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Abstract

Random point fields which describe gases consisting of para-particles of any
order p ∈ N are given by means of the canonical ensemble approach. The analysis
for the cases of the para-fermion gases are discussed in full detail and it is shown
that the partition functions are p-th power of that of the usual (i.e. p = 1) fermion.
The same is true for para-bosons.

1 Introduction

Where do the statistics of random point fields come from? We examine what kind of
random point fields follow from the para-statistics of particles.

In the previous paper [9], the boson and/or fermion point fields were derived by
means of the canonical ensemble approach. That is, quantum mechanical thermal sys-
tems of finite fixed number of bosons and/or fermions in the bounded box in Rd were
considered. By taking the thermodynamic limit of the position distribution of con-
stituents, random point fields for boson and/or fermion gases of positive finite densities
and temperatures on Rd were obtained. There, the method was applied to construct the
random point fields which describe gases consisting of para-bosons (resp. para-fermions)
of order 2. In the recent proceeding article [11], the argument for para-particle gases of
order 3 is developed.

In this paper, we pursue the project to the general case: we apply the method to
statistical mechanics of gases which consist of para-particles of any order p ∈ N. We
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2 BRIEF REVIEW ON REPRESENTATION OF THE SYMMETRIC GROUP 2

will see that the random point fields obtained in this way are those of α = ±1/p given
in [6]. Our main result in this paper is

Theorem The random point field for gas of para-fermions (resp. para-bosons of low
density) of order p is equal in law to the convolution of p independent copies of the usual
fermion (resp. boson) point field for any p ∈ N.

We use the representation theory of the symmetric group (cf. e.g. [2, 5, 7]). Its basic
facts are reviewed briefly in §2, along the line on which the quantum theory of para-
particles are formulated. We state our main results in §3. Sections 4 and 5 are devoted
to the full detail of the discussions on the thermodynamic limits for para-fermions and
a few remarks on those for para-bosons, respectively. Some discussions are given in §6.

2 Brief review on representation of the symmetric

group

We say that (λ1, λ2, · · · , λn) ∈ Nn is a Young frame of length n for the symmetric group
SN if

n∑
j=1

λj = N, λ1 > λ2 > · · · > λn > 0.

We associate the Young frame (λ1, λ2, · · · , λn) with the diagram of λ1-boxes in the first
row, λ2-boxes in the second row,..., and λn-boxes in the n-th row. A Young tableau on
a Young frame is a bijection from the numbers 1, 2, · · · , N to the N boxes of the frame.

Let MN
p be the set of all the Young frames for SN which have lengths less than or

equal to p. For each frame in MN
p , let us choose one tableau from those on the frame.

The choice is arbitrary but fixed. T N
p denotes the set of all tableaux chosen in this way.

The row stabilizer of a tableau T is denote by R(T ) , i.e., the subgroup of SN consists of
those elements that keep all rows of T invariant, and C(T ) the column stabilizer whose
elements preserve all columns of T .

Let us introduce the three elements

a(T ) =
1

#R(T )

∑
σ∈R(T )

σ, b(T ) =
1

#C(T )

∑
σ∈C(T )

sgn(σ)σ

and

e(T ) =
dT

N !

∑
σ∈R(T )

∑
τ∈C(T )

sgn(τ)στ = cTa(T )b(T )

of the group algebra C[SN ] for each T ∈ T N
p , where dT is the dimension of the irreducible

representation of the symmetric group SN specified by the tableau T and cT = dT×
#R(T )#C(T )/N !. As is known,

a(T1)σb(T2) = b(T2)σa(T1) = 0 (2.1)
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hold for any σ ∈ SN if the frame of T1 is larger than that of T2 in the lexicographic
order (see e.g. [5]). The relations

a(T )2 = a(T ), b(T )2 = b(T ), e(T )2 = e(T ), e(T1)e(T2) = 0 (T1 6= T2) (2.2)

also hold for T, T1, T2 ∈ T N
p . For later use, let us introduce

d(T ) = e(T )a(T ) = cTa(T )b(T )a(T ) (2.3)

for T ∈ T N
p . They satisfy

d(T )2 = d(T ), d(T1)d(T2) = 0 (T1 6= T2) (2.4)

as is shown readily from (2.2) and (2.1). The inner product 〈 · , · 〉 of C[SN ] is defined
by

〈σ, τ〉 = δστ for σ, τ ∈ SN

and the sesqui-linearity.
The left representation L and the right representation R of SN on C[SN ] are defined

by

L(σ)g = L(σ)
∑
τ∈SN

g(τ)τ =
∑
τ∈SN

g(τ)στ =
∑
τ∈SN

g(σ−1τ)τ

and
R(σ)g = R(σ)

∑
τ∈SN

g(τ)τ =
∑
τ∈SN

g(τ)τσ−1 =
∑
τ∈SN

g(τσ)τ,

respectively. Here and hereafter we identify g : SN → C with
∑

τ∈SN
g(τ)τ ∈ C[SN ].

