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A Fast Codebook Design Algorithm for ECVQ Based on Angular
Constraint and Hyperplane Decision Rule

Ahmed SWILEM', Nonmember, Kousuke IMAMURA ', and Hideo HASHIMOTO'*®, Members

SUMMARY In this paper, we propose two fast codebook generation
algorithms for entropy-constrained vector quantization. The first algorithm
uses the angular constraint to reduce the search area and to accelerate the
search process in the codebook design. It employs the projection angles
of the vectors to a reference line. The second algorithm has feature of us-
ing a suitable hyperplane to partition the codebook and image data. These
algorithms allow significant acceleration in codebook design process. Ex-
perimental results are presented on image block data. These results show
that our new algorithms perform better than the previously known methods.
key words: fast search algorithm, entropy-constrained vector quantization,
hyperplane decision rule

1. Introduction

Vector quantization (VQ) [1] has played an important role
in numerous data compression systems. It is defined as a
mapping Q from a k-dimensional Euclidean space R to a
finite set ¥ = {y,,y2,...,yn} of vectors in R¥ called the
codebook. Each representative vector y; in the codebook is
called a codeword. A complete description of vector quanti-
zation process includes three phases: codebook design, en-
coding and decoding. The objective of codebook design is to
construct a codebook Y from a set of training vectors using
clustering algorithms like the generalized Lloyd algorithm
(GLA) [2]. This codebook is used in both the encoder and
the decoder. The encoding phase is equivalent to find the
vector Q(x) = y; € Y minimizing the distortion d(x, y;) de-
fined as the Euclidean distance between the vector x and y;.
The decoding phase is simply a table look-up procedure that
uses the received index i to deduce the reproduction code-
word y;, and then uses y; to represent the input vector x.
Entropy-constrained vector quantization (ECVQ),
which incorporates an entropy constraint within the design
procedure, is one of the fundamental extensions of the basic
VQ concept so as to produce quantizers optimized for sub-
sequent entropy coding. The pioneering work in this area
was performed by Berger [3], Farvardin and Modestino [4],
and Chou et at. [5]. Incorporation of an entropy constraint
has been considered in a variety of quantization schemes,
notably works of Pearlman and colleagues [6], [7] and oth-
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ers [8], [9].

ECVQ employs a modified cost measure using both
the effective distortion of the signal and the expected length
of the transmitted code. This length is not always equal to
log, N, where N is the codebook size, but dependent on the
expected probability of the codeword. The codeword length
R(y;) of the codeword y; is usually taken as equal to the
bound given by the entropy model, i.e. R(y;) = —log, P(y;),
where the probability P(y;) is approximated empirically us-
ing the training set. We define the cost function for encoding
the vector x by the codeword y; as the Lagrangian function,

J(x,yi) = d(x, y) + AR()), M

where d(x, y;) is the Euclidean distance, and A is a constant
called the Lagrange multiplier allowing to control the rate-
distortion ratio. Using of this cost measure implies that
codewords introducing higher degradation may be chosen
because of their short descriptions.

In many VQ applications, the computational cost of
finding the nearest neighbor codeword in the codebook de-
sign and encoding imposes practical limits on the codebook
size N. When N becomes larger, the computational com-
plexity problem occurs for full codebook search. This has
motivated the development of many fast nearest neighbor
search algorithms. Algorithms to reduce search complex-
ity ([10]-[19]) concentrate on narrowing the area of the
candidate codewords for which distortion must be calcu-
lated. These techniques have their roots in pattern recog-
nition techniques for the finding nearest neighbor [20], [21].

