Weak－type $(1,1)$ estimates for parabolic singular integrals

メタデータ	言語：eng
	出版者：
	公開日： $2017-10-02$
	キーワード（Ja）：
	キーワード（En）：
	作成者：
メールアドレス：	
	所属：
http：／／hdl．handle．net／2297／29750	

WEAK-TYPE $(1,1)$ ESTIMATES FOR PARABOLIC SINGULAR INTEGRALS

SHUICHI SATO
Department of Mathematics, Faculty of Education, Kanazawa University, Kanazawa 920-1192, Japan (shuichi@kenroku.kanazawa-u.ac.jp)

(Received 12 June 2009)

Abstract We prove weak-type $(1,1)$ estimates for rough parabolic singular integrals on \mathbb{R}^{2} under the $L \log L$ condition on their kernels.

Keywords: parabolic singular integrals; weak-type $(1,1)$ estimates; rough operators
2010 Mathematics subject classification: Primary 42B20

1. Introduction

Let $\left\{A_{t}\right\}_{t>0}$ be a dilation group on \mathbb{R}^{n} defined by $A_{t}=t^{P}=\exp ((\log t) P)$, where P is an $n \times n$ real matrix whose eigenvalues have positive real parts. We assume $n \geqslant 2$. There is a non-negative function r on \mathbb{R}^{n} satisfying $r\left(A_{t} x\right)=\operatorname{tr}(x)$ for all $t>0$ and $x \in \mathbb{R}^{n}$. We may assume the following:
(i) the function r is continuous on \mathbb{R}^{n} and infinitely differentiable in $\mathbb{R}^{n} \backslash\{0\}$;
(ii) $r(x+y) \leqslant C_{0}(r(x)+r(y))$ for some $C_{0} \geqslant 1, r(x)=r(-x)$;
(iii) if $\Sigma=\left\{x \in \mathbb{R}^{n}: r(x)=1\right\}$, then $\Sigma=\left\{\theta \in \mathbb{R}^{n}:\langle B \theta, \theta\rangle=1\right\}$ for a positive symmetric matrix B, where $\langle\cdot, \cdot\rangle$ denotes the inner product in \mathbb{R}^{n};
(iv) we have $\mathrm{d} x=t^{\gamma-1} \mathrm{~d} \sigma \mathrm{~d} t$, that is,

$$
\int_{\mathbb{R}^{\propto}} f(x) \mathrm{d} x=\int_{0}^{\infty} \int_{\Sigma} f\left(A_{t} \theta\right) t^{\gamma-1} \mathrm{~d} \sigma(\theta) \mathrm{d} t
$$

for appropriate functions f, where $\mathrm{d} \sigma$ is a C^{∞} measure on Σ and $\gamma=\operatorname{tr} P$;
(v) there are positive constants $c_{1}, c_{2}, c_{3}, c_{4}, \alpha_{1}, \alpha_{2}, \beta_{1}$ and β_{2} such that

$$
\begin{array}{ll}
c_{1}|x|^{\alpha_{1}} \leqslant r(x) \leqslant c_{2}|x|^{\alpha_{2}} & \text { if } r(x) \geqslant 1 \\
c_{3}|x|^{\beta_{1}} \leqslant r(x) \leqslant c_{4}|x|^{\beta_{2}} & \text { if } r(x) \leqslant 1 .
\end{array}
$$

(See $[\mathbf{2}, \mathbf{9}, \mathbf{1 4}]$ for more details.)

Let K be a locally integrable function on $\mathbb{R}^{n} \backslash\{0\}$ satisfying

$$
K\left(A_{t} x\right)=t^{-\gamma} K(x) \quad \text { for all } t>0 \text { and } x \in \mathbb{R}^{n} \backslash\{0\} ;
$$

and

$$
\int_{a<r(x)<b} K(x) \mathrm{d} x=0 \quad \text { for all } a, b \text { with } a<b .
$$

Define

$$
T f(x)=\text { p.v. } \int f(y) K(x-y) \mathrm{d} y
$$

Let

$$
\begin{equation*}
D_{0}=\left\{x \in \mathbb{R}^{n}: 1 \leqslant r(x) \leqslant 2\right\} \quad \text { and } \quad K_{0}(x)=K(x) \chi_{D_{0}}(x) \tag{1.1}
\end{equation*}
$$

where χ_{S} is the characteristic function of a set S. If $K_{0} \in L \log L\left(\mathbb{R}^{n}\right), T$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for $1<p<\infty$ (see, for example, [11]). Also, the following results are known.