They are extended to the representation of C[SN ] on C[SN ] as

L(f)g = fg =
∑
σ,τ

f(σ)g(τ)στ =
∑

σ

( ∑
τ

f(στ−1)g(τ)
)
σ

and
R(f)g = gf̂ =

∑
σ,τ

g(σ)f(τ)στ−1 =
∑

σ

( ∑
τ

g(στ)f(τ)
)
σ,

where f̂ =
∑

τ f̂(τ)τ =
∑

τ f(τ−1)τ =
∑

τ f(τ)τ−1.
The character of the irreducible representation of SN corresponding to the tableau

T ∈ T N
p is obtained by

χT (σ) =
∑
τ∈SN

〈τ, L(σ)R(e(T ))τ〉 =
∑
τ∈SN

〈τ, στ ê(T )〉.

We introduce a tentative notation as in [9]

χg(σ) ≡
∑
τ∈SN

〈τ, L(σ)R(g)τ〉 =
∑

τ,γ∈SN

〈τ, στγ−1〉g(γ) =
∑
τ∈SN

g(τ−1στ) (2.5)
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for g =
∑

τ g(τ)τ ∈ C[SN ]. Then χT = χe(T ) holds.
We consider representations of SN on Hilbert spaces. Let HL be a certain L2 space

which will be specified in the next section and ⊗NHL its N -fold Hilbert space tensor
product. Let U be the representation of SN on ⊗NHL defined by

U(σ)ϕ1 ⊗ · · · ⊗ ϕN = ϕσ−1(1) ⊗ · · · ⊗ ϕσ−1(N) for ϕ1, · · · , ϕN ∈ HL,

or equivalently by

(U(σ)f)(x1, · · · , xN) = f(xσ(1), · · · , xσ(N)) for f ∈ ⊗NHL.

Obviously, U is unitary: U(σ)∗ = U(σ−1) = U(σ)−1. We extend U for C[SN ] by linearity.

Then U(a(T )) is an orthogonal projection because U(a(T ))∗ = U(â(T )) = U(a(T )) and
(2.2). So are U(b(T ))’s, U(d(T ))’s and

PpB =
∑

T∈T N
p

U(d(T )). (2.6)

Note that RanU(d(T )) = RanU(e(T )) because d(T )e(T ) = e(T ) and e(T )d(T ) = d(T ).
For para-fermions, we consider the transposed tableau T ′ of T ∈ T N

p by exchanging
the rows and the columns of the Young tableau T . The transpose λ′ of frame λ is defined
in the same way. Then T ′ lives on λ′ if T lives on λ. Clearly

C(T ′) = R(T ), R(T ′) = C(T ) (2.7)

and we also define the projection

PpF =
∑

T∈T N
p

U(d(T ′)). (2.8)

3 Para-statistics and random point fields

3.1 Para-fermions of order p ∈ N
We first consider the quantum system of N para-fermions of order p in the box

ΛL = [−L/2, L/2]d ⊂ Rd. We refer the literature [3, 1, 8] for quantum mechanics of
para-particles. (See also [4].) They indicate that the state space of our system is given
by HpF

L,N = PpF ⊗NHL, where HL = L2(ΛL) with Lebesgue measure is the state space

of one particle system in ΛL. We need the heat operator GL = eβ4L in ΛL, where 4L

is the Laplacian in ΛL with periodic boundary conditions at ∂ΛL. Then

specGL =
{

exp(−β|2πk/L|2)
∣∣ k ∈ Zd

}
,

1

Ld
TrGL =

1

Ld

∑
k∈Zd

exp
(
−β|2πk/L|2

)
.
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For k ∈ Zd, ϕ
(L)
k (x) = L−d/2 exp(i2πk · x/L) is an eigenfunction of GL, and {ϕ(L)

k }k∈Zd

forms a complete orthonormal system [CONS] of HL.
It is obvious that there is a CONS of HpF

L,N which consists of the vectors of the form

U(d(T ′))ϕ
(L)
k1

⊗ · · · ⊗ ϕ
(L)
kN

, which are the eigenfunctions of ⊗NGL. Let {Φk}k∈N denote
this CONS. From the canonical ensemble point of view in quantum statistical mechanics,
the probability density distribution of the positions of the N free para-fermions of order
p in the periodic box ΛL at the inverse temperature β is given by

ppF
L,N(x1, · · · , xN) = Z−1

pF

∑
k∈N

Φk(x1, · · · , xN)