An algorithm for fast nearest neighbor search presented
by Orchard [10] precomputes and stores the distance be-
tween each pair of codewords. Given an input vector x, the
current best codeword y;, and a candidate codeword y;, if
d(x,y;) < d(x,y;), then d(y;,y;) < 2d(x,y;). Graphically,
this constrains the search area within a sphere centered on
the current best codeword, with a radius of twice the small-
est distortion calculated so far. Huang et at. [11] introduced
an additional constraint on codewords by sorting their dis-
tances from the origin. The distance between the current
best codeword and the input vector constrains the search to
codewords within an area about the origin, which is repre-
sented by an annulus in two dimensions. In three dimen-
sions, this is the area between two concentric spheres. This
constraint is known as the annular constraint. In the same
paper, Huang et al. proposed a combination of the spherical
and annular constraints with an efficient search method. Lee
and Chen [12] introduced a projection method, which uses
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the mean and the variance of the vector as two constraints to
reject the codewords. We described a lossy design method in
[18], which employs a hyperplane decision rule to separate
the search areas in Lee and Chen method and is considered
as the extension of it. Johnson et at.[14] generalized the
techniques in [10] and [11] to apply them to class of vector
quantizers using Lagrangian distortion measure, in which a
sum of the Euclidean distance and some constant assigned
to each codeword is incorporated. Another technique added
an additional endpoint for the annular constraint was pro-
posed in the same paper. This constraint is known as the
double annulus constraint. Also, Cardinal [15] presented
an extension of the method in [12] to ECVQ. This method
is considered as the better known acceleration method for
nearest neighbor search for ECVQ.

In this paper, two new fast ECVQ design algorithms are
proposed. The first one achieves equivalent performance to
the full search ECVQ. It uses the annular constraint and an-
other constraint called the angular constraint. This method
uses the projection angles on a reference line in the space
of input vectors and codewords. It searches a smaller num-
ber of codewords than the previous methods. The second
method uses a hyperplane partitioning rule, which separates
the codebook and the training vectors into two parts, and
searches in only one part according to the vector feature.
The searching in this method speeds up the codebook de-
sign process, but signal quality is sacrificed a little. The
efficiency of the proposed new methods is compared with
the previous methods.

The paper is organized as follows. Section 2 reviews
the double annulus method and Cardinal method. Section 3
presents the angular constraint method. Section 4 describes
the angular constraint method with the hyperplane decision
rule. Experimental results are shown in Sect.5, and con-
cluding remarks are given in Sect. 6.

2. Fast Algorithms for ECVQ
2.1 Double Annulus Method

Johnson et at. [14] introduced an excellent method called the
double annulus method for ECVQ using two annular con-
straints, and tried to search only those codewords lying in
their overlapped area. The first annulus is centered at the
origin that is the first reference point. For a given input
vector x of distance ||x|| from the origin and a current best
codeword y; with Lagrangian distortion J(x, y;), any closer
codeword y; to x than y; in the sense of the Lagrangian cost
measure will satisfy the following relationships:

lly;ll + ARCy;) < llxll + J(x, ya), )
and
lly;ll = ARCy;) > lIxll = J(x, yi), (3)

where [ly;|| is the Euclidean distance of y; from the origin,
and R(y;) is the length of the codeword y;. Thus, for any
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Fig.1 Geometrical interpretation of double annulus method in 2-
dimensional case.

codeword y; satisfying (2) and (3), the hypersphere centered
at y; with radius A R(y;) must be fully contained in the an-
nulus defined by ||x|| + J(x, y;) and ||x|| — J(x, ;).

The second annulus is centered at the farthest codeword
from the origin, which is the second reference point, y,. By
using the distance to this codeword, the following inequali-
ties can be defined:

d(yj,y,) + ARYy;) <d(x,y,) + J(x, y;), “4)

and

d(yj, yr) — AR(y;) > d(x,yp) - J(x, yy). &)

The inequalities (2), (3), (4) and (5) constrain the distor-
tion calculation to the codeword whose hypersphere is com-
pletely contained in the search region shown in Fig. 1.

