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A Linear Time Algorithm for Constructing Proper-Path-
Decomposition of Width Two

Akira MATSUBAYASHI† and Shuichi UENO††, Members

SUMMARY The problem of constructing the proper-path-
decomposition of width at most 2 has an application to the ef-
ficient graph layout into ladders. In this paper, we give a lin-
ear time algorithm which, for a given graph with maximum ver-
tex degree at most 3, determines whether the proper-pathwidth
of the graph is at most 2, and if so, constructs a proper-path-
decomposition of width at most 2.
key words: proper-path-decomposition, proper-pathwidth, path-

width, graph layout

1. Introduction

The pathwidth of a graph G is the minimum value of k

such that G can be obtained from a sequence of graphs
H1, H2, . . . , Hr each of which has at most k+1 vertices,
by identifying some vertices of Hi pairwise with some
of Hi+1(1 <= i < r) [5]. The sequence H1, H2, . . . , Hr

is called a path-decomposition of G with width k. The
proper-pathwidth is introduced in [6] as a variant of the
pathwidth. The (proper-)pathwidth is closely related
to other graph parameters such as cutwidth, topologi-
cal bandwidth, and search numbers. It is NP-complete
to decide, given a graph G and an integer k, whether
the (proper-)pathwidth of G is at most k, while the
problem is in P if k is a fixed integer. It is shown in [2]
that if the pathwidth of a graph G is bounded by a fixed
integer k then a path-decomposition of G with width k

can be constructed in polynomial time. On the other
hand, no polynomial time algorithm is known for the
problem of constructing a proper-path-decomposition
of width k for a graph with proper-pathwidth bounded
by a fixed integer k >= 2.

The graphs which can be laid out into ladders
are characterized in terms of the proper-pathwidth of
graphs [3]. It is known that finding a proper-path-
decomposition of width 2 for a graph with maximum
vertex degree 3 and proper-pathwidth 2 is crucial to
lay out such a graph into the ladder [3].

The purpose of this paper is to give a linear time al-
gorithm for constructing a proper-path-decomposition
of width 2 for a graph with maximum vertex degree 3
and proper-pathwidth 2.
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It is shown in [1] that if the treewidth of a
graph G is bounded by a fixed integer k then a tree-
decomposition of G with width k can be constructed
in linear time and, by using this fact and the re-
sult of [2], a path-decomposition of G with minimum
width can also be constructed in linear time. However,
this result cannot be generalized immediately to our
problem of constructing proper-path-decompositions
of minimum width since there exist graphs with the
proper-pathwidth more than the pathwidth because of
an additional condition ((e) in Condition 1 given in
Sect. 2) which is introduced to define the proper-path-
decomposition.

The rest of the paper is organized as follows. Some
definitions are given in Sect. 2. In Sect. 3, we give a
characterization of graphs with maximum vertex de-
gree 3 and proper-pathwidth 2. We give in Sect. 4 the
proof of the characterization and an algorithm for con-
structing a proper-path-decomposition of width 2.

2. Preliminaries

Let G be a graph and let V (G) and E(G) denote the
vertex set and edge set of G, respectively. ΓG(v) is
the set of edges incident to a vertex v in G. |ΓG(v)|
is called the degree of v and denoted by degG(v). Let
∆(G) = max{degG(v) | v ∈ V (G)}. NG(v) is the set
of vertices adjacent to a vertex v in G. For U ⊂

= V (G),

let G[U ] be the subgraph of G induced by U , and let
G − U denote G[V (G) − U ]. Similarly, for S ⊂

=E(G),

let G[S] be the subgraph of G induced by S, and let
G − S denote the graph obtained from G by deleting
S. For graphs G and H , G ∪ H is the graph with ver-
tex set V (G) ∪ V (H) and edge set E(G) ∪ E(H), and
G ∩ H is the graph with vertex set V (G) ∩ V (H) and
edge set E(G)∩E(H). Although a path is a graph, we
often denote a path by a sequence of vertices in which
consecutive two vertices are adjacent in the path.

A vertex v of G is a cut vertex if E(G) can be
partitioned into two nonempty subsets E1 and E2 such
that G[E1] and G[E2] have just the vertex v in com-
mon. A connected graph that has no cut vertices is
called a block. Every block with at least three vertices
is 2-connected. A block of a graph is a subgraph that is
a block and is maximal with respect to this property.

A graph is outer planar if it has a planar drawing
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Fig. 1 Minimal forbidden minors for P2.

in which the outer region includes all of its vertices. An
edge is outer if it is included in the outer region, and
is inner otherwise. A cycle C of an outer planar graph
G is an end-region of G if C = G[V (C)] and C has
at most one inner edge. Any 2-connected outer planar
graph has at least one end-region, and it has at least
two end-regions if it has an inner edge.

For a graph G, a sequence X = (X1, . . . , Xr) of
subsets of V (G) is called a proper-path-decomposition

of G if X satisfies the following conditions.
Condition 1:

(a) Xi 6⊂= Xj (i |= j);

(b)
⋃

1<=i<=r Xi = V (G);

(c) for any (u, v) ∈ E(G), there exists an i such
that u, v ∈ Xi;

(d) for all a, b, and c with 1 <= a <= b <= c <= r,
Xa ∩ Xc ⊂= Xb;

(e) for all a, b, and c with 1 <= a < b < c <= r,
|Xa ∩ Xc| <= |Xb| − 2 if |Xb| >= 2.

The width of X is max1<
=i<=r |Xi| − 1. The proper-

pathwidth of G is the minimum width over all proper-
path-decompositions of G, and denoted by ppw (G). A
proper-path-decomposition is said to be optimal if it
has width of ppw (G). A proper-path-decomposition of
width k is called a k-proper-path-decomposition.

