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PAPER

Minimum Congestion Embedding of Complete Binary

Trees into Tori

Akira MATSUBAYASHI†∗, Member and Ryo TAKASU†, Nonmember

SUMMARY We consider the problem of embedding com-
plete binary trees into 2-dimensional tori with minimum (edge)
congestion. It is known that for a positive integer n, a 2n − 1-
vertex complete binary tree can be embedded in a (2dn/2e +1)×
(2bn/2c+1)-grid and a 2dn/2e×2bn/2c-grid with congestion 1 and
2, respectively. However, it is not known if 2n − 1-vertex com-
plete binary tree is embeddable in a 2dn/2e × 2bn/2c-grid with
unit congestion. In this paper, we show that a positive answer
can be obtained by adding wrap-around edges to grids, i.e., a
2n − 1-vertex complete binary tree can be embedded with unit
congestion in a 2dn/2e × 2bn/2c-torus. The embedding proposed
here achieves the minimum congestion and an almost minimum
size of a torus (up to the constant term of 1). In particular, the
embedding is optimal for the problem of embedding a 2n − 1-
vertex complete binary tree with an even integer n into a square
torus with unit congestion.
key words: graph embedding, congestion, complete binary tree,

torus

1. Introduction

The problem of efficiently implementing parallel al-
gorithms on parallel machines has been studied as
the graph embedding problem, which is to embed the
communication graph underlying a parallel algorithm
within the processor interconnection graph for a par-
allel machine with minimal communication overhead.
It is well known that the dilation and/or congestion
of the embedding are lower bounds on the communica-
tion delay, and the problem of embedding a guest graph
within a host graph with minimal dilation and/or con-
gestion has been extensively studied. In particular, it
was pointed out by Kim and Lai [2] that minimal con-
gestion embeddings are very important for a parallel
machine that uses circuit switching for node-to-node
communication.

In this paper, we consider minimal congestion em-
beddings of complete binary trees in tori. Complete
binary trees are well known as one of the most funda-
mental communication graphs for divide-and-conquer
algorithms. Also, tori are well known as one of the
most popular processor interconnection graphs for par-
allel machines.

Gordon [1] showed that for a positive integer n, a
2n−1-vertex complete binary tree denoted by C(n) can
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be embedded into a (2dn/2e +1)× (2bn/2c+1)-grid with
unit congestion. Zienicke [4] showed that C(n) can be
embedded into a 2dn/2e × 2bn/2c-grid with congestion
2. Lee and Choi [3] showed that the latter result still
holds under a constraint of row-column routing.

Although it is an interesting question to ask if C(n)
is embeddable in a 2dn/2e × 2bn/2c-grid with unit con-
gestion, we have no answer for the problem. Lee and
Choi [3] mentioned that this would be negative.

Since a torus contains the grid of the same side
lengths as a subgraph, we can immediately obtain from
the results of [1], [4], and [3] that C(n) can be embedded
in a (2dn/2e+1)×(2bn/2c+1)-torus and a 2dn/2e×2bn/2c-
torus with congestion 1 and 2, respectively. However, it
is not known whether C(n) is embeddable in a 2dn/2e×
2bn/2c-torus with unit congestion. In this paper, we
give a positive answer for the question by proving the
following theorem:

Theorem 1: For a positive integer n, C(n) can be
embedded into a 2dn/2e × 2bn/2c-torus with unit con-
gestion.

We construct an embedding satisfying the condi-
tion of Theorem 1 by using Gordon’s embeddings [1].
The embedding proposed here achieves the minimum
congestion and an almost minimum size of a torus (up
to the constant term of 1). In particular, the embedding
is optimal for the problem of embedding C(n) with an
even integer n into a square torus with unit congestion.

The paper is organized as follows: Some definitions
are given in Sect. 2. In Sect. 3, we review the Gordon’s
embeddings. Based on the results, we prove Theorem 1
in Sect. 4.

2. Preliminaries

Let G be a graph and let V (G) and E(G) denote the
vertex set and edge set of G, respectively.

