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On the Complexity of Minimum Congestion Embedding of

Acyclic Graphs into Ladders

Akira MATSUBAYASHI†, Member

SUMMARY It is known that the problem of determining,
given a planar graph G and an integer m, whether there exists a
congestion-1 embedding of G into an m × k-grid is NP-complete
for a fixed integer k ≥ 3. It is also known that the problem for
k = 3 is NP-complete even if G is restricted to an acyclic graph.
The complexity of the problem for k = 2 was left open. In this
paper, we show that for k = 2, the problem can be solved in
polynomial time if G is restricted to a tree, while the problem is
NP-complete even if G is restricted to an acyclic graph.
key words: graph embedding, graph layout, VLSI layout, grid

1. Introduction

The problem of efficiently implementing parallel algo-
rithms on parallel machines and the problem of effi-
ciently laying out VLSI systems onto VLSI chips have
been studied as the graph embedding problem, which
is to embed a guest graph within a host graph with cer-
tain constraints and/or optimization criteria. For the
former problem, guest graphs and host graphs represent
parallel algorithms and parallel machines, respectively,
and the purpose is to minimize communication over-
head, such as dilation and/or congestion of the embed-
ding. For the latter problem, a guest graph represents
connection requirements of a system and a host graph
usually represents a rectangular grid modeling wafer.
In VLSI layout, there are various criteria such as wire
length, wire congestion, crossing number, and the lay-
out area.

We consider minimal congestion embeddings of
graphs into grids. Such embeddings are also called lay-
outs. The grids are well known not only as a model of
VLSI chips but also as one of the most popular pro-
cessor interconnection graphs for parallel machines. As
mentioned in [3], [5], the minimal congestion embed-
ding is very important for a parallel machine that uses
cut-through switching techniques, which are well used
in recent architectures for node-to-node communication
[8]. Also in VLSI layout, the minimal congestion em-
beddings are crucial in the sense that the congestion is
a lower bound for the number of layers.

Formann and Wagner [1] showed that the following
problem is NP-complete.

Graph Layout I
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Instance A connected planar graph G and an integer
a.

Question Does there exist a layout of G into a
rectangular grid with at most a vertices?

Kramer and Leeuwen [4] showed that Graph Layout

I can be reduced to the following problem:

Graph Layout II

Instance A connected planar graph G and integers
m, n.

Question Does there exist a layout of G into an
m × n-grid?

Thus, Graph Layout II is NP-hard.
It is not only interesting but also important to in-

vestigate the complexity of variants of Graph Layout

I and Graph Layout II in which G is restricted to a
smaller class than planar graphs. One of the most im-
portant graphs of such classes are trees. However, the
complexity of the general problem of laying out trees is
still open.

For another variant of Graph Layout II, it is
shown in [6] that Graph k-Layout described below is
NP-complete for k ≥ 3.

Graph k-Layout

Instance A planar graph G and an integer m.
Question Does there exist a layout of G into an

m × k-grid?

It is also shown in [7] that Graph 3-Layout is NP-
complete even if G is restricted to an acyclic graph.
The complexity of Graph 2-Layout was left open.

In this paper, we show that for k = 2, the problem
can be solved in polynomial time if G is restricted to
a tree, while the problem is NP-complete even if G is
restricted to an acyclic graph. We show these results
by proving the following Theorems:

Theorem 1: For a given tree T and an integer m, we
can determine in polynomial time whether there exists
a layout of T into an m × 2-grid.

Theorem 2: The problem of determining, given an
acyclic graph G and an integer m, whether there exists
a layout of G into an m × 2-grid is NP-complete.

The paper is organized as follows: Some definitions
are given in Sect. 2. We prove Theorems 1 and 2 in
Sects. 3 and 4, respectively.
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2. Preliminaries

Let G be a graph and let V (G) and E(G) denote the
vertex set and edge set of G, respectively. We denote
the degree of v ∈ V (G) by degG(v). For U ⊆ V (G),
G[U ] is the subgraph of G induced by U , and G − U
is G[V (G) − U ]. Similarly, for S ⊆ E(G), G[S] is the
subgraph of G induced by S, and G−S is the graph with
vertex set V (G) and edge set E(G) − S. For graphs G
and H , G∪H is the graph with vertex set V (G)∪V (H)
and edge set E(G) ∪ E(H).

We denote the set of integers {i | 0 ≤ i < m} by
[m]. For a d dimensional vector v, let πi(v) (i ∈ [d]) be
the ith component of v. The (two dimensional) m×n-
grid denoted by M(m, n) is the graph with vertex set
[m]× [n] and edge set {(u, v) | ∃i ∈ [2] πi(u) = πi(v)±
1, πj(u) = πj(v) (j 6= i)}. The vertex sets {i} × [n]
and [m]×{j} of M(m, n) are called the ith column and
jth row and denoted by (i, ∗) and (∗, j), respectively.
M(m, n) is called an m-ladder and denoted by L(m) if
n = 2.

