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Abstract. In the present study, acoustic wave propagation in acoustic
tube in-corporating sound absorbing material is simulated using Cellular
Automata (CA). CA is a discrete system which consists of finite state
variables, arranged on a uniform grid (cell). CA dynamics is described
by a local interaction rule, which is used for computation of new state
of each cell from the present state at every time step. In this study
an acoustic tube model is introduced in which ab-sorbing material is
characterized by direct modeling of porosity and flow resis-tance. Direct
numerical simulation CA model is performed and evaluated by absorp-
tion coefficient using standing wave ratio measure. The results showed
good correspondence with analytical solutions.

1 Introduction

The vibrating structures and various kinds of machineries often cause serious
noise problems to humans within an environment. The passive sound attenua-
tion method is generally employed using resonators, isolation walls and sound
absorbing treatment. Among various kinds of sound absorption materials, porous
materials such as glass wool quilting and polyurethane foams are the most com-
mon and significant technique which are widely used for room acoustics and var-
ious electric devices. However, the recent designing of compact and lightweight
devices put limits on the application of such dissipative materials in conjunc-
tion with saving costs. Hence the material itself, amount and placement must be
determined carefully that can realize high performance damping and low cost.
The development of numerical model which can predict sound propagation and
attenuation effect of those materials is then important for realizing efficient and
suitable engineering design.

Before predicting desired sound absorption effect in a practical environment,
material properties such as acoustic propagation constant and the absorption
coefficient must be determined either numerically or experimentally. The more
precise measurement system has been developed for the latter approach. On
the other hand, theoretical prediction of sound absorbing mechanism of porous
materials has long been investigated which coincides with basic experimental
results[1]. The finite element and also the boundary element methods may be
reliable and useful approach for exploring more realistic situations. However,



on setting properties and shapes of porous materials with these models certain
approximation must be incorporated which may lead to the lack of micro struc-
ture and the essential mechanism of sound absorption of materials itself. Also,
obtaining transient response of the system with these models require elaborate
modeling procedure.

In this paper, the acoustic wave model is developed using Cellular Automata.
CA is a kind of discrete computations which has been developed for modeling
wide range of phenomena including many physical processes described gener-
ally by partial differential equations[7]. Specifically the wave propagation mod-
els have been studied by researchers based on Cellular Automata[3]-[8]. The
works include Chopard et al.[8] who had modeled wave propagation by Lattice
Boltzmann approach applicable for practical situations such as the radio wave
transmission in complex urban environments. The authors have also developed
an acoustic wave propagation model for two dimensional acoustic problems for
simulating sound source movement, sound diffraction by the presence of barri-
ers and reflection due to inhomogeneity of acoustic media[9]. Due to its easiness
and simplicity of modeling procedure, the modeling approach also seems suitable
for the problems concerned. However, the preceding work does not include en-
ergy dissipating mechanisms which is nessesary for producing sound absorption
effect. In the present study, the modified version of the acoustic wave propaga-
tion model is numerically developed using CA for understanding fundamental
sound absorption mechanism of porous materials and evaluating sound absorp-
tion performance, where the details of porous material structure is considered in
the model. The acoustic waveguide incorporating sound absorbing porous mate-
rial is constituted and the sound absorption effect is predicted. The theoretical
approach for obtaining absorption coefficient is also presented for comparison.

2 Theoretical Description of One-dimensional Acoustic
Field

In this section, theoretical description of one-dimensional acoustic field is shown,
and the material property related to acoustic characteristics which is commonly
known as the sound absorption coefficient is also derived. Moreover, the param-
eter known as standing wave ratio (SWR) and used for determining absorption
coefficient by numerically measured sound pressure amplitude is presented.

2.1 The Wave Equation

The generated pressure oscillation in an acoustic medium is observed as sound,
which is described by a set of linear equations for one dimensional field under
the presence of absorbing material[1]:
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where p(x, t) is a sound pressure and u̇(x, t) a particle velocity, ρ0 density, κ
volume elasticity, σ porosity of porous material and Rf flow resistance constant
respectively. Equation (1) corresponds to equation of motion of the continuum
per unit volume, and also (2) satisfies continuity of the medium. The solution
to (1) and (2) without porous material is given by setting σ = 1.0 and Rf = 0.0
, on the assumption that the wave is harmonic:

p(x, t) = jωρAej(ωt−kx) + Bej(ωt+kx) (3)

where A and B are constants determined by boundary conditions, ω the sound
source frequency, k the wave number respectively. The first term of (3) expresses
a progressive wave, and the second a regressive wave.