×
(
(⊗NGL)Φk

)
(x1, · · · , xN) (3.1)

where ZpF is the normalization constant. From the density (3.1), we can define the
random point field of N points in ΛL as follows (c.f. §2 of [9]). Consider the map
ΛN

L 3 (x1, · · · , xN) 7→
∑N

j=1 δxj
∈ Q(Rd), where Q(Rd) is the space of all the point

measures on Rd. Let µpF
L,N be the probability measure on Q(Rd) induced by the map

from the probability measure on ΛN
L which has the density (3.1). By EpF

L,N , we denote

expectation with respect to the measure µpF
L,N . The generating functional of the point

field µpF
L,N is given by

EpF
L,N

[
e−<f,ξ>

]
=

∫
Q(Rd)

dµpF
L,N(ξ) e−<f,ξ>

=

∫
ΛN

L

exp
(
−

N∑
j=1

f(xj)
)
ppF

L,N(x1, · · · , xN) dx1 · · · dxN

=
TrHpF

L,N

[
(⊗Ne−f )(⊗NGL)

]
TrHpF

L,N
[⊗NGL]

=

∑
T∈T N

p
Tr ⊗NHL

[
(⊗NG̃L)U(d(T ′))

]∑
T∈T N

p
Tr ⊗NHL

[
(⊗NGL)U(d(T ′))

] ,
where f is a nonnegative continuous function on ΛL and G̃L = G

1/2
L e−fG

1/2
L .

We first prove:

Lemma 1

EpF
L,N

[
e−〈f,ξ〉] =

∑
T∈T N

p

∑
σ∈SN

χT ′(σ)Tr ⊗NHL
[(⊗NG̃L)U(σ)]∑

T∈T N
p

∑
σ∈SN

χT ′(σ)Tr ⊗NHL
[(⊗NGL)U(σ)]

(3.2)

=

∑
T∈T N

p

∫
ΛN

L
detT ′{G̃L(xi, xj)}16i,j6Ndx1 · · · dxN∑

T∈T N
p

∫
ΛN

L
detT ′{GL(xi, xj)}16i,j6Ndx1 · · · dxN

. (3.3)

Remark 1 : The state space HpF
L,N = PpF ⊗NHL is determined by T N

p , the choice of

the tableaux T ’s. The different T N
p gives a different subspace of ⊗NHL. However, they

are unitarily equivalent and the generating functional given above is not affected by the
choice. In fact, χT (σ) depends only on the frame on which the tableau T is defined.
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Remark 2 : detT ′A =
∑

σ∈SN
χT ′(σ)

∏N
i=1Aiσ(i) in (3.3) is known as immanant.

Proof : These expressions are derived by the relations

Tr ⊗NHL

[
(⊗NGL)U(d(T ′))

]
= Tr ⊗NHL

[
(⊗NGL)U(e(T ′))

]
and ∑

σ∈SN

χg(σ)Tr ⊗NHL

[
(⊗NGL)U(σ)

]
= N !Tr ⊗NHL

[
(⊗NGL)U(g)

]
, (3.4)

with g = e(T ′). These relations can be shown by the use of (2.5), the cyclic property of
the trace and the commutativity of U(τ) with ⊗NGL. For details, see [9]. �

Now, let us consider the thermodynamic limit

L, N →∞, ρL ≡ N/Ld → ρ > 0. (3.5)

In the following, f is a nonnegative continuous function on Rd which has a compact
support, and is fixed through the thermodynamic limit ΛL ↗ Rd. We identify the
restriction of f to ΛL as f in Lemma 1. We get the limiting random point field on Rd.

Theorem 2 The finite random point fields for para-fermions of order p defined above
converge weakly to the point field whose generating functional is given by

EpF
ρ

[
e−〈f,ξ〉] = Det

[
1−

√
1− e−fr∗G(1 + r∗G)−1

√
1− e−f

]p

in the thermodynamic limit (3.5), where r∗ ∈ (0,∞) is determined by

ρ

p
=

∫
dp

(2π)d

r∗e
−β|p|2

1 + r∗e−β|p|2 = (r∗G(1 + r∗G)−1)(x, x),

G = eβ4 is the heat operator on the whole space Rd and Det stands for the Fredholm
determinant.