A caterpillar C is a tree whose vertices with degree
at least 2 induce a path. A spine of C is a path which
contains as a subgraph the path induced by the vertices
with degree at least 2 and has end-vertices with degree
1 or 2. An edge not contained in the spine is called a
leg. Although a path P is a graph, P is also denoted by
a sequence of all the vertices of P in which consecutive
two vertices are adjacent.

An embedding 〈φ, ρ〉 of a graph G into a graph H
is defined by a one-to-one mapping φ : V (G) → V (H),
together with a mapping ρ that maps each edge (u, v) ∈
E(G) onto a set of edges of H which induces a path
connecting φ(u) and φ(v). The (edge) congestion of
〈φ, ρ〉 is maxeH∈E(H) |{eG ∈ E(G) | eH ∈ ρ(eG)}|. For
U ⊆ V (G), let φ(U) = {φ(v) | v ∈ U}. Also, let ρ(S) =⋃

e∈S ρ(e) for S ⊆ E(G). Moreover, for a subgraph
G′ of G, we define that 〈φ, ρ〉(G′) = H [ρ(E(G′))]. An
embedding of a graph G into a two dimensional grid H
is called a layout of G into H if it has unit congestion.

For a statement P , let I(P) be 1 if P is true, 0
otherwise.

3. Tree Layout into Ladder is in P

In this section, we prove Theorem 1 by a series of lem-
mas.

For a congestion-1 embedding ε = 〈φ, ρ〉 of a graph
G into a graph H and s, t ∈ V (H), a free track of s to
t is a path which connects s and t without an edge of
ρ(E(G)).

3.1 Characterization

The following characterization can be derived from the
results of [6] and [9].

Lemma 3: A tree T can be laid out into a ladder if
and only if T has the maximum vertex degree at most 3,
and there exists a path P in T such that each connected
component of T − V (P ) is a caterpillar. 2

By Lemma 3, we can easily construct a polynomial time
algorithm which determines, given a tree T , whether T
can be laid out into a ladder, and if so, outputs a path
satisfying the condition of Lemma 3.

3.2 Subproblems

In this section, we introduce subproblems and show
that the problems can be solved in polynomial time.

Lemma 4: For a layout ε = 〈φ, ρ〉 of a path
(p0, . . . , pl−1) (l ≥ 4) into a ladder, if π0(φ(p0)) =
mini∈[l]{π0(φ(pi))} and π0(φ(pl−1)) = maxi∈[l]{π0(φ(pi))},
then π0(φ(vi)) ≤ π0(φ(vj )) for 0 < i < j < l − 1.

Proof Let 0 < i < j < l − 1, and let P , P ′, and P ′′

be edge-disjoint subpaths (p0, . . . , pi), (pi, . . . , pj), and
(pj , . . . , pl−1), respectively. If π0(φ(pj)) < π0(φ(pi)),
then edge-disjoint graphs ε(P ), ε(P ′), and ε(P ′′) con-
tain edges each of which joins a vertex of (π0(φ(pj)), ∗)
and one of (π0(φ(pj)) + 1, ∗). However, this is impossi-
ble since there are just two such edges in a ladder.

2

We assume throughout this section that graphs we
consider have the maximum vertex degree at most 3.

Lemma 5: Problem 1 given below can be solved in
polynomial time:

Problem 1:

Input A caterpillar C with a spine S = (s0, . . . , sl−1).
Output The minimum value of m such that there ex-

ists a layout 〈φ, ρ〉 of C into L(m) in which φ(s0)
and φ(sl−1) have edge-disjoint free tracks to ver-
tices of (0, ∗) and (m − 1, ∗), respectively.

Proof We show that Problem 1 can be solved in poly-
nomial time by dynamic programming. Let Ci (i ∈ [l])
be the caterpillar induced by s0, . . . ,si and their legs.
We define that m(Ci, f) (i ∈ [l], f ∈ {−1, 0, 1}) is the
minimum value of mf such that there exists a layout
〈φf , ρf 〉 of Ci into a ladder which satisfies the following
conditions:

(i) 〈φ0, ρ0〉 is a layout of Ci into L(m0) in which φ0(s0)
and φ0(si) have edge-disjoint free tracks to a vertex
of (0, ∗) and one of (m0 − 1, ∗), respectively.

(ii) 〈φ1, ρ1〉 is a layout of Ci into L(m1) in which there
exists v ∈ V (L(m1))−φ1(V (Ci)) such that φ1(s0),
φ1(si), and v have edge-disjoint free tracks to a
vertex of (0, ∗), one of (m1 − 1, ∗), and the other
of (m1 − 1, ∗), respectively.

