
Weak-type (1, 1) estimates for parabolic singular
integrals

言語: eng

出版者: 

公開日: 2017-10-02

キーワード (Ja): 

キーワード (En): 

作成者: 

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/2297/29750URL



Proceedings of the Edinburgh Mathematical Society (2011) 54, 221–247
DOI:10.1017/S0013091509000790

WEAK-TYPE (1, 1) ESTIMATES FOR
PARABOLIC SINGULAR INTEGRALS

SHUICHI SATO

Department of Mathematics, Faculty of Education, Kanazawa University,
Kanazawa 920-1192, Japan (shuichi@kenroku.kanazawa-u.ac.jp)

(Received 12 June 2009)

Abstract We prove weak-type (1, 1) estimates for rough parabolic singular integrals on R
2 under the

L log L condition on their kernels.

Keywords: parabolic singular integrals; weak-type (1, 1) estimates; rough operators

2010 Mathematics subject classification: Primary 42B20

1. Introduction

Let {At}t>0 be a dilation group on R
n defined by At = tP = exp((log t)P ), where P is

an n×n real matrix whose eigenvalues have positive real parts. We assume n � 2. There
is a non-negative function r on R

n satisfying r(Atx) = tr(x) for all t > 0 and x ∈ R
n.

We may assume the following:

(i) the function r is continuous on R
n and infinitely differentiable in R

n \ {0};

(ii) r(x + y) � C0(r(x) + r(y)) for some C0 � 1, r(x) = r(−x);

(iii) if Σ = {x ∈ R
n : r(x) = 1}, then Σ = {θ ∈ R

n : 〈Bθ, θ〉 = 1} for a positive
symmetric matrix B, where 〈· , ·〉 denotes the inner product in R

n;

(iv) we have dx = tγ−1 dσ dt, that is,∫
R�

f(x) dx =
∫ ∞

0

∫
Σ

f(Atθ)tγ−1 dσ(θ) dt

for appropriate functions f , where dσ is a C∞ measure on Σ and γ = trP ;

(v) there are positive constants c1, c2, c3, c4, α1, α2, β1 and β2 such that

c1|x|α1 � r(x) � c2|x|α2 if r(x) � 1,

c3|x|β1 � r(x) � c4|x|β2 if r(x) � 1.

(See [2,9,14] for more details.)
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Let K be a locally integrable function on R
n \ {0} satisfying

K(Atx) = t−γK(x) for all t > 0 and x ∈ R
n \ {0};

and ∫
a<r(x)<b

K(x) dx = 0 for all a, b with a < b.

Define

Tf(x) = p.v.

∫
f(y)K(x − y) dy.

Let
D0 = {x ∈ R

n : 1 � r(x) � 2} and K0(x) = K(x)χD0(x), (1.1)

where χS is the characteristic function of a set S. If K0 ∈ L log L(Rn), T is bounded on
Lp(Rn) for 1 < p < ∞ (see, for example, [11]). Also, the following results are known.

Theorem A. Suppose that At = tE and r(x) = |x|, where E denotes the identity
matrix and |x| denotes the Euclidean norm for x; also suppose that K0 ∈ L log L(Rn).
The operator T is then of weak-type (1, 1).

Theorem B. Suppose that

Atx = (tα1x1, t
α2x2, . . . , t

αnxn),

where x = (x1, . . . , xn) and 0 < α1 � α2 � · · · � αn. Also, suppose that Σ = Sn−1 =
{|x| = 1} and K0 ∈ L log L(Rn). Then T is of weak-type (1, 1).

Theorem A is due to Seeger [12]. In low-dimensional cases, a version of Theorem A
was proved in [4, 6]. (See [3, 5, 7, 10, 13, 15, 16] for relevant results.) Theorem B is a
particular case of a result of Tao [15]. In [15], the weak-type (1, 1) boundedness was
proved for singular integrals on general homogeneous groups. Note that the proof given
in [15] does not use the Fourier transform.

Remark 1.1. In Theorem B, the assumption that Σ = Sn−1 can be relaxed. We note
that the method of [15] can prove a version of Theorem B where Σ is only assumed to
be an ellipsoid in statement (iii) above. We use this fact in § 8.

In this paper we prove the following result.

Theorem 1.2. Suppose that n = 2 and K0 ∈ L log L(Rn). The operator T is then of
weak-type (1, 1).

There exists a non-singular real matrix Q such that Q−1PQ is one of the following
Jordan canonical forms:

P1 =

(
α 0
0 β

)
, P2 =

(
α 0
1 α

)
, P3 =

(
α β

−β α

)
, (1.2)
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where α, β > 0. Since the case where P = P1 is handled by Theorem B and Remark 1.1,
to prove Theorem 1.2 we must consider the cases P = P2 and P = P3. In § 8, we shall
give an argument that derives Theorem 1.2 from results for P having the form of (1.2).

In § 2, we give an outline of a proof of Theorem 1.2. We shall see that Theorem 1.2
follows from Proposition 2.2. A proof of Proposition 2.2 for P2 will be given in §§ 3–6.
We shall give a proof of Proposition 2.2 for P3 in § 7. The framework of our proof of
Theorem 1.2 is similar to that of Theorem B in [15], but we need some new arguments in
§§ 4–8, which do not occur in [15]. In Appendix A, for completeness we shall give proofs
of four results of §§ 2 and 3 by applying the methods of [15]. Although we assume n = 2
in §§ 3–8, several results can extend to higher dimensions. In this paper, C, C1, C2 will
be used to denote non-negative constants which may be different in different occurrences.

2. Outline of proof of Theorem 1.2

We normalize ‖K0‖L log L = 1, where K0 is as in (1.1). We may assume that K is real
valued. Let δtf(x) = t−γf(A−1

t x). Then

K(x) =
1

log 2

∫ ∞

0

δtK0(x) dt

t
.

Let ϕ be a non-negative function in C∞
0 (R) supported in [12 , 2] such that

∞∑
j=−∞

2−jtϕ(2−jt) =
1

log 2
for t �= 0.

We decompose K as K =
∑∞

j=−∞ SjK0, where

Sjf = 2−j

∫ ∞

0
ϕ(2−jt)δtf dt.

We note that
‖Sjf‖1 � C‖f‖1, (2.1)

where C is independent of j.
Let B be a subset of R

n such that

B = {x ∈ R
n : r(x − a) < s}

for some a ∈ R
n and s > 0. Then we call B a ball with centre a and radius s and we write

B = B(a, s). If s = 2k for some k ∈ Z (the set of all integers), then B(a, 2k) is called a
dyadic ball. Also, we write a = xB , k = k(B). Let CB(a, s) = B(a, Cs) for C > 0.

We have to show that

|{x ∈ R
n : |Tf(x)| > λ}| � Cλ−1‖f‖1 for all λ > 0,

when ‖K0‖L log L = 1. We may assume that λ = 1. By Calderón–Zygmund decomposition
of f at height 1, we have

f = g +
∑
B

bB ,
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where the balls B range over a collection of disjoint dyadic balls and

‖g‖1 � C‖f‖1, ‖g‖∞ � C, (2.2)∑
B

|B| � C‖f‖1, (2.3)

supp(bB) ⊂ CB, (2.4)

‖bB‖1 � C|B|, (2.5)∫
bB = 0. (2.6)

We may assume that the functions bB are real valued and smooth. Also, we may assume
that the family of the balls {B} is finite. We have

{x ∈ R
n : |Tf(x)| > 1} ⊂ G1 ∪ G2 ∪ G3,

where

G1 = {x ∈ R
n : |Tg(x)| > 1

3},

G2 =
{

x ∈ R
n :

∑
s�C

∣∣∣∣ ∑
B

(bB ∗ Sk(B)+sK0)(x)
∣∣∣∣ > 1

3

}
,

G3 =
{

x ∈ R
n :

∑
s>C

∣∣∣∣ ∑
B

(bB ∗ Sk(B)+sK0)(x)
∣∣∣∣ > 1

3

}
.