A graph H is a minor of a graph G if H is iso-
morphic to a graph obtained from a subgraph of G by
contracting edges. A family F of graphs is said to be
minor-closed if the following condition holds: If G ∈ F
and H is a minor of G then H ∈ F . A graph G is a
minimal forbidden minor for a minor-closed family F
of graphs if G |∈ F and any proper minor of G is in F .
F is characterized by the minimal forbidden minors for
F . That is, a graph G is in F if and only if no minimal
forbidden minor for F is a minor of G. For a positive in-
teger k, the family Pk of graphs with proper-pathwidth
at most k is minor-closed. K3 and K1,3 are the minimal
forbidden minors for P1 [6], and 36 graphs are known
as the minimal forbidden minors for P2 [7]. The five
minimal forbidden minors for P2 shown in Fig. 1 will
be used in Sect. 4.

3. Characterization

In this section, we characterize graphs with maximum
vertex degree 3 and proper-pathwidth 2.

Suppose that G′ is a graph obtained from a graph
G by deleting self-loops and replacing multiple edges
with a single edge. A proper-path-decomposition of G′

is also that of G, and vice versa, by definition. There-
fore, an optimal proper-path-decomposition of G′ is
also that of G. An optimal proper-path-decomposition
of a graph can be obtained by concatenating optimal
proper-path-decompositions of connected components.
From these facts, we assume that the graphs considered
in the rest of the paper are simple and connected.

A cut vertex of a graph G is called a connection

point of G if the vertex is contained in a 2-connected
block of G. Since a connection point of G is a cut
vertex of G, E(G) can be partitioned into disjoint sets
E1, . . . , El such that G[Ei] and G[Ej ] share at most one
connection point of G for any i and j with 1 <= i < j <= l.
Let D = {G[Ei] | 1 <= i <= l}. We define that H is the
set of 2-connected components in D. A component of
D−H is called a path component of G if the component
is a path. P denotes the set of path components of G.
A component of D− (H∪P) is called a tree component

of G. T denotes the set of tree components of G.
The following characterization for trees with

proper-pathwidth at most k is given in [9].
Lemma A: For a tree T and an integer k >= 2,
ppw (T ) <= k if and only if there exists a path P in
T such that ppw (T − V (P )) <= k − 1. 2

k-spine of T is a path satisfying the condition of
Lemma A.

The following is the main theorem of the paper.
Theorem 1: For a graph G with ∆(G) <= 3,
ppw (G) <= 2 if and only if G has a sequence C =
(C1, C2, . . . , Cm) of distinct components in D and a
sequence A = (a0, a1, . . . , am) of distinct vertices of
G such that the following condition is satisfied. Let
D′ = D − {Ci | 1 <= i <= m}.
Condition 2:

(a) V (Ci) ∩ V (Ci+1) = {ai} for 1 <= i < m,
a0 ∈ V (C1), and am ∈ V (Cm).

(b) degG(a0) <= 2 and degG(am) <= 2.

(c) For 1 <= i <= m, if Ci ∈ T then the path in Ci

connecting ai−1 and ai is a 2-spine of Ci.

(d) For 1 <= i <= m, if Ci ∈ H then Ci is an outer
planar graph with at most two end-regions. More-
over, each end-region contains ai−1 or ai.

(e) D′ ⊂
=P .

(f) There exists a one-to-one mapping f : D′ →
{i | 1 <= i <= m} × {0, 1} satisfying the following
statement.
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For P ∈ D′, f(P ) = (i, j) if and only if
Ci ∈ H and there exists an end-vertex
x of P such that (x, ai−j) ∈ E(Ci). (∗)

2

In the following section, we give a constructive
proof for Theorem 1, and based on the proof, we de-
scribe a linear time algorithm which, given a graph G

with ∆(G) <= 3, determines whether ppw (G) <= 2, and
if so, constructs a proper-path-decomposition of width
at most 2 of G.

4. Proof and Algorithm

We first prove the theorem for a special case of |D| = 1.
We prove the theorem for trees and 2-connected graphs
in Sect. 4.1 and 4.2, respectively. The proof for general
case is given in Sect. 4.3. We also give in Sect. 4.3 an
algorithm for general graphs.

For a sequence X = (X1, X2, . . . , Xr) of elements,
X1 and Xr are called the head of X and its tail,
respectively. We denote the sequence without ele-
ments by nul . For sequences X = (X1, X2, . . . , Xr)
and Y = (Y1, Y2, . . . , Yq), we define that X + Y =
(X1, X2, . . . , Xr, Y1, Y2, . . . , Yq). For a sequence X =
(X1, X2, . . . , Xr) of subsets of a set Ω and W ⊂

=Ω, we

define that X ∪W = (X1∪W, X2∪W, . . . , Xr∪W ) and
X ∩ W = (X1 ∩ W, X2 ∩ W, . . . , Xr ∩ W ).

4.1 Binary Trees

Theorem 1 is immediate for binary trees by Lemma A.
An algorithm for constructing optimal proper-path-
decompositions of trees is shown in [8]. Since this
algorithm computes ppw (T ) in O(N) time for an N -
vertex tree T and provides an optimal proper-path-
decomposition of T in O(Nppw (T )) time, we can
construct a 2-proper-path-decomposition of T with
ppw (T ) = 2 in linear time.

In this subsection, we show algorithms for con-
structing a proper-path-decomposition of a binary tree
with width at most 2 satisfying some conditions. These
algorithms will be used to construct an algorithm for
general graphs.

Lemma 2: For a path P = (p0, . . . , pl), there exists
a 1-proper-path-decomposition X = (X1, . . . , Xr) of P

such that p0 ∈ X1 and pl ∈ Xr.

