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SUMMARY

In this paper we consider the VLSI layout (i.e., Manhattan
layout) of graphs into grids with minimum width (i.e., the length
of the shorter side of a grid) as well as with minimum area. The
layouts into minimum area and minimum width are equivalent
to those with the largest possible aspect ratio of a minimum area
layout. Thus such a layout has a merit that, by “folding” the
layout, a layout of all possible aspect ratio can be obtained with
increase of area within a small constant factor. We show that
an N-vertex tree with layout-width k (i.e., the minimum width
of a grid into which the tree can be laid out is k) can be laid
out into a grid of area O(N) and width O(k). For binary tree
layouts, we give a detailed trade-off between area and width: an
N-vertex binary tree with layout-width k can be laid out into
area O( k+α

1+α
N) and width k +α, where α is an arbitrary integer

with 0 ≤ α ≤
√

N , and the area is existentially optimal for any
k ≥ 1 and α ≥ 0. This implies that α = Ω(k) is essential for a
layout of a graph into optimal area. The layouts proposed here
can be constructed in polynomial time. We also show that the
problem of laying out a given graph G into given area and width,
or equivalently, into given length and width is NP-hard even if G

is restricted to a binary tree.
key words: VLSI layout, graph layout, graph embedding, tree,

grid, aspect ratio, cutwidth

1. Introduction

A layout of a graph into a rectangular grid is a one-
to-one mapping of vertices of the graph onto points
in the grid, together with a mapping of each edge of
the graph onto a path in the grid which connects two
points onto which the vertices incident to the edge are
mapped. The problem of laying out graphs into rect-
angular grids with minimum area (i.e., the number of
points) has been studied as a fundamental formulation
for the problems such as VLSI layout and efficient com-
putation on a parallel computer system whose proces-
sors are interconnected by a mesh network.

In this paper we consider the layout of graphs
into grids with minimum width (i.e., the length of the
shorter side of a grid) as well as with minimum area
under restricted edge-disjoint routing called Manhattan
model, which is applicable to VLSI layout. The layouts
into minimum area and minimum width are equiva-
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lent to those with the largest possible aspect ratio of a
minimum area layout. Thus such a layout has merits
that, by “folding” the layout, we can obtain a layout of
all possible aspect ratio with increase of area within a
small constant factor. Similarly the layout with mini-
mum width can be flexibly folded to a layout into non-
rectangle, such as L- and U-shape. What is noteworthy
is that the increase of area caused by such transforma-
tion is suppressed to the minimum when the width is
minimum. In addition we consider minimization of the
width of an underlying grid not for a class of graphs to
be laid out but for each graph of the class.

1.1 Previous Related Results

1.1.1 Layout into Large Aspect Ratio

Many results on layouts of various classes of graphs,
such as planar graphs and trees, with efficient area and
small aspect ratio of O(1) have been reported (e.g., [2],
[6], [8], [13], [17], [25]). Layouts with efficient area and
large aspect ratio was examined in [3], [4], [11].

Czerwinski and Ramachandran [4] showed that for
various classes characterized by separator and bifurca-
tor (see e.g., [20]), an N -vertex graph in such a class
can be laid out into a grid of area O(N) and aspect
ratio Ω(r(N)) with optimal dilation (i.e., maximum
length of an image path), where r(N) is the existen-
tially maximum aspect ratio, i.e., the maximum as-
pect ratio for all the N -vertex graphs of the class to
be laid out in area O(N). In particular the result im-
plies that an N -vertex tree can be laid out into a grid
of area O(N) and aspect ratio Ω( N

log2 N
).

In [3] and [12], planar layouts (i.e., internally node-
disjoint layouts) of N -vertex binary trees into aspect

ratio Ω(N log log N

log2 N
) and Ω( N

log N
) but into larger area of

O(N log log N) and O(N log N), respectively, are given.

1.1.2 Complexity

The decision problem with respect to the area-efficient
layout can be formalized as follows:

Area-Efficient Layout

Instance A graph G and an integer n.
Question Does there exist a grid of area n into which
G can be laid out?
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It is known that Area-Efficient Layout is NP-
complete under each of edge-disjoint model and Man-
hattan model even if G is restricted to a connected pla-
nar graph [10]. It is also known that Area-Efficient

Layout is NP-complete under planar routing model
even if G is restricted to a connected planar graph [21],
and even if G is restricted to a forest [7]. However we
do not know the complexity of Area-Efficient Lay-

out in which G is restricted to a tree under any of
the three routing models, unless another strong crite-
rion such as dilation is considered [1], [14]. It should be
noted that the NP-hardness for a certain routing model
does not imply the NP-hardness for another routing
model. Moreover relaxation of the routing condition
from node-disjointness to edge-disjointness is likely to
complicate the complexity analysis drastically.

1.2 Our Results

1.2.1 Layout-Width

We call the minimum width of a grid into which a graph
G can be laid out the layout-width of G. We give a nec-
essary and sufficient condition for a binary tree to have
layout-width k. We also give a good approximation
of layout-width for general trees. Moreover we mention
the close relations between layout-width and (modified)
cutwidth for general graphs.

1.2.2 Minimizing Width of Area-Optimal Layout

We can derive from the relation between layout-width
and cutwidth that for an N -vertex general graph with
layout-width k, there exists a layout of the graph into
a grid of area O(kN) and width k + 2. Although the
layout has almost minimum width, the area is generally
non-optimal when k is not a constant. In fact the layout
is not area-optimal even for binary trees since every
binary tree can be laid out into O(N) area [17], [25] and
there exists a binary tree with layout-width Θ(log N).
However we show that a tree with layout-width k can
be laid out into optimal area by allowing to increase
width k of the underlying grid by a constant factor,
i.e.,

Theorem 1: An N -vertex tree with layout-width k
can be laid out into a grid of area O(N) and width O(k).

Theorem 1 implies that an N -vertex tree with layout-
width k can be laid out into aspect ratio Ω( N

k2 ), which
is the largest possible for an area-optimal layout of the
tree.

For binary tree layouts, we give a detailed trade-off
between the area and width as follows:

Theorem 2: An N -vertex binary tree with layout-
width k can be laid out into a grid of area O( k+α

1+α
N)

and width k + α, where α is an arbitrary integer with
0 ≤ α ≤

√
N .

In fact Theorem 2 gives a tight upper bound for area,
i.e.,

Theorem 3: For integers k ≥ 1 and α ≥ 0, there
exists a binary tree T with layout-width k such that
for any layout of T into a grid of width k + α, the grid
has area Ω(k+α

1+α
N), where N is the number of vertices

of T .

Theorem 3 implies that α = Ω(k) is essential for a
layout of a graph with layout-width k into optimal area.

Our proofs of Theorems 1 and 2 are constructive,
and we can obtain a polynomial time algorithm for con-
structing a desired layout.

1.2.3 Complexity

The decision problem for our problem can be formalized
as follows:

Area-Width-Efficient Layout

Instance A graph G and integers n and k.
Question Does there exist a layout of G into a grid of
area n and width k?