If we employ acoustic tube model which has a sound source on one edge, the
pressure distribution inside tube is then calculated by giving boundary conditions
u̇(0, t) = u̇0e

jωt, and also u̇(l, t) = 0 for the another edge closed:

p(x, t) = −jρcu̇0
cos k(l − x)

sin kl
ejωt (4)

In the above (4), l stands for the tube length, u̇0 the driving source velocity.

2.2 Definition of propagation constant and characteristic impedance

Sound absorbing materials are usually characterized by acoustic properties known
as propagation constant and characteristic impedance. The absorption coefficient
is then determined by those constants. The characteristic impedance is defined
by the ratio between acoustic pressure and particle velocity while the wave trav-
els along the media, described as:

Zc =
p

u
= ρcm (5)

In (5), p and u denotes sound pressure and particle velocity, cm sound speed along
material and ρ the density of material, respectively. The propagation constant
γ is defined by the damping the phase chance along the unit length of material
axis, which is given by a complex form:

γ = α + β, β = ω/cm (6)

In the above (6), α and β signifies damping and phase constant.
Sound propagation model inside acoustic waveguide incorporating absorbing

materials is shown in Fig. 1. The sound wave propagating through the material
1 with thickness d is described by the following (7) with respect to the incoming
sound pressure Pi0 traveling through the air,

p1d = p1ie
−γd (7)

In the case material 1 is backed by another material 2, the inhomogenous bound-
ary between these two materials is characterized by acoustic impedance Z2. In



Fig. 1. Sound propagation model inside acoustic waveguide incorporating absorbing
material. In this figure, three kinds of acoustic media exist. Hence two boundaries
between air and material 1, and also between materials 1 and 2 are present. P denotes
sound pressure, and Z acoustic impedance.

the same way the acoustic impedance Z1 with respect to the boundary between
air and material 1 is given by the following equation using Z2.

Z1 = Zc
Z2 cosh(γd) + Zc sinh(γd)
Z2 sinh(γd) + Zc cosh(γd)

(8)

Before calculating sound absorption coefficient α, the reflection constant rp must
be determined using acoustic impedance Z1. The constant rp is defined as follows.

rp =
Z1 − ρ0c0

Z1 + ρ0c0
(9)

In (9), ρ0 and c0 denotes density and sound speed of air, respectively. The
absorbing coefficient α is then calculated using (9), according to the following
(10).

α = 1− |rp|2 (10)

As already described above, in order to obtain absorption coefficient the
acoustic impedance Z1 must be determined, however, Z1 also depends on an-
other impedance Z2. Therefore, Z2 must be first determined by setting the layer
behind the target material become air, or directly backed by the rigid wall before
calculating Z1. (In the latter case Z2 become zero.) The rest of the unknown
parameter, propagation constant γ and characteristic constant Zc, are usually
determined by measurements. They are also derived analytically by solving (1)
and (2), for the case the porous material is backed directly by the wall described
as follows.
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Equations (11) and (12) are used for the comparison with results obtained by
the Cellular Automata acoustic model in subsequent section. γ, Zc and Z1 are
the important parameters for characterizing the property of porous materials.
However, the measurement process as well as parameter calculation seem rather
complex.

2.3 Determining Absorption Coefficient by Standing Wave Ratio
Method

One of the most fundamental approaches for determining absorption coefficient
experimentally is known as the standing wave ratio (SWR) method. Due to its
simple idea and constitution, and also the needless for complex calculation, the
method is suitable for the direct numerical approach such as the CA model dealt
in the present study. As illustrated in Fig. 2, the progressive wave propagates
into the material and a wave reflected at the face of material interferes and
forms standing wave distribution. The standing wave ratio (SWR) is defined
by the ratio between the maximum and the minimum peaks of standing wave.
Practically, in an experimental situation, these peaks are explored by scanning
microphone along acoustic tube axis. The SWR, n, is defined as follows.

n =
|Pi|+ |Pr|
|Pi| − |Pr| (13)

The reflection constant rp is then determined by the following equation and
further absorption coefficient by (10), as well.

rp =
|Pr|
|Pi| =

n− 1
n + 1

(14)

Fig. 2. Standing wave distribution inside an acoustic tube. The progressive wave prop-
agates into the material and a wave reflected at the face of material interferes and
forms standing wave distribution. The standing wave ratio (SWR) is defined by the
ratio between the maximum peak and the minimum peak of the standing wave.