The (two dimensional) m1 × m2-grid denoted by
M(m1,m2) is the graph with vertex set {(i, j) | 0 ≤
i < m1, 0 ≤ j < m2} and edge set {((i, j), (i + 1, j)) |
0 ≤ i < m1 − 1, 0 ≤ j < m2} ∪ {((i, j), (i, j + 1)) |
0 ≤ i < m1, 0 ≤ j < m2 − 1}. The (two dimensional)
m1 ×m2-torus denoted by D(m1,m2) is the graph ob-
tained from M(m1,m2) by adding wrap-around edges
((i, 0), (i,m2 −1)) (0 ≤ i < m1) and ((0, j), (m1 −1, j))
(0 ≤ j < m2). We denote M(m,m) and D(m,m) by
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M2(m) and D2(m), respectively.
An embedding 〈φ, ρ〉 of a graph G into a graph

H is defined by a one-to-one mapping φ : V (G) →
V (H), together with a mapping ρ that maps each edge
(u, v) ∈ E(G) onto a set of edges of H which induces a
path connecting φ(u) and φ(v). The dilation of 〈φ, ρ〉
is maxeG∈E(G) |ρ(eG)|. The (edge) congestion of 〈φ, ρ〉
is maxeH∈E(H) |{eG ∈ E(G) | eH ∈ ρ(eG)}|.

For an embedding ε = 〈φ, ρ〉 of a graph G into a
graph H , let φε and ρε denote φ and ρ, respectively.
For U ⊆ V (G), let φε(U) = {φε(v) | v ∈ U}. Moreover,
let ρε(S) =

⋃
e∈S ρ

ε(e) for S ⊆ E(G).

3. Gordon’s Embeddings

In this section, we review the embeddings given in [1]
which embed complete binary trees into grids with unit
congestion.

Let G1, G2, and G3 be graphs. For an embedding
ε1 = 〈φ1, ρ1〉 of G1 into G2 and a dilation-1 embedding
ε2 = 〈φ2, ρ2〉 of G2 into G3, we denote by ε2 ◦ ε1 the
embedding 〈φ3, ρ3〉 of G1 into G3 defined by φ3 : u ∈
V (G1) 7→ φ2(φ1(u)) and ρ3 : e ∈ E(G1) 7→ ρ2(ρ1(e)).
It should be noted that since ρ1(e) is a set of edges
which induces a path of G2 and the dilation of ε2 is
one, ρ2(ρ1(e)) is a set of edges which induces a path of
G3.

For an embedding ε of a graph into M 2(m), we
denote ψm◦ε by ε, where ψm is the autoisomorphism of
M2(m), or the dilation-1 embedding of M 2(m) in itself
which maps (i, j) ∈ V (M2(m)) (0 ≤ i ≤ m − 1, 0 ≤
j ≤ m − 1) to (m − 1 − i,m − 1 − j). We define that
wm, xm, ym, and zm are the dilation-1 embeddings of
M2(m) into M2(2m− 1) such that (i, j) ∈ V (M2(m))
(0 ≤ i ≤ m − 1, 0 ≤ j ≤ m − 1) is mapped to vertices
(i, j), (i, j+m−1), (i+m−1, j), and (i+m−1, j+m−1),
respectively, of M2(2m− 1).

For embeddings ε and ε′ of a graph G into
M(m1,m2), we write ε|ε′ if ε and ε′ satisfy the fol-
lowing conditions:

• (i,m2 − 1) /∈ φε(V (G)) or (i, 0) /∈ φε′

(V (G)) for
0 ≤ i ≤ m1 − 1.

• ((i,m2 − 1), (i + 1,m2 − 1)) /∈ ρε(E(G)) or

((i, 0), (i+ 1, 0)) /∈ ρε′

(E(G)) for 0 ≤ i ≤ m1 − 2.

We write ε/ε′ if ε and ε′ satisfy the following conditions:

• (m1 − 1, j) /∈ φε(V (G)) or (0, j) /∈ φε′

(V (G)) for
0 ≤ j ≤ m2 − 1.

• ((m1 − 1, j), (m1 − 1, j + 1)) /∈ ρε(E(G)) or

((0, j), (0, j + 1)) /∈ ρε′

(E(G)) for 0 ≤ j ≤ m2 − 2.

Lemma A (Gordon[1]): For an even integer n, there
exists an embedding of C(n+2) into M 2(2m+1) (m =
2n/2) with unit congestion if there exist embeddings W ,
X , Y , and Z satisfying the following condition:

Condition 1:

X

ZY

rc1 c2

(0,0) m)(0,2

(2m,0) (2m,2m)

W

Fig. 1 Embedding of C(n + 2) into M2(2m + 1).

(a) W , X , Y , and Z are embeddings of C(n) into
M2(m+ 1) with unit congestion.