In this paper we show the following theorem:

Theorem 4: Area-Width-Efficient Layout is
NP-complete even if G is restricted to a binary tree.

It should be noted that since the area of a grid
is the product of its length and width, Area-Width-

Efficient Layout is equivalent to the following:

Length-Width-Efficient Layout

Instance A graph G and integers l and k.
Question Does there exist of a layout G into a grid of
length l and width k?

1.3 Organization

The paper is organized as follows: Some definitions are
given in Sect. 2. In Sect. 3, we characterize layout-
width for binary trees and approximate layout-width
for general trees. We also mention the close relations
between layout-width and (modified) cutwidth. We
prove Theorems 1, 2 and 3 in Sect. 4, and Theorem
4 in Sect. 5. We conclude the paper with some remarks
in Sect. 6.

2. Preliminaries

For a graph G, V (G) and E(G) are the vertex set and
edge set of G, respectively. G[U ] is the subgraph of
G induced by U ⊆ V (G). We also denote by G[S]
the subgraph of G induced by S ⊆ E(G). We denote
G[V (G) − U ] simply by G − U . Moreover G − {v} for
v ∈ V (G) is denoted simply by G − v. Furthermore
G − V (H) for another graph H is denoted simply by
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G − H . We denote |V (G)| simply by |G|.
We denote the set of integers {i | 0 ≤ i < m}

by [m]. For a d dimensional vector v, let πi(v) (i ∈
[d]) be the ith component of v. For integers l ≥ 1
and k ≥ 1, the (two dimensional) grid of length l and
width k denoted by M(l, k) is the graph with vertex
set [l] × [k] and edge set {(u, v) | ∃i ∈ [2] πi(u) =
πi(v) ± 1, πj(u) = πj(v) (j 6= i)}. The vertex sets
{i}×[k] and [l]×{j} of M(l, k) are denoted by (i, ∗) and
(∗, j), respectively. M(l, k)[(i, ∗)] and M(l, k)[(∗, j)] are
called the ith column and jth row, respectively. An
edge (u, v) of a grid is called a column edge if π0(u) =
π0(v), a row edge otherwise. The area and aspect ratio
of M(l, k) is lk and max{ l

k
, k

l
}, respectively. Unless

otherwise stated, we assume that a grid has the length
at least its width.

A layout 〈φ, ρ〉 of a graph G into a grid H is defined
by a one-to-one mapping φ : V (G) → V (H), together
with a mapping ρ that maps each edge (u, v) ∈ E(G)
onto a set of edges of H which induces a path con-
necting φ(u) and φ(v). For a subgraph G′ of G,
we define that 〈φ, ρ〉(G′) is the subgraph induced by⋃

e∈E(G′) ρ(e) and {φ(v) | v ∈ V (G′)}. A vertex v of H

is said to be free if φ(u) 6= v for any u ∈ V (G). Sim-
ilarly an edge of H is said to be free if the edge is not
contained in ρ(e) for any e ∈ E(G).

The layout is said to be under edge-disjoint (rout-
ing) model, or simply edge-disjoint if ρ(e)∩ρ(e′) = ∅ for
each pair of e, e′ ∈ E(G). The edge-disjoint layout is
said to be under Manhattan (routing) model, or simply
called Manhattan layout if no vertex of V (G)−{u, v} is
mapped in H [ρ((u, v))] for (u, v) ∈ E(G), and for each
pair of e, e′ ∈ E(G) such that H [ρ(e)] and H [ρ(e′)]
have a vertex u in common as an internal vertex, one
of ρ(e) and ρ(e′) contains the two row edges incident to
u and the other contains the two column edges incident
to u. Unless otherwise stated, we assume throughout
the paper that layouts are under Manhattan routing
model. Moreover, since no edge-disjoint layout exists
for a graph with maximum vertex degree 5 or more, we
assume throughout the paper that graphs have maxi-
mum vertex degree at most 4.

3. Layout-Width

Unless otherwise stated, we assume throughout Sects. 3
and 4 that graphs considered are connected and have at
least one vertex. It should be noted that the proofs for
connected graphs in the sections can easily be extended
to disconnected graphs.

The layout-width is defined as follows: For a
graph G and an integer k ≥ 1, a Manhattan layout of G
into a grid of width k is called a k-(Manhattan-)layout
of G. The (Manhattan-)layout-width of a graph G, de-
noted by lw(G), is the minimum value of k such that
there exists a k-layout of G.

3.1 Characterization

3.1.1 Spine

In order to characterize layout-width, we introduce
a graph parameter, which is almost same as proper-
pathwidth for trees. The proper-pathwidth was intro-
duced in [22]† as a variant of pathwidth.

For a graph G, let τ(G) be the positive integer
defined as follows:

Definition 1:

1. τ(G) = 1 if and only if G is a path.
2. For k > 1, τ(G) ≤ k if and only if there exists a

path P of G such that each connected component
G′ of G − P has τ(G′) < k.

The condition of 2 in Definition 1 is identical with
the necessary and sufficient condition given in [24] for
a tree to have proper-pathwidth at most k for k ≥ 2.
In fact, for a tree T , τ(T ) is equivalent to the proper-
pathwidth of T , denoted by ppw (T ), except that if T
consists of a single vertex, then τ(T ) = 1 and ppw (T ) =
0. For a graph G with τ(G) ≥ 2, we call a path P of
G a k-spine if each connected component G′ of G − P
has τ(G′) < k. A k-spine is called simply a spine if G
has no (k− 1)-spine. Since the difference between τ(T )
and ppw (T ) for a tree T is quite trivial, we have from
[24] the following lemma:

Lemma A: For a tree T , we can find a spine of T and
determine the proper-pathwidth of T , and hence τ(T )
in polynomial time. 2

Moreover we give a basic property of τ for trees.

Lemma 5: τ(T ′) ≤ τ(T ) for a tree T and a subtree
T ′ of T .

Proof It is known that the set of graphs with proper-
pathwidth at most k is minor-closed [22]. Thus it fol-
lows that ppw (T ′) ≤ ppw (T ). If T ′ has at least two ver-
tices, then we have that τ(T ′) = ppw (T ′) ≤ ppw (T ) =
τ(T ). Otherwise, we have that τ(T ′) = 1 ≤ τ(T ). 2

3.1.2 Lower Bound

For a subgraph H of a grid, let πmin
0 (H) = minv∈V (H)

{π0(v)} and πmax
0 (H) = maxv∈V (H){π0(v)}. For a

graph G, if there exists a layout ε of the union of G
and m 2-vertex paths P0, . . . , Pm−1 such that for ev-
ery i ∈ [m], ε(Pi) contains a vertex of the πmin

0 (ε(G))th
column and one of the πmax

0 (ε(G))th column, then we
say that G can be laid out with m through tracks, i.e.,
ε(P0), . . . , ε(Pm−1). The k-layout-thickness of G with
lw(G) ≤ k, denoted by ltk(G) is the minimum value of

†The proper-pathwidth of [22] is different from a param-
eter referred to as the same term in [15].
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h such that G has a k-layout with k−h through tracks.
We have the following lemma by definition:

Lemma 6: ltk(G) ≤ lw (G) ≤ k for an integer k ≥ 1
and a graph G with lw(G) ≤ k. 2

Lemma 7: For an integer k ≥ 1, ltk(G) = 1 if and
only if G is a path.

