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White-light interference has changes in fringe contrast. When phase-shift techniques are 

applied to white-light interference, the phase-shift algorithm which can extract the phase 

accurately under the contrast changes is required. There is often another requirement that 

the phase shift between frames should not be restricted to π/2. Computer simulations 

show that the well-known algorithms have non-negligible errors under both requirements. 

To find an algorithm which will satisfy the requirements, I extract individual terms (Ij m 

Ik) in an algorithmic equation by considering symmetry of light intensity against phase, 

where Ij is light intensity just after the j-th phase shift. Using computer simulations, I 
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search for appropriate coefficients by which the terms are multiplied in the equation, 

finally finding an algorithm which satisfies both the requirements with the phase shift 

used. 

 

KEYWORDS: phase shift, algorithm, white-light interferometer, fringe contrast, error 

estimation, computer simulation 
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1. Introduction 

Application of white-light interferometry is expanding in the field of optical testing 

of precision products. This is thought to be primarily due to the fact that the 

interferometry is capable of measuring three-dimensional (3-D) shapes of step-like 

objects, and secondly due to its high vertical resolution1). Many kinds of micro step-like 

objects are newly designed and now produced as key elements of Micro 

Electro-Mechanical Systems (MEMS). Newly designed and test-produced parts require 

speedy and precise estimation of their 3-D shapes using high resolution technology. An 

interference microscope using white light is suitable to measure 3-D shapes of small 

objects like key elements related to MEMS.  

In 3-D shape measurement with nanometric vertical resolution, the white-light 

interferometer is combined with a phase-shift technology. The combined system makes 

incremental vertical step movements related to phase shifting and captures 

interferograms. After repeating these processes one way over a measured range it 

searches the maximum contrast interferogram whose capturing point depends on the 

height at the measurement position. The searched interferograms are analyzed with a 

phase-shift algorithm and the 3-D shape is finally measured with the nanometric 
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resolution of the phase-shift algorithm.  

Used algorithms, however, have not been developed for white-light interference, 

but have been developed only for monochromatic light interference as far as I am aware. 

It was assumed that interference light intensity changes have a constant contrast. Reasons 

why such algorithms are used even for the white-light interference are thought to 

emanate from that the algorithms used do not seem to make conspicuous errors even in 

white-light interference; many kinds of algorithms have been developed, and numerous 

analyses of them have been done. In white-light interference, however, the contrast is at 

its maximum at the optical path difference (OPD) of zero and sharply decreases when the 

absolute value of OPD increases. Therefore, the phase-shift algorithm required in a 

white-light interferometer must have the capability of extracting phase accurately from 

the interference which has contrast changes.  

There is often another requirement: that the algorithm should work with a phase 

shift other than π/2. Because of inaccurate calibration of phase shifters, numerical 

aperture (NA) effect2) of an used objective lens, restricted capture conditions or others, 

the phase shift might differ from π/2. Thus, there has been a great deal of research to 

develop algorithms using such a phase shift in monochromatic light interference. When 
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the phase shift is not π/2 but is constant, the difference from π/2 is called a linear error in 

phase shift. In the phase-shift technologies combined with white-light interferometry the 

linear shift error seems to make a non-negligible error in phase extraction. An ideal 

algorithm would be insensitive to an unknown linear shift error. When it is difficult to 

develop the ideal algorithm, an acceptable algorithm must be insensitive to the linear 

shift error known, because such linear shift errors can be determined from captured 

interferograms3). 

In the first half of this paper, computer simulation is carried out to estimate errors 

which are retained by applying well-known algorithms to the white-light interference. 

The estimated algorithms are of 4-frame Carre4), simple 4-frame5), 5-frame Hariharan6), 

7-frame Groot7), 5-frame in Schmit8), and 6-frame in Hibino9).  Among the algorithms 

the one satisfying the former requirement is found to be the 7-frame Groot algorithm. In 

fact, it has a very low error when interferograms are captured with π/2 shift. However, 

under both the requirements all the estimated algorithms have non-negligible errors. 