2.2 Cardinal Method

Cardinal [15] introduced the most acceleration method for
GLA on ECVQ using two elimination rules. In the first
elimination rule, a unit vector u = (1,1,...,1)/ vk on the
central line is used as a reference line as shown in Fig. 2,
where k is the vector dimension. For a given input vector
x and a current best codeword y; with Lagrangian distor-
tion J(x, y;), any closer codeword y; to x than y; with length
R(y;) will satisfy the following inequalities:

uyl + AR(y;) <ux” + J(x, ), (6)
and
uy; — AR(y)) > ux" — J(x,y;). )

The rule in (6) and (7) is very similar to the rule in (2) and
(3). While the rule in (2) and (3) uses the length of the vec-
tors, the rule in (6) and (7) uses the projection of the vectors
on u. The length of the vector is actually its distance to the
origin o, but its projection on u may be seen as its paral-
lel component to u. From the geometrical interpretation of
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Fig.2  Geometrical interpretation of Cardinal method in 2-dimensional
case.
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Fig.3 Geometrical interpretation of Cardinal method in 3-dimensional
case.

this method in 2-dimensional case in Fig. 2, for any code-
word y; satisfying (6) and (7), the hypersphere centered at
y; with radius A R(y;) must be fully contained in the region
between the two hyperplanes L; : uz’ = ux” + J(x,y;) and
Ly s uzl = ux — J(x, y5).

In the second elimination rule, the distance between the
codeword and its projection point on the central line is used
as follows: for a given input vector x with its projection
point P, on the central line, the closest codeword y; with its
projection point P,; will satisfy the following inequalities:

d(yj, Py,) + AR(y;) < d(x, Px) + J(x, 4i), 3
and
d(yj, Py;) — AR(y;) > d(x, Py) — J(x, y:). ©

By using the constraints of the rule in (6) and (7) and the rule
in (8) and (9), the search region will be reduced to the two
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dotted squares in Fig. 2. The search region in 3-dimensional
case is expanded to an annular cylinder shown in Fig. 3. Ev-
ery codeword whose sphere is not contained in this region
is eliminated. Cardinal method is considered as the general-
ization of Lee and Chen method [12] to ECVQ.

3. Angular Constraint Method (Lossless Design)

The angular constraint was proposed in [22] for a near-
est neighbor search technique of mean-shape-gain VQ, in
which the best shape vector is searched on a hypersphere
of radius 1 using the angle between the input shape vector
and a reference direction. Our proposing angular constraint
method is its extension, and a newly developed one appli-
cable to ECVQ as well as standard VQ according to our
limited knowledge.

In this section, a new method for codebook generation
is proposed by using the angular constraint. As we saw in
the last section, the annulus method constrains the search re-
gion by the two inequalities (2) and (3). For any codeword
y; satisfying (2) and (3), the hypersphere centered at y; with
radius A R(y;) must be fully contained in the annulus region
defined by ||x|| + J(x, y;) and ||x]| — J(x, y;). Additional an-
other constraint in our method is as follows.

Let [ be a reference line in the search space and it con-
tains the unit vector # = (1, 1,...,1)/ vk on it. For any
vector z, we define the angle between z and the reference
vector u as:

u
el

Because the values of all vector components are nonnega-
tive, then the angle @ € [0,%]. The angle « is called the
projection angle to the reference line . We define another
angle between the input vector x and the tangent from the
origin to the hypersphere centered at x with radius J(x, y;),
where y; is the current best codeword, as:

6, = sin! T4 (11

llxll

By the same way, we can define the angle between any code-
word y; and the tangent from the origin to the hypersphere
centered at y; with radius A R(y;) as:

g, =sin”! —AR(yj)
Y lly;ll

a, = COS (10)

, (12)
Figure 4 shows the geometrical interpretation of the angular
constraint method in 2-dimensional case. For a given input
vector x with its projection angle a, to the reference line /
and the closest codeword y; with its projection angle a,, the
following inequalities should be satisfied:

@, +6,, < ax+0;, (13)
and

ay, =0y, > ay— 6, (14)

J



SWILEM et al.: A FAST CODEBOOK DESIGN ALGORITHM FOR ECVQ

Ixl+J (x,y;)

Ixl=J(x,y;)

Fig.4 Geometrical interpretation of angular constraint method in
2-dimensional case.

Search region
(Annular truncated spherical cone)

Fig.5 Geometrical interpretation of angular constraint method in
3-dimensional case.