Proof Obviously a path has a k-layout with k − 1
through tracks but has no k-layout with k through
tracks. Thus ltk(G) = 1 if G is a path. Conversely, if
ltk(G) = 1, then G has a k-layout ε with k− 1 through
tracks by definition. Thus ε(G) has neither two row
edges joining the same pair of columns nor two vertices
in a column which are images of vertices of G. This
means that G has neither cycles nor vertices with de-
gree at least 3, i.e., G is a path. 2

Lemma 8: ltk(G) ≥ τ(G) for a graph G and an inte-
ger k ≥ lw(G).

Proof We fix k ≥ 1 and show the lemma for a graph G
with lw (G) ≤ k by induction on ltk(G). If ltk(G) = 1,
then we have the lemma by Lemma 7 and Definition 1.
Assume that ltk(G′) ≥ τ(G′) for a graph G′ with
ltk(G′) < ltk(G). Let ε = 〈φ, ρ〉 be a k-layout of G.
Then there exist (not necessarily distinct) two edges
e and e′ of G such that ρ(e) and ρ(e′) induce paths
containing a vertex of the πmin

0 (ε(G))th column and a
vertex of the πmax

0 (ε(G))th column, respectively. There
exists a path P containing e and e′ since G is connected.
We have by the definition of P that G − P is laid out
with at least one more through tracks than those of G.
This means that ltk(G′) < ltk(G) for each connected
component G′ of G − P . Thus it follows by induction
hypothesis that τ(G′) ≤ ltk(G′). Therefore we have by
Definition 1 that τ(G) ≤ ltk(G). 2

By Lemmas 6 and 8, we have the following lemma:

Lemma 9: lw(G) ≥ τ(G) for a graph G. 2

3.1.3 Upper Bound

Let G be a graph with lw(G) ≤ k (k ≥ 1) and v ∈ V (G)
with vertex degree at most 3. Let G′ be the graph
obtained from G by adding a vertex u and joining u
and v with an edge. If there exists a layout of G such
that v is mapped onto the 0th row, or there exists a
layout of G′ such that u is mapped onto the 0th row,
then we say that G can be laid out with an exit track
from v.

Lemma 10: For a graph G with lw(G) ≤ k (k ≥ 1)
and v ∈ V (G) with degree at most 3, there exists a
k-layout of G with an exit track from v.

Proof Let 〈φ, ρ〉 be a k-layout of G and φ(v) = (i, j).
The lemma is immediate if j = 0. Moreover, from the
regularity of a grid, the lemma holds also if j = k − 1.

v

i-1 i i+1

v

i-1 i i+1

<φ,ρ>

(a)

v

i-1 i i+1

v

i-1 i i+1

<φ,ρ>

(b)

Fig. 1 Layout with an exit track from v (represented by dot-
ted lines) which is obtained from a layout 〈φ, ρ〉 by inserting
an additional column. Figures (a) and (b) show the cases that
the free edge e incident to φ(v) is ((i − 1, j), (i, j)) and that
e = ((i, j), (i, j − 1)), respectively.

P

τ(T)-1

1

connected components of T-P

Fig. 2 τ(T )-layout of a binary tree T .

Thus we assume that 0 < j < k − 1. By assumption,
φ(v) is incident to a free edge e since v has degree at
most 3. From the regularity of a grid, we may assume
without loss of generality that e is the column edge
((i, j), (i, j − 1)) or a row edge. Thus we can obtain a
desired layout from 〈φ, ρ〉 by “inserting” an additional
column as shown in Fig. 1. 2

Lemma 11: lw(T ) ≤ τ(T ) for a binary tree T .

Proof We prove the lemma by induction on τ(T ). If
τ(T ) = 1, then the lemma is immediate by Defini-
tion 1. Let T be a tree with τ(T ) ≥ 2, and assume that
lw(T ′) ≤ τ(T ′) for a tree T ′ with τ(T ′) < τ(T ). By Def-
inition 1 and induction hypothesis, there exists a spine
P of T such that each connected component T ′ of T−P
has lw(T ′) ≤ τ(T ′) < τ(T ). By Lemma 5, we may as-
sume without loss of generality that P has end-vertices
with degree at most 2. It follows from Lemma 10 that
there exists a (τ(T )−1)-layout of T ′ with an exit track
from the vertex v adjacent to a vertex u of P . Since T
is binary and P has end-vertices with degree at most 2,
at most one connected component has a vertex adjacent
to u. Thus we can obtain a τ(T )-layout of T by laying
out P into the 0th row, each connected component of
T − P into the 1st through (k − 1)st rows, and edges
joining the components and P into exit tracks (Fig. 2).
Therefore we have that lw(T ) ≤ τ(T ). 2

Lemma 12: lw(T ) ≤ 2τ(T ) − 1 for a tree T .
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P

2τ(T)-3

2

connected components of T-P

Fig. 3 (2τ(T ) − 1)-layout of a tree T .

Proof We prove the lemma by induction on τ(T ). If
τ(T ) = 1, then the lemma is immediate by Defini-
tion 1. Let T be a tree with τ(T ) ≥ 2, and assume that
lw(T ′) ≤ 2τ(T ′) − 1 for a tree T ′ with τ(T ′) < τ(T ).
By Definition 1 and induction hypothesis, there exists
a spine P of T such that each connected component T ′

of T − P has lw(T ′) ≤ 2τ(T ′) − 1 ≤ 2(τ(T ) − 1) − 1 =
2τ(T ) − 3. By a similar argument as the proof of
Lemma 11, we can obtain a (2τ(T ) − 1)-layout of T
by laying out P into the 1st row, each connected com-
ponent of T − P into the 2nd through (2τ(T ) − 2)nd
rows, and edges joining the components and P into
exit tracks as shown in Fig. 3. Thus we have that
lw(T ) ≤ 2τ(T ) − 1. 2

By Lemmas 9, 11 and 12, we have the following
theorem:

Theorem 13: τ(T ) ≤ lw (T ) ≤ 2τ(T ) − 1 for a tree
T . In particular, lw(T ) = τ(T ) if T is binary. 2

3.2 Relations to Cutwidth and Modified Cutwidth

Cutwidth (see for a survey [5]) and modified cutwidth
([9], [16], [18]) are well-known and extensively examined
graph parameters. A linear layout of an N -vertex graph
G is a mapping λ : V (G) → [N ]. The cutwidth of λ is
maxi∈[N−1] |{(u, v) ∈ E(G) | λ(u) ≤ i < λ(v)}|. The
modified cutwidth of λ is max1≤i<N−1 |{(u, v) ∈ E(G) |
λ(u) < i < λ(v)}|. The cutwidth of G denoted by
cw(G) is the minimum cutwidth overall linear layouts
of G. The modified cutwidth of G denoted by mcw(G)
is the minimum modified cutwidth overall linear layouts
of G. Not surprisingly, layout-width and (modified)
cutwidth are quite close as follows:

The following lemma is shown in [19].

