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SUMMARY  We consider the problem of embedding com-
plete binary trees into 2-dimensional tori with minimum (edge)
congestion. It is known that for a positive integer n, a 2™ — 1-
vertex complete binary tree can be embedded in a (2/™/21 4 1) x
(2 Ln/2) 4-1)-grid and a 2[™/21 x 2L"/2] _grid with congestion 1 and
2, respectively. However, it is not known if 2" — 1-vertex com-
plete binary tree is embeddable in a 2[™/21 x 2l7/2)_grid with
unit congestion. In this paper, we show that a positive answer
can be obtained by adding wrap-around edges to grids, i.e., a
2™ — 1-vertex complete binary tree can be embedded with unit
congestion in a 2[7/21 x 217/2]_torus. The embedding proposed
here achieves the minimum congestion and an almost minimum
size of a torus (up to the constant term of 1). In particular, the
embedding is optimal for the problem of embedding a 2™ — 1-
vertex complete binary tree with an even integer n into a square
torus with unit congestion.

key words: graph embedding, congestion, complete binary tree,
torus

1. Introduction

The problem of efficiently implementing parallel al-
gorithms on parallel machines has been studied as
the graph embedding problem, which is to embed the
communication graph underlying a parallel algorithm
within the processor interconnection graph for a par-
allel machine with minimal communication overhead.
It is well known that the dilation and/or congestion
of the embedding are lower bounds on the communica-
tion delay, and the problem of embedding a guest graph
within a host graph with minimal dilation and/or con-
gestion has been extensively studied. In particular, it
was pointed out by Kim and Lai [2] that minimal con-
gestion embeddings are very important for a parallel
machine that uses circuit switching for node-to-node
communication.

In this paper, we consider minimal congestion em-
beddings of complete binary trees in tori. Complete
binary trees are well known as one of the most funda-
mental communication graphs for divide-and-conquer
algorithms. Also, tori are well known as one of the
most popular processor interconnection graphs for par-
allel machines.

Gordon [1] showed that for a positive integer n, a
2™ — 1-vertex complete binary tree denoted by C(n) can
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be embedded into a (2121 +1) x (21"/2] 4 1)-grid with
unit congestion. Zienicke [4] showed that C(n) can be
embedded into a 2["/21 x 2l7/2)_grid with congestion
2. Lee and Choi [3] showed that the latter result still
holds under a constraint of row-column routing.

Although it is an interesting question to ask if C'(n)
is embeddable in a 2["/21 x 21"/2]_grid with unit con-
gestion, we have no answer for the problem. Lee and
Choi [3] mentioned that this would be negative.

Since a torus contains the grid of the same side
lengths as a subgraph, we can immediately obtain from
the results of [1], [4], and [3] that C'(n) can be embedded
ina (221 4:1) x (217/2] £ 1)-torus and a 2["/21 x 21n/2]_
torus with congestion 1 and 2, respectively. However, it
is not known whether C(n) is embeddable in a 2//21 x
2l7/2] torus with unit congestion. In this paper, we
give a positive answer for the question by proving the
following theorem:

Theorem 1: For a positive integer n, C(n) can be
embedded into a 2["/21 x 2l"/2]_torus with unit con-
gestion.

We construct an embedding satisfying the condi-
tion of Theorem 1 by using Gordon’s embeddings [1].
The embedding proposed here achieves the minimum
congestion and an almost minimum size of a torus (up
to the constant term of 1). In particular, the embedding
is optimal for the problem of embedding C(n) with an
even integer n into a square torus with unit congestion.

The paper is organized as follows: Some definitions
are given in Sect. 2. In Sect. 3, we review the Gordon’s
embeddings. Based on the results, we prove Theorem 1
in Sect. 4.

2. Preliminaries

Let G be a graph and let V(G) and E(G) denote the
vertex set and edge set of G, respectively.