3.2 Para-bosons of order p ∈ N
We next consider the quantum system of N para-bosons of order p in the box ΛL.

The state space of the system is given by HpB
L,N = PpB ⊗NHL. As for the para-fermions’

case in the previous subsection, the point field of N free para-bosons of order p can be
defined. Its generating functional is given by

EpB
L,N

[
e−〈f,ξ〉] =

Tr ⊗NHL
[(⊗NG̃L)PpB]

Tr ⊗NHL
[(⊗NGL)PpB]

,

where f is a nonnegative continuous function on ΛL. Then, we have:

Lemma 3

EpB
L,N

[
e−〈f,ξ〉] =

∑
T∈T N

p

∑
σ∈SN

χT (σ)Tr ⊗NHL
[(⊗NG̃L)U(σ)]∑

T∈T N
p

∑
σ∈SN

χT (σ)Tr ⊗NHL
[(⊗NGL)U(σ)]

(3.6)

=

∑
T∈T N

p

∫
ΛN

L
detT{G̃L(xi, xj)}dx1 · · · dxN∑

T∈T N
p

∫
ΛN

L
detT{GL(xi, xj)}dx1 · · · dxN

. (3.7)
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We again consider the thermodynamic limit (3.5). We get the limiting random point
field on Rd for the low density region:

Theorem 4 The finite random point fields for para-bosons of order p defined above
converge weakly to the random point field whose Laplace transform is given by

EpB
ρ

[
e−〈f,ξ〉] = Det

[
1 +

√
1− e−fr∗G(1− r∗G)−1

√
1− e−f

]−p

in the thermodynamic limit, where r∗ ∈ (0, 1) is determined by

ρ

p
=

∫
dp

(2π)d

r∗e
−β|p|2

1− r∗e−β|p|2 = (r∗G(1− r∗G)−1)(x, x),

if
ρ

p
< ρc ≡

∫
Rd

dp

(2π)d

e−β|p|2

1− e−β|p|2 .

Remark : The high density region ρ > pρc is related to the Bose-Einstein condensation.
We need a different analysis for the region. See [10] for the case of p = 1 and 2.

4 Proof of theorem 2

It is enough to show the convergence of the generating functionals. In the rest of this
paper, we use the results in [9] frequently. We refer them as, e.g., Lemma I.3.2 for Lemma
3.2 of [9]. Although those in [9] are results for p = 1, their arguments hold for general
p ∈ N with obvious changes. Let ψT be the character of the induced representation
IndSN

R(T )[1], where 1 is the one dimensional representation R(T ) 3 σ → 1, i.e.,

ψT (σ) =
∑
τ∈SN

〈τ, L(σ)R(a(T ))τ〉 = χa(T )(σ).

Since the characters χT and ψT depend only on the frame on which the tableau T lives,
not on T itself, we also use the notation χλ and ψλ ( λ ∈ MN

p ) instead of χT and ψT ,
respectively.

Let δ be the frame (p− 1, · · · , 2, 1, 0). Generalize ψµ to those µ = (µ1, · · · , µp) ∈ Zp

which satisfies
∑p

j=1 µj = N by

ψµ = 0 for µ ∈ Zp − Zp
+

and
ψµ = ψπµ for µ ∈ Zp

+ and π ∈ Sp such that πµ ∈MN
p ,

where Z+ = {0} ∪ N. Then the determinantal form [2] can be written as

χλ =
∑
π∈Sp

sgnπ ψλ+δ−πδ. (4.1)



4 PROOF OF THEOREM 2 8

Let us recall the relations

χT ′(σ) = sgnσ χT (σ), ϕT ′(σ) = sgnσ ψT (σ),

where
ϕT ′(σ) =

∑
τ

〈τ, L(σ)R(b(T ′))τ〉 = χb(T ′)(σ)

denotes the character of the induced representation IndSN

C(T ′)[ sgn ], where sgn is the

representation C(T ′) = R(T ) 3 σ 7→ sgnσ. Then we have a variant of (4.1):

χλ′ =
∑
π∈Sp

sgnπ ϕλ′+δ′−(πδ)′ . (4.2)

Now let us consider the denominator of (3.2). Let T ∈ T N
p live on µ = (µ1, · · · , µp) ∈

MN
p . Thanks to (3.4) for g = b(T ′), we have∑

σ∈SN

ϕT ′(σ)Tr⊗NHL

[
(⊗NGL)U(σ)

]
= N !Tr⊗NHL

[
(⊗NGL)U(b(T ′))

]

= N !

p∏
j=1

Tr⊗µjHL

[
(⊗µjGL)Aµj

]
,

where An =
∑

τ∈Sn
sgn(τ)U(τ)/n! is the anti-symmetrization operator on ⊗nHL. In the

last step, we have used

b(T ′) =

p∏
j=1

∑
σ∈Rj

sgnσ

#Rj

σ,

where Rj is the symmetric group of µj numbers which lie on the j-th row of the tableau
T . Now (4.2) yields∑

σ∈SN

χλ′(σ)Tr ⊗NHL

[
(⊗NGL)U(σ)

]
=

∑
π∈Sp

sgnπ
∑

σ∈SN

ϕλ′+δ′−(πδ)′(σ)Tr ⊗NHL

[
(⊗NGL)U(σ)

]
= N !