Here C is a sufficient large positive constant. Since T is bounded on L2, by Chebyshev’s
inequality and (2.2) we have

|G1| � C‖g‖2
2 � C‖g‖1 � C‖f‖1.

The set G2 is contained in E =
⋃

B C1B for some C1 > 0, since we have (2.4) and
supp(SjK0) is contained in {2j−1 � r(x) � 2j+2}. So,

|G2| � |E| � C‖f‖1

by (2.3). Therefore, to prove Theorem 1.2 it remains to show that |G3| � C‖f‖1. This
follows from the estimate∣∣∣∣

{
x ∈ R

n :
∑
s>C

∣∣∣∣ ∑
B

ψ2sB(x)(bB ∗ Sk(B)+sK0)(x)
∣∣∣∣ > 1

3

}∣∣∣∣ � C1

∑
B

|B|, (2.7)

where the function ψB is defined as

ψB(x) = ψ0(A2−k(B)(x − xB))

with a non-negative function ψ0 in C∞
0 (Rn) such that supp(ψ0) ⊂ {d−1

1 � r(x) � d1},
ψ0(x) = 1 if 2/d1 � r(x) � d1/2 for a sufficiently large positive number d1 and
‖ψ0‖∞ � 1.
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Let B be a finite family of disjoint dyadic balls B such that∑
B∈B

|B| � 1. (2.8)

As in [15], the following result implies (2.7) (see § A.1).

Proposition 2.1. Let 1 < p < 2 and s > C, where C is as in (2.7). Let B be as
in (2.8). For each B ∈ B, let bB be a smooth real-valued function satisfying (2.4)–(2.6).
There then exist a positive number ε and an exceptional set Es such that

|Es| � C2−εs (2.9)

and ∥∥∥∥ ∑
B∈B

ψ2sB(bB ∗ Sk(B)+sfB)
∥∥∥∥

Lp(Ec
s)

� C2−εs

( ∑
B∈B

|B| ‖fB‖2
2

)1/2

(2.10)

for all real-valued functions fB in L2(Rn), where Ec
s denotes the complement of Es.

Also, as in [15], Proposition 2.1 can be derived from the following.

Proposition 2.2. Let p, s, B and {bB}B∈B be as in Proposition 2.1. There then exist
constants C1 > 1 and ε > 0 such that if∥∥∥∥ ∑

B∈B
χC12sB

∥∥∥∥
∞

� C2γs, (2.11)

then we have ∥∥∥∥ ∑
B∈B

ψ2sB(bB ∗ Sk(B)+sfB)
∥∥∥∥

p

� C2−εs

( ∑
B∈B

|B| ‖fB‖2
2

)1/2

(2.12)

for all real-valued functions fB in L2(Rn).

To prove Propositions 2.1 and 2.2, we use the following version of [15, Lemma 9.2].

Lemma 2.3. Let C1, C2, C3 be positive constants. Let S = B(xS , uS), uS = C12−δs,
0 � δ � 1, and r(xS) < C2, where s is a positive integer. Define

ψB,S(x) = ΨS(A2−k(B)−s(x − xB)), (2.13)

where ΨS(x) = Ψ(Au−1
S

(x − xS)) with a fixed non-negative function Ψ in C∞
0 such that

‖Ψ‖∞ � 1, supp(Ψ) ⊂ {r(x) � 1} and Ψ(x) = 1 if r(x) � 1
2 . Then we have∣∣∣∣

{
x ∈ R

n :
∑
B∈B

ψB,S(x) > C3s
32γs|S|

}∣∣∣∣ � C2−cs2
,

where c is a positive constant and B is as in Proposition 2.1.

See § A.2 for a proof of Lemma 2.3 and § A.3 for a proof of Proposition 2.1 using
Proposition 2.2 and Lemma 2.3.

Remark 2.4. From Proposition 2.1 and arguments in [5], we can prove some weighted
weak-type (1, 1) estimates for the singular integral operator T under certain conditions.
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3. Proof of Proposition 2.2: preliminaries

To prove Theorem 1.2, it remains to show Proposition 2.2. To obtain (2.12), by duality
it suffices to show that( ∑

B∈B
|B|−1‖S∗

k(B)+s(b̃B ∗ (ψ2sBF ))‖2
2

)1/2

� C2−εs‖F‖p′ (3.1)

for real-valued functions F , where p′ = p/(p − 1), b̃B(x) = bB(−x) and S∗
j is the adjoint

of Sj :

S∗
j G(x) = 2−j

∫ ∞

0
ϕ(2−jt)G(Atx) dt.

To prove (3.1), by the TT ∗ method, it suffices to show that∥∥∥∥ ∑
B∈B

|B|−1ψ2sB(bB ∗ Sk(B)+sS
∗
k(B)+s(b̃B ∗ (ψ2sBF )))

∥∥∥∥
p

� C2−2εs‖F‖p′ . (3.2)

Note that
Sj+sS

∗
j+s = 2−γ(j+s)S0S

∗
0 .

Therefore, we can rewrite (3.2) as

‖TF‖p � C2−2εs‖F‖p′ , T = 2−γs
∑
B∈B

ψ2sBTBψ2sB , (3.3)

where TB is the self-adjoint operator defined as

TBF = |B|−1bB ∗ S0S
∗
0 (|B|−1b̃B ∗ F ).

Define the smooth function aB supported on the ball B(0, C) by

aB(v) = bB(dB(v)),

where dB is the mapping defined as

dB(v) = xB + A2k(B)v. (3.4)

Then by (2.4)–(2.6) we see that

supp(aB) ⊂ B(0, C), ‖aB‖1 � C,

∫
aB(v) dv = 0. (3.5)

Also, note that

S0S
∗
0F (x) =

∫ ∞

0
ϕ̃(t)F (Atx) dt,

where ϕ̃ is a non-negative function in C∞
0 with support in [14 , 4]. Thus, we can rewrite

the operator TB , up to a constant factor, as

TBF (x) =
∫∫∫

aB(v)ϕ̃(t)aB(w)F (dB(w) + At(x − dB(v))) dw dv dt. (3.6)

We need the following result [15].
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Lemma 3.1. Let f be a continuous function on R
2 such that

supp(f) ⊂ B(0, C1),
∫

f(x) dx = 0, ‖f‖1 � C2.

Then there exist functions f1, f2 such that

f(x) =
2∑

i=1

∂xi
fi(x),

supp(fi) ⊂ B(0, C ′
1), ‖fi‖1 � C ′

2 for i = 1, 2,

for some constants C ′
1 and C ′

2 with C ′
1 � C1.

Let
ψ+

B(x) = ψ+(A2−k(B)(x − xB)),

where ψ+ is a non-negative function in C∞
0 (Rn) such that supp(ψ+) ⊂ {d−1

2 � r(x) � d2}
and ψ+(x) = 1 if 2/d2 � r(x) � d2/2, where d2 is a constant satisfying d2 > 2d1. We
note that ψ+

B is positive on the support of ψB . Let C1 � d2, where C1 is as in (2.11). By
Lemma 3.1 we can find functions a1

B , a2
B supported on B(0, C) such that

aB =
2∑

i=1

∂xia
i
B(x), ‖ai

B‖1 � C for i = 1, 2. (3.7)

Let

a+
B = |aB | +

2∑
i=1

|ai
B |.

Then
a+

B � 0, supp(a+
B) ⊂ B(0, C), ‖a+

B‖1 � C. (3.8)

Let ϕ+ be a non-negative function in C∞
0 such that supp(ϕ+) ⊂ [ 18 , 8], ϕ+ > 0 on supp(ϕ̃)

and ϕ+(t) = tγ−2ϕ+(t−1). Define the self-adjoint operator T+
B by

T+
B F (x) =

∫∫∫
a+

B(v)ϕ+(t)a+
B(w)F (dB(w) + At(x − dB(v))) dw dv dt.