The (two dimensional) my X ma-grid denoted by
M(mq,mz) is the graph with vertex set {(z,7) | 0 <
i <my,0 < j < mo} and edge set {((i,7), (i +1,7)) |
0<i<m—10<j<m}U{((i,)),@i,j+1) |
0<i<m,0<j<mg—1}. The (two dimensional)
my X ma-torus denoted by D(m1,ms) is the graph ob-
tained from M (mq,m2) by adding wrap-around edges
((7,0), (i3 — 1)) (0 < i < my) and ((0,7), (m1 —1,))
(0 < j < mg). We denote M(m,m) and D(m,m) by
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M?(m) and D?(m), respectively.

An embedding {¢,p) of a graph G into a graph
H is defined by a one-to-one mapping ¢ : V(G) —
V(H), together with a mapping p that maps each edge
(u,v) € E(G) onto a set of edges of H which induces a
path connecting ¢(u) and ¢(v). The dilation of (¢, p)
is max.,em@) |p(ec)|- The (edge) congestion of (¢, p)
is max., ep(m) [{ec € E(G) | en € plea)}

For an embedding & = (¢, p) of a graph G into a
graph H, let ¢ and p® denote ¢ and p, respectively.
For U C V(G), let ¢*(U) = {¢°(v) | v € U}. Moreover,
let p°(S) = U.cgq p°(e) for S C E(G).

3. Gordon’s Embeddings

In this section, we review the embeddings given in [1]
which embed complete binary trees into grids with unit
congestion.

Let G1, G2, and G3 be graphs. For an embedding
€1 = {¢1, p1) of G7 into G5 and a dilation-1 embedding
g2 = (P2, p2) of Go into G3, we denote by €3 0 g1 the
embedding (¢s, p3) of G1 into G3 defined by ¢35 : u €
V(G1) = ¢2(¢1(u)) and p3 : e € E(G1) — pa(pi(e)).
It should be noted that since pi(e) is a set of edges
which induces a path of G2 and the dilation of 5 is
one, p2(p1(e)) is a set of edges which induces a path of
Gs.

For an embedding € of a graph into M?(m), we
denote 9, oe by g, where 1), is the autoisomorphism of
M?(m), or the dilation-1 embedding of M?(m) in itself
which maps (i,5) € V(M?(m)) (0 <i <m—1,0 <
j<m-—1)to(m—1—4i,m—1—j). We define that
Wiy Tm, Ym, and z,, are the dilation-1 embeddings of
M?(m) into M?(2m — 1) such that (i,5) € V(M?(m))
(0 <i<m-—1,0<j<m-—1)is mapped to vertices
(i,7), (i, j+m—1), (i+m—1,7), and (i+m—1, j+m—1),
respectively, of M?(2m — 1).

For embeddings ¢ and & of a graph G into
M(mq,m2), we write ¢|¢’ if ¢ and &’ satisfy the fol-
lowing conditions:

o (i,my — 1) ¢ ¢°(V(G)) or (i,0) ¢ ¢= (V(Q)) for
0<i<m; —L

o ((i,mq — 1),(i + 1,/m2 - 1) ¢ p°(E(GQ)) or
((3,0), (i +1,0)) ¢ p= (BE(G)) for 0 < i < my — 2.

We write €/’ if € and €’ satisfy the following conditions:

o (m1—1,j) ¢ ¢=(V(G)) or (0,5) & ¢ (V(G)) for
0<j<ms—1.
o ((m1 —1,7),(m1 — Lj+ 1)) ¢ p*(E(G)) or
((0,7), (0,5 +1)) & p= (E(G)) for 0 < j < my — 2.
Lemma A (Gordon[l]): For an even integer n, there
exists an embedding of C(n+2) into M2(2m+1) (m =
2"/2) with unit congestion if there exist embeddings W,
X, Y, and Z satisfying the following condition:

Condition 1:

(0,0) (0,2m)
w X
¢ |r Co
Y Z
(2m,0) 2m,2m)

Fig.1 Embedding of C(n + 2) into M2(2m + 1).

(a) W, X, Y, and Z are embeddings of C(n) into
M?(m + 1) with unit congestion.

(b) WIX, Z|Y, W)Y, X/Z.

