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Abstract

We consider the problem of embedding graphs into hypercubes with minimal congestion.
Kim and Lai [2] showed that for a given N -vertex graph G and a hypercube it is NP-complete
to determine whether G is embeddable in the hypercube with unit congestion, but G can be
embedded with unit congestion in a hypercube of dimension 6dlog Ne if the maximum degree
of a vertex in G is no more than 6dlog Ne. Bhatt, Chung, Leighton, and Rosenberg [1] showed
that every N -vertex binary tree can be embedded in a hypercube of dimension dlogNe with
O(1) congestion. In this paper we extend the results above and show the following:

• Every N -vertex graph G can be embedded with unit congestion in a hypercube of
dimension 2dlogNe if the maximum degree of a vertex in G is no more than 2dlog Ne.

• Every N -vertex binary tree can be embedded in a hypercube of dimension dlog Ne with
congestion at most 5.

The former answers a question posed by Kim and Lai [2]. The latter is the first result that
shows a simple embedding of a binary tree into an optimal sized hypercube with explicit
small congestion of 5. This partially answers a question posed by Bhatt, Chung, Leighton,
and Rosenberg [1]. The embeddings proposed here are quite simple and can be constructed
in polynomial time.

1 Introduction

The problem of efficiently implementing parallel algorithms on parallel machines has been stud-
ied as the graph embedding problem, which is to embed the communication graph underlying
a parallel algorithm within the processor interconnection graph for a parallel machine with
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minimal communication overhead. It is well-known that the dilation and/or congestion of the
embedding are lower bounds on the communication delay, and the problem of embedding a
guest graph within a host graph with minimal dilation and/or congestion has been extensively
studied.

We consider minimal congestion embeddings of graphs in hypercubes, which are well-known
as one of the most popular processor interconnection graphs for parallel machines. It was pointed
out by Kim and Lai [2] that minimal congestion embeddings are very important for a hypercube
that uses circuit switching for node-to-node communication such as Intel iPSC/2 [4].

Let G be a graph and let V (G) and E(G) denote the vertex set and edge set of G, respectively.
We denote by ∆(G) the maximum degree of a vertex in G. A tree T is said to be binary if
∆(T ) ≤ 3. An embedding 〈φ, ρ〉 of a graph G into a graph H is defined by a one-to-one mapping
φ : V (G) → V (H), together with a mapping ρ that maps each edge (u, v) ∈ E(G) onto a path
ρ(u, v) in H that connects φ(u) and φ(v). φ and ρ are called the labeling and routing of an
embedding 〈φ, ρ〉, respectively. The dilation of an edge e ∈ E(G) under 〈φ, ρ〉 is the length of
the path ρ(e). The dilation of an embedding 〈φ, ρ〉 is the maximum dilation of an edge in G.
The congestion of an edge e′ ∈ E(H) under 〈φ, ρ〉 is the number of edges e in G such that ρ(e)
contains e′. The congestion of an embedding 〈φ, ρ〉 is the maximum congestion of an edge in H.
The n-cube (n-dimensional cube) Q(n) is the graph with 2n vertices labeled 0 through 2n−1 such
that two vertices are joined by an edge if and only if their labels in the binary representation
differ by exactly one bit. We assume that the bits are numbered 0 through n − 1. An edge
(u, v) in Q(n) is called an i-edge (i-dimensional edge) if the labels of u and v in the binary
representation differ in the ith bit (0 ≤ i ≤ n − 1). It is well-known that Q(n) is n-connected.

Kim and Lai [2] showed that for a given N -vertex graph G and a hypercube it is NP-complete
to determine whether G is embeddable in the hypercube with unit congestion, but G can be
embedded with unit congestion in Q(6dlog Ne) if ∆(G) ≤ 6dlog Ne. They posed the question
of whether G can be embedded with unit congestion in a hypercube of dimension less than
6dlog Ne. We answer the question by proving the following theorem.

Theorem 1 Every N -vertex graph G can be embedded with unit congestion in Q(2dlog Ne) if
∆(G) ≤ 2dlog Ne.