∑
π∈Sp

sgnπ

p∏
j=1

Tr ⊗λj−j+π(j)HL

[
(⊗λj−j+π(j)GL)Aλj−j+π(j)

]
. (4.3)

Here we understand that Tr ⊗nHL

(
(⊗nGL)An

)
= 1 if n = 0 and = 0 if n < 0 in the last

expression. Applying the Cauchy integral formula to

Det[1 + zJ ] =
∞∑

n=0

znTr ⊗nH[(⊗nJ)An]

where J is a trace class operator, we obtain that

Tr ⊗nH[(⊗nGL)An] =

∮
Sr(0)

dz

2πizn+1
Det[1 + zGL], (4.4)
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where Sr(ζ) = {z ∈ C; |z − ζ| = r}. Note that r > 0 can be chosen arbitrary and
the right hand side equals 1 for n = 0 and 0 for n < 0. Then we have the following
expression of the denominator of (3.2):∑

λ∈MN
p

∑
σ∈SN

χλ′(σ)Tr ⊗NHL
[(⊗NGL)U(σ)]

= N !
∑

λ∈MN
p

∑
π∈Sp

sgnπ

∮
· · ·

∮
Sr(0)p

p∏
j=1

Det(1 + zjGL) dzj

2πiz
λj−j+π(j)+1
j

.

= N !
∑

λ∈MN
p

∮
· · ·

∮
Sr(0)p

∆p(z1, · · · , zp)
[∏p

j=1 Det(1 + zjGL)dzj

]∏p
j=1 2πiz

λj+p−j+1
j

, (4.5)

where ∆p(z1, · · · , zp) is the Vandermondian given by

∆p(z1, · · · , zp) ≡
∏

16i<j6p

(zi − zj) =

∣∣∣∣∣∣∣∣∣
zp−1
1 zp−1

2 · · · zp−1
p

...
...

. . .
...

z1 z2 · · · zp

1 1 · · · 1

∣∣∣∣∣∣∣∣∣ . (4.6)

In the following, we simply write ∆p({z}) for ∆(z1, · · · , zp) when there is no danger of
confusion.

To make the thermodynamic limit procedure explicit, we take a sequence {LN}N∈N
which satisfies N/Ld

N → ρ as N → ∞. In the following, we set r = rN ∈ [0,∞) to be
the unique solution of

Tr
rGLN

1 + rGLN

= k (4.7)

where

k =
⌊N
p

+
p− 1

2

⌋
(4.8)

is the averaged length of the rows in the Young tableau and b · c represents the integer
part. The existence and the uniqueness of the solution follow from the fact that the left-
hand side of (4.7) is a continuous and monotone function of r. For details, see Lemma
I.3.2 [for α = −1].

We also put

vN = Tr
rNGLN

(1 + rNGLN
)2
. (4.9)

We will suppress the N dependence of rN , vN and LN . Since rN → r∗ in the thermody-
namic limit, we have k/(2+ r∗) 6 vN 6 k for large enough N . See Lemma I.3.5. [There
rN and r∗ are written as zN and z∗ respectively.]

Put

(4.5) =
N ! Det[1 + rGL]p

(
√

2π)p(
√
v)1+p(p−1)/2rN

Jp. (4.10)

Then we have:
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Lemma 5

lim
N→∞

Jp =
1

p!

∫
Rp

|∆p(y1, · · · , yp)| δ
( p∑

j=1

yj

) p∏
j=1

e−y2
j /2dyj > 0. (4.11)

Proof : We set
νj = λj + p− j − k.