 In the second half of the paper, I develop a new algorithm that satisfies both 

the requirements. The linear shift error described here means that the phase shift is 

known but is not π/2. In the development, I use symmetry of light intensity against phase 
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in white-light interference. Combining symmetry and computer simulation, I find an 

algorithm satisfying both the requirements. 

 The algorithm I find is different from the well-known basic form in which the 

equational expression has sine components in the numerator and cosine components in 

the denominator10). In addition, it works for a high-speed precision profilometer using a 

phase shift greater than 2π11). This profilometer is one of white-light interferometers, but 

uses two extremely short-coherent light sources that have different center wavelengths, 

503 nm and 591 nm. In this profilometer the phase shift is calculated as 6.36 π for 503 

nm and 5.41 π for 591 nm. Both shifts differ from (integer + 1/2)π. Computer simulation 

shows that such a large phase shift can be used with the algorithm found.  

 

2. Error Estimations of Representative Algorithms for White 

-Light Interference 

 

One can find many phase-shift algorithms in published papers. They were 

developed for real fringes including different kinds of errors. Some are insensitive to a 

linear error in phase shift, some are insensitive to non-linear errors in phase shift. All are 
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developed under the assumption that interference fringes have a constant contrast. 

However, there is a possibility that some of them can accurately extract phase even of 

white-light interference. Therefore, error estimations should be made if they are applied 

to white-light interference.  

 Estimations are made on 6 representative phase-shift algorithms. They are 

4-frame Carre4), simple 4-frame5), 5-frame Hariharan6), 7-frame Groot7), 5-frame in 

Schmit8), and 6-frame in Hibino9) algorithms. There are many other algorithms and still 

others may be in development12), but they are not identified here, because of restricted 

space in the paper.  

 In error estimations, I use a computer to make simple light-intensity changes 

having contrast changes and noise. Light intensities Ij expressed by the following are 

used,  

 

                     ( )2exp cosj j j jI A B E N Rϕ ϕ= + − ⋅ + ⋅  ,                 (1) 

 

where j is sampling number, A and B are constants related to the reference and object 

light intensities, and A works as an offset. E characterizes the contrast changes, ϕj is 
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phase, N characterizes noise intensity, and Rj is a random number whose statistical 

distribution is uniform from -0.5 to 0.5. Phase ϕj is related to OPD at the j-th sampling 

moment, OPDj, by the next equation, 

 

2 j
j

OPD
ϕ π

λ
=  ,                             (2) 

 

where λ is the center wavelength of an extremely short-coherent light.  

 

2.1.  4-frame Carre algorithm4)

The Carre algorithm is the oldest one that is insensitive to a linear error in 

phase shift α. This algorithm is described by eq. (3), 

 

( ) ( ){(
( )} ( ) )

2 3 1 4

1 / 2
1 4 2 3 2 3 1 4

arg 3C i I I I I

I I I I I I I I

ϕ ⎡ ⎤= − − −⎣ ⎦

− + − + + − −
,           (3) 

 

where i means the unit imaginary and Ij are given from eq. (1) by changing ϕj with the 

next equation, 
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( )0 2 5
2j jαϕ ϕ= + −  ; 1 4j = .                          (4) 

 

When light intensity change is purely sinusoidal (E=N=0), phase error (ϕC - ϕ0) of the 

Carre algorithm becomes zero. To check the performance of computer simulation the 

phase errors of the Carre algorithm are estimated. They are shown in Fig. 1. X axis is 

phase shift α, y axis is phase ϕ0 in eq. (4), and z axis is phase error given as (ϕC - ϕ0)/ 2π 

in %. The right white line shows the errors at α which is near 0.7π, the middle white line 

shows those of α=0.5π, and the left white line shows those near 0.3 π. The simulated 

errors calculated at all the points are zero as expected.   