(c) (m,m) ¢ ¢=(V(C(n))) for e € {W, Z}

(d) (m,0) & ¢°(V(C(n))) for e € {X, Y}

(e) (m,m/2) ¢ ¢=(V(C(n))) for e e {W, X, Y, Z}.
() {((m,j),(m,j + 1)) | m/2 < j < m}nN

{((

o (E(C(n))) = for = € {W, Z}.
(@) {((m,7),(m,j + 1)) | 0 < j < m/2} N
pf(E(C(n))) =0 fore € {X,Y}.
{((i,m/2),(i + 1,m/2)) | m/2 < i < m}N
o (B(C) =0 for ¢ € (W, X, Y, 2},
(i) ¢° maps the root of C(n) to (m/2,m/2) for ¢ €
W.X.Y.2).

O

This lemma can be proved by constructing a desired
embedding, which is obtained by (i) embedding four
C(n)’s with w1 0 W, @pme1 0 X, Yme1 0 Y, and
Zm+1 © Z, (ii) mapping the root r of C(n + 2), r’s
child ¢;, and the other child ¢y to (m,m), (m,m/2),
and (m,3m/2), respectively, (iii) and connecting r, ¢;
(i = 1,2), and ¢;’s children with the shortest paths
as shown in Fig. 1. It is easy to see that this is an
embedding of C(n + 2) into M?(2m + 1) with unit
congestion. We denote by F, (W, X,Y, Z) the embed-
ding of C(n +2) into M?(2m + 1) which is constructed
as described above from four embeddings W, X, Y,

and Z satisfying Condition 1 for an even integer n and
m = 2"/2,

Theorem B (Gordon[l]): For an even integer n > 8,
there exist embeddings P,,, @y, Ry, Sn, and T, of C(n)
into M?(m + 1) (m = 2"/?) with unit congestion such
that the following conditions are satisfied:

Condition 2:

(a) (0,0) ¢ gzﬁ‘f( (C(n))) for e € {Pp, Ry, Sn

(b) {(0,m),(m,0), (m,m/2)} N ¢*(V(C(n))
€€ {Pn;Q'rh n;SnyTn}-

(c) (m,m) ¢ ¢=(V(C(n))) for € € { Py, Qn, Sn, T}

Condition 3:

(a) {((0,7),(0,5+1)) [ 0<j <m}Np*(E(C(n))) =0
for e € {P,, Qn, Rn, Sn}

(b) {((m,4),(m,j+1))|0<j<m}np(E(C(n)) =
() for e € {Py, Qun,Sn,Tn}

1.
) = 0 for
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(0,0 (0,16)  (0,0) (0,16)  (0,0) (0,16)
(16,0) (16,16) (16,0) (16,16) (16,0) (16,16)
(a) Ps (b) Qs. (c) Rs.
(0,0) (0,16)  (0,0) (0,16)
(16,0) (16,16) (16,0) (16,16)
(d) Ss. (e) Ts.
Fig.2 Embeddings Pg, Qg, Rs, Sg, and Tg.

(0,0) 0,m (0,0 0,m (0,0 (0,m (0,0) (0,m (0,0) (0,m)
P Qn2 Qn2 Qn2 Sna R, Sna Sn2 Tn2 Qn2
Sna Pro Rns Pro Rno The Rno Pns Rno Pns

(m,0) (m,m) (m,0) (m,m) (m,0) (m,m) (m,0) (m,m) (m,0) (m,m)

(a) Pn. (b) Qn. () Rn. (d) Sn. (&) Tn
Fig.3 Recursive constructions of Pn, Qn, Rn, Sn, and Ty, for n > 10 (m = 27/2).
(¢) {((5,0),(i+1,0)) |0 <i<m}np (BE(C(n) =0  Rn/Tn, Su/Pn, Pu/Rn, Rn/Tn, Sp/Qn.
for e € {P,, Ry, Sn, T} . .