Then we have

ν = (ν1, · · · , νp) ∈ Zp, (4.12a)
p∑

j=1

νj = ν0 ≡ N +
p(p− 1)

2
− pk ∈ [0, p), (4.12b)

ν1 > ν2 > · · · > νp > −k. (4.12c)

The parametrization

zj = r exp(ixj/
√
v) (j = 1, · · · , p)

yields

Det[1 + zjGL] = Det[1 + rGL]Det
[
1 + (zj − r)GL(1 + rGL)−1

]
, (4.13a)

zj − r = r(eixj/
√

v − 1) = r
(
i sin(xj/

√
v)− 2 sin2(xj/2

√
v)

)
, (4.13b)

dzj = ireixj/
√

vdxj/
√
v, (4.13c)

∆p({z}) = r1+2+···+(p−1)∆p({eix/
√

v}) (4.13d)

and

Jp =
∑

ν

( p∏
j=1

∫ π
√

v

−π
√

v

dxj√
2π

)
∆p({eix/

√
v})(

√
v)1−p+p(p−1)/2

×
( p∏

j=1

e−i(νj+k)xj/
√

vDet
[
1 + (eixj/

√
v − 1)

rGL

1 + rGL

])
, (4.14)

where the summation on ν is taken over all ν satisfying (4.12).
We consider two regions of x ∈ (−π

√
v, π

√
v]

1. small x region: |x| 6 v1/12,

2. large x region: |x| > v1/12.

In the large x region, we have∣∣∣∣Det

[
1 + (z − r)

GL

1 + rGL

]∣∣∣∣2
= Det

[
1− 4 sin2

( x

2
√
v

) rGL

1 + rGL

(
1− rGL

1 + rGL

)]
6 Det

[
1− 4

1 + r
sin2

( x

2
√
v

) rGL

1 + rGL

]
6 exp

(
− 4

1 + r
sin2

( x

2
√
v

)
Tr

rGL

1 + rGL

)
6 exp(−constN1/6),
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using 0 6 GL 6 1 and vN = O(k) = O(N) and the boundedness of r = rN > 0 uniformly
in N .

In the small x region, we have the convergent expansion

Det
[
1 + (z − r)

GL

1 + rGL

]
= exp

[
(eix/

√
v − 1)k − 1

2
(eix/

√
v − 1)2(k − v)

+
∞∑

`=3

(−1)`−1

`
(eix/

√
v − 1)`Tr

(
rGL

1 + rGL

)` ]

=
(
1 +

n−1∑
`=3

c`x
` +Rn(x)

)
exp

( ikx√
v
− 1

2
x2

)
, (4.15)

where

|c`| ≤ constN−`/6, ( ` = 3, · · · , n− 1 ) (4.16)

and
||Rn||∞ ≡ sup

|x|6v1/12

|Rn(x)| = O
(
N−n/12

)
hold. We put

n−1∑
`=3

c`x
` = γ(x).

We choose n in (4.15) so large that∑
ν

(
√
v)1−p+p(p−1)/2||∆p||∞||Rn||∞ = o(1) (4.17)

holds, i.e., n > 3(p− 1)(p+ 2).
These arguments show that it is enough to consider the contribution from the small

x region, and we have

Jp =

{ ∑
ν

( p∏
j=1

∫ v1/12

−v1/12

dxj√
2π

e−iνjxj/
√

v−x2
j/2(1 + γ(xj))

)
×∆p({eix/

√
v})(

√
v)1−p+p(p−1)/2

}
+ o(1),

=

{ ∑
ν

( p∏
j=1

(
1 + γ

(
i
√
v
∂

∂νj

)) ∫ ∞

−∞

dxj√
2π

e−iνjxj/
√

v−x2
j/2

)
×∆p({eix/

√
v})(

√
v)1−p+p(p−1)/2

}
+ o(1). (4.18)
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Thanks to the multi-linearity of the determinant ∆p, we have( p∏
j=1

∫ ∞

−∞

dxj√
2π

e−iνjxj/
√

v−x2
j/2

)
∆p({eix/

√
v})

= det

{ ∫ ∞

−∞

dxj√
2π
ei(`−νj)xj/

√
v−x2

j/2

}
p − 1 > ` > 0
1 6 j 6 p

= det
{
e−(`−νj)

2/2v
}

p − 1 > ` > 0
1 6 j 6 p

= ∆p

(
{eν/v}

)
exp

(
−

p∑
j=1

ν2
j

2v
−

p−1∑
`=0

`2

2v

)
. (4.19)

Since (
√
v)p(p−1)/2∆p({eν/v}) = ∆p({

√
v(eν/v − 1)}), the summation over all ν satisfying

the condition (4.12) yields

lim
N→∞

∑
ν

(
√
v)1−p+p(p−1)/2 × (4.19)

=

∫
y1>···>yp

δ(

p∑
j=1

yj)∆p(y1, · · · , yp)

p∏
j=1

e−y2
j /2dyj. (4.20)

Here we have put yj = νj/
√
v and regarded (

√
v)1−p

∑
ν as the integral of the suitable

step function. Then, (
√
v)1−p

∑
ν →

∫
dy δ(

∑
j yj) is derived by the use of the dominated

convergence theorem. The limit of the main term of (4.18) is given by (4.20), which is
equal to (4.11). We may see that the limit of the remainder vanishes from (4.16) and
the convergence of ∑