 Next, I introduce light intensity changes due to extremely short-coherent light. 

This intensity is easily given by setting E as non-zero in eq. (1). The light intensity 

changes calculated using E=0.1 and N=0 are shown in Fig. 2. The x axis is ϕ0 and the 

intensity changes are calculated at ϕ0 from -6 π to 6 π. The Carre algorithm is tentatively 

applied to the intensities sampled with phase shift α=0.5 π. At ϕ0 from -6 π to 6 π, the 

estimated phase errors (ϕC - ϕ0)/2π in % are shown along the y axis in Fig. 3. When light 

having the center wavelength of λ =600 nm is used, 5% of the phase error equates with a 

height error of 15 nm (=300 nm x 0.05). These are only the case for α=0.5 π. Error 
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estimations are then done at other α between 0.3 π to 0.7 π. The estimated errors are 

shown in Fig. 4. We cannot obtain experimental signals without noise. In addition to the 

above contrast changes, noise is then introduced by setting N as 0.03 in eq. (1). The 

errors due to E=0.1 and N=0.03 are shown in Fig. 5.  

 

2.2.  Simple 4-frame algorithm5)  

This is also called the conventional 4-frame algorithm. The phase ϕS-4 

extracted by the algorithm is given by eq. (5), 

 

( ) ( )4 4 2 1argS i I I I Iϕ − 3⎡ ⎤= − + −⎣ ⎦ ,                     (5) 

 

where Ij is given from eq. (1) by changing ϕj with the next equation, 

 

( )0 1j jϕ ϕ α= + −   ; 1 4j = .                        (6)  

 

When the contrast changes and noise are introduced in eq. (1) by setting E= 0.1 and 

N=0.03, the estimated phase errors (ϕS-4 - ϕ0) are shown in Fig. 6. Compared with Fig. 5, 
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the errors due only to noise are smaller, but the error dependence on phase ϕ0 is bigger, 

and the error dependence on the linear shift error given by α - 0.5π is also bigger.  

  

2.3.  5-frame Hariharan algorithm6)

The 5-frame Hariharan algorithm is  known as an error-immune algorithm. 

The algorithm is classified as one of the averaging algorithms8). The phase ϕ5-H is 

calculated by eq. (7a), 

 

( ){
( ) }

5 2

3 1 5

arg 2

2

f i I I

I I I

ϕ − = −

⎡ ⎤+ − +⎣ ⎦

4
.                     (7a) 

 

Introducing a simple correction for a linear shift error, eq. (7a) can be rewritten as the 

next equation, 

 

( ){
( ) }

5 2

3 1 5

arg 2 sin

2

H i I

I I I

ϕ α−′ = −

⎡ ⎤+ − +⎣ ⎦

4I
,                     (7b) 

 

where Ij is given from eq. (1) by changing ϕj with the next equation,  
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( )0 3j jϕ ϕ α= + −    ; 1 5j = .                    (8) 

 

When the same intensity of contrast changes and the same intensity of noise (E=0.1 and 

N=0.03) are introduced, the phase errors (ϕ'5-H - ϕ0) are estimated and are shown in Fig. 7. 

Compared with Fig. 6, the estimated errors are less, and the error dependence on the 

linear shift error is also less.  

 

2.4.  7-frame Groot algorithm7)

The 7-frame Groot algorithm is more famous as an error-immune algorithm. 