Lemma B: cw (G) − 1 ≤ lw(G) for a graph G. 2

By a similar argument as the proof of Lemma B in [19]
we can also show the following lemma:

Lemma 14: mcw(G) + 1 ≤ lw(G) for a graph G.

Proof Let 〈φ, ρ〉 be a lw(G)-layout of G and M be the
grid onto which G is laid out. Let λ : (i, j) ∈ V (M) 7→
i · lw (G) + j. It is easy to see that λ is a linear layout
of M with modified cutwidth at most lw (G)− 1. Since
λ(φ(u)) (u ∈ V (G)) defines an order of V (G), we can
obtain a linear layout λ′ of G which maps V (G) to

0
1

2a b c d e2 2

1

0

(a) Linear layout of G with cutwidth 3. The edges are labeled
with integers from 0 to 2.

0
1
2

Ma Mb Mc Md Me

a
b c d

e

(b) A 4-layout of G.

Fig. 4 (cw(G) + 1)-layout of a graph G.

[|G|] in the order. Since 〈φ, ρ〉 is edge-disjoint, λ′ has
modified cutwidth at most that of λ. This means that
and mcw (G) ≤ lw (G) − 1. 2

Lemma 15: lw(G) ≤ cw(G) + 1 for a graph G.

Proof Let λ be a linear layout of G. We can construct
a layout of G into a grid M with length 3|G| and width
cw(G) + 1 as follows:

1. For u ∈ V (G), let Mu be the subgraph of M in-
duced by the vertex set

⋃
i∈[3](3λ(u) + i, ∗).

2. Assign each e ∈ E(G) an integer r(e) ∈ [cw(G)]
so that r((u, v)) 6= r((s, t)) for any distinct
edges (u, v), (s, t) ∈ E(G) with λ(u) ≤ λ(s) <
min{λ(v), λ(t)}. It should be noted that such a
function r can be obtained by a greedy assignment.

3. Map every u ∈ V (G) in a vertex of Mu so that we
can route each (u, v) ∈ E(G) by using Mu, Mv,
and the r((u, v))th row between Mu and Mv as
shown in Fig. 4.

2

Lemma 16: lw(T ) ≤ mcw(T )+1 for a binary tree T .

Proof By definition it follows that τ(T ) = ppw (T ) for a
tree T with at least two vertices. It is shown in [23] that
ppw (G) = ms(G) for a graph G, where ms(G) is the
mixed search number of G (we omit its definition here).
Moreover it is shown in [18] that ms(G) ≤ mcw(G)+1.
By combining these results and Lemma 11, we have
that lw(T ) ≤ mcw(T ) + 1 for a binary tree T with at
least two vertices. Since the lemma is immediate for a
tree consisting of a single vertex, we have the lemma.

2

By Lemmas B, 14, 15, and 16, we have the follow-
ing theorems:

Theorem 17: cw(G) − 1 ≤ lw(G) ≤ cw (G) + 1 for a
graph G. 2

Theorem 18: lw(T ) = mcw(T ) + 1 for a binary
tree T . 2
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u v
k+1

Fig. 5 Layout with exit tracks from u and v.

4. Minimizing Width of Area-Optimal Layout

By Theorem 17 and the proof of Lemma 15, we have
the following theorem:

Theorem 19: An N -vertex graph G with lw (G) = k
can be laid out into a grid with area O(kN) and width
k + 2.

Although the layout of Theorem 19 has almost mini-
mum width, the area is generally non-optimal when k
is not a constant.

In what follows, we show that trees can be laid out
into grids with optimal area and quite small width, and
that the results are tight.

4.1 Layout of Trees

We prove Theorems 1 and 2 by a series of lemmas.

Lemma 20: For a graph G with lw(G) ≤ k (k ≥ 1)
and v ∈ V (G) with degree at most 3, if G can be laid
out into M(l, k), then there exists a layout of G into
M(l + 1, k) with an exit track from v.

Proof Immediate from the proof of Lemma 10. 2

Lemma 21: For a graph G with lw(G) ≤ k and u, v ∈
V (G) with degree at most 2, if G can be laid out into
M(l, k), then there exists a layout of G into M(l+2, k)
with exit tracks from u and v.

Proof There exists a layout 〈φ, ρ〉 of G into M(l+1, k)
with an exit track from u by Lemma 20. If φ(v) is in
the 0th row, then the lemma is immediate. Otherwise,
φ(v), say (i, j), is incident to a free edge which is a row
edge or ((i, j), (i, j − 1)). Thus we can obtain a desired
layout by modifying 〈φ, ρ〉 as shown in Fig. 1. 2

Lemma 22: For a graph G with lw(G) ≤ k and u, v ∈
V (G) with degree at most 3, if G can be laid out into
M(l, k), then there exists a layout of G into M(l+3, k+
1) with exit tracks from u and v.

Proof There exists a layout 〈φ, ρ〉 of G into M(l+1, k)
with an exit track from u by Lemma 20. If φ(v), say
(i, j), is in the 0th row or incident to a free edge which
is a row edge or ((i, j), (i, j−1)), then the lemma holds
as shown in the proof of Lemma 21. Otherwise, the free
edge incident to φ(v) is ((i, j), (i, j + 1)). In this case
we can obtain a desired layout as shown in Fig. 5. 2

Lemma 23: For an integer α ≥ 0 and an N -vertex
tree T with τ(T ) = 1, T can be laid out into
M(d N

1+α
e, 1 + α).

Proof This is immediate since T is a path and a grid
has a Hamilton path. 2

Lemma 24: An N -vertex tree T can be laid out into
M(2N, 2τ(T )−1). In particular, T can be laid out into
M(2N, τ(T )) if T is binary.

Proof We prove the lemma by induction on τ(T ). The
lemma is immediate if τ(T ) = 1. Assume that τ(T ) ≥ 2
and that any tree T ′ with τ(T ′) < τ(T ) can be laid out
into M(2|T ′|, 2τ(T ′)−1). By definition 1, T has a spine
P such that each connected component T ′ of T −P has
τ(T ′) < τ(T ). By Lemma 5, we may assume without
loss of generality that P has end-vertices with degree
at most 3. By induction hypothesis, T ′ can be laid out
into M(2|T ′|, 2τ(T ) − 3). Thus, by Lemma 20, there
exists a layout of T ′ into M(2|T ′| + 1, 2τ(T ) − 3) with
an exit track from the vertex adjacent to a vertex u of
P .

Since at most two connected components of
T − P have a vertex adjacent to u, we can lay-
out T as Fig. 3 into a grid of width 2τ(T ) − 1 and
length

∑
u∈V (P ) max{1,

∑
T ′∈Cu

(2|T ′| + 1)} ≤ 2|P | +

2
∑

u∈V (P )

∑
T ′∈Cu

|T ′| ≤ 2N , where Cu is the set of
connected components of T − P containing a vertex
adjacent to u.