(iii) 〈φ−1, ρ−1〉 is a layout of Ci into L(m′) (m′ ≥ m−1)
in which φ−1(s0) and φ−1(si) have edge-disjoint
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-1

v

( ,*)m

φ -1 ( )si

L ( )m -1

( -1,*)m -1

Fig. 1 Layout of Ci into L(m−1 + 1) which is obtained from a
layout 〈φ−1, ρ−1〉 satisfying (iii). Dotted lines are free tracks of
φ−1(si) and v ∈ V (L(m−1 + 1)) − φ−1(V (Ci)).

free tracks to a vertex of (0, ∗) and one of (m−1 −
1, ∗), respectively, and all the vertices and edges
of Ci are mapped into L(m−1) except at most one
vertex and edge of a leg.

Since m(Cl−1, 0) is the answer of Problem 1, it suffices
to show that for each i ∈ [l] and f ∈ {−1, 0, 1}, m(Ci, f)
can be computed in polynomial time. We prove this by
a series of claims.

Claim 5.1: For i ∈ [l], m(Ci,−1) ≤ m(Ci, 0) ≤
m(Ci, 1) ≤ m(Ci,−1) + 1.

Proof It clearly follows by definition that m(Ci,−1) ≤
m(Ci, 0) ≤ m(Ci, 1) for i ∈ [l]. Moreover, a layout of
Ci which satisfies (ii) for m1 = m−1 + 1 can be ob-
tained from a layout 〈φ−1, ρ−1〉 of Ci which satisfies
(iii) as shown in Fig. 1. This means that m(Ci, 1) ≤
m(Ci,−1) + 1. Therefore, we have the desired inequal-
ities.

End of proof of Claim 5.1

We fix 0 < i < l and f ∈ {−1, 0, 1} in the rest of
the proof of the lemma. Let 〈φ′, ρ′〉 be a layout of Ci

which satisfies (i), (ii), and (iii) for mf = m′, where
m′ is a certain integer. We denote π0(φ

′(si)) by xi for
simplicity. Let L1 = L(xi) and let L2 be a subgraph of
L(m′) induced by

⋃
xi≤j≤m′−1(j, ∗).

Now, we show a lower bound for m′. Let Λ be the
set of vertices of S which are incident to legs.

Claim 5.2: If xi−1 = xi and 2 ≤ i < l, then m′ ≥
m(Ci−2, I(si ∈ Λ)) + 1 + I(I(si−1 ∈ Λ) + f ≥ 1).

Proof We first show a lower bound for xi. It is not
difficult to see that Ci−2 are laid out into L1 by a layout
satisfying (ii) for m1 = xi if si ∈ Λ, (i) for m0 = xi

otherwise. Thus, we have that xi ≥ m(Ci−2, I(si ∈ Λ)).

We next show a lower bound for m′ − xi. There
exist two vertices φ′(si−1) and φ′(si) in L2. If si−1 ∈ Λ
and f ≥ 0, then the degree-1 vertex v adjacent to si−1

is mapped to L2. It should be noted that if f = −1,
then we can map v to the outside of L2. If f = 1, then
there exists a vertex in L2 which is guaranteed to have a
free track. Thus, we have that m′−xi ≥ 1+I(I(si−1 ∈
Λ) + f ≥ 1). Therefore, we have the desired inequality.

End of proof of Claim 5.2

si

f = 1f

is -1

si Λ

Λsi-1

C i -1L (m( , ))si ΛI( )

Fig. 2 Layout of Ci into L(m(Ci−2 , I(si ∈ Λ))+1+I(I(si−1 ∈
Λ) + f ≥ 1)).

Claim 5.3: If xi−1 < xi, then m′ ≥ m(Ci−1, max{I(si ∈
Λ) + f − 1,−1}) + 1.

Proof We first show a lower bound for xi. It follows
from the assumption on free tracks of φ′(s0) and φ′(si)
and Lemma 4 that s0, . . . , si−1 are mapped to L1.
Moreover, all the vertices of V (Ci) − S are mapped
to L1 except at most one vertex. Thus, there exists
f ′ ∈ {−1, 0, 1} such that the layout of Ci−1 by 〈φ′, ρ′〉
satisfies (i), (ii), and (iii) for mf ′ = xi. Therefore, we
have that xi ≥ m(Ci−1, f

′).

We next show a lower bound for m′ − xi. There
exists φ′(si) in L2. Moreover, there exist in L2 other
vertices corresponding to the cases si ∈ Λ, f = 1, and
f ′ = −1, at most one of which can be mapped to the
outside of L2 if f = −1 or f ′ = 1. Thus, we have that
m′ − xi ≥ 1 + I(I(si ∈ Λ) + f − f ′ ≥ 2).

It follows from these lower bounds that m′ ≥
m(Ci−1, f

′) + 1 + I(I(si ∈ Λ) + f − f ′ ≥ 2).
By Claim 5.1, the right hand side of the inequal-
ity is minimized when f ′ = min{f ′′ ∈ {−1, 0, 1} |
f ′′ minimizes I(I(si ∈ Λ) + f − f ′′ ≥ 2)} = min{f ′′ ∈
{−1, 0, 1} | I(si ∈ Λ) + f − f ′′ ≤ 1} = max{I(si ∈
Λ) + f − 1,−1}. Thus, we have the desired inequality.