The inequalities (2), (3), (13) and (14) constrain the distor-
tion calculation to the codeword whose hypersphere is com-
pletely contained in the search region shown in Fig. 4. The
search region is expanded to an annular truncated spherical
cone shown in Fig.5 in which the geometrical interpreta-
tion of the angular constraint method in 3-dimensional case
is represented. When J(x,y;) > ||x||, the angle 6, can not
be defined. This means that the hypersphere centered at x
with radius J(x, y;) includes the origin in it. In this case, the
search area is constrained into the hypersphere centered at
the origin with radius ||x|| + J(x,y;) by the same way as in
the annulus method. It is emphasized that the search based
on our method is strictly equivalent to the full search and the
obtained codebook is just the same to that by the full search.
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Comparing the search region to that of Cardinal
method in 2-dimensional case, the area of the dotted
square in Fig.2 is 4J%(x,y;). On the other hand, the
search area of the above angular constraint method is
4(sin 6,/6,)"' J?(x, y;) and slightly larger than that of Car-
dinal method. But, when 6, is small, that means a good
choice for the current best codeword and/or the input vector
far from the origin from Eq. (11), both search areas are al-
most same. Moreover, considering that shapes of the search
region are different and the search region of the angular
constraint method is not fully contained in that of Cardi-
nal method, codeword elimination for distortion calculation
depends on codeword distribution. As a result, the angu-
lar constraint method may be superior to Cardinal method
in some cases and inferior in other cases, but the difference
of codeword elimination efficiency between both methods
is expected to be small. Above consideration may be also
valid for multidimensional cases.

Actually, the execution time needed in the search pro-
cess is related to the computation of J(x, y;), the distortion
associating with the best codeword y;, so the choice of the
first codeword to be tested is very serious issue of the search
process. We can use the following idea: after applying
the first iteration of the algorithm, the training vectors will
be clustered with the initial codebook. Then the improved
codebook will be generated by calculating the centroid of
the training vectors of each cluster. However, for a training
vector x grouped to index i in the previous iteration, J(x, y;)
will be a small value even if y; is a new codeword in the cur-
rent iteration. At this stage, we should have a way to choose
a better initial codeword y;. This method was experimented
with success in [13].

4. Angular Constraint with Hyperplane Decision Rule
(Lossy Design)

Most nearest-neighbor search techniques employ searching
the best codeword in the same search region for all training
vectors. In this section, we introduce a technique using a
hyperplane H to divide the signal space into two half-spaces
according to the vector feature. This method has been tried
with success in [19] for both Cardinal method and the dou-
ble annulus method.

The chosen hyperplane H contains the centroid of the
training vectors x, = (X1, Xc2,...,Xcq) and its projection
point on the central line x, = (m;,, my,, ..., my,), where m,,
is the mean value of x,. It is perpendicular to the central line
as shown in Fig. 6 and can be expressed as:

k
1
H:u =uxl = — xi=\/l;mxc=M. (15)

This hyperplane H is used as a decision function that dis-
criminates to which half-space a given vector x belongs by
the following conditions:

k
1
oIf ux'=— ) x;<M, (16)
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then x belongs to the lower half-space.

k
1
olf uxl = — ) x;=M,, a7
then x belongs to the upper half-space.

L. Guan and M. Kamel [23] studied the distribution of
some images data and found that most images data vectors
are located around the diagonal or the central line. Hence,
only a small portion of vectors will be near to the chosen hy-
perplane H, then the possibility for the hypersphere centered
at the input vector to cross over this hyperplane is small. As
a result, failure in best codeword searching becomes to be
less even if searching is performed in either half-space de-
pendent on the input vector feature.

Now we depict the proposed method that uses the hy-
perplane H to separate both the training vectors and the
codewords. The proposed method divides the training vec-
tors into two sub-groups T, and T,,, and each sub-group
contains the vectors satisfying (16) or (17), respectively.
Also, it divides the codebook into two sub-codebooks Yy,
and Y,, by the same equations. Searching for the train-
ing vectors in the sub-group Ty, is carried out in the sub-
codebook Yy, and for the training vectors in the sub-group
T, in the sub-codebook Y, by using the constraints in the
inequalities (2), (3), (13) and (14). Hence, the proposed
method can reduce the search area and speed up the search
process.