Set
T+ = 2−γs

∑
B∈B

ψ+
2sBT+

B ψ+
2sB . (3.9)

Then
|TBF (x)| � CT+

B F (x) for all B, |TF (x)| � CT+F (x),

if F is non-negative.
As in [15], we can show that

‖T+F‖p � C‖F‖q for all 1 � p � q � ∞ (3.10)
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under the condition C1 � d2, where C1 is as in (2.11) and d2 is as in the definition of ψ+
B

(see § A.4).
The estimate (3.3) follows from

‖T 2F‖p � C2−εs‖F‖p′ for some ε > 0. (3.11)

To see this, by the TT ∗ method, the self-adjointness of T and (3.11) we first note that

‖TF‖p � C2−εs/2‖F‖2. (3.12)

Next, by (3.10) we have ‖TF‖p � C‖F‖q, 1 � p � q � ∞. Interpolating between this
and (3.12) under the condition 1 < p < 2, we have (3.3) for some ε > 0.

It remains to prove (3.11). Since T 2 : L2 → L2 by (3.10), it suffices to prove (3.11) for
p = 1 if we take into account interpolation. Expanding T 2, we thus have to prove

∥∥∥∥2−2γs
∑

B1,B2∈B

( 2∏
i=1

ψ2sBi
TBi

ψ2sBi

)
F

∥∥∥∥
1

� C2−εs‖F‖∞.

By duality and self-adjointness this follows from

2−2γs
∑

B∈B0

∣∣∣∣
〈( 2∏

i=1

ψ2sBi
TBiψ2sBi

)
FB , GB

〉∣∣∣∣ � C2−εs (3.13)

for all real-valued smooth functions FB , GB satisfying ‖FB‖∞ � 1, ‖GB‖∞ � 1, where

B0 = {B = (B1, B2) ∈ B2 : k(B1) � k(B2)}. (3.14)

The inner product in (3.13) can be written, up to a constant factor, as∫∫∫∫
GB(x0)FB(x2)HB(x0, x1, x2, t, v, w) dx0 dw dt dv; (3.15)

thus,

HB(x0, x1, x2, t, v, w) =
2∏

i=1

(ψ2sBi(xi−1)aBi(vi)ϕ̃(ti)aBi(wi)ψ2sBi(xi)),

where x0 ∈ R
2, v = (v1, v2) ∈ R

2 × R
2, w = (w1, w2) ∈ R

2 × R
2, t = (t1, t2) ∈

(0,∞) × (0,∞) and we may assume that v, w ∈ B(0, C)2, t ∈ [C−1, C]2; dw = dw1 dw2,
dv = dv1 dv2, dt = dt1 dt2; x1, x2 are defined as follows:

x1 = dB1(w1) + At1(x0 − dB1(v1)), x2 = dB2(w2) + At2(x1 − dB2(v2)). (3.16)

We note that each xi, i = 1, 2, is a function of x0 and B�, v�, w�, t� for all � with 1 � � � i.
We also write y = (y1, y2) = v1 ∈ R

2.
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4. Proof of Proposition 2.2 for P2: basic estimates

Suppose that P = P2, where P2 is as in (1.2). Then

At = tα

(
1 0

log t 1

)
.

Let

MB = 2α(k(B1)+s)2α(k(B2)+s)(1 + |k(B1) − k(B2)|) (4.1)

for B = (B1, B2) ∈ B2. Let Dt(x2) be the matrix such that the first column vector is
∂t1x2 and the second column vector is ∂t2x2, where x2 is as in (3.16). The following two
estimates imply (3.13):

∑
B∈B0

∣∣∣∣
∫∫∫∫

GB(x0)FB(x2)HBζ1(2δsM−1
B det(Dt(x2))) dx0 dw dt dv

∣∣∣∣ � C2−εs22γs,

(4.2)∑
B∈B0

∣∣∣∣
∫∫∫∫

GB(x0)FB(x2)HBζ2(2δsM−1
B det(Dt(x2))) dx0 dw dt dv

∣∣∣∣ � C2−εs22γs,

(4.3)

where HB is as in (3.15); ζ1 is a non-negative function in C∞
0 (R) such that supp(ζ1) ⊂

[−1, 1], ζ1(t) = 1 for t ∈ [− 1
2 , 1

2 ]; ζ2 = 1 − ζ1; δ is a small positive number to be specified
in the following.

Let Dyi,tj (x2) be the matrix such that the first column vector is ∂yix2 and the second
column vector is ∂tj

x2 for i, j = 1, 2. To prove (4.2) and (4.3) we use the following lemma
and results in its proof.

Lemma 4.1. Let MB be as in (4.1). Suppose that B ∈ B0, where B0 is as in (3.14), and
that t� ∈ [C−1, C], x�−1 ∈ supp(ψ+

2sB�
), v� ∈ B(0, C), � = 1, 2, where x1 is as in (3.16).

Then we have the following:

|det(Dt(x2))| + s−12αs|∂yi det(Dt(x2))| + |∂tj det(Dt(x2))| � CMB , (4.4)

s−12αs|det(Dyi,tj (x2))| + s−12αs|∂tk
det(Dyi,tj (x2))| � CMB (4.5)

for i, j, k = 1, 2, and

|ψ2sB�
(x�′)| + s−12αs|∂yiψ2sB�

(x�′)| + |∂tj ψ2sB�
(x�′)| � Cψ+

2sB�
(x�′) (4.6)

for i, j = 1, 2, 0 � �′ � �, � = 1, 2.
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Proof. We note the following formulae, which hold for general At = tP :

∂t�
xk = t−1

� PAt�···tk
(x�−1 − dB�

(v�)) if � � k, (4.7)

∂t�
xk = 0 if � > k, (4.8)

∂2
t1x2 = −t−2

1 PAt1t2(x0 − dB1(v1)) + t−2
1 P 2At1t2(x0 − dB1(v1)), (4.9)

∂t1∂t2x2 = ∂t2∂t1x2 = t−1
1 t−1

2 P 2At1t2(x0 − dB1(v1)), (4.10)

∂2
t2x2 = −t−2

2 PAt2(x1 − dB2(v2)) + t−2
2 P 2At2(x1 − dB2(v2)), (4.11)

∂yi
x� = −At1···t�2k(B1)ei, i, � = 1, 2, (4.12)

∂t1∂yix1 = −t−1
1 PAt12k(B1)ei, ∂t2∂yi

x1 = 0, i = 1, 2, (4.13)

∂tj
∂yi

x2 = −t−1
j PAt1t22k(B1)ei, i, j = 1, 2, (4.14)

where {ei} is the standard basis. Let

L =

(
0 1

−1 0

)
.

Then
det(Dt(x2)) = 〈∂t1x2, L∂t2x2〉 = 〈X, A∗

2k(B1)+sLA2k(B2)+sY 〉, (4.15)

where X = A2−k(B1)−s∂t1x2, Y = A2−k(B2)−s∂t2x2. We note that

A∗
2hLA2m = 2hα2mα

(
(m − h) log 2 1

−1 0

)
. (4.16)

By the assumptions and (4.7), we have |X| � C and |Y | � C. Thus, by (4.15) and (4.16),
we have

|det(Dt(x2))| � CMB .

Similarly by (4.7), (4.15), (4.16), (4.9)–(4.11) we have

|∂tj det(Dt(x2))| � CMB ,

since k(B1) � k(B2).
Next, by (4.14) we have

〈∂t1x2, L∂t2∂yix2〉 = −t−1
2 〈X, A∗

2k(B1)+sLA2k(B1)At1t2Pei〉,

where X is as above. Thus, by (4.7) and (4.16) we have

|〈∂t1x2, L∂t2∂yi
x2〉| � Cs2αk(B1)2α(k(B1)+s) � Cs2−αsMB ,

since k(B1) � k(B2). Also, by (4.14) we have

〈∂t1∂yi
x2, L∂t2x2〉 = −t−1

1 〈PAt1t2ei, A
∗
2k(B1)LA2k(B2)+sY 〉,
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where Y is as above. Therefore, arguing as above, we have

|〈∂t1∂yi
x2, L∂t2x2〉| � C(s + |k(B2) − k(B1)|)2αk(B1)2α(k(B2)+s)

� Cs2−αsMB .