End of proof of Claim 5.3

It follows from Lemma 4 and the assumption on
free tracks of φ′(s0) and φ′(si) that xi−1 ≤ xi. More-
over, for both conditions of xi−1 = xi and xi−1 < xi,
we can construct layouts of Ci which achieve the lower
bounds of Claims 5.2 and 5.3 as shown in Figs. 2 and 3,
respectively, if we have for each j ∈ {i − 1, i − 2} and
f ′ ∈ {−1, 0, 1}, a layout of Cj which satisfies (i), (ii),
and (iii) for mf ′ = m(Cj , f

′). Thus, m(Ci, f) is the
smaller value of the lower bounds of Claims 5.2 and 5.3
and hence can be computed in polynomial time by dy-
namic programming.

2

Lemma 6: Problem 2 given below can be solved in
polynomial time:

Problem 2:

Input Caterpillars C, CL, and CR with spines S =
(s0, . . . , sl−1), SL = (s′0, . . . , s

′
h−1) (h ≥ 1), and

SR = (s′h, . . . , s′k−1) (k − h ≥ 1), respectively.
Output The minimum value of m such that there ex-

ists a layout 〈φ, ρ〉 of C ∪ CL ∪ CR into L(m)
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si

si-1

L (m( , )fC i -1 )

f

= 1f

f = -1

(a) si ∈ Λ

si

si-1

L (m( , )C i -1 )
f = 0,-1 ( = -1)

f’

f= 1( = 0)f f’

f’

(b) si /∈ Λ

Fig. 3 Layout of Ci into L(m(Ci−1 ,max{I(si ∈ Λ) + f −
1,−1}) + 1).

in which φ(s0), φ(s′0), φ(sl−1), and φ(s′k−1) have
edge-disjoint free tracks to a vertex of (0, ∗), the
other of (0, ∗), one of (m − 1, ∗), and the other of
(m − 1, ∗), respectively.

Proof We may assume without loss of generality that
degCL(s′h−1) = degCR(s′h) = 1. Let U ⊆ V (S) and

U ′ ⊆ V (SL)∪V (SR) be the sets of vertices not incident
to legs. We assume that U = {u0, . . . , ul′−1} such that
uj (j ∈ [l′]) be the jth vertex of U in the sequence
(s0, . . . , sl−1), and U ′ = {u′

0, . . . , u
′
h′−1 = s′h−1, u

′
h′ =

s′h, . . . , u′
k′−1} such that u′

j (j ∈ [k′]) be the jth vertex
of U ′ in the sequence (s′0, . . . , s

′
k−1).

If k′ = l′, then we can obtain an optimal layout
by mapping uj (j ∈ [l′]) and u′

j to the same column as
shown in (a) of Fig. 4. It should be noted that we can
obtain an optimal layout in the same fashion also for
the case that k′ − l′ = 1.

If k′ − l′ ∈ {2, 3}, then we can obtain an optimal
layout by mapping pairs of vertices uj and u′

j for j ∈
[h′ − 1], u′

h′−1 and u′
h′ , and uj and u′

j+2 for h′ − 1 ≤
j < l′ to the same columns ((b) of Fig. 4).

Assume that k′ − l′ ≥ 4. If {s′h−2, s
′
h+1} 6⊆ U ′,

then a layout obtained in the same fashion as that for
the case that k′ − l′ ∈ {2, 3} is optimal since S, SL,
or SR can “bend” no longer. On the other hand, if
{s′h−2, s

′
h+1} ⊆ U ′, then we can obtain a better and

optimal layout by mapping pairs of vertices uj and u′
j

for j ∈ [min{h′−2, l′}], u′
j and u′

j+1 for j ∈ {h′−2, h′},
and uj and u′

j+4 for h′−2 ≤ j < l′ to the same columns
((c) and (d) of Fig. 4). Thus, for the case that k′ ≥ l′,
we can compute the answer of Problem 2 in polynomial
time.

It remains the case that k′ < l′. Let C be the
subcaterpillar which has the spine connecting sx and
sy and all the legs of the spine, where x and y are in-
tegers such that sx−1 = uh′−1 and sy+1 = uh′+(l′−k′),
respectively. We can obtain an optimal layout by map-
ping pairs of vertices uj and u′

j for j ∈ [h′] and uj and

u′
j−(l′−k′) for h′+(l′−k′) ≤ j < l′, and by laying out C

by solving Problem 1 for the input of C (Fig. 5). Thus,
Problem 2 can be solved in polynomial time. 2

3.3 Main Proof

In what follows, we assume that T is a tree which has
a path P satisfying the condition of Lemma 3. Let C ′

1,
. . . , C ′

r be connected components of T − V (P ) each of
which has at least one edge. Let ai ∈ V (P ) (1 ≤ i ≤ r)
be the vertex adjacent to a vertex a′

i of C ′
i. Suppose

that P = (a0, . . . , a1, . . . , a2, . . . , ar, . . . , ar+1). We may
assume without loss of generality that neither a0 and a1

nor ar and ar+1 are adjacent. Let Ci (0 ≤ i ≤ r) be the
subgraph of T which is induced by the vertices of the
subpath Pi = (ai, . . . , ai+1) of P and degree-1 vertices
adjacent to vertices of V (Pi) − {ai, ai+1} (Fig. 6).