The phase ϕ7-G , calculated by the 7-frame Groot algorithm, is given as the following, 

 

( ) ( ){
( ) }

7 2 4

3 1 5

arg 7

8 4

G i I I I I

I I I

ϕ − 0 6⎡ ⎤= − − −⎣ ⎦

⎡ ⎤+ − +⎣ ⎦
.             (9a) 

 

Introducing a simple correction for a linear shift error, eq. (9a) can be rewritten as the 

next equation, 
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( ) ( ){
( ) ( ) }

7 2 4

2
3 1 5

arg 2 sin 7

1 sin 8 4

G i I I I

I I I

ϕ α

α

−′ 0 6I⎡ ⎤= − − −⎣ ⎦

⎡ ⎤+ + − +⎣ ⎦
,          (9b) 

 

where Ij is given from eq. (1) by changing ϕj with the next equation,  

 

( )0 3j jϕ ϕ α= + −  ; 0 6j = .                (10)  

 

When the same intensity of contrast changes and the same intensity of noise (E=0.1 and 

N=0.03) are introduced, the phase errors (ϕ'7-G - ϕ0) are shown in Fig. 8. Compared with 

Fig. 7, the estimated errors are in the same order, but the error dependence on ϕ0 is 

smoother, and the error fluctuation within a local area is also smaller.   

 

2.5.  5-frame in Schmit algorithms8) and 6-frame in Hibino 

algorithms9)

Schmit and Creath,8) and Hibino et al9) proposed many algorithms which are 

distinguished by the number of used frames and derivative forms. Among them I 

arbitrarily select eq. (11) as the 5-frame of Schmit algorithms,  
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( ) ( ){

( ) ( ) }
5 1 5 4

3 4 2 1 5

arg 4

6 2

S i I I I I

I I I I I

ϕ − 2⎡ ⎤= − + −⎣ ⎦

⎡ ⎤+ − + − +⎣ ⎦
,                    (11) 

 

where Ij is given from eq. (1) by changing ϕj with the next equation,  

 

( )0 3 ; 1 5j j jϕ ϕ α= + − = .                        (12) 

 

Among Hibino algorithms, I arbitrarily select the 6-frame algorithm given by the next 

equation, 

 

( ) ( ) ({
( ) ( ) ( ) }

6 1 6 2 5

1 6 2 5 3 4

arg 3 5 6 17

26 25

H i I I I I I I

I I I I I I

ϕ − )3 4⎡ ⎤= − − − − −⎣ ⎦

⎡ ⎤+ + − + + +⎣ ⎦
,    (13) 

 

where Ij is given from eq. (1) by changing ϕj with the next equation (α is around π/3),  

 

0
7 ; 1
2j j jϕ ϕ α ⎛ ⎞= + − =⎜ ⎟

⎝ ⎠
6 .                       (14) 

 

When only the same intensity of noise (N=0.03) is introduced, the phase errors (ϕ5-S - ϕ0) 
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and the phase errors (ϕ6-H - ϕ0) are calculated, respectively. They are very small as 

expected. But, when the same intensity of contrast changes (E=0.1) is introduced, the 

phase errors (ϕ5-S - ϕ0) and the phase errors (ϕ6-H - ϕ0) become pretty large, especially at 

lower values of α. They are not shown here, but the maximum estimated errors are on the 

same order as those of Fig. 8. 

In this chapter the 6 representative algorithms were estimated. A zero phase 

error shown in Fig. 1 is truly desired. However, all of the 6 representative algorithms 

involve non-negligible errors due to contrast changes. In these estimations the 7-frame 

Groot algorithm has very little errors, only at phase shift α =0.5π. This error dependence 

on phase ϕ0 is illustrated by the middle white line in Fig. 8. When α moves farther away 

from π/2 the phase errors become larger. The error dependence on phase ϕ0 at α near 

0.3π and of 0.7π are also illustrated by white lines in Fig. 8.   

 

 3. New Algorithm Insensitive to Contrast Changes and also to 

Linear Error in Phase Shift 

 

The 6 representative algorithms which use fewer or equal number of 7 frames 
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have been estimated above. Algorithms using more frames would become more complex 

and seem more time-consuming regarding calculation. Within 7 frames it is conceivable 

that there are many other algorithms which have not been investigated by anyone. Some 

of them might be insensitive to contrast changes and also to the linear error in phase shift. 