The basic idea of the embedding is quite simple. We adopt a plain labeling of vertices and a
simple routing for edges, and the embedding can be constructed in polynomial time. We do
not know whether G can be embedded with unit congestion in a hypercube of dimension less
than 2dlog Ne. However, we can show that some graphs can be embedded with unit congestion
in hypercubes of asymptotically smaller dimensions. More precisely, we can easily show by
combining the results of Saad and Shultz [5] and Valiant [6] that every N -vertex tree T with
∆(T ) ≤ 4 can be embedded with unit congestion in a hypercube of dimension log N + O(1),
and every N -vertex planar graph G with ∆(G) ≤ 4 can be embedded with unit congestion in a
hypercube of dimension log N + 2 log log N + O(1).

Bhatt, Chung, Leighton, and Rosenberg [1] showed that every N -vertex binary tree can be
embedded in Q(dlog Ne) with dilation and congestion both O(1). Although their embedding is
optimal to within a constant factor, there is much room for reducing the dilation and/or con-
gestion. They posed the question of finding a simple embedding of binary trees into hypercubes
with smaller dilation and/or congestion. Monien and Sudborough [3] partially answer the ques-
tion by proving that every N -vertex binary tree can be embedded in Q(dlog Ne) with dilation
at most 5. We also partially answer the question by proving the following theorem.

Theorem 2 Every N -vertex binary tree can be embedded in Q(dlog Ne) with congestion at most
5.
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Theorem 2 is the first result that shows a simple embedding of a binary tree into an optimal
sized hypercube with explicit small congestion of 5. The embedding is quite simple. We use the
postorder labeling of vertices and a greedy (shortest path) routing for edges, and the embedding
can be constructed in polynomial time. It is interesting that such a simple embedding guarantees
a small congestion of 5. We do not know an N -vertex binary tree that cannot be embedded
in Q(dlog Ne) with unit congestion except K1,3 (a complete bipartite graph). The authors
verified that every N -vertex binary tree except K1,3 can be embedded in Q(dlog Ne) with unit
congestion if N ≤ 16. In this connection, based on some conjecture, Wagner [7] mentioned a
heuristic algorithm which would embed every N -vertex binary tree into Q(dlog Ne) with dilation
and congestion both at most 2.

The paper is organized as follows. We prove Theorems 1 and 2 in Sections 2 and 3, respec-
tively. In Section 4, we conclude with remarks on dilations of our embeddings and some other
remarks.

2 Proof of Theorem 1

Let V (G) = {0, 1, . . . , N − 1} and n = dlog Ne. We assume that ∆(G) ≤ 2n. We construct an
embedding 〈φ1, ρ1〉 of G into Q(2n) with unit congestion. We define the labeling φ1 in Section
2.1. In Section 2.2, we consider an arc coloring of a digraph associated with G. We define
the routing ρ1 in Section 2.3 based on the results in Section 2.2. We analyze the congestion of
embedding 〈φ1, ρ1〉 in Section 2.4.

2.1 Labeling φ1

The labeling φ1 : V (G) → V (Q(2n)) is defined as follows. For each u ∈ V (G), φ1(u) = u(2n+1).
That is, the binary representation of φ1(u) is the concatenation of two copies of the binary
representation of u.

2.2 Arc Coloring

In this section, we consider an arc coloring of a digraph associated with G which will be used to
define routing ρ1. The associated digraph D of G is the digraph obtained from G by replacing
each edge e of G by two oppositely oriented arcs with the same ends as e. We denote the vertex
set and arc set of D by V (D) and A(D), respectively. We denote an arc a by [u, v] if u is the tail
of a, and v is its head. Let Γ+

D(u) denote the set of arcs with tail u, and d+

D(u) = |Γ+

D(u)|. Let
Γ−

D(u) denote the set of arcs with head u, and d−

D(u) = |Γ−

D(u)|. Since ∆(G) ≤ 2n, d+

D(u) ≤ 2n
and d−D(u) ≤ 2n for any u ∈ V (D).

We construct a coloring C of the arcs of D with two colors {0, 1} such that both of the
following two conditions are satisfied. We denote by C[u, v] the color of an arc [u, v] assigned by
C. Define that X0

C(w) = {[w, x] | [w, x] ∈ Γ+

D(w), C[w, x] = 0}, and X1
C(w) = {[w, y] | [w, y] ∈

Γ+

D(w), C[w, y] = 1}.