Theorem A. Suppose that $A_{t}=t E$ and $r(x)=|x|$, where E denotes the identity matrix and $|x|$ denotes the Euclidean norm for x; also suppose that $K_{0} \in L \log L\left(\mathbb{R}^{n}\right)$. The operator T is then of weak-type $(1,1)$.

Theorem B. Suppose that

$$
A_{t} x=\left(t^{\alpha_{1}} x_{1}, t^{\alpha_{2}} x_{2}, \ldots, t^{\alpha_{n}} x_{n}\right)
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $0<\alpha_{1} \leqslant \alpha_{2} \leqslant \cdots \leqslant \alpha_{n}$. Also, suppose that $\Sigma=S^{n-1}=$ $\{|x|=1\}$ and $K_{0} \in L \log L\left(\mathbb{R}^{n}\right)$. Then T is of weak-type $(1,1)$.

Theorem A is due to Seeger [12]. In low-dimensional cases, a version of Theorem A was proved in $[\mathbf{4}, \mathbf{6}]$. (See $[\mathbf{3}, \mathbf{5}, \mathbf{7}, \mathbf{1 0}, \mathbf{1 3}, \mathbf{1 5}, \mathbf{1 6}]$ for relevant results.) Theorem B is a particular case of a result of Tao [15]. In [15], the weak-type $(1,1)$ boundedness was proved for singular integrals on general homogeneous groups. Note that the proof given in [15] does not use the Fourier transform.

Remark 1.1. In Theorem B, the assumption that $\Sigma=S^{n-1}$ can be relaxed. We note that the method of [15] can prove a version of Theorem B where Σ is only assumed to be an ellipsoid in statement (iii) above. We use this fact in $\S 8$.

In this paper we prove the following result.
Theorem 1.2. Suppose that $n=2$ and $K_{0} \in L \log L\left(\mathbb{R}^{n}\right)$. The operator T is then of weak-type $(1,1)$.
There exists a non-singular real matrix Q such that $Q^{-1} P Q$ is one of the following Jordan canonical forms:

$$
P_{1}=\left(\begin{array}{cc}
\alpha & 0 \tag{1.2}\\
0 & \beta
\end{array}\right), \quad P_{2}=\left(\begin{array}{cc}
\alpha & 0 \\
1 & \alpha
\end{array}\right), \quad P_{3}=\left(\begin{array}{cc}
\alpha & \beta \\
-\beta & \alpha
\end{array}\right)
$$

where $\alpha, \beta>0$. Since the case where $P=P_{1}$ is handled by Theorem B and Remark 1.1, to prove Theorem 1.2 we must consider the cases $P=P_{2}$ and $P=P_{3}$. In $\S 8$, we shall give an argument that derives Theorem 1.2 from results for P having the form of (1.2).

In $\S 2$, we give an outline of a proof of Theorem 1.2. We shall see that Theorem 1.2 follows from Proposition 2.2. A proof of Proposition 2.2 for P_{2} will be given in $\S \S 3-6$. We shall give a proof of Proposition 2.2 for P_{3} in $\S 7$. The framework of our proof of Theorem 1.2 is similar to that of Theorem B in [15], but we need some new arguments in $\S \S 4-8$, which do not occur in [15]. In Appendix A, for completeness we shall give proofs of four results of $\S \S 2$ and 3 by applying the methods of [15]. Although we assume $n=2$ in $\S \S 3-8$, several results can extend to higher dimensions. In this paper, C, C_{1}, C_{2} will be used to denote non-negative constants which may be different in different occurrences.