If T is binary, then a single additional row suf-
fices to layout P and edges joining P and T − P as
Fig. 2. Thus we can prove by the similar argument
based on induction on τ(T ) that T can be laid out into
M(2N, τ(T )). 2

The following lemma is a corollary of the result
shown by Leiserson [17] and Variant [25] independently
that an N -vertex tree can be laid out into a square grid
of area O(N):

Lemma C: There exists a real number 0 < C < 1
and an integer α0 > 3 such that for any integer α ≥ α0,
any tree with at most Cα2 vertices can be laid out into
M(α − 3, α − 3). 2

In what follows, C and α0 denote the values of
Lemma C. For a path P of a tree T and v ∈ V (P ),
T P (v) is the maximal subtree of T which contains v
but does not contain an edge of P .

Lemma 25: Let α ≥ α0 be an integer and T be a tree
with N > Cα2 vertices. If T has a path P such that
each connected component of T − P has at most Cα2

vertices, then T can be laid out into M( 10N
Cα

, α).

Proof Since for any path P ′ containing P as a sub-
graph, each connected component of T−P ′ has at most
Cα2 vertices, we may assume without loss of generality
that P has end-vertices with degree at most 3.

Suppose that P has the vertex set {u0, . . . , up−1}
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u0 u1 u2 u3 u4

P

(a) T .
α

TP(u0)
TP(u1)
TP(u2) TP(u3) TP(u4)

u0

u1

u3 u4

u2

α α α α α α

2

α-2

(b) Layout of T into M(7α, α).

Fig. 6 Layout of a tree T which has a path P such that each
connected component of T −P has at most Cα2 vertices. Figure
(b) shows the case that r0 = 0, r1 = 1, r2 = 3, r3 = 4, and
r4 = 5 (q = 4).

and edge set {(ui, ui+1) | i ∈ [p − 1]}. Let {r0, . . . , rq}
and {s0, . . . , sq−1} be sets of integers such that:

• 0 = r0 < r1 < · · · < rq = p;
• sj =

∑
rj≤i<rj+1

|T P (ui)| for j ∈ [q];

• For j ∈ [q], sj ≤ Cα2+1 if rj+1 = rj +1, sj ≤ Cα2

otherwise, and;

• For j ∈ [q], sj+1 > Cα2

2 if sj ≤ Cα2

2 .

It should be noted that such integers can be found by
a greedy scan of integers from 0 to p.

Since at least b q
2c integers of s0, . . . sq−1 have val-

ues at least Cα2

2 , it follows that b q
2cCα2

2 ≤ ∑
j∈[q] sj =

N . Thus we have that q ≤ 4N
Cα2 +1 < 5N

Cα2 . Therefore it
suffices to show that T can be laid out into M(2qα, α).

For j ∈ [q], if rj+1 = rj+1, then we can layout each
connected component of T P (urj

)−urj
into M(α−3, α−

3) by Lemma C. Thus there exists a layout of T P (urj
)

into M(α− 2, α− 3) with an exit track from the vertex
adjacent to urj

by Lemma 20. Otherwise, we can layout

the subtree induced by T P (urj
), . . . , T P (urj+1−1) into

M(α−3, α−3) by Lemma C. Thus there exists a layout
of the induced subtree into M(α, α−2) with exit tracks
from urj

and urj+1−1 by Lemma 22. Thus we can obtain
a layout of T into M(2qα, α) as shown in Fig. 6. 2

For integers k ≥ 1 and α ≥ α0, a path P of a
graph G is called a (k, α)-spine of G if each connected
component G′ of G − P has τ(G′) < k or has at most
Cα2 vertices.

Lemma 26: For a tree T with τ(T ) ≥ 2 and integers
k ≥ τ(T ) and α ≥ α0, there exists a (k, α)-spine P
satisfying the following condition:

Condition 1: For v ∈ V (P ) such that T P (v)− v has
a connected component with more than Cα2 vertices,
T −v has at least two connected components with more
than Cα2 vertices.

Proof Assume that P is a k-spine which does not sat-
isfy Condition 1. By assumption P has a (unique) ver-
tex v0 such that T P (v0) − v0 has a unique connected
component T1 with more than Cα2 vertices and that
every connected component of T − v0 except T1 has at
most Cα2 vertices. Moreover T1 has τ(T1) < k since
P is a k-spine of T . Thus the path consisting of the
single vertex v0 is a (k, α)-spine of T . Therefore it fol-
lows from Lemma 5 that any path containing v0 is also
a (k, α)-spine of T .

Let v1 be the vertex of T1 which is adjacent to v0.
The path P1 induced by {v0, v1} is a desired (k, α)-spine
if P1 satisfies Condition 1. Otherwise, T P1(v1)− v1 has
a unique connected component T2 with more than Cα2

vertices. Let v2 be the vertex of T2 which is adjacent
to v1. The path P2 induced by {v0, v1, v2} is a desired
(k, α)-spine if P2 satisfies Condition 1. Otherwise, we
continue the process. Since T is finite, there exists i
such that Pi is a (k, α)-spine satisfying Condition 1.

2

Lemma 27: For an N -vertex tree T and an integer
α ≥ α0, T can be laid out into M(l(N), 2τ(T ) + α),
where l(n) is 26n

Cα
−16α if n > Cα2, α−2 otherwise. In

particular, T can be laid out into M(l(N), τ(T ) + α) if
T is binary.

Proof We prove the lemma by induction on τ(T ). We
first assume that τ(T ) = 1. It follows from Lemma 23
that T can be laid out into M(d N

1+α
e, 1 + α). By the

definition of C and the assumption that α ≥ α0, it
follows that Cα2 ≤ (α − 3)2. Thus, if N ≤ Cα2, then

we have that d N
1+α

e ≤ d (α−3)2

1+α
e ≤ α−3 < l(N). If N >

Cα2, then we have that l(N) − d N
1+α

e ≥ 26N
Cα

− 16α −
(N

α
+1) > 26N−16Cα2−N−Cα2

Cα
> 8N

Cα
> 0. Therefore the

lemma holds if τ(T ) = 1.

We next assume that τ(T ) ≥ 2 and that any
tree T ′ with τ(T ′) < τ(T ) can be laid out into
M(l(|T ′|), 2τ(T ) + α − 2). By Lemma 26, T has a
(τ(T ), α)-spine P satisfying Condition 1. If each con-
nected component of T − P has at most Cα2 vertices,
then the lemma holds by Lemmas C and 25. Thus
we assume that T − P has a connected component
with more than Cα2 vertices. In addition, since any
path containing P as a subgraph is a (τ(T ), α)-spine
satisfying Condition 1, we may assume without loss
of generality that P has end-vertices with degree at
most 3. Suppose that P has vertex set {u0, . . . , up−1}
and edge set {(ui, ui+1) | i ∈ [p − 1]}. Let I = {i ∈
[p] | ∃T ′ ∈ Ci with |T ′| > Cα2}, where Ci is the set of
connected components of T P (ui) − ui. Suppose that
{r0, . . . , rq} = I ∪ {1 ≤ i < p | i − 1 ∈ I} ∪ {0, p} with
0 = r0 < r1 < · · · < rq = p. Let J = {j ∈ [q] | rj ∈ I}
and J = [q] − J .