The following lemma can be seen from the fact that
a ladder has the maximum vertex degree at most 3.

Lemma 7: Let 〈φ, ρ〉 be a layout of a graph G into
a ladder H . If there exists (u, v) ∈ E(G) such
that degG(u) ≥ 2, degG(v) ≥ 2, and ρ((u, v)) con-
tains an edge joining vertices of a column, then either
π0(φ(u)) ≤ min

v∈V (〈φ,ρ〉(G′)){π0(v)} or π0(φ(u)) ≥
max

v∈V (〈φ,ρ〉(G′)){π0(v)} for any connected subgraph
G′ of G − {u, v}. 2

Lemma 8: We can compute in polynomial time the
minimum integer m such that there exists a layout
〈φ, ρ〉 of T into L(m).

Proof From the regularity of the ladder, we may as-
sume without loss of generality that π0(φ(a1)) ≤
π0(φ(ar)). Since degT (ai) = 3 (1 ≤ i ≤ r − 1), there
exists an edge ei incident to ai such that ρ(ei) contains
the edge joining vertices of (π0(ai), ∗). Since every ver-
tex adjacent to ai has degree 2 or more, it follows from
Lemma 7 that π0(φ(ai)) ≤ π0(φ(ai+1)) for 1 ≤ i ≤ r−1.

It is not difficult to see that for each 1 ≤ i ≤ r− 1,
there are at most eight possibilities for layout patterns
around ai as shown in Fig. 7 and that if the layout
patterns for ai and ai+1 are fixed, then the subgraph

to be laid out into
⋃π0(φ(ai+1))

j=π0(φ(ai))
(j, ∗) are also fixed by

Lemma 7. This means that for 1 ≤ i ≤ r − 1, the min-
imum value of π0(φ(ai+1)) − π0(φ(ai)) is determined
by the layout patterns for ai and ai−1. Similarly, the
minimum values of π0(φ(a1)) and m−1−π0(φ(ar)) are
determined by the layout patterns for a1 and ar, respec-
tively. Thus, if these minimum values can be computed
in polynomial time for each possible combination for
the layout patterns, then the minimum value of their
total, i.e., m can also be computed in polynomial time
by dynamic programming.

Since the problem of computing the minimum
value of π0(φ(ai+1)) − π0(φ(ai)) (1 ≤ i ≤ r − 1) can
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} ⊆ U ′.
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sh-2
’

1sh+’

sl- 1

’sk-1

legs of C

(d) l′ < h′ − 2 and {s′
h−2

, s′
h+1

} ⊆ U ′.

Fig. 4 Layouts for the case that k′ ≥ l′.

C

uh-1’’ uh’’

uh-1’uh-2’

uh-2’’

’+’uh ( l -k )’

Rlegs of C

legs of C

legs of C L

legs of C

Fig. 5 Layout for the case that k′ < l′.

C0 C1 C2 Cr
a1 a2 ar

C1
’

a1
’

C2
’

a2
’

Cr
’

ar
’

Fig. 6 Tree which can be laid out into a ladder.

be reduced to Problems 1 or 2†, the value can be com-
puted in polynomial time by Lemmas 5 and 6.

If r > 1, then the minimum value of π0(φ(a1)) can
be computed by setting each vertex of V (C0)−{a1} to

†Indeed, for the layout patterns (d) and (e), it is neces-
sary to extend Problem 2 so that a different boundary con-
dition on free tracks is adopted and that the empty graphs
are allowed for C

L and C
R. However, we can easily ex-

tend the result of Lemma 6 also for the extended version of
Problem 2.

that to be mapped to (0, ∗) and by applying the algo-
rithm for Problem 1 or 2. If r = 1, then the value can
be computed by setting every pair of distinct vertices
of V (C0)−{a1} to those to be mapped to both the end-
columns of the ladder and by applying the algorithm for
Problem 1 or 2. In either case, however, the required
value can be computed in polynomial time. The mini-
mum value of m− 1− π0(φ(ar)) can also be computed
in a similar fashion.

Therefore, m can be computed in polynomial time.
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Ci- 1 Ci
ai

Ci
’

(a), (a’)

Ci- 1

Ci

ai
Ci
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(b)

Ci- 1

Ci
ai

Ci
’

(c)

Ci- 1 Ci
ai

Ci
’

(d)

Ci- 1 Ci
ai

Ci
’

(e)

Ci

ai

ai+1

Ci
’

’Ci+1

(f)

Ci

ai

ai- 1

Ci
’

’Ci- 1

(g)

Fig. 7 Eight possibilities for layout patterns around ai. (a’) is one obtained from (a)
by reverting C′

i
horizontally.