Condition 1 For each edge (u, v) ∈ E(G), C[u, v] = 0 if and only if C[v, u] = 1.

Condition 2 For any vertex u ∈ V (D), |X0
C(u)| ≤ n and |X1

C(u)| ≤ n

Lemma 3 There exists a 2-arc coloring of D satisfying Conditions 1 and 2.
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Proof It is well-known that G has an orientation D ′ such that |d+

D′(u)−d−D′(u)| ≤ 1 for any u ∈
V (D′). It follows that d+

D′(u) ≤ n and d−D′(u) ≤ n for any u ∈ V (D′) since ∆(G) ≤ 2n. Moreover,
for each (u, v) ∈ E(G), exactly one of the associated arcs [u, v] and [v, u] of D is contained in
Γ+

D′(u) ∪ Γ−

D′(u). Thus, |Γ+

D(u) ∩ Γ+

D′(u)| ≤ n and |Γ+

D(u) − Γ+

D′(u)| = |Γ−

D(u) ∩ Γ−

D′(u)| ≤ n for
any u ∈ V (D). For each vertex u ∈ V (D), we assign color 0 to the arcs in Γ+

D(u) ∩ Γ+

D′(u), and
color 1 to the arcs in Γ+

D(u) − Γ+

D′(u). The resulting 2-arc coloring of D satisfies Conditions 1
and 2. 2

2.3 Routing ρ1

For two vertices w and w′ of G, let m(w,w′) be the vertex of Q(2n) labeled with w2n+w′. There
exists a 2-arc coloring C of D satisfying Conditions 1 and 2 by Lemma 3. For a vertex w ∈ V (G),
suppose that X0

C(w) = {[w, x1], [w, x2], . . . , [w, xk]}, and X1
C(w) = {[w, y1], [w, y2], . . . , [w, yl]},

where k = |X0
C(w)| and l = |X1

C(w)|. k ≤ n and l ≤ n since C satisfies Condition 2. Let
Q0

w(n) and Q1
w(n) be the n-dimensional subcubes of Q(2n) induced by the vertices {w2n + i |

0 ≤ i ≤ 2n − 1} and the vertices {i2n + w | 0 ≤ i ≤ 2n − 1}, respectively. Notice that
φ1(w) ∈ V (Q0

w(n)) ∩ V (Q1
w(n)) and that m(w,w′) ∈ V (Q0

w(n)) ∩ V (Q1
w′(n)). Since Q0

w(n) is
n-connected, there exist k vertex-disjoint paths Pi in Q0

w(n) connecting φ1(w) and m(w, xi)
(1 ≤ i ≤ k). Define that P [w, xi] = Pi (1 ≤ i ≤ k). Also, since Q1

w(n) is n-connected, there
exist l vertex-disjoint paths P ′

j in Q1
w(n) connecting φ1(w) and m(yj , w) (1 ≤ j ≤ l). Define

that P [w, yj ] = P ′

j (1 ≤ j ≤ l).
Now we define the routing ρ1. Let (u, v) be an edge of G. We may assume that C[u, v] = 0

and C[v, u] = 1 since C satisfies Condition 1. Define the path ρ1(u, v) connecting φ1(u) and
φ1(v) in Q(2n) as the concatenation of P [u, v] connecting φ1(u) and m(u, v) in Q0

u(n) and P [v, u]
connecting φ1(v) and m(u, v) in Q1

v(n).
Notice that the embedding 〈φ1, ρ1〉 defined above can be constructed in polynomial time.

2.4 Congestion of 〈φ1, ρ1〉

Lemma 4 The congestion of 〈φ1, ρ1〉 is one.

Proof It suffices to show that P [u, v] and P [s, t] are edge-disjoint for any distinct arcs [u, v], [s, t] ∈
A(D).