Proof: Let X = (X1, . . . , Xl) with Xi = {pi−1, pi}
(1 <= i <= l) if l >= 1, X = ({p0}) otherwise. X is
clearly a desired proper-path-decomposition. 2

Algorithm PPD PATH shown in Fig. 2 is the formal
description of the procedure written in the proof of
Lemma 2. Trivially, PPD PATH can be executed in linear
time.
Lemma 3: For a binary tree T with ppw (T ) =
2 and its 2-spine P = (p0, . . . , pl) such that

Procedure PPD PATH ( P )
[

Input: a path P = (p0, p1, . . . , pl);
Output: a 1-proper-path-decomposition (X1, X2, . . . ,Xr)

of P such that p0 ∈ X1 and pl ∈ Xr ;

]

1. if l = 0 then return ({p0});

2. for each 1 <= i <= l do

Xi := {pi−1, pi};

endfor ;

3. return (X1,X2, . . . , Xl);

End

Fig. 2 Algorithm for constructing a 1-proper-path-
decomposition of a path.

degT (p0) = degT (pl) = 1, there exists a 2-proper-
path-decomposition X = (X1, . . . , Xr) of T such that
p0 ∈ X1 −

⋃

1<i<=r Xi and pl ∈ Xr −
⋃

1<
=i<r Xi.

Proof: Since P is a 2-spine of T , it follows from
Lemma A that ppw (T − V (P )) <= 1. Thus, each con-
nected component of T −V (P ) is a path. For 0 < i < l,
at most one connected component Pi of T − V (P )
has a vertex adjacent to pi since ∆(T ) <= 3. Let
I = {i | 0 < i < l, degT (pi) = 3}. We define the
sequence X of subsets of V (T ) as follows:

X = (S1) + Y1 + (S2) + · · · + (Sl−1) + Yl−1 + (Sl),

where for 1 <= i <= l,

Si =







{pi−1, pi} ∪ V (Pi)
if i ∈ I and |V (Pi)| = 1

{pi−1, pi} otherwise

for 1 <= i < l,

Yi =







PPD PATH(Pi) ∪ {pi}
if i ∈ I and |V (Pi)| >= 2

nul otherwise

We show that X is a desired 2-proper-path-
decomposition. The following claim can be easily ob-
served from the definition of X .

Claim 4:

1. p0 and pl appear in S1 and Sl, respectively.

2. For 0 < i < l, pi appears in Si ∩ Si+1. Moreover,
pi appears in every element of Yi if Yi |= nul .

3. For i ∈ I with |V (Pi)| >= 2, v ∈ V (Pi) appears in
at most two consecutive elements of Yi.

4. For i ∈ I with |V (Pi)| = 1, v ∈ V (Pi) appears in
Si.

It is clear by Claim 4 that X satisfies (a), (b), and (c) in
Condition 1. Moreover, X satisfies (d) in Condition 1
since we can observe that any vertex of T appears in
consecutive elements of X . In what follows, we show
that X satisfies (e) in Condition 1. If Xa ∩ Xc = ∅ for
all a and c with 1 < a+1 <= c−1 < r then the condition
is clearly satisfied. Thus, we assume that there exist a
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Procedure PPD TREE ( T, P )












Input: a binary tree T ;
a 2-spine P = (p0, . . . , pl) of T such that
degT (p0) = degT (pl) = 1;

Output: a proper-path-decomposition (X1, . . . ,Xr) of T

with width at most 2 such that p0 ∈ X1 −
⋃

1<i<=r
Xi and pl ∈ Xr −

⋃

1<
=i<r

Xi;













1. for i := 1 to l − 1 do

a. Si := {pi−1, pi};

b. Yi := nul ;

c. if degT (pi) = 3 then

i. let Pi be the connected component in T −V (P )
which has a vertex adjacent to pi in T ;

ii. if |V (Pi)| = 1 then Si := {pi−1, pi} ∪ V (Pi);
else Yi := PPD PATH(Pi) ∪ {pi};

endfor ;

2. Sl := {pl−1, pl};

3. return (S1) + Y1 + (S2) + · · · + (Sl−1) + Yl−1 + (Sl);

End

Fig. 3 Algorithm for constructing a 2-proper-path-
decomposition of a binary tree with its 2-spine.

and c with 1 < a+1 <= c−1 < r such that Xa∩Xc |= ∅.
Since any vertex in V (T )−{pi | i ∈ I, |V (Pi)| >= 2} ap-
pears in at most two consecutive elements of X , there
exists pi such that i ∈ I , |V (Pi)| >= 2, and pi ∈ Xa∩Xc.
Since (Xa, . . . , Xc) is a subsequence of (Si)+Yi+(Si+1),
no vertices in V (P ) − {pi} are contained in Xa ∩ Xc.
Moreover, since Xb is an element of Yi for any b with
a < b < c, it follows from |V (Pi)| >= 2 that |Xb| = 3.
Thus, we have that |Xa∩Xc| = |{pi}| = 1 <= |Xb|−2 for
any b with a < b < c. Therefore, X satisfies (e) in Con-
dition 1. It is clear that the width of X is at most 2 and
that p0 ∈ X1 −

⋃

1<i<=r Xi and pl ∈ Xr −
⋃

1<
=i<r Xi.

Therefore, X is a desired proper-path-decomposition.
2

We describe Algorithm PPD TREE based on
Lemma 3 in Fig. 3. The following corollary is immedi-
ate.
Corollary 5: Given a binary tree T and a 2-spine
P = (p0, . . . , pl) of T such that degT (p0) = degT (pl) =
1, PPD TREE outputs in linear time a proper-path-
decomposition (X1, . . . , Xr) of T with width at most
2 such that p0 ∈ X1 −

⋃

1<i<=r Xi and pl ∈ Xr −
⋃

1<=i<r Xi. 2

4.2 2-Connected Graphs

In this subsection, we show a necessary and sufficient
condition for a 2-connected graph G to have ppw (G) =
2, and based on this condition, we give an algorithm for
constructing a 2-proper-path-decomposition of G. This
algorithm is used in the next subsection to construct
an algorithm for general graphs.

Theorem 1 is immediate for 2-connected graphs by

the following lemma.
Lemma 6: For a 2-connected graph G, ppw (G) = 2
if and only if G is outer planar and has at most two
end-regions.