2

This completes the proof of Theorem 1.

4. NP-completeness of Acyclic Graph Layout

into Ladder

In this section, we prove Theorem 2 by constructing a
pseudo-polynomial reduction from 3-Partition, which
is well known to be NP-complete in the strong sense
[2], to Graph 2-Layout. 3-Partition is defined as
follows:

3-Partition

Instance A set of 3r integers A = {a0, a1, . . . , a3r−1}
and a positive integer b such that b/4 < al < b/2
and

∑
l∈[3r] al = rb.

Question Can A be partitioned into r disjoint sets
A0, . . . , Ar−1 such that

∑
a∈Ai

a = b for i ∈ [r]?

4.1 Translation of Instance

For integers a0, . . . , a3r−1, and b given as an instance
of 3-Partition, we construct an instance of Graph

2-Layout as follows:

(1) Definition of G:

(i) We define the 2λZ-vertex graph Z and the vertices
z, z′ and t of Z as shown in Fig. 8 (a), where
λZ = 5.

(ii) We define that W is a (2λW −αb)-vertex caterpillar
which has a spine (s0, . . . , sλW −1) and legs incident
to s4j for j ∈ [dλW /4e], where λW = 4αb/3+1 and
α = 48 (Fig. 8 (b)). Let w and w′ denote s0 and
sλW −1, respectively.

(iii) Let Z0, . . . , Zr be r + 1 copies of Z and let
W0, . . . , Wr−1 be r copies of W . We denote z, z′,
and t of Zi (i ∈ [r + 1]) by zi, z′i, and ti, respec-
tively, and w and w′ of Wi (i ∈ [r]) by wi and w′

i,
respectively.

(iv) F is the graph obtained from Z0, . . . , Zr and
W0, . . . , Wr−1 by adding edges (z′

i, wi) and
(w′

i, zi+1) for i ∈ [r] (Fig. 8 (c)).
(v) For l ∈ [3r], Pl is a path with αal vertices.

(vi) We define that G = F ∪
⋃

l∈[3r] Pl.

(2) Definition of m:

We define that m = (λZ +λW )r + λZ = (64b+ 6)r + 5.

4.2 Correspondence of Answers

Now we show that A can be partitioned into disjoint
sets A0, . . . , Ar−1 such that

∑
a∈Ai

a = b for i ∈ [r] if
and only if there exists a layout of G into H = L(m).

We first show the necessity by showing the follow-
ing lemma:

Lemma 9: If A can be partitioned into disjoint sets
A0, . . . , Ar−1 such that

∑
a∈Ai

a = b for i ∈ [r], then
there exists a layout of G into H .

Proof W has a spine with λW = 4αb/3+1 vertices and
dλW /4e = αb/3+1 legs. Thus, we can layout W and an
αb-vertex path into L(λW ) as shown in Fig. 9. Z can
clearly be laid out into L(λZ) by definition. Therefore,
if A can be partitioned into disjoint sets A0, . . . , Ar−1

such that
∑

a∈Ai
a = b for i ∈ [r], then we can layout G

into H by laying out Zi (i ∈ [r+1]) into
⋃

x∈[λZ ]((λ
Z +

λW )i + x, ∗), and Wi (i ∈ [r]) and Pl (l ∈ [3r] with
al ∈ Ai) into

⋃
x∈[λZ ]((λ

Z +λW )i+λZ +x, ∗) as shown
in Fig. 10. 2

It remains to show that the sufficiency. Assume
that there exists a layout ε = 〈φ, ρ〉 of G into H . We
show by a series of lemmas that A can be partitioned
into disjoint sets as desired.

For a subgraph G′ of G, let ξmin(G′) =
min{π0(v) | v ∈ V (ε(G′))} and ξmax(G′) =
max{π0(v) | v ∈ V (ε(G′))}. For i ∈ [r], let Ui =⋃

ξmin(Wi)<x<ξmax(Wi)
(x, ∗), λi = ξmax(Wi)−ξmin(Wi)+

1, and Si = {l ∈ [3r] | V (ε(Pl))∩Ui 6= ∅}. Suppose that
(p0, . . . , pm−1) is the path of F which connects z0 and
z′r. From the regularity of H , we may assume without
loss of generality that π0(φ(t0)) ≤ π0(φ(tr)).

The following lemma can easily be checked from
the fact that H has the maximum vertex degree at most
3 and that ε has unit congestion.

Lemma 10: Let u, v ∈ V (G). If degG(u) = 3,



MATSUBAYASHI: ON THE COMPLEXITY OF MINIMUM CONGESTION EMBEDDING OF ACYCLIC GRAPHS INTO LADDERS
7

z z’
λZ
t

(a) Z.

w w’
λW

(b) W .