For j ∈ J , since P is a (τ(T ), α)-spine, T ′ ∈
Crj

has τ(T ′) < τ(T ) or |T ′| ≤ Cα2, and hence,
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u0 u1 u2 u3 u4

P

>Cα2 >Cα2

(a) T .

TP(u0)
TP(u1)
TP(u2) TP(u3)

TP(u4)

u0

u1

u3

u4u2

2τ(T)+α-2

2

α+1

(b) Layout of T .

Fig. 7 Layout of a tree T which has a (τ(T ), α)-spine P such
that I = {0, 3}, r0 = 0, r1 = 1, r2 = 3, r3 = 4, r4 = 5 (q = 4).

we can layout T ′ into M(l(|T ′|), 2τ(T ) + α − 2) by
induction hypothesis and Lemma C. Thus there ex-
ists a layout of T ′ into M(l(|T ′|) + 1, 2τ(T ) + α − 2)
with an exit track from the vertex adjacent to urj

by

Lemma 20. For j ∈ J , we can layout the subtree T j in-
duced by T P (urj

), . . . , T P (urj+1−1) into M(l(|T j |), α)
by Lemmas C and 25. Thus there exists a layout of
T j into M(l(|T j |) + 3, α + 1) with exit tracks from
urj

and urj+1−1 by Lemma 22 if urj
6= urj+1−1, by

Lemma 20 otherwise. Therefore we can layout T into
a grid M(l, 2τ(T ) + α) as shown in Fig. 7, where
l =

∑
j∈J

T ′∈Crj

(l(|T ′|) + 1) +
∑

j∈J (l(|T j |) + 3).

It remains to show that l ≤ l(N). By the definition
of {r0, . . . , rq} and the fact that P satisfies Condition 1,
we have that |{T ′ ∈ Crj

| j ∈ J , |T ′| > Cα2}| + |{T j |
j ∈ J , |Tj | > Cα2}| ≥ max{b q

2c, 2}. Thus l is at most
∑

j∈J

T ′∈Crj

|T ′|>Cα2

( 26|T ′|
Cα

− 16α) +
∑

j∈J

T ′∈Crj

|T ′|≤Cα2

(α − 2) + 2|J | +

∑
j∈J

|T j |>Cα2

(
26|T j |

Cα
− 16α) +

∑
j∈J

|T j |≤Cα2

(α − 2) + 3|J | ≤

26N
Cα

−16α·max{b q
2c, 2}+(α−2)(2|J |+|J|)+2|J |+3|J| ≤

26N
Cα

−16α ·max{b q
2c, 2}+(α−2) ·2q+3q. If q ≥ 4, then

l is at most 26N
Cα

− 16α · q−1
2 + (2α − 1)q = 26N

Cα
+ 8α−

(6α+1)q ≤ 26N
Cα

−16α−4 ≤ l(N). If q ≤ 3, then l is at

most 26N
Cα

−16α ·2+(2α−1)q ≤ 26N
Cα

−26α−3 ≤ l(N).
Therefore T can be laid out into M(l(N), 2τ(T ) + α).

If T is binary, then a single additional row suf-
fices to layout urj

and edges incident to urj
for j ∈ J .

Thus we can prove by the similar argument based
on induction on τ(T ) that T can be laid out into
M(l(N), τ(T ) + α). 2

Lemma 28: For an N -vertex tree T with layout-
width k and an integer α with 0 ≤ α ≤

√
N , T can

be laid out into M(O( N
1+α

), 2k + α). In particular, T

can be laid out into M(O( N
1+α

), k + α) if T is binary.

Proof It follows from Theorem 13 that τ(T ) ≤ k.
Thus, if α < α0, then the lemma holds by Lemmas 23
and 24. Otherwise, since N ≥ α2 > Cα2, the lemma
holds by Lemma 27. 2

Theorem 1 can be obtained from Lemma 28 by set-
ting α = Θ(k). Theorem 2 is an immediate corollary of
Lemma 28. Thus we complete the proofs of Theorems
1 and 2. It should be noted that the layouts given in
the proofs are constructed in polynomial time.

4.2 Lower Bound

We prove Theorem 3 restated below:

Theorem 3: For integers k ≥ 1 and α ≥ 0, there
exists a binary tree T with lw(T ) ≤ k such that for any
layout of T into a grid of width k +α, the grid has area
Ω(k+α

1+α
N), where N is the number of vertices of T .

Proof Let D > 1 be an arbitrary number, and let d and

p be integers with d ≥ 2D
1
k

D
1
k −1

and p ≥ d
1+α

. We define

that T1 is a (1 + α)p-vertex path and that Tk (k ≥ 2)
is the binary tree obtained from d copies S0, . . . , Sd−1

of Tk−1 and a d-vertex path with vertices u0, . . . , ud−1

by joining a vertex of Si with degree at most 2 and ui

with an edge for i ∈ [d].

We can observe by definition that lw(Tk) ≤ k and

that Tk has N ≡ dk−1(1 + α)p + dk−d
d−1 ≤ dk−1

d−1 (1 + α)p
vertices. For any layout of Tk into a grid M of length l
and width k + α, at least d − 2 copies of Tk−1 are laid
out with at least one through track. By repeating this
argument recursively, we have that at least (d − 2)k−1

copies of T1 are laid out with at least k − 1 through
tracks. Since the vertices of such (d − 2)k−1 copies
of T1 cannot be mapped onto the through tracks, it
follows that l(1 + α) ≥ (d − 2)k−1(1 + α)p, and hence,

N
l(1+α) ≤

dk
−1

d−1 (1+α)p

(d−2)k−1(1+α)p
≤ ( d

d−2 )k ≤ D. Thus we have

that M has area l(k + α) ≥ k+α
D(1+α)N . 2

5. NP-Completeness

In this section, we prove Theorem 4, i.e.,

Theorem 29: The problem of determining, given a
binary tree T and integers l and k, whether there exists
a layout of T into M(l, k) is NP-complete.

We construct a pseudo-polynomial reduction from
3-Partition, which is well known to be NP-complete
in the strong sense and defined as follows:

3-Partition

Instance A set of 3r integers A = {a0, a1, . . . , a3r−1}
and a positive integer b such that b/4 < ai < b/2 and∑

i∈[3r] ai = rb.
Question Can A be partitioned into r disjoint sets
A0, . . . , Ar−1 such that

∑
a∈Aj

a = b for j ∈ [r]?
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5.1 Translation of Instance

For integers a0, . . . , a3r−1, and b given as an instance of
3-Partition, we construct T , l, and k as the instance
of Length-Width-Efficient Layout as follows:

1. Let l = (4k + 1)γ + r(βb + 5) + 7 and k = 3r + 2,
where β = 8r + 9, γ = k(2k + δ) + 1, and δ =
3r2(βb + 5) + 2r + 2.

2. Let S be a path with vertex set {s0, . . . , sk−1, s
′
0,

. . . , s′k−1} and edge set {(si, s
′
i) | i ∈ [k]} ∪

{(s2i, s2i+1) | 2i, 2i + 1 ∈ [k]} ∪ {(s′2i−1, s
′
2i) |

2i − 1, 2i ∈ [k]}.
3. For i ∈ [k], let Pi, P ′

i , and Ri be a γ-vertex path
with end-vertices pi and p̂i, a 2kγ-vertex path with
end-vertices p′i and p̂′i, and a 2kγ-vertex path with
end-vertices ri and r̂i, respectively.