2. Outline of proof of Theorem 1.2

We normalize $\left\|K_{0}\right\|_{L \log L}=1$, where K_{0} is as in (1.1). We may assume that K is real valued. Let $\delta_{t} f(x)=t^{-\gamma} f\left(A_{t}^{-1} x\right)$. Then

$$
K(x)=\frac{1}{\log 2} \int_{0}^{\infty} \frac{\delta_{t} K_{0}(x) \mathrm{d} t}{t}
$$

Let φ be a non-negative function in $C_{0}^{\infty}(\mathbb{R})$ supported in $\left[\frac{1}{2}, 2\right]$ such that

$$
\sum_{j=-\infty}^{\infty} 2^{-j} t \varphi\left(2^{-j} t\right)=\frac{1}{\log 2} \quad \text { for } t \neq 0
$$

We decompose K as $K=\sum_{j=-\infty}^{\infty} S_{j} K_{0}$, where

$$
S_{j} f=2^{-j} \int_{0}^{\infty} \varphi\left(2^{-j} t\right) \delta_{t} f \mathrm{~d} t
$$

We note that

$$
\begin{equation*}
\left\|S_{j} f\right\|_{1} \leqslant C\|f\|_{1} \tag{2.1}
\end{equation*}
$$

where C is independent of j.
Let B be a subset of \mathbb{R}^{n} such that

$$
B=\left\{x \in \mathbb{R}^{n}: r(x-a)<s\right\}
$$

for some $a \in \mathbb{R}^{n}$ and $s>0$. Then we call B a ball with centre a and radius s and we write $B=B(a, s)$. If $s=2^{k}$ for some $k \in \mathbb{Z}$ (the set of all integers), then $B\left(a, 2^{k}\right)$ is called a dyadic ball. Also, we write $a=x_{B}, k=k(B)$. Let $C B(a, s)=B(a, C s)$ for $C>0$.

We have to show that

$$
\left|\left\{x \in \mathbb{R}^{n}:|T f(x)|>\lambda\right\}\right| \leqslant C \lambda^{-1}\|f\|_{1} \quad \text { for all } \lambda>0
$$

when $\left\|K_{0}\right\|_{L \log L}=1$. We may assume that $\lambda=1$. By Calderón-Zygmund decomposition of f at height 1 , we have

$$
f=g+\sum_{B} b_{B},
$$

where the balls B range over a collection of disjoint dyadic balls and

$$
\begin{gather*}
\|g\|_{1} \leqslant C\|f\|_{1}, \quad\|g\|_{\infty} \leqslant C \tag{2.2}\\
\sum_{B}|B| \leqslant C\|f\|_{1} \tag{2.3}\\
\operatorname{supp}\left(b_{B}\right) \subset C B \tag{2.4}\\
\left\|b_{B}\right\|_{1} \leqslant C|B| \tag{2.5}\\
\int b_{B}=0 \tag{2.6}
\end{gather*}
$$

We may assume that the functions b_{B} are real valued and smooth. Also, we may assume that the family of the balls $\{B\}$ is finite. We have

$$
\left\{x \in \mathbb{R}^{n}:|T f(x)|>1\right\} \subset G_{1} \cup G_{2} \cup G_{3},
$$

where

$$
\begin{aligned}
& G_{1}=\left\{x \in \mathbb{R}^{n}:|T g(x)|>\frac{1}{3}\right\} \\
& G_{2}=\left\{x \in \mathbb{R}^{n}: \sum_{s \leqslant C}\left|\sum_{B}\left(b_{B} * S_{k(B)+s} K_{0}\right)(x)\right|>\frac{1}{3}\right\}, \\
& G_{3}=\left\{x \in \mathbb{R}^{n}: \sum_{s>C}\left|\sum_{B}\left(b_{B} * S_{k(B)+s} K_{0}\right)(x)\right|>\frac{1}{3}\right\} .
\end{aligned}
$$

Here C is a sufficient large positive constant. Since T is bounded on L^{2}, by Chebyshev's inequality and (2.2) we have

$$
\left|G_{1}\right| \leqslant C\|g\|_{2}^{2} \leqslant C\|g\|_{1} \leqslant C\|f\|_{1}
$$

The set G_{2} is contained in $E=\bigcup_{B} C_{1} B$ for some $C_{1}>0$, since we have (2.4) and $\operatorname{supp}\left(S_{j} K_{0}\right)$ is contained in $\left\{2^{j-1} \leqslant r(x) \leqslant 2^{j+2}\right\}$. So,

$$
\left|G_{2}\right| \leqslant|E| \leqslant C\|f\|_{1}
$$

by (2.3). Therefore, to prove Theorem 1.2 it remains to show that $\left|G_{3}\right| \leqslant C\|f\|_{1}$. This follows from the estimate

