrow compared with Fig. 5(a) of LF=1cm. In Fig. 6(b) of LF=20 cm, the 

route-to-chaos can still be seen and the range of Kex corresponding to regular pulsation 

becomes much narrower. When LF becomes 80 cm Fig. 6(c) shows that the 

quasi-route-to-chaos hardly appears and the chaos decade becomes wider than the cases of 

shorter fiber cavities; it extends over Kex≈0.05~0.37. Following this chaos decade, another 

chaotic operation is seen around Kex=0.52. Therefore, the longer the fiber cavity is, the 
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wider is the range of OFB over which the RIN is enhanced. Another interesting feature 

associated with increasing LF is that the region of frequency locking characterizing the 

strong–OFB regime of LF=1 cm is no longer periodic with the increase of LF. Instead, the 

laser follows a route to quasi-periodicity with beating pulsation. This is seen as three points 

of Speak(t) in the bifurcation diagram of Fig. 6(c) of  LF=100 cm, and two points in the 

diagrams Fig. 6(a) and (b) of  shorter cavities LF=10 and 20 cm, respectively.  

In Fig. 7 we characterize the temporal trajectory of S(t) and the RIN spectrum of this 

route-to-periodicity induced under strong OFB when Lex=20 cm. Figs. 7(a) and (b) plot the 

temporal trajectories of S(t), while Figs. 7(c) and (d) plot the corresponding RIN spectra. 

Fig. 7(a) and (c) show that when Kex=3, the laser operates in regular pulsation at fr in similar 

fashion to the route-to the weak-OFB chaos decade. The RIN spectrum shown in Fig. 7(c) 

exhibits very high and sharp peaks around fr and its second harmonic. The LF-part of RIN is 

little higher than that of the regular pulsations induced under both weak and strong OFB of 

Figs. 4(g) and (i), respectively. Fig. 7(b) shows that when Kex increases to 3.1, the laser 

dynamics becomes quasi-periodic with two peaks characterizing beating pulsation. The 

peaks of equal and higher peaks have fine time duration of 1/fr=0.25ns, while the lower 

peaks have wider duration of 1/fex=2 ns. This behavior is confirmed in the RIN spectrum of 

Fig. 7(d), which shows sharp peaks at fex=500MHz and its higher harmonics as well as a 

broad peak around the relaxation frequency fr≈4.1 GHz. Fig. 7(d) shows also that the 

LF-RIN becomes lower than the case of Kex=3, but is still higher than that of the solitary 

laser.    
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5. CONCLUSIONS 

We numerically characterized the dynamics and RIN of FGSLs. Influences of OFB 

and fiber-cavity length are demonstrated basing on a model of time-delay rate equations. 

The analyses are achieved by means of the bifurcation diagram including the Langevin 

noise sources.  Based on the simulated results, we can trace the following conclusions. 

(1) Regardless of the fiber-cavity length, the laser operates in CW or pulsation under 

weak OFB and chaos under intermediate OFB. The route-to-chaos is period 

doubling for short fiber cavities and quasi-periodic for long cavities. 

(2) Under chaotic dynamics, the low-frequency RIN level is almost four orders of 

magnitude higher than that of the solitary laser 

(3) When the fiber-cavity is short, the regime of strong OFB is characterized by either 

CW operation or regular pulsation with the pulsation frequency locked at the 

frequency separation of the modes of either the compound or fiber cavity. 

(4) When the fiber-cavity is long, the pulsation becomes quasi-periodic of a beating 

type characterized by RIN levels two-orders of magnitude higher than that of the 

solitary laser. 

(5) The RIN level of the laser under pulsing dynamics is close to or higher than that of 

the solitary laser depending on symmetry of the pulses. 
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TABLE I 

TYPICAL VALUES OF THE PARAMETERS USED IN THE SIMULATIONS                                                           
OF 980-nm InGaAs FIBER-GRATING LASERS 

Parameter Value Unit 
Slope of linear gain  a 2.75x10-12 m3s-1

Refractive index in fiber cavity nex 1.5 -- 
Length of fiber cavity  Lex varied  

Electron number at transparency  Ng 1.89x108 --- 
Coefficient of nonlinear gain B

 

 

Bc 1.47x10-6  s-1

Electron life time   τs 2.79  ns 
Linewidth enhancement factor  α 2 -- 
Refractive index of laser cavity nD 3.5 --- 

Length of the active region LD 800  μm 
Volume of the active region  V 400  μm3

Field confinement factor  ξ 0.1 --- 
Reflectivity at the front facet  Rf 0.02 -- 
Reflectivity at the back facet  Rb 0.98 -- 

Threshold gain Gth0 of solitary laser 2.11x10-11 s-1

Threshold current Ith0 of solitary laser 45 mA 

 

 

 

 

 

 

 

 

 

FIGURE CAPTIONS 

Fig. 1. Schematic diagram of a FGSL. 
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Fig. 2. Model of analysis of laser diode operating under OFB. 

Fig. 3. Variations of the CW power PGc with (a) OFB strength Kex, and (b) fiber cavity 

length LF, respectively, when I=5Ith0. The periodic variation of PGc with variation 

of LF is a manifest of the standing-wave pattern formed in the external cavity.

Fig. 4. Simulation results of short fiber cavity, LF=1 cm: (a)-(e) temporal trajectories of 

S(t), and (f)-(j) RIN spectra when Kex=0.03 (CW), Kex=0.07 (pulsing), Kex=0.21 

(chaos), Kex=2.57 (pulsing), Kex=3.0 (CW), respectively.   

Fig. 5. (a) Bifurcation diagram of S(t), and (b) LF-RIN of a FGSL with short fiber cavity, 

LF=1 cm. The operation is almost CW under weak and strong OFB having low 

RIN levels. When the laser operated in chaos, it exhibits most enhanced RIN. 

Under strong OFB, the laser happens to emit pulsation.  

Fig. 6. Bifurcation diagrams of S(t) under fiber cavities of length (a) LF=10 cm, (b) 

LF=20 cm, and (c) LF=80 cm. The route-to-chaos becomes quasi-periodic for long 

fiber cavities. The dynamic instabilities promote with the increase of LF.  

Fig. 7. Simulation results of long fiber cavity, LF=20 cm: (a) and (c) temporal trajectories 

of S(t), and (c) and (d) RIN spectra under strong OFB, Kex=3.1 and 3.1, 

respectively. Kex corresponds to periodic pulsation with fex and Kex corresponding 

to beating pulsation with fex and fr. 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6. 
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Fig. 7 