Case 1 C[u, v] 6= C[s, t]. We may assume without loss of generality that C[u, v] = 0 and
C[s, t] = 1. Since Q0

u(n) and Q1
s(n) are edge-disjoint, and P [u, v] and P [s, t] are contained

in Q0
u(n) and Q1

s(n), respectively, P [u, v] and P [s, t] are edge-disjoint.

Case 2 C[u, v] = C[s, t]. We assume that C[u, v] = C[s, t] = 0. The proof for the case when
C[u, v] = C[s, t] = 1 can be accomplished by a similar argument, and is omitted.

Case 2.1 u 6= s. Since Q0
u(n) and Q0

s(n) are vertex-disjoint, and P [u, v] and P [s, t] are contained
in Q0

u(n) and Q0
s(n), respectively, P [u, v] and P [s, t] are edge-disjoint.

Case 2.2 u = s. Since [u, v], [u, t] ∈ X0
C(u), P [u, v] and P [u, t] are edge-disjoint by definition.

2

This completes the proof of Theorem 1.
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3 Proof of Theorem 2

Let T be an N -vertex binary tree and n = dlog Ne. We construct an embedding 〈φ2, ρ2〉 of T

into Q(n) with congestion at most 5. We define 〈φ2, ρ2〉 in Section 3.1. In Section 3.2, we show
some lemmas on the postorder numbering. In Section 3.3, we analyze the congestion of 〈φ2, ρ2〉
based on the results of Section 3.2.

3.1 Embedding 〈φ2, ρ2〉

The embedding we propose here is quite simple. We choose a vertex of T with degree at most
two as the root of T , and we suppose that T is a rooted tree. Without loss of generality, we
assume that for each vertex u of T , the number of left descendants of u (i.e., the number of
vertices of left subtree rooted at u) is not less than that of right descendants of u. Give each
vertex of T a number from 0 through N − 1 according to the postorder numbering of T so that
the left most leaf has the number 0.

We define the labeling φ2 : V (T ) → V (Q(n)) as follows. For each u ∈ V (T ), φ2(u) is the
vertex of Q(n) labeled with the postorder number of u.

We define the routing ρ2 as follows. Let (u, v) be an edge of T , and φ2(u) < φ2(v). The
path ρ2(u, v) connecting φ2(u) and φ2(v) in Q(n) starts at φ2(u), passes through i-edges in the
increasing order of i such that the binary representations of φ2(u) and φ2(v) differ in the ith
bit. Thus, ρ2 is a greedy (shortest path) routing for edges.

Notice that the embedding 〈φ2, ρ2〉 defined above can be constructed in polynomial time.
In what follows, for each u ∈ V (T ), we denote the postorder number of u and φ2(u) simply

by u. In addition, if we denote an edge of T by (u, v), we assume that u < v.

3.2 Properties of Postorder Numbering

The following lemmas on the postorder numbering will be used in the next section to analyze
the congestion of 〈φ2, ρ2〉.

Lemma 5 For any distinct edges (u, v), (s, t) ∈ E(T ) (u ≤ s), u < s < t ≤ v or u < v ≤ s < t.

Proof Since the vertices of T are labeled according to the postorder numbering, each y ∈ V (T )
is adjacent to at most one vertex with a label more than y. Thus, u 6= s and we may assume
that u < s. Define that I = {x ∈ V (T ) | u < x < v}. I is the set of right descendants of v if
u is the left child of v, and I is the empty set if u is the right child of v. It follows that any
x ∈ I is adjacent only to vertices of I ∪ {v}. Thus, if s ∈ I then t ∈ I ∪ {v}. This means that
u < s < t ≤ v. If s 6∈ I, we have u < v ≤ s < t by the assumption that u < s and the definition
of I. 2

Lemma 6 For any distinct edges (u, v), (s, t) ∈ E(T ) (u < s < t ≤ v), t − s ≤ s − u + 1.