$$
\begin{equation*}
\left|\left\{x \in \mathbb{R}^{n}: \sum_{s>C}\left|\sum_{B} \psi_{2^{s} B}(x)\left(b_{B} * S_{k(B)+s} K_{0}\right)(x)\right|>\frac{1}{3}\right\}\right| \leqslant C_{1} \sum_{B}|B| \tag{2.7}
\end{equation*}
$$

where the function ψ_{B} is defined as

$$
\psi_{B}(x)=\psi_{0}\left(A_{2^{-k(B)}}\left(x-x_{B}\right)\right)
$$

with a non-negative function ψ_{0} in $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\operatorname{supp}\left(\psi_{0}\right) \subset\left\{d_{1}^{-1} \leqslant r(x) \leqslant d_{1}\right\}$, $\psi_{0}(x)=1$ if $2 / d_{1} \leqslant r(x) \leqslant d_{1} / 2$ for a sufficiently large positive number d_{1} and $\left\|\psi_{0}\right\|_{\infty} \leqslant 1$.

Let \mathcal{B} be a finite family of disjoint dyadic balls B such that

$$
\begin{equation*}
\sum_{B \in \mathcal{B}}|B| \leqslant 1 \tag{2.8}
\end{equation*}
$$

As in [15], the following result implies (2.7) (see § A.1).
Proposition 2.1. Let $1<p<2$ and $s>C$, where C is as in (2.7). Let \mathcal{B} be as in (2.8). For each $B \in \mathcal{B}$, let b_{B} be a smooth real-valued function satisfying (2.4)-(2.6). There then exist a positive number ϵ and an exceptional set E_{s} such that

$$
\begin{equation*}
\left|E_{s}\right| \leqslant C 2^{-\epsilon s} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\sum_{B \in \mathcal{B}} \psi_{2^{s} B}\left(b_{B} * S_{k(B)+s} f_{B}\right)\right\|_{L^{p}\left(E_{s}^{\mathrm{c}}\right)} \leqslant C 2^{-\epsilon s}\left(\sum_{B \in \mathcal{B}}|B|\left\|f_{B}\right\|_{2}^{2}\right)^{1 / 2} \tag{2.10}
\end{equation*}
$$

for all real-valued functions f_{B} in $L^{2}\left(\mathbb{R}^{n}\right)$, where E_{s}^{c} denotes the complement of E_{s}.
Also, as in [15], Proposition 2.1 can be derived from the following.
Proposition 2.2. Let p, s, \mathcal{B} and $\left\{b_{B}\right\}_{B \in \mathcal{B}}$ be as in Proposition 2.1. There then exist constants $C_{1}>1$ and $\epsilon>0$ such that if

$$
\begin{equation*}
\left\|\sum_{B \in \mathcal{B}} \chi_{C_{1} 2^{s} B}\right\|_{\infty} \leqslant C 2^{\gamma s} \tag{2.11}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\left\|\sum_{B \in \mathcal{B}} \psi_{2^{s} B}\left(b_{B} * S_{k(B)+s} f_{B}\right)\right\|_{p} \leqslant C 2^{-\epsilon s}\left(\sum_{B \in \mathcal{B}}|B|\left\|f_{B}\right\|_{2}^{2}\right)^{1 / 2} \tag{2.12}
\end{equation*}
$$

for all real-valued functions f_{B} in $L^{2}\left(\mathbb{R}^{n}\right)$.
To prove Propositions 2.1 and 2.2, we use the following version of [15, Lemma 9.2].
Lemma 2.3. Let C_{1}, C_{2}, C_{3} be positive constants. Let $S=B\left(x_{S}, u_{S}\right), u_{S}=C_{1} 2^{-\delta s}$, $0 \leqslant \delta \leqslant 1$, and $r\left(x_{S}\right)<C_{2}$, where s is a positive integer. Define

$$
\begin{equation*}
\psi_{B, S}(x)=\Psi_{S}\left(A_{2-k(B)-s}\left(x-x_{B}\right)\right) \tag{2.13}
\end{equation*}
$$

where $\Psi_{S}(x)=\Psi\left(A_{u_{S}^{-1}}\left(x-x_{S}\right)\right)$ with a fixed non-negative function Ψ in C_{0}^{∞} such that $\|\Psi\|_{\infty} \leqslant 1, \operatorname{supp}(\Psi) \stackrel{C}{C}\{r(x) \leqslant 1\}$ and $\Psi(x)=1$ if $r(x) \leqslant \frac{1}{2}$. Then we have

$$
\left|\left\{x \in \mathbb{R}^{n}: \sum_{B \in \mathcal{B}} \psi_{B, S}(x)>C_{3} s^{3} 2^{\gamma s}|S|\right\}\right| \leqslant C 2^{-c s^{2}}
$$

where c is a positive constant and \mathcal{B} is as in Proposition 2.1.
See \S A. 2 for a proof of Lemma 2.3 and \S A. 3 for a proof of Proposition 2.1 using Proposition 2.2 and Lemma 2.3.