() {((i,m), (i+1,m)) | 0 < i< m}nps(E(C(n))) =0 Condition 6:  ¢° maps the root of C(n) to

for e € {Pn, Qn, Ry, Sn, Tn} (m/27 m/2) for e € {P’m Q’m Ry, Sy, Tn}

(e) {((mj),(m.j + 1)) | 0 < j < m/2} N -

pf(E(C(n))) = 0.
(£) {((;m/2), (@ + 1,m/2)) | m/2 < i < m}n
p*(E(C(n))) =0 for & € {Pn, Qn, R, Sn, Tn}

Condition 4: P, |Qn, Pn|Sn, Qn|Qn, Pn|Rn, Sn|Rn,
Tn|Rn7 Sn|Sn7 Tn|Qn7 Rn|Pn; Qn|Sn7 Sn|Tn'

Condition 5: Pn/S_n, QH/E, Qn/R_n, Sn/R_n,

We describe here the constructions given in [1] for
Q. and S,, (n > 8), which are used to construct our
embedding. @,, and S,,, together with P,,, R,,, and T,
are recursively defined as shown in Fig. 2 for n = 8
and as P, = n—Q(Pn—Qa Qn—27 Sn—27 Pn—2); Qn =
Fn—Q(Qn—Qy Qn—27 R, 2, Pn—Q)a R, = n—Q(Sn—Qy R, 2,
Rn727 Tn72)7 Sn = n72(Sn72; Sn72; Rn72; Pn72)5 and
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Tn = Fn—Q(Tn—Q;Qn—ZaRn—QaPn—2) for n > 10
(Fig. 3).

4. Proof of Theorem 1

In this section, we prove Theorem 1 by a sequence of
lemmas.

Lemma 2: For an even integer n > 8, Q,,/S,..

Proof Tt is easy from Fig. 2 to see that Qg/Ss. Thus,
it suffices to show that Qn/S_n for an even integer
n > 10. It follows from Theorem B (Condition 5) that
P,_s/R,_2 and hence R, _o/P,_o. Moreover, it fol-
lows from Theorem B ((a) and (b) in Condition 2)
that (0,0) ¢ ¢%—2(V(C(n — 2))) and (0,272 1) ¢
¢T=2(V(C(n — 2))). From these facts and the defi-
nitions of Q,, and S,, (Fig. 3), we have that Q,,/S,..

O

Lemma 3: For an even integer n > 8, Q,, Qn, Sn,
and S, satisfy Condition 1 for W, X, Y, and Z, re-
spectively.

Proof First, (a) in Condition 1 is immediate. By Con-
dition 4 of Theorem B and Lemma 2, @, and S,
(n > 8) satisfy (b) in Condition 1. Then, (c), (d), and
(e) in Condition 1 are satisfied since @, and S,, satisfy
(b) and (c¢) in Condition 2. (f) and (g) in Condition 1
are satisfied since @,, and S, satisfy (b) in Condition 3.
Finally, (h) and (i) in Condition 1 are satisfied since @5,
and S, satisfy (f) in Condition 3 and Condition 6, re-
spectively.

O

Lemma 4: For an even integer n > 10, there exists

an embedding U, of C(n) into M?(2"/2 4+ 1) with unit
congestion such that the following condition is satisfied:

Condition 7: U,|U,, U,/U,, and {(2"/2,0), (0,2"/?),

(27/2,2"2)} N (V(C(n))) = 0.

Proof Let n > 10 be an even integer and m = 2"/2,
From Theorem B, there exist embeddings @,—2 and
Sn—2 with unit congestion such that Conditions 2
through 6 are satisfied. We define as shown in Fig. 4
that Un = n,Q(Qn,Q,Qn,Q, Snfg, Sn,2>, which is an
embedding of C'(n) into M?(m+1) with unit congestion
by Lemmas A and 3.

The following claims show that U, satisfies Condi-
tion 7.

Claim 5: U,|U,.

Proof Immediate from the definition of U, and
Lemma 3. End of proof of Claim 5

Claim 6: U, /U,.

(0,0) (0,m)
Qn-2 Qn—Z
Sna Snz

(m,0) (m,m)

Fig.4 Embedding U, (n > 10, m = 2/2).