From these estimate it follows that

|∂yi det(Dt(x2))| � Cs2−αsMB .

Collecting results, we obtain (4.4).
Similarly, by (4.12) and (4.7) we see that

|det(Dyi,tj (x2))| � C(s + |k(B1) − k(Bj)|)2αk(B1)2α(k(Bj)+s)

� Cs2−αsMB . (4.17)

By (4.14) and (4.7) we have

|〈∂tk
∂yix2, L∂tj x2〉| � C(s + |k(Bj) − k(B1)|)2α(k(Bj)+s)2αk(B1)

� Cs2−αsMB . (4.18)

If m = min(k, j), from (4.9)–(4.12) it follows that

|〈∂yix2, L∂tk
∂tj x2〉| � C(s + |k(Bm) − k(B1)|)2α(k(Bm)+s)2αk(B1)

� Cs2−αsMB . (4.19)

The estimates (4.18) and (4.19) imply

|∂tk
det(Dyi,tj (x2))| � Cs2−αsMB . (4.20)

Thus, (4.5) follows from (4.17) and (4.20).
To prove (4.6), we recall that ψ2sB�

(x�′) = ψ0(A2−k(B�)−s(x�′ − xB�
)). By (4.12) we

have
∂yiA2−k(B�)−s(x�′ − xB�

) = −A2−k(B�)−sAt1···t�′2k(B1)ei, �′ = 1, 2.

Therefore,
|∂yiA2−k(B�)−s(x�′ − xB�

)| � Cs2−αs. (4.21)

By (4.7) and (4.8) we see that

∂tj A2−k(B�)−s(x�′ − xB�
) =

{
t−1
j A2−k(B�)−sPAtj ···t�′ (xj−1 − dBj (vj)) if 1 � j � �′,

0 if j > �′.

Also, we note that

|A2−k(Bj)−s(xj−1 − dBj (vj))| � C, j = 1, 2,

by the assumptions. Therefore, we have

|∂tj
A2−k(B�)−s(x�′ − xB�

)| � C, (4.22)

since k(Bj) � k(B�) if 1 � j � �′ � �. From (4.21), (4.22) and the chain rule, we
have (4.6). �
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5. Proof of Proposition 2.2 for P2: proof of (4.2)

In this section we prove (4.2). It suffices to show that

∑
B∈B0

∫∫∫ 2∏
i=1

(ψ+
2sBi

(xi−1)a+
Bi

(vi)a+
Bi

(wi))ζ1(2δsM−1
B det(Dt(x2))) dx0 dw dv

� C2−εs22γs (5.1)

uniformly in ti ∈ [C−1, C] for i = 1, 2. We fix t.
Let

ψ̃+
B(x) = ψ̃+(A2−k(B)(x − xB)),

where ψ̃+ is a non-negative function in C∞
0 (Rn) such that

supp(ψ̃+) ⊂ {d−1
3 � r(x) � d3},

ψ̃+(x) = 1 if 2/d3 � r(x) � d3/2. We assume that d3 > 2d2, where d2 is as in the
definition of ψ+

B . Let S = B(xS , 2−δ0s) ⊂ B(0, C), 0 < δ0 < 1, where the positive integer
s is as in (5.1). Let ψB,S be as in Lemma 2.3. Define

US(x) =
∑

B∈B, x∈supp ψ̃+
2sB

ψB,S(x). (5.2)

For x ∈ R
2 we consider the condition

US(x) � s32γs|S| for all balls S = B(xS , 2−δ0s) ⊂ B(0, C), (5.3)

where the positive number δ0 and the ball B(0, C) will be specified below. Then we have
the following version of [15, Lemma 12.2].

Lemma 5.1. Let E = {x ∈ R
2 : x does not satisfy (5.3)}. Then

|E| � C2−ε0s2

for some ε0 > 0.

To prove Lemma 5.1 we use the following covering lemma [1].

Lemma 5.2. Let G = {B(aλ, uλ) : λ ∈ Λ} be a family of balls such that supλ∈Λ uλ <

∞. There is then a subfamily G′ = {B(cj , rj) : j = 1, 2, . . . } of G such that G′ is at
most countable, balls in G′ are disjoint and for any B(aλ, uλ) ∈ G we can find a ball
B(cj , rj) ∈ G′ satisfying B(aλ, uλ) ⊂ B(cj , drj) for some positive constant d independent
of G.

Proof of Lemma 5.1. By applying Lemma 5.2 to the family of balls

G = {S = B(xS , 2−δ0s) : S ⊂ B(0, C)},
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we have a subfamily of disjoint balls {Si}N
i=1 in B(0, C), N � C2sδ0γ , such that if

S̃i = C1Si with a constant C1 � 2d, for any S in G there exists i ∈ {1, 2, . . . , N} for
which it holds that

ψB,S(x) � ψB,S̃i
(x) for all B, (5.4)

where ψB,S̃i
is defined as in (2.13) with S̃i in place of S. From (5.4) it follows that

US(x) � US̃i
(x) for some i ∈ {1, 2, . . . , N}, (5.5)

where US̃i
is defined as in (5.2) with S̃i in place of S. We see that (5.5) implies

E ⊂
N⋃

i=1

{x : US̃i
(x) � Cs32γs|S̃i|}.

Therefore, the conclusion follows from an application of Lemma 2.3. �

Let the set E be as in Lemma 5.1. Writing

1 = (χE(x0) + χEc(x0))(χE(x1) + χEc(x1))

and expanding the right-hand side, by (3.8) we can see that to prove (5.1) it suffices to
show the following two estimates:

∑
B

∫∫∫ 2∏
i=1

ψ+
2sBi

(xi−1)χE(x�)a+
B1

(v1)a+
B1

(w1) dx0 dv1 dw1 � C2−εs22γs (5.6)

for � = 0, 1, where we note that x1 is independent of v2 and w2, and

∑
B

∫∫∫
|det(Dt(x2))|�2−δsMB

2∏
i=1

(ψ+
2sBi

(xi−1)χEc(xi−1)a+
Bi

(vi)a+
Bi

(wi)) dx0 dv dw

� C2−εs22γs (5.7)

for some ε > 0, where the balls B range over B0.

Proof of (5.6). First, let � = 0. Since C1 � d2, where C1 is as in Proposition 2.2 and
d2 is as in the definition of ψ+

B , by (2.11) and (3.8), the left-hand side of (5.6) is bounded
by I, where

I = C2γs
∑
B1

∫
ψ+

2sB1
(x0)χE(x0) dx0.

By (2.11) and Lemma 5.1, we have

I � C22γs

∫
χE(x0) dx0 � C22γs|E| � C22γs2−ε0s2

.

Next, let � = 1. As above, by (2.11) the left-hand side of (5.6) is bounded by II, where

II = C2γs
∑
B1

∫∫∫
ψ+

2sB1
(x0)χE(x1)a+

B1
(v1)a+

B1
(w1) dx0 dv1 dw1.
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By a change of variables, we see that∫
ψ+

2sB1
(x0)χE(x1) dx0 = t−γ

1

∫
ψ+

2sB1
(x̃0)χE(x0) dx0,

where
x̃0 = At−1

1
(x0 − dB1(w1)) + dB1(v1).

We observe that ψ+
2sB1

(x̃0) � Cψ̃+
2sB1

(x0) if d3 and s are sufficiently large, where d3 is
as in the definition of ψ̃+

B . (We may assume that s is sufficiently large.) We assume that
C1 > d3, where C1 is as in Proposition 2.2. By (2.11), (3.8) and Lemma 5.1 we then have

II � C2γs
∑
B1

∫
ψ̃+

2sB1
(x0)χE(x0) dx0

� C22γs

∫
χE(x0) dx0

� C22γs2−ε0s2
.

Combining the results for � = 0 and � = 1, we have (5.6). �

Proof of (5.7). We consider the variables x0, v, w in the range where |det(Dt(x2))| �
2−δsMB and the integrand in (5.7) does not vanish for each B ∈ B0. We use results in
the proof of Lemma 4.1. By (4.15) we have

det(Dt(x2)) = 〈A∗
2k(B2)+sL

∗A2k(B1)+sX, Y 〉.