Z0 ZrW0 Wr - 1

z z’w w’ z z’ w w’ z z’
Z1

(c) F .

Fig. 8 Definition of F .

w w’
λW

Fig. 9 Layout of W and an αb-vertex path into L(λW ).

Z0 ZrW0 Wr - 1

z z’w w’ z z’ w w’ z z’
Z1

paths for A0 paths for Ar - 1

Fig. 10 Layout of G into H.

degG(v) ≥ 2, and (φ(u), φ(v)) ∈ E(H), then (u, v) ∈
E(G) and ρ((u, v)) = {(φ(u), φ(v))}. 2

Lemma 11: For i ∈ [r + 1] and a connected sub-
graph G′ of G − V (Zi), either ξmax(G′) ≤ π0(φ(ti))
or ξmin(G′) ≥ π0(φ(ti)).

Proof Since ti is adjacent three vertices with degree
at least 2, there exists a vertex v adjacent to ti such
that ρ((ti, v)) contains the edge joining vertices of
(π0(φ(ti)), ∗). Thus, the lemma holds by Lemma 7.

2

Lemma 12: π0(φ(pi)) ≤ π0(φ(pj)) for 2 ≤ i < j ≤
m − 3.

Proof It should be noted that p2 and pm−3 are t0 and
tr, respectively. By Lemma 11 and the assumption
that π0(φ(t0)) ≤ π0(φ(tr)), we have that π0(φ(p2)) ≤
π0(φ(pi)) ≤ π0(φ(pm−3)) for 2 < i < m − 3. Thus, it
follows from Lemma 4 that π0(φ(pi)) ≤ π0(φ(pj)) for
2 ≤ i < j ≤ m − 3. 2

Lemma 13: ξmax(Wi) ≤ π0(φ(ti+1)) ≤ ξmin(Wi+1)
for i ∈ [r − 1], i.e., U0, . . . , Ur−1 are disjoint.

Proof Immediate from Lemmas 11 and 12. 2

Lemma 14: S0, . . . , Sr−1 are disjoint.

Proof Immediate from Lemmas 11 and 13. 2

Lemma 15: For i ∈ [r], if δ = λW − λi > 0, then
|Si| ≥ δ/2 − 1.

Proof We fix i ∈ [r] and assume that δ = λW −λi > 0.
Let qk = p(λZ+λW )i+λZ+4k for k ∈ [(λW − 1)/4 + 1],
i.e., q0, . . . , q(λW −1)/4 are the vertices incident to legs
of Wi. Let Qk be the path connecting qk and qk+1

for k ∈ [(λW − 1)/4]. Q0, . . . , Q(λW −1)/4−1 are called
segments. An edge (u, v) ∈ E(G) is called a barrier if
degG(u) ≥ 2, degG(v) ≥ 2, and π0(φ(u)) = π0(φ(v)).
We prove the lemma by a series of claims.

Claim 15.1: π0(φ(qk+1)) − π0(φ(qk)) ≥ 3 for k ∈
[(λW − 1)/4].

Proof Since Qk has five vertices, it follows from
Lemma 12 that π0(φ(qk+1)) − π0(φ(qk)) ≥ 2. Thus, it
suffices to show that π0(φ(qk+1)) − π0(φ(qk)) 6= 2. We
prove this by contradiction. Assume that π0(φ(qk+1))−
π0(φ(qk)) = 2. We denote Qk by (qk, v1, v2, v3, qk+1) for
simplicity. Moreover, we assume without loss of gener-
ality that π1(φ(qk)) = 0.

Since v2 is adjacent to neither qk nor qk+1, φ(v2)
is adjacent to neither φ(qk) nor φ(qk+1) by Lemma 10.
Thus, we have that φ(v2) = (π0(φ(qk)) + 1, 1) and
φ(qk+1) = (π0(φ(qk)) + 2, 0). Therefore, if a degree-2
vertex of G is mapped to (π0(φ(qk))+1, 0), then the ver-
tex is adjacent to both qk and qk+1 by Lemma 10. How-
ever, there are no such vertices in F . Thus, no vertex
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qk qk+1

v1 v2 v3

Fig. 11 Impossibility of layout of Qk into a 3-ladder.

u4

v4u1

u2 u3 v1 v2 v3

qkj+1

qkj+2

Fig. 12 Layout of Qkj+1
and Qkj+2

for h = 0 and l = 3.

with degree 2 is mapped to (π0(φ(qk))+1, 0), and hence
φ(v1) = (π0(φ(qk)), 1) and φ(v3) = (π0(φ(qk+1)), 1).
Therefore, a degree-1 vertex incident to one of two legs
of qk and qk+1 is mapped to (π0(φ(qk)) + 1, 0). How-
ever, we cannot layout the other leg anywhere (Fig. 11),
a contradiction. End of proof of Claim 15.1

Claim 15.2: There exist at least δ segments which
contain barriers.