Remark 2.4. From Proposition 2.1 and arguments in [5], we can prove some weighted weak-type $(1,1)$ estimates for the singular integral operator T under certain conditions.

3. Proof of Proposition 2.2: preliminaries

To prove Theorem 1.2, it remains to show Proposition 2.2. To obtain (2.12), by duality it suffices to show that

$$
\begin{equation*}
\left(\sum_{B \in \mathcal{B}}|B|^{-1}\left\|S_{k(B)+s}^{*}\left(\tilde{b}_{B} *\left(\psi_{2^{s} B} F\right)\right)\right\|_{2}^{2}\right)^{1 / 2} \leqslant C 2^{-\epsilon s}\|F\|_{p^{\prime}} \tag{3.1}
\end{equation*}
$$

for real-valued functions F, where $p^{\prime}=p /(p-1), \tilde{b}_{B}(x)=b_{B}(-x)$ and S_{j}^{*} is the adjoint of S_{j} :

$$
S_{j}^{*} G(x)=2^{-j} \int_{0}^{\infty} \varphi\left(2^{-j} t\right) G\left(A_{t} x\right) \mathrm{d} t
$$

To prove (3.1), by the $T T^{*}$ method, it suffices to show that

$$
\begin{equation*}
\left\|\sum_{B \in \mathcal{B}}|B|^{-1} \psi_{2^{s} B}\left(b_{B} * S_{k(B)+s} S_{k(B)+s}^{*}\left(\tilde{b}_{B} *\left(\psi_{2^{s} B} F\right)\right)\right)\right\|_{p} \leqslant C 2^{-2 \epsilon s}\|F\|_{p^{\prime}} \tag{3.2}
\end{equation*}
$$

Note that

$$
S_{j+s} S_{j+s}^{*}=2^{-\gamma(j+s)} S_{0} S_{0}^{*}
$$

Therefore, we can rewrite (3.2) as

$$
\begin{equation*}
\|T F\|_{p} \leqslant C 2^{-2 \epsilon s}\|F\|_{p^{\prime}}, \quad T=2^{-\gamma s} \sum_{B \in \mathcal{B}} \psi_{2^{s} B} T_{B} \psi_{2^{s} B} \tag{3.3}
\end{equation*}
$$

where T_{B} is the self-adjoint operator defined as

$$
T_{B} F=|B|^{-1} b_{B} * S_{0} S_{0}^{*}\left(|B|^{-1} \tilde{b}_{B} * F\right)
$$

Define the smooth function a_{B} supported on the ball $B(0, C)$ by

$$
a_{B}(v)=b_{B}\left(d_{B}(v)\right)
$$

where d_{B} is the mapping defined as

$$
\begin{equation*}
d_{B}(v)=x_{B}+A_{2^{k(B)}} v \tag{3.4}
\end{equation*}
$$

Then by (2.4)-(2.6) we see that

$$
\begin{equation*}
\operatorname{supp}\left(a_{B}\right) \subset B(0, C), \quad\left\|a_{B}\right\|_{1} \leqslant C, \quad \int a_{B}(v) \mathrm{d} v=0 \tag{3.5}
\end{equation*}
$$

Also, note that

$$
S_{0} S_{0}^{*} F(x)=\int_{0}^{\infty} \tilde{\varphi}(t) F\left(A_{t} x\right) \mathrm{d} t
$$

where $\tilde{\varphi}$ is a non-negative function in C_{0}^{∞} with support in $\left[\frac{1}{4}, 4\right]$. Thus, we can rewrite the operator T_{B}, up to a constant factor, as

$$
\begin{equation*}
T_{B} F(x)=\iiint a_{B}(v) \tilde{\varphi}(t) a_{B}(w) F\left(d_{B}(w)+A_{t}\left(x-d_{B}(v)\right)\right) \mathrm{d} w \mathrm{~d} v \mathrm{~d} t \tag{3.6}
\end{equation*}
$$

We need the following result [15].