Proof: First, we assume that ppw (G) = 2. Then none
of M1, K4, and K2,3 which are shown in Fig. 1 is a
minor of G. It is well-known that the family of outer
planar graphs is minor-closed and that K4 and K2,3 are
the minimal forbidden minors for the family of outer
planar graphs. Thus G is outer planar. Moreover, G

has at most two end-regions since M1 is not a minor of
G.

Next, we assume that G is outer planar and has at
most two end-regions. Let es and et be any edges in G

satisfying the following condition:

Condition 3: es and et are outer edges contained in
distinct end-regions if G has two end-regions.

It suffices to show the following claim.

Claim 7: There ex-
ists a 2-proper-path-decomposition X = (X1, . . . , Xr)
of G such that

|Xi| = 3 (1 <= i <= r), (1)

es ∈ E(G[X1]) − E(G[
⋃

1<i<=r

Xi]), and (2)

et ∈ E(G[Xr]) − E(G[
⋃

1<=i<r

Xi]). (3)

We prove this claim by induction on |V (G)|.

If |V (G)| = 3 then X = (V (G)) is clearly a desired
proper-path-decomposition.

We assume that the claim holds for any G′ with
|V (G)| − 1 >= 3 vertices and for any pair of edges in G′

satisfying Condition 3. Since |V (G)| >= 4, there exists a
degree 2 vertex s incident to es but not to et. Suppose
that es = (s, y) and NG(s) − {y} = {x}. Let G′ be the
graph obtained by contracting the edge (s, x). Since s

is identified with x, we denote the resulting vertex of
G′ by x. G′ is clearly an outer planar graph with at
most two end-regions. By the definitions of s, x, and y,
(x, y) and et are distinct edges in G′ satisfying Condi-
tion 3. Therefore, by induction hypothesis, there exists
a 2-proper-path-decomposition Y = (Y1, . . . , Yl) of G′

such that

|Yi| = 3 (1 <= i <= l), (4)

(x, y) ∈ E(G′[Y1]) − E(G′[
⋃

1<i<=l

Yi]), and (5)

et ∈ E(G′[Yl]) − E(G′[
⋃

1<=i<l

Yi]). (6)

We show that X = ({s, x, y})+Y is a desired 2-proper-
path-decomposition of G.
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We first show that X satisfies (1), (2), and (3). It
follows from (4) and the definition of X that X satisfies
(1). Since

s |∈ Yi (1 <= i <= l), (7)

we have that

es ∈ E(G[{s, x, y}]) − E(G[
⋃

1<=i<=l

Yi]). (8)

It follows from (6) and (8) that X satisfies (2) and (3).

We next show that X is a 2-proper-path-
decomposition of G. X clearly satisfies (a), (b), and (c)
in Condition 1. Since Y is a proper-path-decomposition
of G′ and |Yi| = 3 for all i with 1 <= i <= l, it follows
that

Ya ∩ Yc ⊂
= Yb (1 <= a <= b <= c <= l), (9)

|Ya ∩ Yc| <= |Yb| − 2 (1 <= a < b < c <= l).

Thus, to show that X satisfies (d) and (e) in Condi-
tion 1, it suffices to prove that {s, x, y} ∩ Yc ⊂= Yb and

|{s, x, y} ∩ Yc| <= |Yb| − 2 for 1 <= b < c <= l. It follows
from (5) that

{x, y} ⊂
= Y1, (10)

{x, y} 6⊂=

⋃

1<i<=l

Yi. (11)

It follows from (7), (9), and (10) that {s, x, y} ∩ Yc =
{x, y} ∩ Yc ⊂=Y1 ∩ Yc ⊂=Yb for 1 <= b < c <= l. It fol-

lows from (7) and (11) that |{s, x, y} ∩ Yc| <= 1 for
1 < c <= l. Thus we have that |{s, x, y} ∩ Yc| <= |Yb| − 2
for 1 <= b < c <= l by (4).

Therefore, X
is a desired 2-proper-path-decomposition of G, and we
conclude that the lemma holds. 2

We describe in Fig. 4 Algorithm PPD 2CG based on
Lemma 6.
Corollary 8: Given a 2-connected outer planar graph
G with at most two end-regions and any edges es and et

in G satisfying Condition 3, PPD 2CG outputs in linear
time a 2-proper-path-decomposition (X1, . . . , Xr) of G

satisfying (1), (2), and (3).

Proof: The correctness of PPD 2CG is immediate from
the proof of Lemma 6. PPD 2CG involves |V (G)| recur-
sive calls each of which consists of constant time oper-
ations. Therefore, PPD 2CG can be executed in linear
time. 2

4.3 General Graphs

In this subsection, we prove Theorem 1 and describe
our algorithm for general graphs. The following lemma
will be used extensively throughout this subsection.

Procedure PPD 2CG ( G, es, et )






Input: a 2-connected outer planar graph G with at most
two end-regions;
edges es and et satisfying Condition 3;

Output: a 2-proper-path-decomposition (X1, . . . ,Xr) of
G satisfying (1), (2), and (3);







1. if |V (G)| = 3 then return (V (G));

2. let s be a vertex such that degG(s) = 2, es ∈ Γ(s), and
et |∈ Γ(s);

3. let {x, y} := NG(s) such that (s, y) = es;

4. let G′ be the graph obtained from G by contracting (s, x);

5. return ({s, x, y}) + PPD 2CG(G′, (x, y), et);

End

Fig. 4 Algorithm for constructing a 2-proper-path-
decomposition of a 2-connected graph.

Lemma 9: Let X = (X1, . . . , Xr) be a 2-proper-path-
decomposition of a graph G with ppw (G) = 2. For a
path P connecting a vertex s ∈ X1 and a vertex t ∈ Xr,
every connected component of G − V (P ) is a path.