Proof Wi contains a λW -vertex path, which is embed-
ded into a (λW − δ)-ladder. Each segment is a 5-vertex
path, which can be embedded into a 4-ladder but not
into a 3-ladder by Claim 15.1. Thus, there exist at least
δ segments which is embedded into a 4-ladder. Such a
segment clearly has at least one barrier.

End of proof of Claim 15.2

Let k0, . . . , kδ−1 be integers such that k0 < k1 <
· · · < kδ−1 and Qkj

(j ∈ [δ]) has a barrier ej . Suppose
that the two vertices incident to ej are mapped into
(xj , ∗) for j ∈ [δ].

Claim 15.3: For j ∈ [δ − 2], there exists a vertex
u ∈

⋃
xj<x<xj+2

(x, ∗) − φ(V (F )) of H .

Proof We denote Qkj+1
by (u0 = qkj+1

, u1, u2, u3, u4 =
qkj+1+1) for simplicity and suppose that ej+1 =
(uh, uh+1) (h ∈ [3]).

We first consider the case that h ≤ 1. Suppose
that Qkj+2

= (v0 = qkj+2
, v1, v2, v3, v4 = qkj+2+1) and

ej+2 = (vl, vl+1) (l ∈ [3]). Figure 12 shows a layout of
Qkj+1

and Qkj+2
.

Let X =
⋃

xj+1<x<xj+2
(x, ∗) and let Y be the ver-

tices of F which is mapped to X . By Lemmas 7 and 12,
Y consists of the following vertices:

(i) vertices of the path connecting uh+1 and vl, except
uh+1 and vl;

(ii) degree-1 vertices incident to legs of the path of (i);
(iii) degree-1 vertex incident to the leg of u0 if h = 0;
(iv) degree-1 vertex incident to the leg of v4 if l = 3.

Thus, we have that |Y | = 4− (h + 2) + 4(kj+2− kj+1 −
1) + l + kj+2 − kj+1 − I(l = 0) + I(h = 0) + I(l = 3) =
5(kj+2−kj+1)+l−h−2−I(l = 0)+I(h = 0)+I(l = 3).
On the other hand, |X | = 2(xj+2 − xj+1) ≥ 2(4− (h +
2)+4(kj+2−kj+1−1)+l) = 8(kj+2−kj+1)+2(l−h)−4.
It follows that |X | − |Y | = 3(kj+2 − kj+1) + l− h− 2 +
I(l = 0) − I(h = 0) − I(l = 3) ≥ 1. Therefore, there
exists at least one vertex in X which is not contained
in φ(V (F )).

For the case that h ≥ 2, we can show by a sim-
ilar argument that there exists at least one vertex in⋃

xj<x<xj+1
(x, ∗) − φ(V (F )), and omit the proof.

End of proof of Claim 15.3

By Claim 15.3, there exist distinct vertices
u0, . . . , ub(δ−1)/2c−1 of H such that uj ∈

⋃
x2j<x<x2j+2

(x, ∗) − φ(V (F )) for j ∈ [b(δ − 1)/2c]. Thus, it follows
from Lemma 7 and the fact that |V (G)| = |V (H)| that
at least b(δ − 1)/2c distinct paths of P0, . . . , P3r−1 are
mapped in Ui. Therefore, |Si| ≥ b(δ − 1)/2c ≥ δ/2− 1.

2

Lemma 16:
∑

l∈Si
al = b for i ∈ [r].

Proof By Lemma 14, it suffices to show that∑
l∈Si

al ≥ b for every i ∈ [r]. We prove this by con-
tradiction. Assume that there exists i ∈ [r] such that∑

l∈Si
al ≤ b − 1.

It follows from Lemmas 11 and 13 that |Ui| ≤
|V (W )| + 2|V (Z)| +

∑
l∈Si

|V (Pl)| = 2LW − αb +

α
∑

l∈Si
al + 4λZ = 2LW − (48(b −

∑
l∈Si

al) − 20).

Thus, we have that λi = |Ui|/2 + 2 ≤ LW − (24(b −∑
l∈Si

al)− 12). Since
∑

l∈Si
al ≤ b− 1, it follows from

Lemma 15 that |Si| ≥ (24(b −
∑

l∈Si
al) − 12)/2− 1 =

12(b −
∑

l∈Si
al) − 7. Thus,

∑
l∈Si

al > |Si|b/4 ≥
(12(b −

∑
l∈Si

al) − 7)b/4. Therefore, we have that
∑

l∈Si
al > (12b−7)b

12b+4 = b − 11
12+4/b > b − 1, a contra-

diction.
2

Lemmas 14 and 16 complete the proof for the suf-
ficiency.

Since |V (G)| = O(br), we have obtained a pseudo-
polynomial reduction from 3-Partition to Graph 2-
Layout. Moreover, Graph k-Layout is in NP for
a positive integer k [7]. Therefore, Graph 2-Layout

is NP-complete, which completes the proof of Theo-
rem 2.
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