(b) W |X , Z|Y , W/Y , X/Z.
(c) (m,m) /∈ φε(V (C(n))) for ε ∈ {W,Z}.
(d) (m, 0) /∈ φε(V (C(n))) for ε ∈ {X,Y }.
(e) (m,m/2) /∈ φε(V (C(n))) for ε ∈ {W,X, Y, Z}.
(f) {((m, j), (m, j + 1)) | m/2 ≤ j < m} ∩

ρε(E(C(n))) = ∅ for ε ∈ {W,Z}.
(g) {((m, j), (m, j + 1)) | 0 ≤ j < m/2} ∩

ρε(E(C(n))) = ∅ for ε ∈ {X,Y }.
(h) {((i,m/2), (i + 1,m/2)) | m/2 ≤ i < m} ∩

ρε(E(C(n))) = ∅ for ε ∈ {W,X, Y, Z}.
(i) φε maps the root of C(n) to (m/2,m/2) for ε ∈

{W,X, Y, Z}.
2

This lemma can be proved by constructing a desired
embedding, which is obtained by (i) embedding four
C(n)’s with wm+1 ◦ W , xm+1 ◦ X , ym+1 ◦ Y , and
zm+1 ◦ Z, (ii) mapping the root r of C(n + 2), r’s
child c1, and the other child c2 to (m,m), (m,m/2),
and (m, 3m/2), respectively, (iii) and connecting r, ci
(i = 1, 2), and ci’s children with the shortest paths
as shown in Fig. 1. It is easy to see that this is an
embedding of C(n + 2) into M2(2m + 1) with unit
congestion. We denote by Fn(W,X, Y, Z) the embed-
ding of C(n+2) into M2(2m+1) which is constructed
as described above from four embeddings W , X , Y ,
and Z satisfying Condition 1 for an even integer n and
m = 2n/2.

Theorem B (Gordon[1]): For an even integer n ≥ 8,
there exist embeddings Pn, Qn, Rn, Sn, and Tn of C(n)
into M2(m + 1) (m = 2n/2) with unit congestion such
that the following conditions are satisfied:

Condition 2:

(a) (0, 0) /∈ φε(V (C(n))) for ε ∈ {Pn, Rn, Sn}.
(b) {(0,m), (m, 0), (m,m/2)} ∩ φε(V (C(n))) = ∅ for

ε ∈ {Pn, Qn, Rn, Sn, Tn}.
(c) (m,m) /∈ φε(V (C(n))) for ε ∈ {Pn, Qn, Sn, Tn}.

Condition 3:

(a) {((0, j), (0, j+1)) | 0 ≤ j < m}∩ ρε(E(C(n))) = ∅
for ε ∈ {Pn, Qn, Rn, Sn}.

(b) {((m, j), (m, j + 1)) | 0 ≤ j < m}∩ ρε(E(C(n))) =
∅ for ε ∈ {Pn, Qn, Sn, Tn}.
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(16,0)

(0,16)

(16,16)
(a) P8.

(0,0)

(16,0)

(0,16)

(16,16)
(b) Q8.

(0,0)

(16,0) (16,16)

(0,16)

(c) R8.

(0,0)

(16,0) (16,16)

(0,16)

(d) S8.

(0,0)

(16,0) (16,16)

(0,16)

(e) T8.

Fig. 2 Embeddings P8, Q8, R8, S8, and T8.

(0,0) m)(0,

(m,0) (m,m)

n-2Pn-2S

Pn-2 Qn-2

(a) Pn.

(0,0) m)(0,

(m,0) (m,m)

n-2Pn-2R

Qn-2 Qn-2

(b) Qn.

(0,0) m)(0,

(m,0) (m,m)

n-2Tn-2R

Sn-2 Rn-2

(c) Rn.

(0,0) m)(0,

(m,0) (m,m)

n-2Pn-2R

Sn-2 Sn-2

(d) Sn.

(0,0) m)(0,

(m,0) (m,m)

n-2Pn-2R

Tn-2 Qn-2

(e) Tn.

Fig. 3 Recursive constructions of Pn, Qn, Rn, Sn, and Tn for n ≥ 10 (m = 2n/2).

(c) {((i, 0), (i+ 1, 0)) | 0 ≤ i < m} ∩ ρε(E(C(n))) = ∅
for ε ∈ {Pn, Rn, Sn, Tn}.

(d) {((i,m), (i+1,m)) | 0 ≤ i < m}∩ρε(E(C(n))) = ∅
for ε ∈ {Pn, Qn, Rn, Sn, Tn}.

(e) {((m, j), (m, j + 1)) | 0 ≤ j < m/2} ∩
ρRn(E(C(n))) = ∅.