Fig. 3. Simulation model of acoustic tube incorporating absorbing material. A sound
source is located at left hand side of the tube, whereas the porous material located on
the other side.

3 The Cellular Automata Model

In this section, Cellular Automata model is developed for simulation of acoustic
wave propagation in a media incorporating porous material. The simple finite
difference scheme obtained by linear wave equation is referenced for developing
local interaction rule, in a sense that discretized wave equation yields to an ex-
pression of local relationship of wave amplitudes. The rule is then extended to
a more practical case, yet time and space are treated as discrete integers. The
Cellular Automata approach to such a wave propagation problem was discussed
for two dimensional models comparing with analytical solutions. Definitions for
state variables and local interaction rules are presented in the following subsec-
tions.

3.1 Space Partitioning and State Definition

Figure 3 shows two dimensional space discretized into rectangular cells. Each
one of the cell is distinguished for its state by three numbers; i) zero for acoustic
media (air), ii) 1 for rigid wall , and iii) 2 for portion of absorbing material.
Additionally, two variables which express the sound pressure and particle velocity
are defined for the first acoustic medium state. These variables are updated
at each simulation step according to the local interaction rules explained in
the next subsection. In advance to composition of local rules, the definition of
neighbor is specified as shown in Fig. 4. For the two dimensional model, cross-
located four cells are neighbors which is conventionally called Neumann Style
neighbors. In each medium state cell the sound pressure variable is assigned
as well as particle velocities in four neighboring directions. Following Cellular
Automata convention, time and space are treated as integers. In order for the
model to be comparable with analytical solution, we assign unit cell length dx =
0.001[m], and also the sound speed c = 344[m/s]. Table 1 shows comparative
listing between CA space and physical parameter.

3.2 Foundation of Local Rules

State parameters given in each one of the cells is updated every discrete time
step according to a local interaction rule which is described in this section.



Fig. 4. Definition of neighbor in two dimensional acoustic model. Two state variables,
sound pressure P and particle velocity V, are placed in each cell.

Table 1. Table 1. Equivalent system parameters. Parameters defined in the CA model
are com-pared with those in physical system.

Sound speed Unit time step Unit space size

Physical system c = 344 [m/s] dt = 1/344 [sec] dx = 0.001 [m]

2-dim CA model c = 1/
√

2 [cell/step] dt = 1 [step] dx = 1 [cell]

First, the particle velocities in four directions are updated in time with re-
spect the difference of sound pressure between adjacent cells, whose update rule
is described explicitly as,

Va(x, t + 1) = Va(x, t)− {P (x + dxa, t)− P (x, t)} (15)

Va represents particle velocity of media and P the sound pressure. Two dimen-
sional cell position is expressed as a vector x and discrete time step as t. A suffix
a in (15) signifies index of four neighbors. The particle velocity further obeys
(16), which expresses energy dissipation by the flow resistance due to presence
of porous material.

Va(x, t) = (1− n · d)Va(x, t) (16)

In the above (16), n represents number of porous material cells in neighbor, d a
damping constant per unit cell. The pressure is then updated according to the
rule described by (17),

P (x, t + 1) = P (x, t)− c2
a

∑
a

Va(x, t + 1) (17)

where ca denotes the wave traveling speed in CA space. Sound pressure and
particle velocities are updated according to the local rule described by above
three equations.