Here, I begin to develop a new algorithm with the extraction of individual terms (Ij m Ik) 

in an algorithmic equation by considering symmetry of light intensity against phase ϕ0.   

 When light intensities are sampled around a contrast peak, one group of 

sampled Ij (j is from 0 to 6) are given as white circles in Fig. 9. The phase calculated 

from these intensities is herein assumed to be ϕ3 of I3, the middle point in the group. 

Apart from this group let us consider another group of sample points given by I'j. The 

latter group is positioned as having y-axis symmetry to the former group and is 

represented as black circles in Fig. 9. The suffixes of Ij and of I'j  are not symmetric, but 

become bigger on the right. The next equations are concluded from the symmetry.   

 

0 6

1 5

2 4

3 3

I I
I I
I I
I I

′=
′=
′=
′=

,   
4 2

5

6 0

1

I I
I I
I I

′=
′=
′=

.                         (15)  

 

 

16



In addition, the phase of I3 calculated from the group of Ij and the phase of I'3 calculated 

from the group of I'j should be equal in absolute value, but different in sign. Then, let us 

consider the next equation, 

 

 

( ) ( ){
( ) ( )
( ) ( ) }

2 4 1 5

0 6 3 2 4

1 5 0 6

arg

8

N i a I I b I I

c I I I d I I

e I I f I I

ϕ ⎡= − +⎣

⎤+ − + + +⎡⎣⎦

⎤+ + + + ⎦

−

 ,           (16)  

 

where the imaginary part is a polynomial of differential terms and the real part is a 

polynomial of addition terms. As the differential terms change their sign by symmetric 

transformation and the additional terms do not change their sign, the phase symmetry 

denotes that the phase should be expressed by eq. (16) as a simple case. Even in this 

simple equation, the number of independent variables (a, b, c, d, e, f) is 6. There are 

many variables to narrow this form down to the required equation. So, let us also suppose 

that eq. (16) should extract the phase correctly under well-used experimental conditions. 

As the first condition, an offset of light intensity should not affect the phase. The 

polynomial of differential terms cannot have offsetting effects, nor should the polynomial 

of the addition terms involve the offset. This necessitates the next equation,  
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8 2 2 2 0d e f+ + + = .                         (17)  

 

As the second condition, substituting the purely sinusoidal intensity changes sampled 

with π/2 shift to eq. (16) must extract the phase correctly. This requirement gives the next 

relation:  

 

2( ) 8 2a c e− = − .                             (18)  

 

From eqs. (17) and (18) the number of independent variables becomes 4, I set them as b, 

c, d, and e. These 4 variables determine a and f. There are still many variables, so that I 

cannot approach proper values for variables or coefficients by numerical simulation. 

Here, let us consider again eqs. (7a) and (9a). Their real parts are the same and only their 

imaginary parts are different. By focusing on the imaginary parts, c in eq. (16) seems to 

control the resemblance ratio between the 5-frame Hariharan and the 7-frame Groot. For 

example, in the case where a purely sinusoidal intensity change is sampled with π/2 shift, 

the b(I1-I5) term has no effect. Therefore, c=0 means that the imaginary part in eq. (16) 
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becomes the same as the 5-frame, and c=-1 means the imaginary part becomes similar to 

the 7-frame. If e is set as -4 in eq. (16), the real and imaginary parts are exactly the same 

as that of the 5-frame or the 7-frame, because c=0 and e=-4 lead a=8 by eq. (18) resulting 

eq. (16) becomes eq. (7a), and c=-1 and e=-4 lead a=7 resulting eq. (16) becomes eq. 

(9a). As the 5-frame Hariharan and the 7-frame Groot are famous algorithms having error 

immunity, it is natural to investigate an algorithm similar to them. Therefore, let me set e 

as -4. 