Note that L∗ = −L. Therefore, the condition |det(Dt(x2))| � 2−δsMB and (4.16) imply

|〈W, Y 〉| � C2−δs(1 + |k(B2) − k(B1)|), (5.8)

where W = (c(k(B2) − k(B1))X1 − X2, X1), X = (X1, X2), c = log 2.
First we assume that |X1| � C12−ε1s, |k(B2) − k(B1)| � C22ε2s, ε2 > ε1 > 0. Let

Z = X1 − X2/(c(k(B2) − k(B1))). Then |Z| ∼ |X1|, if C2 is sufficiently large. Therefore,
by (5.8) we see that

|〈(1, X1(c(k(B2) − k(B1))Z)−1), Y 〉| � C|X1|−12−δs � C2−δs2ε1s. (5.9)

We note that
|X1(c(k(B2) − k(B1))Z)−1| � C2−ε2s.

Thus, (5.9) implies
|〈e1, Y 〉| � C2−δs2ε1s + C2−ε2s.

Therefore, recalling the definition of Y , we have

|〈A∗
t2P

∗e1, A2−k(B2)−s(x1 − dB2(v2))〉| � C2−δs2ε1s + C2−ε2s
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and hence

|〈A∗
t2P

∗e1, A2−k(B2)−s(x1 − xB2)〉| � C2−δs2ε1s + C2−ε2s + C|A2−s(v2)|
� C2−δ1s (5.10)

for some δ1 > 0.
Next, we assume that |X1| � C12−ε1s, |k(B2) − k(B1)| < C22ε2s. By (5.8) we then

have
|〈W, Y 〉| � C2−δs2ε2s.

We write X = S + R, where

S = t−1
1 PAt1t22−k(B1)−s(x0 − xB1), R = −t−1

1 PAt1t22−s(v1)

and decompose W as W = U + Q, where

U = (c(k(B2) − k(B1))S1 − S2, S1), Q = (c(k(B2) − k(B1))R1 − R2, R1).

Here S = (S1, S2), R = (R1, R2). We note that |R| � C2−α′s for any α′ ∈ (0, α). There-
fore,

|〈U, Y 〉| � |〈W, Y 〉| + |〈Q, Y 〉| � C2−δs2ε2s + C2−α′s2ε2s.

Also, if |X1| � C12−ε1s, ε1 ∈ (0, α) and C1 is sufficiently large, we see that |S1| � C2−ε1s

and hence |U | � C2−ε1s. Thus, if U ′ = U/|U |, we have

|〈U ′, Y 〉| � C2−δs2ε2s2ε1s + C2−α′s2ε2s2ε1s.

As above, from this expression it follows that

|〈A∗
t2P

∗U ′, A2−k(B2)−s(x1 − xB2)〉| � C2−δ2s (5.11)

for some δ2 > 0 with δ2 > ε2.
Let

V = {x ∈ B(0, C ′) : |〈A∗
t2P

∗e1, x〉| � C2−δ1s},

Vk = {x ∈ B(0, C ′) : |〈A∗
t2P

∗U ′
k, x〉| � C2−δ2s}

for sufficiently large constants C, C ′ > 0, where Uk = (c(k − k(B1))S1 − S2, S1), U ′
k =

Uk/|Uk|, k ∈ Z.
By (5.10) and (5.11) we see that if |X1| � C12−ε1s, then

A2−k(B2)−s(x1 − xB2) ∈ S(B1, x0), (5.12)

where

S(B1, x0) = V ∪
( ⋃

|k−k(B1)|<C22ε2s

Vk

)
.
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We may assume that δ1 and δ2 are sufficiently small. By Lemma 5.2 we have

V ⊂
⋃
j

2−1Sj ,
∑

j

|Sj | � C2−δ1s,

Vk ⊂
⋃
j

2−1Sk
j ,

∑
j

|Sk
j | � C2−δ2s

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.13)

for some balls Sj , Sk
j in B(0, 2C ′) with radius 2−δ0s for some δ0 ∈ (0, 1). In (5.3) we take

this δ0 and C = 2C ′. By (5.12) and (5.13) we see that

ψ+
2sB2

(x1) � C
∑

j

ψB2,Sj (x1) + C
∑

|k−k(B1)|<C22ε2s

∑
j

ψB2,Sk
j
(x1).

Therefore, summing up in B2 under the condition A2−k(B2)−s(x1 − xB2) ∈ S(B1, x0) and
x1 ∈ Ec, with the other variables (B1, x0 ∈ R

2, v1, w1 ∈ B(0, C)) fixed, by (5.3)
and (5.13) we have

∑
B2

ψ+
2sB2

(x1) � C
∑

j

USj
(x1) + C

∑
|k−k(B1)|<C22ε2s

∑
j

USk
j
(x1)

� C
∑

j

s32γs|Sj | + C
∑

|k−k(B1)|<C22ε2s

∑
j

s32γs|Sk
j |

� Cs32γs2−δ1s + C2ε2ss32γs2−δ2s

� C2−ε3s2γs (5.14)

for some ε3 > 0.
Let

RB = {(x0, v, w) : |det(Dt(x2))| � 2−δsMB , |X1| � C12−ε1s; v, w ∈ B(0, C)},

R′
B = {(x0, v, w) : |det(Dt(x2))| � 2−δsMB , |X1| < C12−ε1s; v, w ∈ B(0, C)}.

To prove (5.7), we split the integral as follows:

∫∫∫
|det(Dt(x2))|�2−δsMB

2∏
i=1

(ψ+
2sBi

(xi−1)χEc(xi−1)a+
Bi

(vi)a+
Bi

(wi)) dx0 dv dw

= IB + IIB ,

where

IB =
∫∫∫

RB

2∏
i=1

(ψ+
2sBi

(xi−1)χEc(xi−1)a+
Bi

(vi)a+
Bi

(wi)) dx0 dv dw,

IIB =
∫∫∫

R′
B

2∏
i=1

(ψ+
2sBi

(xi−1)χEc(xi−1)a+
Bi

(vi)a+
Bi

(wi)) dx0 dv dw.
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From (3.8) and (5.12) it follows that

IB � C

∫∫∫
A

2−k(B2)−s (x1−xB2 )∈S(B1,x0)

2∏
i=1

(ψ+
2sBi

(xi−1)χEc(xi−1))

× a+
B1

(v1)a+
B1

(w1) dx0 dv1 dw1.

Therefore, by (5.14), (3.8) and (2.8) we have

∑
B∈B0

IB � C2−ε3s2γs
∑

B1∈B

∫
ψ+

2sB1
(x0) dx0

� C2−ε3s2γs
∑

B1∈B
2γs|B1|

� C2−ε3s22γs. (5.15)

To estimate IIB , by (3.8) we first see that

IIB � C

∫∫∫
|X1|<C12−ε1s

ψ+
2sB1

(x0)ψ+
2sB2

(x1)χEc(x1)a+
B1

(v1)a+
B1

(w1) dx0 dv1 dw1.

(5.16)
A change of variables implies that

∫
|X1|<C12−ε1s

ψ+
2sB1

(x0)ψ+
2sB2

(x1)χEc(x1) dx0

= t−γ
1

∫
|X̃1|<C12−ε1s

ψ+
2sB1

(x̃0)ψ+
2sB2

(x0)χEc(x0) dx0,

where x̃0 is as in the proof of (5.6) and

X̃1 = 〈e1, t
−1
1 A2−k(B1)−sPAt1t2(x̃0 − dB1(v1))〉.