Since calculation will be carried out between nearby cells that are separated
only a unit length at every single step, any physical quantities cannot have
the transport speed exceed to this calculation limit. This applies directly to



one dimensional CA model with maximum speed condition ca ≤ 1 , whereas
not for two dimensional case. Since wave is assumed to propagate isotropically
despite the square compartment of space and cross-style definition of neighbors,
an effective traveling speed must be considered. It is known that the maximum
wave speed becomes ca = 1/

√
2 for two dimensional case, therefore the wave

front travels 1/
√

2 of unit cell length per calculation step. These conditions can
also be obtained by the CFL condition, which provides requirement for numerical
stability of finite difference scheme expressed explicitly as,

c =
∆t

∆x
≤

{
1 for one dimension
1/
√

2 for two dimension
(18)

where ∆t and ∆x are unit time step and unit length in difference scheme, re-
spectively. By setting ∆t and ∆x be unity, we get c ≤ 1 as one dimensional
stability condition, and also 1/

√
2 for another. It is straightforward to say that

upper limit condition of propagating speed can be derived not numerically, but
physically in the CA model.

4 Simulation of Wave Propagation

In this section, simulation of acoustic wave propagation is performed for the
acoustic tube model incorporating porous material as shown in Fig. 3, which is
described by the Cellular Automata. Analytical solution is also calculated using
set of equations explained in section 2.

In the CA model, the space inside acoustic tube is divided into 100 x 1000
cells, where the unit size of a cell is assumed to be 1 [mm] for the comparison
with physical system. Hence the size of acoustic tube corresponds to 100 [mm]
in diameter and 1000 [mm] in length respectively. The sound source is provided
by giving forced particle velocity to cells which are located on the left edge of
the tube, whereas the sound absorbing material with certain thickness is located
on the other side by assigning cell state as porous material.

Two cases of simulation are performed in the following subsections. The first
case calculates acoustic field inside sound tube without porous material, where
the resonance characteristic is investigated comparing with analytical solution.
In the second case the CA model is tested for the presence of absorbing material,
where the result is compared with analytically calculated absorbing coefficient.

4.1 Acoustic Tube Model Without Porous Material

The acoustic field inside sound tube model without porous material is calculated.
Analytical pressure distribution caused by pulse excitation at the sound source
can be obtained by (4). The resonance characteristic of the acoustic tube with
length 1 [m] is shown in Fig. 5. The first and the second resonant frequencies
for the tube are 172 and 344 [Hz], respectively. From Fig. 4, it is known that
frequency response obtained by CA model well corresponds to analytical one.



Fig. 5. Frequency response of acoustic tube. The CA model well coincides with ana-
lytically calculated response.

4.2 Acoustic Tube Incorporating Porous Material

The second case deals with an acoustic field inside sound tube under the presence
of porous material. Two cases of porous material with thickness 50 and 100
[cells] are considered in the present simulation. Hence the thickness of material
becomes 50 [mm] and 100 [mm] in the actual physical system, respectively. The
damping parameter with respect to the (16) in the CA model is set to d = 0.2,
and the inner pores of the material is expressed by randomly locating cell states
by the mixture of medium and material state, so that the porosity becomes
0.8 apparently. Sinusoidal excitation at the sound source whose frequency varies
from 10 to 4000 [Hz] is generated at the left end of the tube. The absorption
coefficient is processed according to the SWR method depicted in section 2.3 by
the measured standing wave amplitudes.

The absorption coefficient is also calculated analytically by using set of equa-
tions mentioned in section 2. In calculating propagation constant and character-
istic impedance using (11) and (12), the flow resistance Rf is set 5000 [Ns/m4],
and the porosity σ = 0.8, respectively.

Calculation results obtained by both CA and analytical model are illustrated
in fig-ure 6. The results calculated by the CA model well coincides with ana-
lytical one for two cases of material thickness except for considerable difference
in relatively low and high frequency regions, which is due to the inadequate
formation of standing wave for extremely low frequency in such an short dis-
tance of the present acoustic tube model, and also insufficient partition of space
compared to the wave length in higher frequency.

5 Conclusions

In the present paper, the two dimensional acoustic wave propagation model
is devel-oped using Cellular Automata. Moreover, the sound absorbing model



Fig. 6. Absorption coefficient obtained by the CA model. The absorption coefficient is
determined according to the SWR method. The solid and dashed curve signifies ana-
lytically calculated absorption coefficient for the respective material thickness 50mm
and 100mm.

incorporating porous material is investigated. It is shown that the CA model
well illustrated results which are consistent with analytical solutions.
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