(f) {((i,m/2), (i + 1,m/2)) | m/2 ≤ i < m} ∩
ρε(E(C(n))) = ∅ for ε ∈ {Pn, Qn, Rn, Sn, Tn}.

Condition 4: Pn|Qn, Pn|Sn, Qn|Qn, Pn|Rn, Sn|Rn,
Tn|Rn, Sn|Sn, Tn|Qn, Rn|Pn, Qn|Sn, Sn|Tn.

Condition 5: Pn/Sn, Qn/Pn, Qn/Rn, Sn/Rn,

Rn/Tn, Sn/Pn, Pn/Rn, Rn/Tn, Sn/Qn.

Condition 6: φε maps the root of C(n) to
(m/2,m/2) for ε ∈ {Pn, Qn, Rn, Sn, Tn}.

2

We describe here the constructions given in [1] for
Qn and Sn (n ≥ 8), which are used to construct our
embedding. Qn and Sn, together with Pn, Rn, and Tn

are recursively defined as shown in Fig. 2 for n = 8
and as Pn = Fn−2(Pn−2, Qn−2, Sn−2, Pn−2), Qn =
Fn−2(Qn−2, Qn−2, Rn−2, Pn−2), Rn = Fn−2(Sn−2, Rn−2,
Rn−2, Tn−2), Sn = Fn−2(Sn−2, Sn−2, Rn−2, Pn−2), and
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Tn = Fn−2(Tn−2, Qn−2, Rn−2, Pn−2) for n ≥ 10
(Fig. 3).

4. Proof of Theorem 1

In this section, we prove Theorem 1 by a sequence of
lemmas.

Lemma 2: For an even integer n ≥ 8, Qn/Sn.

Proof It is easy from Fig. 2 to see that Q8/S8. Thus,
it suffices to show that Qn/Sn for an even integer
n ≥ 10. It follows from Theorem B (Condition 5) that
Pn−2/Rn−2 and hence Rn−2/Pn−2. Moreover, it fol-
lows from Theorem B ((a) and (b) in Condition 2)
that (0, 0) /∈ φRn−2(V (C(n − 2))) and (0, 2n/2−1) /∈
φPn−2(V (C(n − 2))). From these facts and the defi-
nitions of Qn and Sn (Fig. 3), we have that Qn/Sn.

2

Lemma 3: For an even integer n ≥ 8, Qn, Qn, Sn,
and Sn satisfy Condition 1 for W , X , Y , and Z, re-
spectively.

Proof First, (a) in Condition 1 is immediate. By Con-
dition 4 of Theorem B and Lemma 2, Qn and Sn

(n ≥ 8) satisfy (b) in Condition 1. Then, (c), (d), and
(e) in Condition 1 are satisfied since Qn and Sn satisfy
(b) and (c) in Condition 2. (f) and (g) in Condition 1
are satisfied since Qn and Sn satisfy (b) in Condition 3.
Finally, (h) and (i) in Condition 1 are satisfied since Qn

and Sn satisfy (f) in Condition 3 and Condition 6, re-
spectively.

2

Lemma 4: For an even integer n ≥ 10, there exists
an embedding Un of C(n) into M2(2n/2 + 1) with unit
congestion such that the following condition is satisfied:

Condition 7: Un|Un, Un/Un, and {(2n/2, 0), (0, 2n/2),
(2n/2, 2n/2)} ∩ φUn(V (C(n))) = ∅.

Proof Let n ≥ 10 be an even integer and m = 2n/2.
From Theorem B, there exist embeddings Qn−2 and
Sn−2 with unit congestion such that Conditions 2
through 6 are satisfied. We define as shown in Fig. 4
that Un = Fn−2(Qn−2, Qn−2, Sn−2, Sn−2), which is an
embedding of C(n) intoM2(m+1) with unit congestion
by Lemmas A and 3.

The following claims show that Un satisfies Condi-
tion 7.

Claim 5: Un|Un.

Proof Immediate from the definition of Un and
Lemma 3. End of proof of Claim 5

Claim 6: Un/Un.

(0,0) m)(0,

(m,0) (m,m)

n-2Sn-2S

Qn-2 Qn-2

Fig. 4 Embedding Un (n ≥ 10, m = 2n/2).

Proof It follows from Theorem B (Condition 5) that
Sn/Qn. Moreover, it follows from Theorem B ((a)
and (b) in Condition 2) that {(0,m/2), (0, 0)} ∩
φQn−2(V (C(n − 2))) ⊆ {(0, 0)} and {(m/2, 0),

(m/2,m/2)} ∩ φSn−2(V (C(n − 2))) = ∅. From these
facts and the definition of Un, we have that Un/Un.