4. Let W be a tree with vertex set {wi | i ∈ [r(βb +
1)+1]}∪{z′

j | j ∈ [r+1]} and edge set {(wi, wi+1) |
i ∈ [r(βb + 1)]} ∪ {(zj , z

′
j) | j ∈ [r + 1]}, where

zj = wj(βb+1) for j ∈ [r + 1].
5. For i ∈ [3r], let Qi be a (βai +1)-vertex path with

an end-vertex qi.
6. For i ∈ [k−1], let Yi and Y ′

i be 3-vertex paths with
degree-2 vertices ci and c′i, respectively.

7. Let T be the tree obtained by adding the following
edges:

a. (si, pi) for i ∈ [k].
b. (p̂0, z0) and (p̂i, qi−2) for 2 ≤ i < k.
c. (s′i, p

′
i) for i ∈ [k].

d. (p̂′0, c
′
0) and (p̂′i, c

′
i−1) for 1 ≤ i < k.

e. (zr, r0), (z′r, r1), and (qi−2, ri) for 2 ≤ i < k.
f. (r̂i, ci−1) for 1 ≤ i < k.

T is shown in Fig. 8. It should be noted that δ =
lk − |T |.

5.2 Correspondence of Answers

If A = {a0, . . . , a3r−1} can be partitioned into
A0, . . . , Ar−1 such that

∑
a∈Aj

a = b for j ∈ [r], then T

can be laid out into M(l, k) as shown in Fig. 8.
We show the converse throughout the rest of the

subsection. Assume that there exists a layout ε = 〈φ, ρ〉
of T into M = M(l, k).

In what follows we use the following notations for
simplicity: For v ∈ V (T ), let ξ(v) = π0(φ(v)). For
a subgraph H of T , let ξmax(H) = max{π0(v) | v ∈
V (ε(H))}, ξmin(H) = min{π0(v) | v ∈ V (ε(H))}, and
d(H) = (the diameter of H)+1. For subgraphs H and
H ′ of T , we write H v H ′ if ξmin(H ′) ≤ ξmin(H) and
ξmax(H) ≤ ξmax(H ′). We denote T [V (H) ∪ V (H ′)] by
H ∪ H ′. Moreover, for U ⊆ V (T ) and v ∈ V (T ), we
denote T [V (H)∪U ] and T [V (H) ∪ {v}] by H ∪U and
H ∪ v, respectively.

For i ∈ [k], Hi and H ′
i denote the connected

components of T − S which contain Pi and P ′
i , re-

spectively. Let P = {P0, . . . , Pk−1, P
′
0, . . . , P

′
k−1} and

H = {H0, . . . , Hk−1, H
′
0, . . . , H

′
k−1}.

Lemma 30: For subgraphs H and H ′ of T , |H | ≤
k(d(H ′) + δ) if H v H ′.

Proof If H v H ′, then it follows that |H | ≤
k(ξmax(H ′) − ξmin(H ′) + 1). Since ε(H ′) has at most
δ = lk − |T | free vertices, we have that ξmax(H ′) −
ξmin(H ′) + 1 ≤ d(H ′) + δ. Thus it follows that |H | ≤
k(d(H ′) + δ). 2

Lemma 31: H 6v S for H ∈ H.

Proof Since |H | ≥ γ > k(2k + δ) = k(d(S) + δ), we
have the lemma by Lemma 30. 2

Let H− = {H ∈ H | ξmin(H) < ξmin(S)} and
H+ = {H ∈ H | ξmax(S) < ξmax(H)}. It follows
from Lemma 31 that H− ∪ H+ = H. Since M has
k rows and |H| = 2k, we have that H− ∩ H+ = ∅ and
|H−| = |H+| = k. Let H− ∈ H− such that ξmin(H−) =
max{ξmin(H) | H ∈ H−}, and let H+ ∈ H+ such that
ξmax(H+) = min{ξmax(H) | H ∈ H+}. By the defini-
tions of H− and H+, we have the following lemma:

Lemma 32: All the 2k rows of the two sub-
grids induced by

⋃
ξmin(H−)≤x≤ξmin(S)(x, ∗) and by

⋃
ξmax(S)≤x≤ξmax(H+)(x, ∗) are contained in the distinct

images of H0∪s0, . . . , Hk−1 ∪sk−1, H
′
0∪s′0, . . . , H

′
k−1 ∪

s′k−1 by ε. 2

Lemma 33: Any vertex of T−⋃
P∈P P−S is mapped

in
⋃

x<ξmin(H−)(x, ∗) or
⋃

x>ξmax(H+)(x, ∗).
Proof By the definition of T , one end-vertex of P ∈
P is adjacent to a vertex of S, and the other end-
vertex of P is adjacent either to a degree-3 vertex
of T − P or to no vertex of T − P . Thus, by
Lemma 32, such degree-3 vertices cannot be mapped
in

⋃
ξmin(H−)≤x≤ξmax(H+)(x, ∗), and hence, neither can

a vertex of T − ⋃
P∈P P − S. 2

From the regularity of M , we may assume without
loss of generality that ξmax(H+) < ξ(z0).

Lemma 34: H+ = P1 and H− = P ′
1.

Proof By Lemma 33, H− and H+ have no degree-3
vertex, i.e., {H−, H+} = {P1, P

′
1}. Thus it suffices

to show that H+ 6= P ′
1. By the assumption that

ξmax(H+) < ξ(z0), we have that H+ v S ∪ P0 ∪ z0.
Thus it follows from Lemma 30 that |H+| ≤ k(d(S ∪
P0 ∪ z0) + δ) = k(2k + γ + 1 + δ) < 2kγ. Since P ′

1 has
2kγ vertices, we have that H+ 6= P ′

1. 2

Lemma 35: Any vertex of Hi − Pi for i ∈ [k] is
mapped in

⋃
x>ξmax(H+)(x, ∗).

Proof By Lemmas 31 and 33, it suffices to show that
ξ(qi) ≥ ξmin(H−) for i ∈ [3r]. If ξ(qi) < ξmin(H−),
then we have that H− v S ∪ Pi+2 ∪ qi. Thus it follows
from Lemma 30 that |H−| ≤ k(2k + γ + 1 + δ) < 2kγ.
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Fig. 8 The binary tree T . Dotted (thick) lines represent paths and solid lines represent
edges. The figure shows a layout of T into M(l, k) for the case that A = {a0, . . . , a8} can
be partitioned into A0 = {a1 , a5, a6}, A1 = {a0 , a3, a8}, and A2 = {a2, a4, a7} such that�

a∈Aj
a = b for j ∈ {0, 1, 2}.