Proof Since u < s < t ≤ v, u is the left child of v and both s and t are right descendants of v.
If s is the right child of t then t− s = 1 and the lemma is immediate. Thus, we assume that s is
the left child of t. Let mL and mR be the numbers of left descendants and right descendants of
t, respectively, and let w be the vertex with the minimum postorder number in the descendants
of s. It follows that

w − u ≥ 1. (1)

Since mL − 1 is the number of descendants of s and mL ≥ mR,

s − w = mL − 1 ≥ mR − 1. (2)
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Since s is the left child of t,
mR = t − s − 1. (3)

From (1), (2), and (3), we have t − s ≤ s − u + 1, as desired. 2

3.3 Congestion of 〈φ2, ρ2〉

In this section, we show that the congestion of 〈φ2, ρ2〉 is no more than 5. We will prove this
by a series of lemmas. Let bit(m, k) denote the number (0 or 1) in the kth bit (k ≥ 0) in the
binary representation of a non-negative integer m. For each edge (u, v) ∈ E(T ) and an integer
k (0 ≤ k ≤ n− 1), define that dir((u, v), k) = bit(v, k)−bit(u, k). If some paths in Q(n) contain
an edge d ∈ E(Q(n)) then the paths are said to share d. We can easily see the following lemma
from the definition of ρ2.

Lemma 7 For any distinct edges (u, v), (s, t) ∈ E(T ), ρ2(u, v) and ρ2(s, t) share a k-edge in
Q(n) if and only if the following three conditions are satisfied.

Condition 3 dir((u, v), k) 6= 0 and dir((s, t), k) 6= 0.

Condition 4 If k < n− 1, the (n− k − 1)-bit strings consisting of the (k + 1)st bit through the
(n − 1)st bit in the binary representations of u and s are identical.

Condition 5 If k > 0, the k-bit strings consisting of the 0th bit through the (k − 1)st bit in the
binary representations of v and t are identical. 2

Lemma 8 For any distinct edges (u, v), (s, t) ∈ E(T ) such that

u < s < t < v and dir((u, v), k) = dir((s, t), k), (4)

if ρ2(u, v) and ρ2(s, t) share a k-edge in Q(n) then

t − s ≤ 2k, and (5)

v − u > 2k+1. (6)

Proof We have bit(u, k) = bit(s, k) 6= bit(v, k) = bit(t, k) from (4) and Lemma 7 (Condition 3).
Thus, s − u < 2k and v − t ≥ 2k+1 by Lemma 7 (Conditions 4 and 5). Therefore, we have (5)
by Lemma 6, and (6) since u < t. 2

Lemma 9 For any distinct edges (u, v), (s, t) ∈ E(T ) such that

u < s < t = v, (7)

if ρ2(u, v) and ρ2(s, t) share a k-edge in Q(n) then

t − s ≤ 2k. (8)

Proof Since t = v, bit(u, k) = bit(s, k) 6= bit(v, k) = bit(t, k) by Lemma 7 (Condition 3).
Therefore, s − u < 2k by Lemma 7 (Condition 4). By Lemma 6, we have (8). 2
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Lemma 10 For any distinct edges (u, v), (s, t) ∈ E(T ) such that

u < s < t < v and dir((u, v), k) 6= dir((s, t), k), (9)

if ρ2(u, v) and ρ2(s, t) share a k-edge in Q(n) then

t − s ≤ 2k+1. (10)

Proof s − u < 2k+1 by Lemma 7 (Condition 4). Thus, we have (10) by Lemma 6. 2

Lemma 11 For any distinct edges (u, v), (s, t) ∈ E(T ) such that

u < v ≤ s < t, (11)

if ρ2(u, v) and ρ2(s, t) share a k-edge in Q(n) then

v − u < 2k+1. (12)

Proof s − u < 2k+1 by Lemma 7 (Condition 4). Since v ≤ s, we have (12). 2

Lemma 12 Any distinct edges (u, v), (s, t) ∈ E(T ) (u < s) satisfy exactly one of (4), (7), (9),
and (11).

Proof Immediate from Lemma 5. 2

Lemma 13 For any distinct edges (u, v), (s, t) ∈ E(T ) (u < s) such that ρ2(u, v) and ρ2(s, t)
share a k-edge in Q(n), (u, v) and (s, t) satisfy either (4) or (7) if and only if dir((u, v), k) =
dir((s, t), k) 6= 0, and (u, v) and (s, t) satisfy either (9) or (11) if and only if dir((u, v), k) = 1
and dir((s, t), k) = −1.