Proof: Suppose that Y = (Y1, . . . , Yr) is X ∩ (V (G) −
V (P )). It suffices to show that the sequence Y ′ ob-
tained from Y by deleting redundant elements is a 1-
proper-path-decomposition of G−V (P ). Y clearly sat-
isfies (b), (c), and (d) in Condition 1 for G − V (P ).
Thus, Y ′ satisfies (a), (b), (c), and (d) in Condition 1 for
G−V (P ). To show that Y ′ satisfies (e) in Condition 1,
it suffices to prove that both of the following statements
holds: (i) |Yi| <= 2 for any 1 <= i <= r; (ii) Ya = Yc or
|Ya ∩ Yc| = 0 for all a and c with 1 < a + 1 <= c− 1 < r.
Every Xi (1 <= i <= r) contains a vertex of P since
end-vertices s and t of P are contained in X1 and Xt,
respectively, and X satisfies (c) and (d) in Condition 1.
Since the width of X is 2, we have that |Yi| <= 2, i.e. (i)
holds.

Since X satisfies (e) in Condition 1, we have that

|Xa ∩ Xc| <= |Xb| − 2 <= 3 − 2 = 1 (12)

for any a, b, and c with 1 <= a < b < c <= r. For a, b,
and c with 1 <= a < b < c <= r, let pa ∈ Xa ∩ V (P ),
pb ∈ Xb ∩ V (P ), and pc ∈ Xc ∩ V (P ).

Case 1 pa = pc. It follows from (12) that |Xa ∩Xc| =
1. Thus, we have |Ya ∩ Yc| = 0.

Case 2 pa |= pc. It suffices to show that, if |Ya∩Yc| = 1
then Ya = Yc. We assume that |Ya ∩ Yc| = 1, and show
that Ya = Yc. Let v ∈ Ya ∩ Yc. It follows from (d)
in Condition 1 that v ∈ Yb ⊂ Xb. Now we show that
Xb−(V (P )∪{v}) = ∅. We prove this by contradiction.
Assume that Xb − (V (P ) ∪ {v}) |= ∅. Since |Xb| <= 3,
it follows from assumption that Xb ∩ V (P ) = {pb}.
Since P connects s ∈ X1 and t ∈ Xr, it follows
from 1 < b < r that pb ∈ Xb−1 ∩ Xb+1. More-
over, since v ∈ Ya ∩ Yc and X satisfies (d) in Con-
dition 1, we have that v ∈ Xb−1 ∩ Xb+1. Thus, we
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have that |Xb−1 ∩ Xb+1| >= |{pb, v}| = 2, contradicting
(12). Therefore, it follows that Xb − (V (P )∪ {v}) = ∅.
Since this holds for any b with a < b < c, we have
Ya = Ya+1 = · · · = Yc = {v}.

Therefore, (ii) holds. 2

In what follows, G is a graph with ∆(G) = 3. Let
H, T , and P be the sets of 2-connected components,
tree components, and path components of G, respec-
tively, and D = H ∪ T ∪ P .

Proof of Necessity for Theorem 1

We first show the necessity. Assume that ppw (G) = 2.
Since the theorem is proved for the case of |D| = 1
in Sect. 4.1 and 4.2, we assume that |D| >= 2. It fol-
lows from assumption that |V (G)| >= 4. There exists
a 2-proper-path-decomposition X = (X1, . . . , Xr) of G.
Since X satisfies (a) in Condition 1 and |V (G)| >= 4,
there exist s ∈ X1 −X2 and t ∈ Xr −Xr−1. We define
that S is a path connecting s and t.
Claim 10: For D ∈ D, D ∩ S is connected if D ∩ S

has a vertex.

Proof: By the definitions of 2-connected components,
tree components, and path components, every path in
G connecting vertices of D is a subgraph of D. Thus,
the claim holds. 2

Let C1, C2, . . ., Cm be components in D contain-
ing an edge of S. By Claim 10, Ci ∩ S is a subpath of
S (1 <= i <= m). Moreover, Ci ∩ S and Cj ∩ S are inter-
nally vertex-disjoint since Ci and Cj share at most one
connection point for 1 <= i < j <= m. Thus we may as-
sume without loss of generality that Ci∩S and Ci+1∩S

share a connection point ai for 1 <= i < m. Let a0 = s

and am = t. Notice that ai−1 and ai are end-vertices
of Ci ∩S for 1 <= i <= m. Moreover, ai−1 and ai are dis-
tinct vertices since Ci ∩ S has at least two vertices for
1 <= i <= m. This means that a0, a1, . . ., am are distinct
vertices of G. We define that C = (C1, C2, . . . , Cm) and
A = (a0, a1, . . . , am). We show that C and A satisfies
Condition 2.

C and A clearly satisfies (a) in Condition 2 by defi-
nition. The following claim shows that C and A satisfies
(b) in Condition 2.
Claim 11: degG(s) <= 2 and degG(t) <= 2.

Proof: |X1| <= 3 and |Xr| <= 3 since the width of X is
2. Thus, we have degG(s) <= 2 and degG(t) <= 2 since s

is only in X1 and t is only in Xr. 2

The following claim shows that C and A satisfy (c)
in Condition 2.
Claim 12: If Ci ∈ T (1 <= i <= m), then the path in
Ci connecting ai−1 and ai is a 2-spine of Ci.

Proof: Let S′ be the path in Ci connecting ai−1 and ai.
By Lemma 9, every connected component of G− V (S)
is a path. Since S′ is a subpath of S, every connected
component of Ci −V (S′) is a path. This means that S ′

is a 2-spine of Ci. 2

The following claim shows that C and A satisfy
(d) in Condition 2. Let P s

i = (s, . . . , ai) and P t
i =

(ai, . . . , t) be the subpaths of S for 0 <= i <= m.
Claim 13: If Ci ∈ H (1 <= i <= m), then Ci is an outer
planar graph with at most two end-regions. Moreover,
each end-region contains ai−1 or ai.