We have ψ+
2sB1

(x̃0) � Cψ̃+
2sB1

(x0) if d3 and s are sufficiently large as in the proof of (5.6).
Also, the condition |X̃1| < C12−ε1s implies

|〈a, A2−k(B1)−s(x0 − xB1)〉| � C2−ε1s (5.17)

for ε1 ∈ (0, α), where a = A∗
t2P

∗e1. Therefore, by (5.16) and (3.8) we have

IIB � C

∫
|〈a,A

2−k(B1)−s (x0−xB1 )〉|�C2−ε1s

ψ̃+
2sB1

(x0)χEc(x0)ψ+
2sB2

(x0) dx0. (5.18)

Arguing as in the proof of (5.14), if x0 ∈ Ec, we see that
∑

B1 : |〈a,A
2−k(B1)−s (x0−xB1 )〉|�C2−ε1s

ψ̃+
2sB1

(x0) � C2−ε4s2γs (5.19)
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for some ε4 > 0. Thus, from (5.18), (5.19) and (2.8) it follows that
∑

B∈B0

IIB � C2−ε4s2γs
∑

B2∈B

∫
ψ+

2sB2
(x0) dx0

� C2−ε4s2γs
∑

B2∈B
2γs|B2|

� C2−ε4s22γs. (5.20)

By (5.15) and (5.20) we have (5.7). �

6. Proof of Proposition 2.2 for P2: proof of (4.3)

In this section we prove (4.3). By (3.10) it suffices to show that

∑
B∈B0

∣∣∣∣
∫∫∫∫

GB(x0)FB(x2)HBζ2(2δsM−1
B det(Dt(x2))) dx0 dw dt dv

∣∣∣∣
� C2−εs〈(2γsT+)21, 1〉.

Recalling the definition of T+ in (3.9) and expanding (T+)2, we can see that this follows
from∣∣∣∣

∫∫∫∫
GB(x0)FB(x2)HBζ2(2δsM−1

B det(Dt(x2))) dx0 dw dt dv

∣∣∣∣
� C2−εs

∫∫∫∫
H+

B (x0, x1, x2, t, v, w) dx0 dw dt dv (6.1)

for all B ∈ B0, where

H+
B (x0, x1, x2, t, v, w) =

2∏
i=1

(ψ+
2sBi

(xi−1)a+
Bi

(vi)ϕ+(ti)a+
Bi

(wi)ψ+
2sBi

(xi)).

If we fix all the variables but y, t, then (6.1) follows from the estimate∣∣∣∣
∫∫

FB(x2)aB1(y)L(y, t) dy dt

∣∣∣∣ � C2−εs

∫∫
a+

B1
(y)L+(y, t) dy dt, (6.2)

which is uniform in the fixed variables, where

L(y, t) =
2∏

i=1

(ψ2sBi(xi−1)ψ2sBi(xi)ϕ̃(ti))ζ2(2δsM−1
B det(Dt(x2))), (6.3)

L+(y, t) =
2∏

i=1

(ψ+
2sBi

(xi−1)ψ+
2sBi

(xi)ϕ+(ti)). (6.4)

To prove (6.2), by (3.7) it suffices to show∣∣∣∣
∫∫

FB(x2)L(y, t)∂yia
i
B1

(y) dy dt

∣∣∣∣ � C2−εs

∫∫
a+

B1
(y)L+(y, t) dy dt (6.5)
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for i = 1, 2. Fix i. Applying integration by parts, we can see that the left-hand side
of (6.5) is majorized by∣∣∣∣

∫∫
FB(x2)ai

B1
(y)∂yi

L(y, t) dy dt

∣∣∣∣ +
∣∣∣∣
∫∫

ai
B1

(y)L(y, t)∂yi
FB(x2) dy dt

∣∣∣∣. (6.6)

To estimate this, we need the following.

Lemma 6.1. Let L and L+ be as in (6.3) and (6.4), respectively. Then we have

|L(y, t)| + s−12αs|∂yj L(y, t)| + |∂tk
L(y, t)| � C2δsL+(y, t)

for all y, t and j, k = 1, 2.

Proof. We note that

s−12αs|∂yj ζ2(2δsM−1
B det(Dt(x2)))| + |∂tk

ζ2(2δsM−1
B det(Dt(x2)))| � C2δs (6.7)

on the support of L. This follows from (4.4) and the chain rule. The estimates (4.6)
and (6.7) imply the conclusion of Lemma 6.1. �

By Lemma 6.1, we can estimate the first term of (6.6) as follows:∣∣∣∣
∫∫

FB(x2)ai
B1

(y)∂yi
L(y, t) dy dt

∣∣∣∣ � Cs2(δ−α)s
∫∫

a+
B1

(y)L+(y, t) dy dt. (6.8)

An estimate needed for the second term of (6.6) follows if we prove that∣∣∣∣
∫

L(y, t)∂yi
FB(x2) dt

∣∣∣∣ � C2−εs

∫
L+(y, t) dt (6.9)

uniformly in y. To prove (6.9), we use the following [15].

Lemma 6.2. Suppose that det Dt(x2) �= 0. We then have the equality

∂yi
FB(x2) = 〈∇t(FB(x2)(1, 1)), Dt(x2)−1(∂yi

x2)〉,

where ∇t(g1, g2) = (∂t1g1, ∂t2g2) and FB(x2)(1, 1) = (FB(x2), FB(x2)).

Fix y. By Lemma 6.2, we can write the left-hand side of (6.9) as∣∣∣∣
∫

L(y, t)〈∇t(FB(x2)(1, 1)), Dt(x2)−1(∂yix2)〉 dt

∣∣∣∣.
Integration by parts implies that this is equal to∣∣∣∣

∫
FB(x2)〈(1, 1),∇t(L(y, t)Dt(x2)−1(∂yix2))〉 dt

∣∣∣∣.
Therefore, by Lemma 6.1, to prove (6.9) it suffices to show that

|Dt(x2)−1(∂yi
x2)| + |∇t(Dt(x2)−1(∂yi

x2))| � C2−εs2−δs (6.10)
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on the support of L(y, t). By Cramer’s rule, (6.10) is a consequence of the estimates∣∣∣∣det(Dyi,tj
(x2))

det Dt(x2)

∣∣∣∣ +
∣∣∣∣∂tk

det(Dyi,tj (x2))
det Dt(x2)

∣∣∣∣ � Cs2−αs22δs, j, k = 1, 2,

which follows from (4.4), (4.5) and the estimate |det Dt(x2)| � C2−δsMB on the support
of L. This proves (6.10) with ε = α′ − 3δ for any α′ ∈ (0, α). Thus, we have (6.9) with
ε = α′ − 3δ. Combining this with (6.8), we have (6.5) with ε = α′ − 3δ, choosing δ to be
sufficiently small. This completes the proof of (4.3).

7. Proof of Proposition 2.2 for P3

In this section we consider the case P = P3, where P3 is as in (1.2). Then At = tαUt,
where

Ut =

(
cos(β log t) sin(β log t)

− sin(β log t) cos(β log t)

)
.

Let
MB = 2α(k(B1)+s)2α(k(B2)+s) (7.1)

for B = (B1, B2) ∈ B2. Let Dt(x2), Dyi,tj
(x2), for i, j = 1, 2, be as in § 4 with P = P3.

The following lemma can then be proved in the same way as Lemma 4.1 by noting
Ut ∈ SO(2).

Lemma 7.1. Let MB be as in (7.1) and let B ∈ B0, where B0 is as in (3.14). Let
t� ∈ [C−1, C], v� ∈ B(0, C), x�−1 ∈ supp(ψ+

2sB�
), � = 1, 2. Then the following estimates

hold:

|det(Dt(x2))| + 2αs|∂yi det(Dt(x2))| + |∂tj det(Dt(x2))| � CMB , (7.2)

2αs|det(Dyi,tj (x2))| + 2αs|∂tk
det(Dyi,tj (x2))| � CMB (7.3)

for i, j, k = 1, 2, and

|ψ2sB�
(x�′)| + 2αs|∂yi

ψ2sB�
(x�′)| + |∂tj

ψ2sB�
(x�′)| � Cψ+

2sB�
(x�′) (7.4)

for i, j = 1, 2, 0 � �′ � �, � = 1, 2.