 From eqs. (17) and (18), setting e=-4 means f=-d, and a=8+c. The independent 

variables have been narrowed to b, c, and d. Then, with e=-4 and b=d=0, phase errors at 

phase shift α = 0.7π are estimated by changing c to investigate its effect. The examples 

of the estimated phase errors are shown in Fig. 10.  The solid curve is given by c=-1 and 

is just the 7-frame. The broken curve is given by c=0 and is just the 5-frame. The dotted 

curve is given by c=-2. This solid curve approximately equals the right white line in 

Fig.8 viewed from the - x point. From Figs. 7, 8, 10 and some simulations, changing c 

does not seem to reduce the phase errors greatly. From Fig. 10 a good value for c seems 

to be around -1.  

 I have not yet investigated the independent variables b and d. These terms have 
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not been included in basic formulas in the phase-shift algorithms10), the 5-frame 

Hariharan6) or the 7-frame Groot7). Here, I estimate the phase errors by changing only b, 

and also by changing only d. In Fig. 11 the estimated phase errors are shown. The solid 

curve is just the 7-frame (c=-1, b=d=0). The broken curve is c=-1, b=-5, and d=0, and the 

dotted curve is of c=-1, b=0, and d=-4.5. The broken curve and the dotted curve have 

opposite-sign differences in a local area from the solid curve, but the base lines of both 

curves become less sloped in the entire area compared with the solid curve. Therefore, I 

searched b and d to minimize phase errors and found b=-22, and d=-14.5. These values 

give the errors as shown in Fig. 12. This is obtained for the phase shift α=0.7π.  

 Next, I searched b and d to minimize phase errors for α=0.3π and found b=23 

and d=14. The minimized phase errors are shown in Fig. 13. In addition, I found 

appropriate values b and d which minimize the phase errors for any values of phase shift 

α between 0.3π and 0.7π. The values found are shown in Fig. 14. This shows that a 

linear relation might exist between b and d, and the ratio of b to d is found as b/d=1.6. 

Using this ratio I estimate the phase errors for the phase shift α  between 0.3π and 0.7π 

by changing d as given in Fig. 14. Figure 15 shows the minimized phase errors. An inset 

figure shows the used intensity changes having contrast changes of E=0.1. Comparing 
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this figure with Fig. 7 or Fig. 8 the obtained phase errors are reduced substantially for 

any α between 0.3π and 0.7π.  

 The above ratio b/d =1.6 is found only for the contrast changes of E=0.1. I next 

estimate the ratio for other contrast changes of E ≠ 0.1. Finally, it is discovered that the 

ratio b/d =1.6 and d given by Fig. 14 are valid for other values of E≤ 0.15. Figure 16 

shows the reduced phase errors given for E=0.15. The inset figure shows the intensity 

changes used and is quite different from that in Fig. 15. This validity means that b and d 

in Fig. 14 are important. In this figure, b and d seem to take simple and symmetrical 

changes around α=0.5π. Then I try to approximate d as an equation of α. After some 

trials d is found to be approximately expressed by the next equation, 

 

5

4.1 71
2 2

d π πα α⎛ ⎞ ⎛ ⎞≅ − − − −⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

⎟ .                   (19)  

 

For α ( 0.4π<α< 0.6π), d could be expressed only by the first term. With eq. (19), the 

required algorithm is finally expressed by the next equation. 
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( ) ( ){
( ) (
( ) }

2 4 1 5

0 6 3 2 4 0 6

1 5

arg 7 1.6

8

4

N i I I d I I

)I I I d I I I

I I

ϕ ⎡= − +⎣

⎤ ⎡− − + + + − −⎦ ⎣

⎤− + ⎦

I

−

.             (20)  

 

 As mentioned in §1, a plofilometer that uses a phase shift greater than 2π was 

developed to do high-speed vertical scanning11). Its interferometer uses two extremely 

short-coherent light sources that have different center wavelengths, 503 nm and 591 nm. 