The proposed method may be easily understood with
the geometrical interpretation for 3-dimensional case in
Fig. 6. This figure includes the proposed hyperplane H. The
hyperplane H divides the signal space into two half-spaces,
and each half-space includes its own training vectors and
codewords.

Ty,
nn.,":hy,
o

lxlt+7Cx,p)

Z1 Nxl=JCey;) Mxl+7(xy;)
Z3

Fig.6 Geometrical interpretation of angular constraint method with hy-
perplane decision rule in 3-dimensional case.
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5. Experimental Results

Experiments were carried on vectors taken from the USC
grayscale image set. We used two images, Lena and Ba-
boon with size 512 x 512 and 256 gray levels. Each image
was divided into 4 x 4 blocks, so the training set contains
16384 blocks. Both lossless design methods (the full search
(FS), the double annulus (DA), Cardinal (CARD), the an-
gular constraint (ANG)) and lossy methods (Cardinal with
the hyperplane decision rule (CARDHP) in [19], the angu-
lar constraint with the hyperplane decision rule (ANGHP))
were tested.

Figures 7 and 8 show the PSNR of the ANG method
and the ANGHP method, respectively, for different code-
book sizes, N, at various values of A = 0.5,2,4 and 8
with Lena image. And Fig.9 shows the PSNR compari-
son between the ANG method and the ANGHP method for

36
A=05
*r 2 —
>
r=4 />./
2r //‘
—a—N=16
M V//‘ —e—N=32
Tl v —A—N=64
=z= A=8 —w—N=128
7 ——N=256
& sl A —<4—N=512
) —p—N=1024
oa —o—N=2048
-'
26 |-
24 1 1 1 L 1 J
0.1 02 03 04 05 06 07
Rate (bits/pel)
Fig.7 PSNR of the ANG method for Lena.
36
A=05
| A=2 *
>
32 red I
‘//‘ —m—N=16
8 /0/’ —e—N=32
30 —A—N=64
& A=8 A"' —w—N=128
7] —o—N =256
A sl 2 —<4—N=512
o
4 —»—N=1024
rd —e— N =2048
26 | -
24 1 1 1 1 1 — |
0.1 0.2 03 04 05 06 07

Rate (bits/pel)
Fig.8 PSNR of the ANGHP method for Lena.



SWILEM et al.: A FAST CODEBOOK DESIGN ALGORITHM FOR ECVQ

N = 32,256 and 1024 at various values of 1 with Lena im-
age. We want to insist on the fact that the ANG method
has the same PSNR of the FS method (lossless design).
Although the ANGHP method is a lossy design method,
it has almost the same performance as the FS method at
larger codebook size. For example, the performance of the
ANGHP method is only 0.073 dB less than the FS method
at codebook size 256 with A= 0.5, and this value decreases
by increasing the codebook size. There is a small degrada-
tion for smaller codebook size, for example, the ANGHP
method has 0.141 dB less than the FS method at codebook
size 32 with A= 0.5. This is because the ANGHP method
is not equivalent to the ANG method completely, and the
best codeword happens to be in the other half-space and
is missed to be searched out. However, there may be a
small failure possibility in the case of large codebook size
and smooth codebook distribution. Both the double annulus
method with the hyperplane decision rule and the CARDHP
method in [19] have the same PSNR of the ANGHP method.