Proof We first show the necessities. If (u, v) and (s, t) satisfy either (4) or (7) then dir((u, v), k) =
dir((s, t), k) 6= 0 from the proofs of Lemmas 8 and 9. If (u, v) and (s, t) satisfy (9) then
dir((u, v), k) = 1 and dir((s, t), k) = −1 by Lemma 7 (Conditions 3 and 4). Assume that
(u, v) and (s, t) satisfy (11). If k < n − 1 then the (n − k − 1)-bit strings consisting of the
(k+1)st bit through the (n−1)st bit in the binary representations of u, v, and s are identical by
Lemma 7 (Condition 4). Thus, dir((u, v), k) = 1 and dir((s, t), k) = −1 by Lemma 7 (Condition
3).

We next show the sufficiencies. Assume that dir((u, v), k) = dir((s, t), k) 6= 0. It follows
from Lemma 12 that (u, v) and (s, t) satisfy exactly one of (4), (7), (9), and (11). If (u, v)
and (s, t) satisfy (9) or (11), then it follows from the necessities that dir((u, v), k) = 1 and
dir((s, t), k) = −1, a contradiction. Thus, (u, v) and (s, t) satisfy either (4) or (7). Assume that
dir((u, v), k) = 1 and dir((s, t), k) = −1. It follows from Lemma 12 that (u, v) and (s, t) satisfy
exactly one of (4), (7), (9), and (11). If (u, v) and (s, t) satisfy (4) or (7), then it follows from the
necessities that dir((u, v), k) = dir((s, t), k) 6= 0, a contradiction. Thus, (u, v) and (s, t) satisfy
either (9) or (11). 2

For distinct edges e1, e2, . . . , and el in T , suppose that ρ2(e1), ρ2(e2), . . . , and ρ2(el) share a
k-edge d ∈ E(Q(n)). If dir(e1, k) = dir(e2, k) = . . . = dir(el, k) 6= 0 then ρ2(e1), ρ2(e2), . . . , and
ρ2(el) are said to share d in the same direction.

Lemma 14 For any distinct edges (u, v), (s, t), and (w, x) in T which are a matching, ρ2(u, v),
ρ2(s, t), and ρ2(w, x) do not share an edge in the same direction.
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Proof We may assume without loss of generality that u < s < w. Assume that ρ2(u, v) and
ρ2(s, t) share a k-edge e ∈ E(Q(n)) in the same direction. Since (u, v) and (s, t) are a matching
of T , we have u < s < t < v from Lemma 13. Thus, it follows from Lemma 8 that t− s ≤ 2k. If
ρ2(s, t) and ρ2(w, x) share e in the same direction, we have s < w < x < t from Lemma 13, and
it follows from Lemma 8 that t − s > 2k+1, a contradiction. 2

Lemma 15 For any distinct edges (u, v), (s, t), and (w, x) in T which are incident to a vertex,
ρ2(u, v), ρ2(s, t), and ρ2(w, x) do not share an edge in the same direction.

Proof Suppose that ρ2(u, v), ρ2(s, t), and ρ2(w, x) share an edge in the same direction. Then
we have v = t = x by Lemma 13. Therefore u < v, s < v and w < v. This is a contradiction,
however, since each y ∈ V (T ) is adjacent to at most two vertices with labels less than y by the
definition of the postorder numbering. 2

Let d be a k-edge of Q(n). We define that

H+(d) = {e | e ∈ E(T ),dir(e, k) = 1, ρ2(e) contains d},

H−(d) = {e | e ∈ E(T ),dir(e, k) = −1, ρ2(e) contains d}.

Lemma 16 |H+(d)| ≤ 3 and |H−(d)| ≤ 3 for any d ∈ E(Q(n)). That is, the congestion of
〈φ2, ρ2〉 is at most 6.

Proof Suppose that d is a k-edge (0 ≤ k ≤ n − 1). If all edges in H+(d) are incident to
a vertex then |H+(d)| ≤ 2 by Lemma 15. We next consider the case that there are edges
(u, v), (s, t) ∈ H+(d) (u < s) which are a matching of T . Then we have u < s < t < v by
Lemma 13, and it follows from Lemma 8 that

v − u > 2k+1. (13)

Suppose that there exists an edge (w, x) ∈ H+(d) − {(u, v), (s, t)}. By Lemma 14, (w, x) is
adjacent to (u, v) or (s, t).