To prove Theorem 1.2 for P3, it suffices to prove Proposition 2.2 for P3. So, we have to
prove estimates analogous to (4.2) and (4.3) in the case of P3 with MB in (7.1). To prove
an analogue of (4.2), we show analogues of (5.6) and (5.7). An analogue of (5.6) can be
shown in the same way as in the case of P2. To prove an analogue of (5.7), by (4.15) for
P3 we note that

det(Dt(x2)) = 〈A∗
2k(B2)+sL

∗A2k(B1)+sX, Y 〉

= 2(k(B1)+s)α2(k(B2)+s)α〈U2−k(B2)−sL∗U2k(B1)+sX, Y 〉,
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where X and Y are as in (4.15) with P = P3. Suppose that β = 2πk/ log 2 for some
k ∈ Z. Then U2j is the identity matrix for all j ∈ Z. So we have

det(Dt(x2)) = 2(k(B1)+s)α2(k(B2)+s)α〈L∗X, Y 〉.

Therefore, if |det(Dt(x2))| � 2−δsMB and the integrand in (5.7) does not vanish, noting
that L∗ = −L, we see that |〈LX, Y 〉| � C2−δs. If

S = t−1
1 PAt1t22−k(B1)−s(x0 − xB1)

as in the proof of (5.7), this implies |〈LS, Y 〉| � C2−δs for δ ∈ (0, α). Also, from the
inequality |X1| � C12−ε1s, ε1 ∈ (0, α), it follows that |S1| � C2−ε1s if C1 is sufficiently
large. It follows that

|〈LS/|LS|, Y 〉| � C2−δs2ε1s.

This estimate along with the definition of Y implies

|〈A∗
t2P

∗(LS/|LS|), A2−k(B2)−s(x1 − dB2(v2))〉| � C2−δs2ε1s.

It follows that

|〈A∗
t2P

∗(LS/|LS|), A2−k(B2)−s(x1 − xB2)〉| � C2−δs2ε1s + C|A2−s(v2)|
� C2−δ1s (7.5)

for some δ1 > 0, if |X1| � C12−ε1s. Therefore, if we fix the variables except for B2, then
A2−k(B2)−s(x1 − xB2) lies in a C2−δ1s neighbourhood of a line. Also, if |X1| < C12−ε1s,
results similar to those in § 5 hold (see, for example, (5.17)). Thus, an analogue of (5.7)
in the case of P3 can be proved as in § 5 (see (5.15), (5.20)).

To prove an analogue of (4.3) we first note the following.

Lemma 7.2. Let L and L+ be defined as in (6.3) and (6.4), respectively, with every-
thing adapted for the present case. Then we have the pointwise estimates

|L(y, t)| + 2αs|∂yj L(y, t)| + |∂tk
L(y, t)| � C2δsL+(y, t)

for j, k = 1, 2.

We can prove this by using Lemma 7.1, in the same way as we proved Lemma 6.1 by
applying Lemma 4.1.

By Lemmas 7.1 and 7.2 we can prove an analogue of the estimate (6.5) for the present
situation, which will prove an analogue of (4.3) as in § 6.

We have just proved Theorem 1.2 for P3 assuming β = 2πk/ log 2 for some k ∈ Z.
Now we remove the restriction on β. Let Dt = Atλ , λ > 0, and rD(x) = r(x)1/λ. Then,
Dt = exp((λ log t)P3) and rD(Dtx) = trD(x), K(Dtx) = t−λγK(x) for x ∈ R

2 \ {0},
t > 0. Also, we can easily see that Dt, rD and K satisfy all the conditions in Theorem 1.2
assumed for At, r and K. Furthermore, if we choose λ such that λβ = 2πk/ log 2 for some
k ∈ Z, then the proof of Theorem 1.2 given above under the restriction of β applies to
the proof of Theorem 1.2 for Dt, rD and K. This proves Theorem 1.2 for a general P3.
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8. Reduction to the Jordan canonical forms

We choose a non-singular real matrix Q such that Q−1PQ is one of the three matrices
in (1.2). Let R = Q−1PQ. Then Q−1AtQ = tR. Put Dt = tR. Set K1(x) = (detQ)K(Qx).
Then K1(Dtx) = t−γK1(x) for x ∈ R

2 \ {0}, t > 0. Put r1(x) = r(Qx). Then r1(Dtx) =
tr1(x) and r1(x) = 1 if and only if 〈Q∗BQx, x〉 = 1, where B is as in statement (iii)
of § 1. We note that Q∗BQ is positive and symmetric. Also, we have∫

a<r1(x)<b

K1(x) dx =
∫

a<r(x)<b

K(x) dx = 0 for all a, b with 0 < a < b.

Furthermore, if E0 = {x ∈ R
2 : 1 � r1(x) � 2}, then K1(x)χE0(x) ∈ L log L(R2).

Define
T1f(x) = p.v.

∫
f(y)K1(x − y) dy.

Theorem B, Remark 1.1 and what we have already proved then imply the weak-type
(1, 1) estimate for T1:

|{x ∈ R
2 : |T1f(x)| > λ}| � Cλ−1‖f‖1, (8.1)

since K1, Dt and r1 satisfy all the requirements needed in the proof. We note that
T1f(x) = TfQ(Qx), where fQ(x) = f(Q−1x). Using this and changing variables in (8.1),
we can see that T is of weak-type (1, 1).

Appendix A

A.1. Proof of (2.7) from Proposition 2.1

First, by dilation invariance we may assume that c �
∑

|B| � 1 in (2.7) for
some constant c > 0. For s > C, we decompose K0 as K0 = H(s) + L(s) with
L(s) = K0χ{|K0|�2εs/2}, where ε is as in Proposition 2.1. Then we have to prove∣∣∣∣

{ ∑
s>C

∣∣∣∣ ∑
B

ψ2sB(bB ∗ Sk(B)+sH
(s))

∣∣∣∣ > 1
6

}∣∣∣∣ � C1, (A 1)

∣∣∣∣
{ ∑

s>C

∣∣∣∣ ∑
B

ψ2sB(bB ∗ Sk(B)+sL
(s))

∣∣∣∣ > 1
6

}∣∣∣∣ � C1 (A 2)

for some positive constant C1. The estimates (A 1) and (A 2) imply (2.7). The estimate
(A 1) follows from ∥∥∥∥ ∑

s>C

∣∣∣∣ ∑
B

ψ2sB(bB ∗ Sk(B)+sH
(s))

∣∣∣∣
∥∥∥∥

1
� C (A 3)

by Chebyshev’s inequality. To see this, we note that the estimates (2.1) and (2.5) imply

‖ψ2sB(bB ∗ Sk(B)+sH
(s))‖1 � C|B| ‖H(s)‖1. (A 4)

Since ∑
s>C

‖H(s)‖1 � C‖K0‖L log L = C,

(2.8) and (A 4) imply (A 3).
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To prove (A 2) we note that |
⋃

s>C Es| � C. Thus, by Chebyshev’s inequality it suffices
to show that ∥∥∥∥ ∑

s>C

∣∣∣∣ ∑
B

ψ2sB(bB ∗ Sk(B)+sL
(s))

∣∣∣∣
∥∥∥∥

Lp(F c)
� C, (A 5)

where F =
⋃

s>C Es. The estimate (A 5) follows from
∥∥∥∥∑

B

ψ2sB(bB ∗ Sk(B)+sL
(s))

∥∥∥∥
Lp(Ec

s)
� C2−εs/2 (A 6)

by the triangle inequality. We can prove (A 6) by Proposition 2.1 with fB = L(s) for all
B, since ( ∑

B

|B| ‖L(s)‖2
2

)1/2

� C‖L(s)‖2 � C2εs/2.