Proof: Suppose that Ci ∈ H (1 <= i <= m). Since
ppw (G) = 2, we have that ppw (Ci) = 2. Thus, Ci is an
outer planar graph with at most two end-regions from
Lemma 6. It remains to show that each end-region of
Ci contains ai−1 or ai. If Ci has an end-region Z which
contains neither ai−1 nor ai, then there exists a path
P in Ci which connects ai−1 and ai and contains no
vertices in Z. S′ = P s

i−1 ∪ P ∪ P t
i is clearly a path

connecting s and t. Since S ′ and Z are vertex-disjoint,
G − V (S′) contains a cycle as a subgraph. However,
this contradicts Lemma 9. Thus, each end-region of Ci

contains ai−1 or ai. 2

The following claim shows that C and A satisfy (e)
in Condition 2. Let D′ = D − {Ci | 1 <= i <= m}.
Claim 14: D′ ⊂

=P .

Proof: We show that any D ∈ H ∪ T is an element
of C. By Claim 10 and the definition of C, it suffices
to show that |V (D ∩ S)| >= 2. By Lemma 9, D ∩ S

has at least one vertex. Thus it remains to show that
|V (D ∩ S)| |= 1. We prove this by contradiction. As-
sume that V (D ∩ S) = {x}.

Case 1 D ∈ H. If x ∈ V (S) − {s, t} then we have
degG(x) = degD(x) + degS(x) >= 2 + 2 = 4, which is
a contradiction since ∆(G) = 3. If x ∈ {s, t} then we
have degG(x) = degD(x) + degS(x) >= 2 + 1 = 3, which
also contradicts Claim 11.

Case 2 D ∈ T . Since there exists an edge in ΓS(x)
which is not contained in D, x is a connection point
of G. Thus, there exists H ∈ H containing x. Since
H is 2-connected and ∆(G) = 3, x is incident to just
two edges of H and to exactly one edge of D. Thus,
it follows from Claim 11 that x |∈ {s, t} and S has two
edges in ΓH(x). This means that H is an element of
C and x |∈ {ai | 0 <= i <= m}. Suppose that H = Ci

(1 <= i <= m). Since Ci is 2-connected, there exists a
path P in Ci which connects ai−1 and ai and does not
contain x. S′ = P s

i−1 ∪ P ∪ P t
i is a path connecting s

and t. Since S′ and D are vertex-disjoint and D has
a degree 3 vertex, G − V (S ′) has a degree 3 vertex,
contradicting Lemma 9.

Thus, we conclude that |V (D ∩ S)| |= 1 and the claim
holds. 2

We prove by a sequence of claims that C and A
satisfy (f) in Condition 2. It is clear that P ∈ D′ has
exactly one connection point. We denote the connec-
tion point by c(P ).
Claim 15: For P ∈ D′, there exists a unique Ci ∈ H
(1 <= i <= m) such that c(P ) ∈ V (Ci). Moreover,
(c(P ), ai−1) ∈ E(Ci) or (c(P ), ai) ∈ E(Ci).
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Proof: Since ∆(G) = 3, it is clear that for P ∈ D′,
there exists a unique Ci ∈ H (1 <= i <= m) such that
c(P ) ∈ V (Ci). We show that (c(P ), ai−1) ∈ E(Ci) or
(c(P ), ai) ∈ E(Ci). We prove this by contradiction. As-
sume that (c(P ), ai−1) |∈ E(Ci) and (c(P ), ai) |∈ E(Ci).
c(P ) is neither ai−1 nor ai from Claim 11 and the as-
sumption that ∆(G) = 3. Thus, neither ai−1 nor ai is
contained in NG(c(P ))∪{c(P )}. Since Ci is 2-connected
outer planar graph with ∆(G) = 3, c(P ) is incident to
just two outer edges of Ci and to exactly one edge of
P . Thus, there exists a path P in Ci which connects
ai−1 and ai and does not contain a vertex incident to
the two outer edges. S ′ = P s

i−1 ∪ P ∪ P t
i is a path

connecting s and t. Since S ′ has no vertex adjacent to
c(P ), G − V (S′) has c(P ) with degree 3, contradicting
Lemma 9. 2

Claim 16: For distinct P1, P2 ∈ D′, c(P1) |= c(P2).

Proof: Each c(Pi) (i = 1, 2) is contained in a 2-
connected component of G by Claim 15. If c(P1) =
c(P2) then degG(c(Pi)) >= 4 (i = 1, 2), contradicting
the assumption that ∆(G) = 3. 2

Claim 17: Suppose that Ci ∈ H (1 <= i <= m). If
there exist distinct P1, P2 ∈ D′ such that both c(P1)
and c(P2) are adjacent to a ∈ {ai−1, ai}, then c(P1) or
c(P2) is adjacent to a′ ∈ {ai−1, ai} − {a}.

Proof: We show the claim by contradiction. Assume
that there exist distinct P1, P2 ∈ D′ such that both
c(P1) and c(P2) are adjacent to a ∈ {ai−1, ai} and that
neither c(P1) nor c(P2) is adjacent to a′ ∈ {ai−1, ai} −
{a}. Let L be the subgraph of G induced by all the
outer edges of Ci. Suppose that NL(a′) = {u, v}. It
follows from the assumption and Claims 15 and 16 that
a, a′, u, v, c(P1), and c(P2) are distinct vertices.

If there exists an edge e ∈ E(G) − E(Ci) incident
to a′, then M3 shown in Fig. 1 is a minor of the sub-
graph L∪ P1 ∪ P2 ∪G[{e}] of G, i.e. ppw (G) > 2. This
means that ΓG(a′) − E(Ci) = ∅ and that the proper-
pathwidth of the graph G′ obtained from G by adding
an additional vertex x and by joining a′ and x by an
additional edge is more than 2. If a′ = aj (1 <= j < m)
then ΓG(a′) − E(Ci) |= ∅ clearly. Thus we have that
a′ = a0(= s) or a′ = am(= t). Let X ′ = ({x, s}) + X if
a′ = s, X ′ = X +({t, x}) otherwise. It is not difficult to
see that X ′ is a proper-path-decomposition of G′ and
that the width of X ′ is 2. This means that ppw (G′) = 2,
a contradiction. 2

Claim 18: For Ci ∈ H (1 <= i <= m), |{P ∈ D′ |
c(P ) ∈ V (Ci)}| <= 2.