If (w, x) is adjacent to (u, v) then x = v from Lemma 13. Thus we have x − w ≤ 2k by
Lemma 9 and (13). Since t < v = x, it follows from Lemma 13 that w < s < t < x for (w, x)
and (s, t). Thus, we have x − w > 2k+1 from Lemma 8, which is a contradiction. Therefore,
(w, x) is adjacent to (s, t), and x = t from Lemma 13. In addition, (w, x) is the only edge in
H+(d) adjacent to (s, t) by Lemma 15. Thus we conclude |H+(d)| ≤ 3.

Similarly, we can show that |H−(d)| ≤ 3. 2

Lemma 17 The congestion of 〈φ2, ρ2〉 is at most 5.

Proof |H+(d)| ≤ 3 and |H−(d)| ≤ 3 for any d ∈ E(Q(n)) by Lemma 16. If |H+(d)| ≤ 2 and
|H−(d)| ≤ 2 for any d ∈ E(Q(n)) then the lemma is immediate.

Suppose first that |H+(d)| = 3 for a k-edge d ∈ E(Q(n)). Then H+(d) contains non-adjacent
two edges from the proof of Lemma 16. Let (u, v) be one of such edges which satisfies (13).
Then, we have v − u > 2k+1. Let (s, t) be an edge in H−(d). It follows from Lemma 13 that we
have either u < s < t < v or u < v ≤ s < t for (u, v) and (s, t). However, if u < v ≤ s < t then
v − u < 2k+1 from Lemma 11, which is a contradiction. Thus, u < s < t < v and we have

t − s ≤ 2k+1 (14)
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by Lemma 10. Suppose (w, x) and (y, z) are any distinct edges in H−(d) (w < y). We have
x − w ≤ 2k+1 from (14). It follows that x = z, for otherwise w < y < z < x from Lemma 13,
and we have x − w > 2k+1 by Lemma 8, which is a contradiction. Therefore, |H−(d)| ≤ 2 by
Lemma 15.

Suppose next that |H−(d)| = 3 for a k-edge d ∈ E(Q(n)). Then there exists an edge
(s, t) ∈ H−(d) such that t − s > 2k+1. Let (u, v) be an edge in H+(d). It follows from Lemma
13 that we have either u < s < t < v or u < v ≤ s < t for (u, v) and (s, t). However, if
u < s < t < v then t− s ≤ 2k+1 from Lemma 10, which is a contradiction. Thus, u < v ≤ s < t

and we have
v − u < 2k+1 (15)

by Lemma 11. Suppose (w, x) and (y, z) are any distinct edges in H+(d) (w < y). We have
x − w < 2k+1 from (15). It follows that x = z, for otherwise w < y < z < x from Lemma 13,
and we have x − w > 2k+1 by Lemma 8, which is a contradiction. Therefore, |H+(d)| ≤ 2 by
Lemma 15.

Thus, we conclude that the congestion of 〈φ2, ρ2〉 is at most 5. 2

This completes the proof of Theorem 2.

4 Concluding Remarks

Although 〈φ1, ρ1〉 may have a large dilation, we can also construct an embedding of G into
Q(2n) with dilation at most 2n + 2 and unit congestion using a more sophisticated routing. It
should be noted that the dilation of 〈φ2, ρ2〉 is at most the diameter of the hypercube since ρ2

is a shortest path routing.
Our analysis of the congestion of 〈φ2, ρ2〉 is tight possible. That is, there exist binary trees

for which the congestion of 〈φ2, ρ2〉 is exactly 5. For the tree shown in Figure 1, the image paths
of five bold edges by ρ2 share (10000, 10100) ∈ E(Q(6)). This is also true when we choose any
vertex in the right subtree (represented as the gray triangle) as the root. Moreover, the same
situation occurs if the root is not in the right subtree. Thus the congestion of 〈φ2, ρ2〉 for the
tree is independent of the choice of the root.
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