However, this is a contradiction since |H−| = |P ′
1| =

2kγ by Lemma 34. 2

Lemma 36: ξmax(H+) ≥ (2k + 1)γ + 1.

Proof By Lemmas 33 and 35, we have that
H− = {H ′

0, . . . , H
′
k−1} and H+ = {H0, . . . , Hk−1}.

Thus all the rows of the subgrid induced by⋃
ξmin(H−)≤x≤ξmax(H+)(x, ∗) are contained in distinct

images of P0 ∪ P ′
0 ∪ {s0, s

′
0}, . . . , Pk−1 ∪ P ′

k−1 ∪
{sk−1, s

′
k−1} by ε. Thus we have by Lemma 34 that

ξmax(H+) ≥ |P1∪P ′
1∪{s1, s

′
1}|−1 = (2k+1)γ +1. 2

Lemma 37: ξmax(W ) < ξmax(Ri) for i ∈ [k].

Proof Since k(d(S∪P0∪W )+δ) = k(2k+γ+r(βb+1)+
2+δ) < 2kγ = |Ri| for i ∈ [k], it follows from Lemma 30
that Ri 6v S ∪ P0 ∪ W . Since ξmax(S) < ξmax(H+) <
ξmin(Ri) by Lemma 35, we have the lemma. 2

Let R = {R0, R1 ∪ Y0, . . . , Rk−1 ∪ Yk−2} and
R+ ∈ R such that ξmax(R+) = min{ξmax(R) | R ∈ R}.
Lemma 37 and the fact that ξmax(S) < ξmax(H+) <
ξ(z0) show the following lemma:

Lemma 38: All the k rows of the subgrid induced
by

⋃
ξ(zr)≤x≤ξmax(R+)(x, ∗) are contained in the distinct

images of R0∪zr, R1∪Y0∪{zr, z
′
r}, H2∪s2, . . . , Hk−1∪

sk−1 by ε. 2

Lemma 39: ξ(qi) < ξ(zr) for i ∈ [3r], ξ(zj) < ξ(zr)
for j ∈ [r], and ξ(ci′) > ξmax(R+) for i′ ∈ [k − 1].

Proof By Lemma 38, any degree-3 vertex ex-
cept zr is mapped either in

⋃
x<ξ(zr)(x, ∗) or in

⋃
x>ξmax(R+)(x, ∗). Since qi (i ∈ [3r]) and zj (j ∈ [r])

are intermediate degree-3 vertices of paths connecting
R ∈ R and S, but ci′ (i′ ∈ [k − 1]) is not on such a
path, we have the lemma. 2

Lemma 40: ξ(zr) − ξmax(H+) ≤ r(βb + 5) + 5.

Proof By Lemmas 38 and 39, R+ = R0 is mapped onto
a single row. Thus we have that ξmax(R0)−ξmin(R0)+
1 ≥ |R0| = 2kγ. Therefore it follows from Lemmas 35
and 36 that ξ(zr) − ξmax(H+) ≤ l − 1 − 2kγ − ((2k +
1)γ + 1) = r(βb + 5) + 5. 2

By Lemmas 35, 37, 38, and 39, we have the follow-
ing lemma:

Lemma 41:

ξmin(H i) < ξmax(H+) < ξ(zr) ≤ ξmax(H i)

for i ∈ [k] − {1}, (1)

where H0 = P0 ∪W ∪ s0 and H i = Pi ∪Ri ∪ {si, qi−2}
for 2 ≤ i < k.

ξmax(H+) < ξmin(Qi) < ξmax(Qi) < ξ(zr)

for i ∈ [3r]. (2)

ξmax(H+) < ξmin(W − {zr, z
′
r})

< ξmax(W − {zr, z
′
r}) < ξ(zr). (3)

2

Lemma 42: ξmax(H+) < ξ(z0) < · · · < ξ(zr).
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Proof It follows from (1) and (3) of Lemma 41 that
W is laid out with k-layout-thickness at most 2. Since
any k-layout of W such that there exist j and j ′ with
0 ≤ j < j′ < r and ξ(zj) ≥ ξ(zj′) has thickness at least
3, we have the lemma. 2

Let X0 = {i ∈ [3r] | ξmax(Qi) < ξ(z1)}, and Xj =
{i ∈ [3r] | ξ(zj) < ξmin(Qi), ξmax(Qi) < ξ(zj+1)} for
1 ≤ j < r.

Lemma 43: X0, . . . , Xr−1 are disjoint and
⋃

j∈[r] Xj =

[3r].

Proof Since zj (j ∈ [r]) has degree 3, it follows from
(1) of Lemma 41 that no path Q of Q0, . . . , Q3r−1 can
be mapped so that ξmin(Q) ≤ ξ(zj) ≤ ξmax(Q). Thus
we have by (2) of Lemma 41 that

⋃
j∈[r] Xj = [3r].

Moreover X0, . . . , Xr−1 are disjoint by Lemma 42. 2

Lemma 44:
∑

i∈Xj
ai = b for j ∈ [r].

Proof By Lemma 43, it suffices to show that∑
i∈Xj

ai ≤ b for j ∈ [r]. To show this by con-

tradiction, we assume that there exists j ∈ [r] such
that

∑
i∈Xj

ai ≥ b + 1. Let M be the subgrid in-

duced by
⋃

ξmax(H+)<x<ξ(zr)(x, ∗), It follows from (1)

and (2) of Lemma 41 that Qi − qi is mapped onto
a single row of M for i ∈ Xj . Thus it follows that
ξ(zj+1) − ξ(zj) ≥ ∑

i∈Xj
|Qi − qi| + 1 ≥ β(b + 1) + 1

if j ≥ 1, ξ(z1) − ξmax(H+) ≥ ∑
i∈X0

|Qi − qi| + 1 ≥
β(b+1)+1 otherwise. Thus, since zj and zj+1 are con-
nected by a βb-vertex path, there exists a set U of at
least β vertices in M which consists of free vertices of
ε(W ) or of ε(P0 ∪ z0). By Lemma 41,

⋃
i∈[3r](Qi − qi)

and W − {zr, z
′
r} are laid out into M with k-layout-

thickness at most 2. Thus we have that ξ(zr) −
ξmax(H+) = (the number of columns of M) + 1 ≥

�
i∈[3r] |Qi−qi|+|W−{zr,z′

r}|+|U |

2 +1 ≥ rβb+r(βb+2)+β

2 +1 >
r(βb + 5) + 5, contradicting Lemma 40. 2

By Lemma 44 and |T | = O(r6b), we have obtained
a desired pseudo-polynomial reduction. Since Length-

Width-Efficient Layout is in NP, the proof of The-
orem 29 is completed.

6. Concluding Remarks

Knock-knee model is the routing model obtained from
Manhattan model by relaxing its routing condition so
that not only crossing two paths but also bending them
at the same grid point is allowed. Since Manhattan
model is a restricted version of knock-knee model, our
upper bounds are also valid under knock-knee model.
Besides our proofs of lower bounds, including NP-
hardness, are not based on whether knock-knees are
allowed or not. Therefore all the theorems given here
also hold under knock-knee model.
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