A.2. Proof of Lemma 2.3

We prove ∥∥∥∥ ∑
B∈B

ψB,S

∥∥∥∥
1

� C2γs|S|, (A 7)

∥∥∥∥ ∑
B∈B

ψB,S

∥∥∥∥
BMO

� Cs2γs|S|, (A 8)

where BMO is the space defined by using the balls with respect to the function r. The
estimates (A 7) and (A 8) imply the conclusion of Lemma 2.3, since we have

|{|f | > λ}| � C exp(−Aλ/‖f‖BMO)‖f‖1/λ

for some A > 0, which follows from the John–Nirenberg inequality [8].
Proof of (A 7) is straightforward:∥∥∥∥ ∑

B∈B
ψB,S

∥∥∥∥
1

�
∑
B∈B

‖ψB,S‖1 � C
∑
B∈B

2γs|S| |B| � C2γs|S|,

where the last inequality follows from (2.8).
To prove (A 8), it suffices to show that

sup
R

∑
B

OR(ψB,S) � Cs2γs|S|,

where

OR(f) = |R|−1
∫

R

|f − fR|, fR = |R|−1
∫

R

f.

Fix a ball R = B(xR, u). Take i ∈ Z such that 2i � u < 2i+1.
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Case 1 (i � k(B) + s). If OR(ψB,S) �= 0, then R ∩ C2sB �= ∅ for some C > 0, and
hence

r(xB − xR) � C(u + 2k(B)+s) � Cu,

which implies B ⊂ CR. Therefore, since OR(ψB,S) � C|R|−12γs|B| |S|, we have∑
B : i�k(B)+s

OR(ψB,S) � C
∑

B⊂CR

|R|−12γs|S| |B| � C2γs|S|.

Case 2 (k(B)+ s − δs < i < k(B)+ s). If OR(ψB,S) �= 0, there exists x such that
r(x − xR) < u and r(A2−k(B)−s(x − xB) − xS) � C2−δs. Thus,

r(xB + A2k(B)+sxS − xR) � C0r(x − xR) + C0r(xB + A2k(B)+sxS − x)

� C(u + 2k(B)+s−δs)

� Cu,

where C0 is as in statement (ii) of § 1. It follows that B + A2k(B)+sxS ⊂ CR, where
B + a = {x + a : x ∈ B}, a ∈ R

n. For j ∈ Z, define a family of disjoint balls

Ij = {B ∈ B : OR(ψB,S) �= 0, k(B) = j}.

Then ∑
B : k(B)+s−δs<i<k(B)+s

OR(ψB,S) � C
∑

i−s<j<i−s+δs

∑
B∈Ij

|R|−12γs|B| |S|

� C
∑

i−s<j<i−s+δs

|R|−12γs|CR − A2j+sxS | |S|

� Cδs2γs|S|.

Case 3 (k(B) � i � k(B) + s − δs). As in Case 2 we have

r(xB + A2k(B)+sxS − xR) � C2k(B)+s−δs,

if OR(ψB,S) �= 0. This implies

B + A2k(B)+sxS ⊂ B(xR, C2k(B)+s−δs).

Thus, we have
card(Ij)2γj � C2γ(j+s−δs)

if j � i � j + s − δs, where Ij is as above. Since OR(ψB,S) � C, it follows that∑
B : k(B)�i�k(B)+s−δs

OR(ψB,S) �
∑

i−s+δs�j�i

∑
B∈Ij

OR(ψB,S)

� C
∑

i−s+δs�j�i

card(Ij)

� Cs2γs|S|.
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Case 4 (i < k(B)). As in Case 3 we have card(Ij) � C2γs|S| for j > i. Now we
have

OR(ψB,S) � |R|−2
∫∫

R×R

|ψB,S(x) − ψB,S(y)| dxdy.

Note that

|ψB,S(x) − ψB,S(y)| � C|Au−1
S 2−k(B)−s(x − y)| � C2(δs−k(B)−s+i)/β1

for x, y ∈ R, where β1 is as in statement (v) of § 1. Therefore,∑
B : k(B)>i

OR(ψB,S) �
∑
j>i

∑
B∈Ij

OR(ψB,S)

� C
∑
j>i

card(Ij)2(δs−j−s+i)/β1

� C2γs|S|.

Combining results in Cases 1–4, we have (A 8).

A.3. Proof of Proposition 2.1 from Proposition 2.2 and Lemma 2.3

For B ∈ B and a constant D > 0, let

h(B) = card({B′ ∈ B : C0D2sB ⊂ C0D2sB′}),

where B is as in Proposition 2.1 and C0 is as in statement (ii) of § 1. Note that∣∣∣∣ ⋃
h(B)�s32γs

D2sB

∣∣∣∣ �
∣∣∣∣
{ ∑

B∈B
χC0D2sB � s32γs

}∣∣∣∣ � C2−εs2

for some ε > 0, where the last inequality follows from Lemma 2.3 with S = B(0, 2C0D).
We can put Es =

⋃
h(B)�s32γs D2sB in Proposition 2.1.

Let
B� = {B ∈ B : �2γs � h(B) < (� + 1)2γs}

for � = 0, 1, . . . , s3 −1. We show that B� satisfies (2.11) in place of B if D is large enough.
Then, if we also take D satisfying D > d1, where d1 is as in the definition of ψB , by the
definition of Es the estimate (2.10) follows from s3 applications of (2.12) and the triangle
inequality.

Let
Bx = {B ∈ B� : x ∈ D2s−1B}

for an arbitrary x and the constant D satisfying D/2 � C1, where C1 is as in Proposi-
tion 2.2. We show that card(Bx) � C2γs. We may assume that Bx �= ∅. Let B0 have the
minimal radius 2j0 in Bx and let B1 have the maximal radius 2j1 in Bx. For j0 � j � j1,
we note that

card({B ∈ Bx : k(B) = j}) � C2γs. (A 9)
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Take m ∈ Z such that 2m−1 < C2
0 � 2m. Suppose that j1 > j0 + 2 + m. Then we have

h(B0) � h(B1) + card({B ∈ Bx : j0 + 2 + m � k(B) < j1}). (A 10)

To show this, let x ∈ D2s−1B0 ∩ D2s−1B, B = B(z, 2j), j0 + 2 + m � j < j1, B0 =
B(w, 2j0). If y ∈ C0D2sB0, then

r(y − z) � C2
0r(y − w) + C2

0r(w − x) + C0r(x − z)

� C3
0D2j0+s + C2

0D2j0+s−1 + C0D2j+s−1

� C3
0D2j0+s+1 + C0D2j+s−1

� C0D2j+s,

which implies C0D2sB0 ⊂ C0D2sB. Similarly, this argument implies C0D2sB0 ⊂
C0D2sB1. Thus, if C0D2sB1 ⊂ C0D2sB′, then

C0D2sB0 ⊂ C0D2sB1 ⊂ C0D2sB′.

From these results (A 10) follows. By (A 10) we have

card({B ∈ Bx : j0 + 2 + m � k(B) < j1}) � h(B0) − h(B1) � 2γs.

Combining this with (A 9), we have card(Bx) � C2γs as claimed.

A.4. Proof of (3.10)

By interpolation and duality, to prove (3.10) it suffices to show the claim with q = ∞.
To achieve this, by the positivity of the operator we may assume that F is identically
equal to 1. Therefore, we must show that∥∥∥∥2−γs

∑
B∈B

ψ+
2sBT+

B ψ+
2sB

∥∥∥∥
p

� C.

Since we are assuming C1 � d2, where C1 is as in (2.11) and d2 is as in the definition of
ψ+

B , by (2.11) and Hölder’s inequality we have

2−γs
∑
B∈B

ψ+
2sBT+

B ψ+
2sB � C2−γs/p

( ∑
B∈B

(T+
B ψ+

2sB)p

)1/p

. (A 11)

Since ‖T+
B F‖p � C‖F‖p uniformly in B by (3.8) and Minkowski’s inequality, using the

pointwise estimate (A 11), we see that∥∥∥∥2−γs
∑
B∈B

ψ+
2sBT+

B ψ+
2sB

∥∥∥∥
p

� C2−γs/p

( ∑
B∈B

‖T+
B ψ+

2sB‖p
p

)1/p

� C2−γs/p

( ∑
B∈B

‖ψ+
2sB‖p

p

)1/p

� C2−γs/p

( ∑
B∈B

2sγ |B|
)1/p

� C,

where the last inequality follows from (2.8). This completes the proof of (3.10).
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