End of proof of Claim 6

Claim 7: {(m, 0), (0,m), (m,m)} ∩ φUn(V (C(n))) =
∅.

Proof As shown in the proof of Claim 6, it fol-
lows that (0,m/2) /∈ φQn−2(V (C(n − 2))) and

{(m/2, 0), (m/2,m/2)} ∩ φSn−2(V (C(n − 2))) = ∅.
Thus, the claim holds by the definition of Un.

End of proof of Claim 7

Thus, Un satisfies Condition 7. Therefore, the
proof of Lemma 4 is completed. 2

Lemma 8: For an even integer n ≥ 10, there exists an
embedding of C(n) into D2(2n/2) with unit congestion.

Proof Let m = 2n/2, C = C(n), M = M2(m + 1),
and D = D2(m). We define that θm : (i, j) ∈
V (M) 7→ (i mod m, j mod m) ∈ V (D) and λm :
(u, v) ∈ E(M) 7→ (θm(u), θm(v)) ∈ E(D).

By Lemma 4, there exists an embedding Un of C
into M such that Condition 7 is satisfied. We con-
struct from Un a desired embedding 〈φ, ρ〉 of C into
D. Let φ : v ∈ V (C) 7→ θm(φUn(v)), and for an edge
(u, v) ∈ E(C), let τ((u, v)) = {λm(e) | e ∈ ρUn((u, v))}.
Since λm maps two adjacent edges ofM to two adjacent
ones of D by definition, τ((u, v)) induces a connected
subgraph of D which contains φ(u) and φ(v). Thus,
there exists a subset of τ((u, v)) which induces a path
connecting φ(u) and φ(v)†. We define that ρ((u, v)) is
the subset of τ((u, v)).

Since Un satisfies Condition 7, it follows that φ is
a one-to-one mapping of V (C) to V (D) and that for
distinct edges e and e′ of C, τ(e) and τ(e′) are disjoint.
Thus, 〈φ, ρ〉 is an embedding of C into D with unit
congestion. 2

†Indeed, τ ((u, v)) itself induces a path for Un con-
structed in the proof of Lemma 4.
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(0,0)

(7,0)

(0,7)

(7,7)
(a) Embedding of C(6) into D2(8).

(0,0)

(15,0)

(0,15)

(15,15)
(b) Embedding of C(8) into D2(16).

Fig. 5 Congestion-1 Embeddings of C(n) into D2(2n/2) for
n = 6 and n = 8. Wrap-around edges are represented by half
lines

(0,0) (0,

( ,0) ( ,
n-1S

Qn-1

)

)2 n+1)/2(

2 n-1)/2(

2 n+1)/2( 2 n-1)/2(

Fig. 6 Embedding U ′
n (n ≥ 9).

It is not difficult to see that there exists an embed-
ding of C(n) into D2(2n/2) for an even integer n ≤ 8.
Figure 5 shows examples of such embeddings for n = 6
and n = 8. Thus, we have the following lemma, which
proves Theorem 1 for the case that n is even:

Lemma 9: For an even integer n, there exists an em-
bedding of C(n) into D2(2n/2) with unit congestion.

2

It remains to show that Theorem 1 holds for the
case that n is odd. For an odd integer n ≥ 9, we
can obtain from the definition of Un+1 constructed in
the proof of Lemma 4 an embedding U ′

n of C(n) into
M(2(n+1)/2 + 1, 2(n−1)/2 + 1) as shown in Fig. 6. From
Theorem B (Conditions 2 and 3) and Lemma 4 (Con-
dition 7), it is not difficult to see that U ′

n satisfies the
following condition:

Condition 8: U ′
n|U

′
n, U ′

n/U
′
n, and {(2(n+1)/2, 0),

(0, 2(n−1)/2), (2(n+1)/2, 2(n−1)/2))}∩φU ′

n (V (C(n))) = ∅.

Thus, we can construct an embedding of C(n) into
D(2(n+1)/2, 2(n−1)/2) with unit congestion by a simi-
lar argument of the proof of Lemma 8. Therefore, al-
though the details are omitted here, we have the fol-
lowing lemma:

Lemma 10: For an odd integer n, C(n) can be em-
bedded into D(2(n+1)/2, 2(n−1)/2) with unit congestion.

2

Lemmas 9 and 10 complete the proof of Theo-
rem 1.
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