Lemma 3.1. Let f be a continuous function on \mathbb{R}^{2} such that

$$
\operatorname{supp}(f) \subset B\left(0, C_{1}\right), \quad \int f(x) \mathrm{d} x=0, \quad\|f\|_{1} \leqslant C_{2}
$$

Then there exist functions f_{1}, f_{2} such that

$$
f(x)=\sum_{i=1}^{2} \partial_{x_{i}} f_{i}(x)
$$

$$
\operatorname{supp}\left(f_{i}\right) \subset B\left(0, C_{1}^{\prime}\right), \quad\left\|f_{i}\right\|_{1} \leqslant C_{2}^{\prime} \quad \text { for } i=1,2
$$

for some constants C_{1}^{\prime} and C_{2}^{\prime} with $C_{1}^{\prime} \geqslant C_{1}$.
Let

$$
\psi_{B}^{+}(x)=\psi^{+}\left(A_{2-k(B)}\left(x-x_{B}\right)\right)
$$

where ψ^{+}is a non-negative function in $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\operatorname{supp}\left(\psi^{+}\right) \subset\left\{d_{2}^{-1} \leqslant r(x) \leqslant d_{2}\right\}$ and $\psi^{+}(x)=1$ if $2 / d_{2} \leqslant r(x) \leqslant d_{2} / 2$, where d_{2} is a constant satisfying $d_{2}>2 d_{1}$. We note that ψ_{B}^{+}is positive on the support of ψ_{B}. Let $C_{1} \geqslant d_{2}$, where C_{1} is as in (2.11). By Lemma 3.1 we can find functions a_{B}^{1}, a_{B}^{2} supported on $B(0, C)$ such that

$$
\begin{equation*}
a_{B}=\sum_{i=1}^{2} \partial_{x_{i}} a_{B}^{i}(x), \quad\left\|a_{B}^{i}\right\|_{1} \leqslant C \quad \text { for } i=1,2 \tag{3.7}
\end{equation*}
$$

Let

$$
a_{B}^{+}=\left|a_{B}\right|+\sum_{i=1}^{2}\left|a_{B}^{i}\right|
$$

Then

$$
\begin{equation*}
a_{B}^{+} \geqslant 0, \quad \operatorname{supp}\left(a_{B}^{+}\right) \subset B(0, C), \quad\left\|a_{B}^{+}\right\|_{1} \leqslant C \tag{3.8}
\end{equation*}
$$

Let φ^{+}be a non-negative function in $C_{0}^{\infty} \operatorname{such}$ that $\operatorname{supp}\left(\varphi^{+}\right) \subset\left[\frac{1}{8}, 8\right], \varphi^{+}>0$ on $\operatorname{supp}(\tilde{\varphi})$ and $\varphi^{+}(t)=t^{\gamma-2} \varphi^{+}\left(t^{-1}\right)$. Define the self-adjoint operator T_{B}^{+}by

$$
T_{B}^{+} F(x)=\iiint a_{B}^{+}(v) \varphi^{+}(t) a_{B}^{+}(w) F\left(d_{B}(w)+A_{t}\left(x-d_{B}(v)\right)\right) \mathrm{d} w \mathrm{~d} v \mathrm{~d} t
$$

Set

$$
\begin{equation*}
T^{+}=2^{-\gamma s} \sum_{B \in \mathcal{B}} \psi_{2^{s} B}^{+} T_{B}^{+} \psi_{2^{s} B}^{+} \tag{3.9}
\end{equation*}
$$

Then

$$
\left|T_{B} F(x)\right| \leqslant C T_{B}^{+} F(x) \quad \text { for all } B, \quad|T F(x)| \leqslant C T^{+} F(x)
$$

if F is non-negative.
As in [15], we can show that

$$
\begin{equation*}
\left\|T^{+} F\right\|_{p} \leqslant C\|F\|_{q} \quad \text { for all } 1 \leqslant p \leqslant q \leqslant \infty \tag{3.10}
\end{equation*}
$$

under the condition $C_{1} \geqslant d_{2}$, where C_{1} is as in (2.11) and d_{2} is as in the definition of ψ_{B}^{+} (see § A.4).