Table 1 presents a comparison of execution time (in
seconds) and the total number of distortion calculations (Ds)
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for codebook design at codebook size N= 256 and various
values of A for Lena and Baboon images. The timings were
made on Pentium III (866 MHz). The ANG method signifi-
cantly accelerates the codebook design compared to the FS
method and the DA method in terms of the execution time
and the total number of distortion calculations. It also has
almost the same efficiency as the CARD method. Compared
to the FS method, the average acceleration ratio of the ANG
method is 7.2 for Lena and 3.5 for Baboon, and compared to
the DA method, it is 1.2 for Lena and 1.1 for Baboon. The
ANG method reduces the total number of distortion calcula-
tions for Lena by 95.6% and 25.4% less than the FS method
and the DA method in average, respectively. Also, for Ba-
boon it reduces this number by 81.4% and 5.4% less than
the FS method and the DA method, respectively.

Figures 10 and 11 show comparisons of the execution
time (in seconds) for Lena image with different codebook
sizes at 4 = 0.5 and 8, respectively. Compared to the DA
method, the ANG method reduces the execution time by
12.7% to 23.2%. The execution time of the ANG method
is quite close to that of the CARD method. The speed-
up achieved by the ANGHP method ranges from 16.2% to
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Fig.9 Comparison of PSNR for Lena.
Fig.10  Comparison of execution time at A = 0.5 for Lena.
Table1 Comparison of execution time and total number of distortion calculations (Ds) at codebook
size 256.
FS DA CARD ANG
Tested image Time (s) Ds Time (s) Ds Time (s) Ds Time (s) Ds
0.5 27.586 33554432 4.820 2220518 3.867 1571992 3.845 1543178
Lena 25.281 30867456 4.250 1773273 3.445 1303026 3.325 1276117
4 18.344 22233088 3.109 1259261 2.609 987607 2.531 962216
14.141 17235968 2.570 1008534 2.172 835976 2.107 811613
0.5 20.656 25165824 7.047 5509069 6.195 5030076 6.231 5076475
Baboon 20.586 25165824 6.898 5384943 6.175 4978999 6.211 5038996
4 23.727 28983296 7.516 5714961 6.805 5381459 6.878 5471404
22.656 27656192 6.211 4288138 5.602 4067946 5.686 4162554
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42.9% compared to the ANG method. The two curves of the
ANGHP method and the CARDHP method are nearly coin-
cident. It can be seen that as the codebook size increases,
the efficiency of the ANGHP becomes better than the ANG
method. This is an important merit of the ANGHP method,
because design of a larger codebook size requires more in-
tensive computation.

Figures 12 and 13 present the total number of distor-
tion calculations, which is a dominant figure of the compu-
tational complexity, for Baboon image with different code-
book sizes at A = 0.5 and 8, respectively. Compared to
the DA method, the ANG method reduces the Ds by 2.9%
to 20.1%. The total number of distortion calculations of
the ANG method is almost the same as that of the CARD
method. The Ds curve of the ANGHP method is also almost

the same as that of the CARDHP method. Compared to the -

ANG method at A = 0.5 and 8 with different codebook sizes,
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for Baboon.

the ANGHP method reduces the Ds by 16.8% to 43.1% in
the case of Lena image, and 12.4% to 27.9% in the case
of Baboon image. From those results, only a small num-
ber of distortion calculations are carried out in the ANGHP
method.

6. Conclusions

In this paper, we have proposed two new algorithms of ac-
celerating the codebook design for ECVQ. The first algo-
rithm (ANG) uses a new constraint called angular constraint.
The ANG method employs the projection angles of the vec-
tors to a reference line in the signal space, and achieves
equivalent performance to full search ECVQ. It accelerates
the codebook design process significantly compared with
the full search method and the double annulus method, and
has almost the same efficiency as Cardinal method.

The second algorithm uses a hyperplane decision tech-
nique for separating the training vectors and the codebook
into two sub-groups, and carries on searching within one
sub-group according to the vector feature. By applying this
algorithm to the ANG method, the ANGHP method is de-
veloped. Using Lena and Baboon images with different
codebook sizes at 1 = 0.5, 2, 4 and 8 and compared with
the ANG method, the ANGHP method attains acceleration
range from 7.3% to 42.9% and reduces the total number of
distortion calculations by 8.1% to 43.1%. Furthermore, the
performance of the ANGHP method is quite close to that of
the FS method.
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