A phase step is calculated as 6.36π for 503 nm and 5.41π for 591 nm. Both phase shifts 

differ from (integer + 1/2)π. Then, I estimate the residual phase errors that the found 

algorithm is applied to for intensities sampled with a phase shift greater than 2π. Figure 

17 shows the residual phase errors with a phase shift α between 6.3 π and 6.7π. In this 

estimation Ε=0.008 is used to obtain nearly the same half width of contrast changes 

along sampled suffixes j as that of the intensity changes calculated with E=0.1 , and a 

fraction of α ’ (α ’ =α−6π) is used instead of α to obtain d. 

 

4.  Discussion and Considerations 

This paper first estimates the combined effects of b(I1-I5) and d(I2+I4) terms in 

a phase-shift algorithm. When sinusoidal intensity changes of a constant contrast are 
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sampled with π/2 phase shift, these terms have no effect. Thus, it is natural to consider 

formulas which do not include b(I1-I5) or d(I2+I4). I can find only a rare equation which 

includes (I1-I5) and (I2+I4) terms. This equation is the 5-frame from Schmit8) which has 

the ratio between b and d of -1/2. This ratio is different from the proposed ratio of 1.6. 

When white light interference is sampled with phase shift α ≠ π/2, b(I1-I5), and d(I2+I4) 

terms have effects on phase extraction. Although these effects depend on α, respectively, 

I found that the relation b/d=1.6 gives the minimized phase errors in the range of α  from 

0.3π to 0.7π . It is also important that this ratio does not change over some other values 

of E≤ 0.15, characterizing parameter of contrast changes.  

 There is a possibility that the b/d ratio might depend on the shapes of envelope 

curves. I therefore estimate the effect of shapes of envelope curves. An envelope curve is 

given by the Fourier transformation of the specific spectral curve of light used. When a 

spectral curve of light is Gaussian, the envelope curve is also given as Gaussian. Many 

kinds of light sources are commonly approximated to have a Gaussian spectrum. The 

Gaussian curve expressed as exp(-Eϕ2) is used herein. I estimate phase errors due to 

envelope curves expressed as exp(-E|ϕ|1.5) and exp(-E|ϕ|2.5), respectively, with computer 

simulations. The phase errors extracted for both of the envelope curves using the ratio 
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b/d=1.6 and d given in Fig. 14, are nearly the same as that for exp(-E|ϕ|2), showing the 

relation b/d=1.6 and d in Fig. 14 work even in non-Gaussian envelope curves. 

 In real applications, a certain intensity of noise is always involved in signals. 

Thus, noise immunity should be estimated in this algorithm. For this estimation N in eq. 

(1) is set at 0.03, and phase errors are calculated using these noise signals. Figures 15-17 

show the estimated phase errors of N=0.03. To compare these results with Fig.8 of the 

7-frame algorithm which is reported as a vibration and noise-immune algorithm7), the 

vertical distribution widths of the phase errors due to the noisy signals are all nearly the 

same. Therefore, this algorithm is thought to have noise-immunity.   

       In the new algorithm development described above, e=4 is used to simplify the 

computer simulation. The condition of e=4 comes from analogy with the 5-frame 

Hariharan or the 7-frame Groot algorithms. There is a possibility that other values of e 

have good performance in phase extraction. I am researching this now. 

 

5. Conclusions 

 

White-light interference involves changes in fringe contrast. To obtain a 
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precise phase of white-light interference a phase-shift algorithm in which the extracted 

phase is insensitive to changes in contrast is required. There is often another requirement 

that phase shift between captured interferograms must not be restricted to π/2. Therefore, 

a phase-shift algorithm that is insensitive both to contrast changes and to a linear error in 

the phase shift is required. Computer simulation showed that the well-known 

representative algorithms developed thus far cannot satisfy both these requirements. 

Therefore, I started to develop a new algorithm by extracting individual terms (Ij mIk) in 

the algorithmic equation by considering symmetry of light intensity change against phase. 