Proof Tt follows from Theorem B (Condition 5) that
S,/Qn. Moreover, it follows from Theorem B ((a)
and (b) in Condition 2) that {(0,m/2),(0,0)} N
¢2(V(C(n — 2))) S {(0,0)} and {(m/2,0),
(m/2,m/2)} N ¢5»—2(V(C(n — 2))) = 0. From these
facts and the definition of U,,, we have that U, /U,.
End of proof of Claim 6

éjlaim 7: {(m,0),(0,m),(m,m)} N ¢~ (V(C(n))) =

Proof As shown in the proof of Claim 6, it fol-
lows that (0,m/2) ¢ ¢92(V(C(n — 2))) and
{(m/2,0),(m/2,m/2)} N ¢"2(V(C(n - 2))) = 0.
Thus, the claim holds by the definition of U,.

End of proof of Claim 7

Thus, U, satisfies Condition 7. Therefore, the
proof of Lemma 4 is completed. O

Lemma 8: For an even integer n > 10, there exists an
embedding of C(n) into D?(2"/?) with unit congestion.

Proof Let m = 2"/2, C = C(n), M = M?*(m + 1),
and D = D?*(m). We define that 60, : (i,j) €
V(M) — (imodm,jmodm) € V(D) and A,
(u,v) € E(M) — (0 (u), 0, (v)) € E(D).

By Lemma 4, there exists an embedding U,, of C
into M such that Condition 7 is satisfied. We con-
struct from U, a desired embedding (¢, p) of C into
D. Let ¢ : v € V(C) — 0,,(¢Y" (v)), and for an edge
(u, ) € E(C), et 7((1,0)) = {m(e) | € € pU ((u,0))}-
Since \,,, maps two adjacent edges of M to two adjacent
ones of D by definition, 7((u,v)) induces a connected
subgraph of D which contains ¢(u) and ¢(v). Thus,
there exists a subset of 7((u,v)) which induces a path
connecting ¢(u) and ¢(v)T. We define that p((u,v)) is
the subset of 7((u,v)).

Since U, satisfies Condition 7, it follows that ¢ is
a one-to-one mapping of V(C) to V(D) and that for
distinct edges e and e’ of C, 7(e) and 7(e’) are disjoint.
Thus, (¢, p) is an embedding of C' into D with unit
congestion. O

"Indeed, 7((u,v)) itself induces a path for U, con-
structed in the proof of Lemma 4.
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(7,0) (7,7
(a) Embedding of C(6) into D?(8).
0,0) (0,15)
oo bbb o b oo d o d oo ol
(15,0) (15,15)

(b) Embedding of C(8) into D?(16).

Fig.5 Congestion-1 Embeddings of C(n) into D?(2"/2) for
n = 6 and n = 8. Wrap-around edges are represented by half
lines

(0,0) (0’2(m1)/2 )
le

Su1
(2(n+1)/2,0)

Fig.6 Embedding U}, (n > 9).

(2(n+1)/2, 2(n—1)/2 )

It is not difficult to see that there exists an embed-
ding of C(n) into D?(2"/?) for an even integer n < 8.
Figure 5 shows examples of such embeddings for n = 6
and n = 8. Thus, we have the following lemma, which
proves Theorem 1 for the case that n is even:

Lemma 9: For an even integer n, there exists an em-
bedding of C(n) into D?(2"/?) with unit congestion.
O

It remains to show that Theorem 1 holds for the
case that n is odd. For an odd integer n > 9, we
can obtain from the definition of U, constructed in
the proof of Lemma 4 an embedding U], of C(n) into
M(2(r+1)/2 41 2(0=1)/2 1 1) as shown in Fig. 6. From
Theorem B (Conditions 2 and 3) and Lemma 4 (Con-
dition 7), it is not difficult to see that U], satisfies the
following condition:

Condition 8: U/|U!, U!/U!, and {(2+1/20),
(0,2n=1/2), (20072 2(n=1/2) L ngUn (V(C(n))) = 0.

Thus, we can construct an embedding of C(n) into
D(2(+1)/2 9(n=1)/2) with unit congestion by a simi-
lar argument of the proof of Lemma 8. Therefore, al-
though the details are omitted here, we have the fol-
lowing lemma:

Lemma 10: For an odd integer n, C(n) can be em-
bedded into D(2("+1)/2 2(n=1)/2) with unit congestion.
O

Lemmas 9 and 10 complete the proof of Theo-
rem 1.
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