Proof: We show the claim by contradiction. Assume
that there exist distinct P1, P2, P3 ∈ D′ such that
{c(P1), c(P2), c(P3)}⊂=V (Ci). Let L be the subgraph
of G induced by all the outer edges of Ci. Moreover, let
G′ be the graph obtained from G by adding additional
vertices x and y and edges (x, s) and (y, t). Notice that
there exist distinct edges e ∈ ΓG′(ai−1) − E(Ci) and
e′ ∈ ΓG′(ai)−E(Ci). As shown in the proof of Claim 15,

{c(P1), c(P2), c(P3)} ∩ {ai−1, ai} = ∅. Thus it follows
from Claim 16 that c(P1), c(P2), c(P3), ai−1, and ai

are distinct vertices. Therefore, M2 shown in Fig. 1 is
a minor of the subgraph L ∪ P1 ∪ P2 ∪ P3 ∪ G′[{e, e′}]
of G′, i.e. ppw (G′) > 2. However, it is not difficult to
see that X ′ = ({x, s}) + X + ({t, y}) is a proper-path-
decomposition of G′ and that the width of X ′ is 2. Thus
we have ppw (G′) = 2, a contradiction. 2

Claim 19: C and A satisfy (f) in Condition 2.

Proof: It follows from Claim 15 that there exists a
mapping f satisfying the statement (∗) in Condition 2.
By Claims 17 and 18, f can easily be reconstructed so
that it is a one-to-one mapping satisfying (∗). 2

Thus, C and A satisfy Condition 2. Therefore, the
proof of necessity for Theorem 1 is completed.

Proof of Sufficiency for Theorem 1

We next show the sufficiency. Assume that G has a se-
quence C = (C1, C2, . . . , Cm) of components in D and a
sequence A = (a0, a1, . . . , am) of vertices of G such that
Condition 2 is satisfied. If C1 ∈ T and degG(a0) = 2
then we can easily find a vertex a′

0 ∈ V (C1) such
that degG(a′

0) = 1 and that the path connecting a′
0

and a1 is a 2-spine of C1. Moreover, C and the se-
quence (a′

0, a1, . . . , am) satisfy Condition 2. Thus, we
assume without loss of generality that, if C1 ∈ T then
degG(a0) = 1. Similarly, we assume without loss of
generality that, if Cm ∈ T then degG(am) = 1.

For Ci ∈ H (1 <= i <= m), we define that e0
i and

e1
i are distinct edges of Ci incident to ai and ai−1,

respectively, such that if there exists P ∈ D′ with
f(P ) = (i, j) then e

j
i = (ai−j , c(P )) (j = 0, 1). The fol-

lowing claim shows that e0
i and e1

i satisfy Condition 3
for Ci ∈ H.
Claim 20: For Ci ∈ H, e0

i and e1
i are outer edges

of Ci. Moreover, they are contained in distinct end-
regions if Ci has two end-regions.

Proof: The claim is immediate if Ci has a single end-
region. Thus, we assume Ci has two end-regions. Since
(b) in Condition 2 is satisfied and ∆(G) = 3, we have
that degCi

(ai−1) = degCi
(ai) = 2. Thus, two edges in-

cident to a ∈ {ai−1, ai} are outer edges contained in a
same region. Moreover, since (d) in Condition 2 is sat-
isfied, ai−1 and ai are contained in distinct end-regions.
Therefore, ΓCi

(ai−1) and ΓCi
(ai) are subsets of edges

of distinct end-regions. Since e
j
i ∈ ΓCi

(ai−j) (j = 0, 1),
the claim holds. 2

We show that the sequence X = (X1, . . . , Xr) of
subsets of V (G) defined as follows is a 2-proper-path-
decomposition of G.

X =
∑

1<
=i<=m

Li + Y i + Ri, where for 1 <= i <= m,
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Y i =







PPD TREE(Ci, path (ai−1, . . . , ai))
if Ci ∈ T ∪ P

PPD 2CG(Ci, e
1
i , e

0
i ) if Ci ∈ H

Li =







PPD PATH(P = (p0, . . . , c(P ))) ∪ {ai−1}
if ∃P ∈ D′ with f(P ) = (i, 1)

nul otherwise

Ri =







PPD PATH(P = (c(P ), . . . , pl)) ∪ {ai}
if ∃P ∈ D′ with f(P ) = (i, 0)

nul otherwise

X satisfies (a), (b), and (c) in Condition 1 by defini-
tion. Moreover, every element of X contains at most
three vertices of G. Thus, it suffices to show that X
satisfies (d) and (e) in Condition 1. By the definition
of PPD PATH and Corollaries 5 and 8, we can observe
the following claim.
Claim 21:

1. For 1 <= i <= m, v ∈ V (Ci) − ({ai−1, ai} ∪ {c(P ) |
P ∈ D′}) appears in consecutive elements of Y i.

2. For P ∈ D′, v ∈ V (P )−{c(P )} appears in at most
two consecutive elements of X .

3. For 0 <= i <= m, ai appears consecutive elements of
Y i +Ri +Li+1 +Y i+1, where Y0 = R0 = Ym+1 =
Lm+1 = nul .

4. For P ∈ D′ with f(P ) = (i, 1), c(P ) appears in
the tail of Li and in consecutive elements of Y i

including its head.

5. For P ∈ D′ with f(P ) = (i, 0), c(P ) appears in
the head of Ri and in consecutive elements of Y i

including its tail.