Using computer simulation again, I searched for appropriate coefficients by which the 

terms are multiplied in the equation. I finally found an algorithm satisfying both the 

necessary requirements. It was found to have the same noise-immunity as representative 

noise-immune algorithms and to be independent of changing intensity for the fringe 

contrasts. In addition, this algorithm can be applied to the light intensities sampled with 

phase shift α greater than 2π. 
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Figure captions 

 

Fig. 1: Phase errors estimated for the 4-frame Carre algorithm4). Interference light 

intensity changes are assumed to have a constant contrast and no noise. The errors are 

zero as expected. 

 

Fig. 2: Typical interference light intensity changes of white-light interference. These 

changes are calculated with eq. (1) using E = 0.1 and N=0.  

 

Fig. 3: Phase errors estimated for the 4-frame Carre algorithm. Light intensity changes are 

assumed to have the contrast changes shown in Fig. 2. Ij as sampled with phase shift 

α=0.5π . 

 

Fig. 4: Phase errors estimated for the 4-frame Carre algorithm. Interference light intensity 

changes are assumed to have only contrast changes. These intensities are calculated by eq. 

(1) using E=0.1 and N=0.  
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Fig. 5: Phase errors estimated for the 4-frame Carre algorithm. Light intensity changes are 

assumed to have contrast changes and noise. This intensities are calculated with eq. (1) 

using E=0.1 and N=0.03.  

 

Fig. 6: Phase errors estimated for the simple 4-frame algorithm. Light intensity changes 

are calculated with eq. (1) using E=0.1 and N=0.03.  

 

Fig. 7: Phase errors estimated for the 5-frame Hariharan algorithm of eq. (7b). Light 

intensity changes are calculated with eq. (1) using E=0.1 and N=0.03.  

 

Fig. 8: Phase errors estimated for the 7-frame Groot algorithm of eq. (9b). Light intensity 

changes are calculated with eq. (1) using E=0.1 and N=0.03.  

 

Fig. 9: Interference light intensities Ij sampled around a contrast peak. The group of white 

circles is symmetric to the group of black circles. Phase of I3 extracted by a required 

algorithm, has an opposite sign to the phase of I'3 extracted by the same algorithm. 
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Fig. 10: Phase errors estimated by changing c in eq. (16) with b=d=0 and phase shift 

α=0.7π. The solid curve represents c=-1 and the broken curve represents c=0, and the 

dotted curve represents c=-2. 

 

Fig. 11: Phase errors estimated by changing b and d with c=-1 and phase shift α=0.7π. 

The solid curve represents b=d=0: the 7-frame algorithm, the broken curve represents 

b=-5, d=0, and the dotted curve represents b=0, d=-4.5. The broken and dotted curves 

have opposite-sign differences in the local area from the solid curve. The base lines not 

shown in the figure become less sloped compared with the solid curve.  

 

Fig. 12: Phase errors estimated for eq. (16) using c=-1 and phase shift α=0.7π. The solid 

curve represents b=d=0: the 7-frame algorithm, and the dotted curve represents b=-22, 

d=-14.5. 

 

Fig. 13: Phase errors estimated with eq. (16) using c=-1 and phase shift α=0.3π. The solid 

curve represents b=d=0: the 7-frame algorithm, and the dotted curve represents b=23, 

d=14. 
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Fig. 14: Appropriate values for b and d which give the minimized phase errors for phase 

shift α  between 0.3π and 0.7π. 

 

Fig. 15: Phase errors estimated with b/d=1.6 and d given in Fig. 14. The inset figure is 

light intensity changes which are calculated by E=0.1 and N=0.03. 

 

Fig. 16: Phase errors estimated with b/d=1.6 and d given in Fig. 14. The inset figure is 

light intensity changes which are calculated by E=0.15 and N=0.03. 

 

Fig. 17: Phase errors estimated for phase shift α  between 6.3π and 6.7π  using b/d=1.6 

and E=0.008 and N=0.03. 
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