ν

( p∏
j=1

(
√
v)aj

∂aj

∂ν
aj

j

∫ ∞

−∞

dxj√
2π

e−iνjxj/
√

v−x2
j/2

)

×∆p({eix/
√

v})(
√
v)1−p+p(p−1)/2

=
∑

ν

(
√
v)1−p

( p∏
j=1

(
√
v)aj

∂aj

∂ν
aj

j

)
∆p

(
{
√
v(eν/v − 1)}

)
exp

(
−

p∑
j=1

ν2
j

2v
−

p−1∑
`=0

`2

2v

)
−→

∫
y1>···>yp

δ(

p∑
j=1

yj)
( p∏

j=1

∂aj

∂y
aj

j

)
∆p(y1, · · · , yp)e

−
∑p

j=1 y2
j /2

( p∏
j=1

dyj

)
. (4.21)

We obtain this convergence by performing the differentiations in the second and the
third members of (4.21) and applying the dominated convergence theorem. �

The numerator is obtained just in the same way. That is, we replace GL by G̃L =
G

1/2
L e−fG

1/2
L and introduce r̃ = r̃N and ṽ = ṽN by

Tr
r̃NG̃LN

1 + r̃NG̃LN

= k, Tr
r̃NG̃LN

(1 + r̃NG̃LN
)2

= ṽN .
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Since GL − G̃L is a positive operator of trace class such that Tr (GL − G̃L) =
O(||1 − e−f )||1) and max {specGL} − max {spec G̃L} = O(L−d), it follows from the
definitions of rN , r̃N , vN and ṽN that

0 6 r̃N − rN = O(N−1), |ṽN − vN | = O(1). (4.22)

See Lemma I.3.5 and Lemma I.3.6 for details.
We define J̃p similarly (ṽN is used instead of vN) and we get

lim
N→∞

J̃p =
1

p!

∫
Rp

|∆p(y1, · · · , yp)| δ
( p∑

j=1

yj

) p∏
j=1

e−y2
j /2dyj > 0

by the very same argument as in the proof of Lemma 5.
Thus we have (writing r = rN , r̃ = r̃N and L = LN)

(3.2) =

(
Det[1 + r̃G̃L]

Det[1 + rGL]

)p(r
r̃

)N(v
ṽ

)p(p−1)/4+1/2 J̃p

Jp

=

(
Det[1 + rG̃L]

Det[1 + rGL]

)p

Det
[
1 +

(r − r̃)

1 + r̃G̃L

G̃L

]−p

×
(
1 +

r − r̃

r̃

)N(v
ṽ

)p(p−1)/4+1/2 J̃p

Jp

. (4.23)

Here (
Det[1 + rG̃L]

Det[1 + rGL]

)p

= Det
[
1 +

r

1 + rGL

(G̃L −GL)
]p

= Det
[
1−

√
1− e−f

rGL

1 + rGL

√
1− e−f

]p

→ Det
[
1−

√
1− e−f

r∗G

1 + r∗G

√
1− e−f

]p

holds. For details, we refer Proposition I.3.9 (and the argument on (c) in the proof of
Theorem I.3.1). The remaining factor of (4.23) tends to 1 as N → ∞ since v/ṽ →
1, J̃p/Jp → 1 and

N log
(
1 +

r − r̃

r̃

)
− p log Det

[
1 +

(r − r̃)

1 + r̃G̃L

G̃L

]
= N

r − r̃

r̃
− p

r − r̃

r̃
Tr

r̃G̃L

1 + r̃G̃L

+O(N−1)

=
r − r̃

r̃
(N − pk) +O(N−1) = O(N−1).

Finally, we also get

ρ

p
= lim

N→∞

1

Ld
N

Tr
rNGLN

1 + rNGLN

= (r∗G(1 + r∗G)−1)(x, x)

from (4.7), (4.8), N/Ld
N → ρ and Proposition I.3.9. This completes the proof of Theorem

2. �
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5 Proof of theorem 4

In the case of para bosons, we use the formula (4.1) instead of (4.2) and the following
formula

Tr ⊗nH[(⊗nGL)Sn] =

∮
Sr(0)

dz

2πizn+1
Det[1− zGL]−1,

which is derived from the generalized Vere-Jones’ formula [12, 6, 9] as in (4.4). Here
Sn =

∑
τ∈Sn

U(τ)/n! is the symmetrization operator on ⊗nHL and r ∈ (0, 1) in this
case. Then, we get the following expression of the denominator of (3.6):∑