The estimate (3.3) follows from

$$
\begin{equation*}
\left\|T^{2} F\right\|_{p} \leqslant C 2^{-\epsilon s}\|F\|_{p^{\prime}} \quad \text { for some } \epsilon>0 \tag{3.11}
\end{equation*}
$$

To see this, by the $T T^{*}$ method, the self-adjointness of T and (3.11) we first note that

$$
\begin{equation*}
\|T F\|_{p} \leqslant C 2^{-\epsilon s / 2}\|F\|_{2} \tag{3.12}
\end{equation*}
$$

Next, by (3.10) we have $\|T F\|_{p} \leqslant C\|F\|_{q}, 1 \leqslant p \leqslant q \leqslant \infty$. Interpolating between this and (3.12) under the condition $1<p<2$, we have (3.3) for some $\epsilon>0$.

It remains to prove (3.11). Since $T^{2}: L^{2} \rightarrow L^{2}$ by (3.10), it suffices to prove (3.11) for $p=1$ if we take into account interpolation. Expanding T^{2}, we thus have to prove

$$
\left\|2^{-2 \gamma s} \sum_{B_{1}, B_{2} \in \mathcal{B}}\left(\prod_{i=1}^{2} \psi_{2^{s} B_{i}} T_{B_{i}} \psi_{2^{s} B_{i}}\right) F\right\|_{1} \leqslant C 2^{-\epsilon s}\|F\|_{\infty}
$$

By duality and self-adjointness this follows from

$$
\begin{equation*}
2^{-2 \gamma s} \sum_{B \in \mathcal{B}_{0}}\left|\left\langle\left(\prod_{i=1}^{2} \psi_{2^{s} B_{i}} T_{B_{i}} \psi_{2^{s} B_{i}}\right) F_{B}, G_{B}\right\rangle\right| \leqslant C 2^{-\epsilon s} \tag{3.13}
\end{equation*}
$$

for all real-valued smooth functions F_{B}, G_{B} satisfying $\left\|F_{B}\right\|_{\infty} \leqslant 1,\left\|G_{B}\right\|_{\infty} \leqslant 1$, where

$$
\begin{equation*}
\mathcal{B}_{0}=\left\{B=\left(B_{1}, B_{2}\right) \in \mathcal{B}^{2}: k\left(B_{1}\right) \leqslant k\left(B_{2}\right)\right\} . \tag{3.14}
\end{equation*}
$$

The inner product in (3.13) can be written, up to a constant factor, as

$$
\begin{equation*}
\iiint \int G_{B}\left(x_{0}\right) F_{B}\left(x_{2}\right) H_{B}\left(x_{0}, x_{1}, x_{2}, t, v, w\right) \mathrm{d} x_{0} \mathrm{~d} w \mathrm{~d} t \mathrm{~d} v \tag{3.15}
\end{equation*}
$$

thus,

$$
H_{B}\left(x_{0}, x_{1}, x_{2}, t, v, w\right)=\prod_{i=1}^{2}\left(\psi_{2^{s} B_{i}}\left(x_{i-1}\right) a_{B_{i}}\left(v_{i}\right) \tilde{\varphi}\left(t_{i}\right) a_{B_{i}}\left(w_{i}\right) \psi_{2^{s} B_{i}}\left(x_{i}\right)\right)
$$

where $x_{0} \in \mathbb{R}^{2}, v=\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2} \times \mathbb{R}^{2}, w=\left(w_{1}, w_{2}\right) \in \mathbb{R}^{2} \times \mathbb{R}^{2}, t=\left(t_{1}, t_{2}\right) \in$ $(0, \infty) \times(0, \infty)$ and we may assume that $v, w \in B(0, C)^{2}, t \in\left[C^{-1}, C\right]^{2} ; \mathrm{d} w=\mathrm{d} w_{1} \mathrm{~d} w_{2}$, $\mathrm{d} v=\mathrm{d} v_{1} \mathrm{~d} v_{2}, \mathrm{~d} t=\mathrm{d} t_{1} \mathrm{~d} t_{2} ; x_{1}, x_{2}$ are defined as follows:

$$
\begin{equation*}
x_{1}=d_{B_{1}}\left(w_{1}\right)+A_{t_{1}}\left(x_{0}-d_{B_{1}}\left(v_{1}\right)\right), \quad x_{2}=d_{B_{2}}\left(w_{2}\right)+A_{t_{2}}\left(x_{1}-d_{B_{2}}\left(v_{2}\right)\right) \tag{3.16}
\end{equation*}
$$