2

It follows from Claim 21 that every vertex in G appears
in consecutive elements of X . Thus, X satisfies (d) in
Condition 1.

It remains to show that X satisfies (e) in Condi-
tion 1. If Xa ∩ Xc = ∅ for all a and c with 1 < a + 1 <=
c − 1 < r, then this is immediate. Thus, we assume
that there exist a and c with 1 < a + 1 <= c − 1 < r

such that Xa ∩ Xc |= ∅. For 1 <= i <= m, Y i is a
proper-path-decomposition of Ci. Thus, we have that
|Xa ∩ Xc| <= |Xb| − 2 for any b with a < b < c if there
exists i with 1 <= i <= m such that both Xa and Xc are
elements of Y i. Therefore, we assume that there exists
no i with 1 <= i <= m such that both Xa and Xc are ele-
ments of Y i. It follows from assumption and Claim 21
that Xa ∩ Xc contains at most one vertex in A and at
most one vertex in {c(P ) | P ∈ D′}.
Claim 22: |Xa ∩ Xc| = 1.

Proof: It suffices to show that both ai (0 <= i <= m) and
c(P ) are not contained in Xa ∩ Xc. We prove this by
contradiction. Assume that there exist i (0 <= i <= m)
and P ∈ D′ such that {ai, c(P )}⊂=Xa ∩ Xc. By

Claim 21 and the assumption that no Y i (1 <= i <= m)
contains both Xa and Xc, we have that f(P ) = (i, 0)
or f(P ) = (i + 1, 1). We may assume without loss of
generality that f(P ) = (i, 0). Then, both Xa and Xc

are elements of Y i + (the head of Ri). Suppose that
Y i = (Y i

1 , . . . , Y i
r ). Since c − a >= 2, we have that

Xa |= Y i
r . Thus, there exists j with 1 <= j < r such

that {ai, c(P )}⊂=Xa = Y i
j . However, this is impossible

since (ai, c(P )) = e0
i ∈ E(G[Y i

r ])−E(G[
⋃

1<
=j<r Y i

j ]) by

Corollary 8. 2

Claim 23: |Xb| = 3 for any b with a < b < c.

Proof: Let b be any integer such that a < b < c. If
there exists i (1 <= i <= m) such that Xb is an element
of Y i and that Ci ∈ H, then |Xb| = 3 by Corollary 8.
If there exists i (1 <= i <= m) such that Xb is an el-
ement of Li or Ri, then |Xb| = 3 by the definition
of PPD PATH and by the fact that |V (P )| >= 2 for any
P ∈ D′. Thus, it suffices to show that Xb is not an
element of Y i such that Ci ∈ T ∪ P . We prove this
by contradiction. Assume that Xb is an element of Y i

(1 <= i <= m) such that Ci ∈ T ∪ P . It follows from the
assumption and Claim 22 that either Xa∩Xc = {ai−1}
or Xa ∩ Xc = {ai}. We assume without loss of gener-
ality that Xa ∩ Xc = {ai}. Since Xb is an element of
Y i, Xa is an element of Y i except the tail. This means
that ai is contained in an element of Y i except the tail.
However, this is impossible since ai is an end-vertex of
2-spine of Ci and ai appears only in the tail of Y i by
Corollary 5. 2

It follows from Claims 22 and 23 that |Xa∩Xc|−|Xb| =
3− 2 = 1 for a < b < c. Thus, X satisfies (e) in Condi-
tion 1.

Therefore, X is a 2-proper-path-decomposition of
G and the proof of sufficiency for Theorem 1 is com-
pleted.

We describe in Fig. 5 Algorithm PPD GENERAL

based on Theorem 1. It is well-known that we can find
all blocks of a graph in linear time. Moreover, we can
determine if a given graph is outer planar in linear time
[4]. To find a0 and am in step 3, we need an algorithm
to find a 2-spine of a binary tree, which has not been
described yet. Although the details are not mentioned
here, this can be done in linear time by using a simple
postorder searching and the algorithm in [8], which out-
puts, for a rooted binary tree, the proper-pathwidth of
every subtree rooted at a vertex. The other operations
in PPD GENERAL clearly executed in linear time.
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Procedure PPD GENERAL ( G )
[

Input: a connected graph G with ∆(G) <= 3;
Output: a 2-proper-path-decomposition of G;

]

1. let H, T , and P be the sets of 2-connected components,
tree components, and path components of G, respectively;

2. D := H∪ T ∪ P ;

3. find a sequence C = (C1 , C2, . . . , Cm) of components in D
and a sequence A = (a0 , a1, . . . , am) of vertices of G such
that Condition 2 and the following conditions are satisfied:

degG(a0) = 1 if C1 ∈ T ;
degG(am) = 1 if Cm ∈ T ;

4. if C and A do not exist then reject ;

5. D′ := D − {Ci | 1 <= i <= m};

6. for each Ci ∈ H do

a. find distinct edges e0

i ∈ ΓCi
(ai) and e1

i ∈ ΓCi
(ai−1)

such that, if there exists P ∈ D′ with f(P ) = (i, j)

then e
j
i

= (ai−j , c(P )) (j = 0, 1);

endfor ;

7. for i = 1 to m do

a. if Ci ∈ T ∪ P then

Yi := PPD TREE(Ci, path (ai−1, . . . , ai));
else Yi := PPD 2CG(Ci, e

1

i
, e0

i
);

b. if ∃P ∈ D′ with f(P ) = (i, 1) then

Li := PPD PATH(P = (p0, . . . , c(P ))) ∪ {ai−1};
else Li := nul ;

c. if ∃P ∈ D′ with f(P ) = (i, 0) then

Ri := PPD PATH(P = (c(P ), . . . , pl)) ∪ {ai};
else Ri := nul ;

endfor ;

8. return
∑

1<
=i<=m

Li + Yi + Ri;

End

Fig. 5 Algorithm for constructing a 2-proper-path-
decomposition of a general graph.
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