λ∈MN
p

∑
σ∈SN

χλ(σ)Tr ⊗NHL
[(⊗NGL)U(σ)]

=
∑

λ∈MN
p

∑
σ∈SN

∑
π∈Sp

sgnπ ψλ+δ−πδ(σ)Tr ⊗NHL
[(⊗NGL)U(σ)]

= N !
∑

λ∈MN
p

∑
π∈Sp

sgnπ

p∏
j=1

Tr ⊗λj−j+π(j)HL
[(⊗λj−j+π(j)GL)Sµj

]

= N !
∑

λ∈MN
p

∑
π∈Sp

sgnπ

∮
· · ·

∮
Sr(0)p

p∏
j=1

dzj

2πiz
λj−j+π(j)+1
j Det[1− zjGL]

= N !
∑

λ∈MN
p

∮
· · ·

∮
Sr(0)p

∆p(z1, · · · , zp) dz1 · · · dzp( ∏p
j=1 2πiz

λj+p−j+1
j Det[1− zjGL]

) , (5.1)

where ∆p(z1, · · · , zp) is the Vandermondian introduced in the previous section.
We choose a sequence {LN}N∈N which satisfies N/Ld

N → ρ as N →∞. In this case,
rN ∈ (0, 1) denotes the unique solution of

Tr
rGLN

1− rGLN

= k (5.2)

where

k = bN
p

+
p− 1

2
c (5.3)

as in (4.8). We put

vN = Tr
[ rNGLN

(1− rNGLN
)2

]
. (5.4)

The remaining parts are almost the same as those in the para-fermion case. The reader
may complete the proof of Theorem 4, following the previous arguments with the obvious
changes.

6 Discussion

We have shown that
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the generating functional of the gas of para-fermions (resp. para-bosons of low density)
of order p is equal to the p-th power of the generating functional of fermion (resp. boson)
gas.

The random point fields which we have obtained in this paper are a subset of those
in [6], where various properties of the point fields are examined. On the other hand, the
authors of [6] obtained the point fields which do not follow from the representation theory
of the symmetric groups which we discussed in this paper. Therefore it is interesting to
consider physical interpretations of these point fields. See e.g. [13].

Acknowledgements. We would like to thank Professors Y.Takahashi and T. Shirai for
useful discussions. H.T. is grateful to the Grant–in–Aid for Science Research No.17654021
from MEXT. K.R.I. would like to thank the Grant–in–Aid for Science Research (C)15540222
from JSPS.

References

[1] J.B. Hartle and J.R. Taylor, Quantum mechanics of paraparticles, Phys. Rev. 178
2043–2051 (1969).

[2] G. James and A. Kerber, The Representation Theory of the Symmetric Group,
Encyclopedia of mathematics and its applications 16 (Addison-Wesley, London,
1981)

[3] A.M.L. Messiah and O.W. Greenberg, Symmetrization postulate and its experi-
mental foundation, Phys. Rev. 136 B248–B267 (1964).

[4] Y. Ohnuki and S. Kamefuchi, Wave functions of identical particles, Ann. Phys. 51
337–358 (1969).

[5] B.E. Sagan, The Symmetric Group (Brooks/Cole, Pacific Grove, CA, 1991).

[6] T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm
determinants I: fermion, Poisson and boson point processes, J. Funct. Anal. 205
414–463 (2003).

[7] B. Simon, Representations of Finite and Compact Groups (A. M. S., Providence,
1996).

[8] R.H. Stolt and J.R. Taylor, Classification of paraparticles, Phys. Rev. D 1 2226–
2228 (1970).

[9] H. Tamura and K.R. Ito, A Canonical Ensemble Approach to the Fermion/Boson
Random Point Processes and its Applications, Commun. Math. Phys., 263 353–
380 (2006).

[10] H. Tamura and K.R. Ito, A Random Point Field related to Bose-Einstein Conden-
sation, to appear in J. Funct. Anal.



REFERENCES 16

[11] H. Tamura and K.R. Ito, Random Point Fields for Para-Particles of order 3, RIMS
lecture notes No.1482 72-85 (2006).

[12] D.Vere-Jones, A Generalization of Permanents and Determinants, Linear Algebra
Appl., 111 119-124 (1988).

[13] F.Wilczek, Fractional Statistics and Anyon Superconductivity (World Scien-
tific, Singapore, 1990); F.D.M.Haldane, Phys.Rev.Letters, 67 937–940 (1991);
F.Ferrari, H.Kleinert and E. Lezzizzera, Field Theory of N Entangled Polymers,
arXiv:cond-mat/0005300