We note that each $x_{i}, i=1,2$, is a function of x_{0} and $B_{\ell}, v_{\ell}, w_{\ell}, t_{\ell}$ for all ℓ with $1 \leqslant \ell \leqslant i$. We also write $y=\left(y_{1}, y_{2}\right)=v_{1} \in \mathbb{R}^{2}$.

4. Proof of Proposition 2.2 for P_{2} : basic estimates

Suppose that $P=P_{2}$, where P_{2} is as in (1.2). Then

$$
A_{t}=t^{\alpha}\left(\begin{array}{cc}
1 & 0 \\
\log t & 1
\end{array}\right)
$$

Let

$$
\begin{equation*}
M_{B}=2^{\alpha\left(k\left(B_{1}\right)+s\right)} 2^{\alpha\left(k\left(B_{2}\right)+s\right)}\left(1+\left|k\left(B_{1}\right)-k\left(B_{2}\right)\right|\right) \tag{4.1}
\end{equation*}
$$

for $B=\left(B_{1}, B_{2}\right) \in \mathcal{B}^{2}$. Let $D_{t}\left(x_{2}\right)$ be the matrix such that the first column vector is $\partial_{t_{1}} x_{2}$ and the second column vector is $\partial_{t_{2}} x_{2}$, where x_{2} is as in (3.16). The following two estimates imply (3.13):

$$
\begin{align*}
& \sum_{B \in \mathcal{B}_{0}}\left|\iiint \int G_{B}\left(x_{0}\right) F_{B}\left(x_{2}\right) H_{B} \zeta_{1}\left(2^{\delta s} M_{B}^{-1} \operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right) \mathrm{d} x_{0} \mathrm{~d} w \mathrm{~d} t \mathrm{~d} v\right| \leqslant C 2^{-\epsilon s} 2^{2 \gamma s} \tag{4.2}\\
& \sum_{B \in \mathcal{B}_{0}}\left|\iiint \int G_{B}\left(x_{0}\right) F_{B}\left(x_{2}\right) H_{B} \zeta_{2}\left(2^{\delta s} M_{B}^{-1} \operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right) \mathrm{d} x_{0} \mathrm{~d} w \mathrm{~d} t \mathrm{~d} v\right| \leqslant C 2^{-\epsilon s} 2^{2 \gamma s} \tag{4.3}
\end{align*}
$$

where H_{B} is as in (3.15); ζ_{1} is a non-negative function in $C_{0}^{\infty}(\mathbb{R})$ such that $\operatorname{supp}\left(\zeta_{1}\right) \subset$ $[-1,1], \zeta_{1}(t)=1$ for $t \in\left[-\frac{1}{2}, \frac{1}{2}\right] ; \zeta_{2}=1-\zeta_{1} ; \delta$ is a small positive number to be specified in the following.

Let $D_{y_{i}, t_{j}}\left(x_{2}\right)$ be the matrix such that the first column vector is $\partial_{y_{i}} x_{2}$ and the second column vector is $\partial_{t_{j}} x_{2}$ for $i, j=1,2$. To prove (4.2) and (4.3) we use the following lemma and results in its proof.

Lemma 4.1. Let M_{B} be as in (4.1). Suppose that $B \in \mathcal{B}_{0}$, where \mathcal{B}_{0} is as in (3.14), and that $t_{\ell} \in\left[C^{-1}, C\right], x_{\ell-1} \in \operatorname{supp}\left(\psi_{2^{s} B_{\ell}}^{+}\right), v_{\ell} \in B(0, C), \ell=1,2$, where x_{1} is as in (3.16). Then we have the following:

$$
\begin{array}{r}
\left|\operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right|+s^{-1} 2^{\alpha s}\left|\partial_{y_{i}} \operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right|+\left|\partial_{t_{j}} \operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right| \leqslant C M_{B}, \\
s^{-1} 2^{\alpha s}\left|\operatorname{det}\left(D_{y_{i}, t_{j}}\left(x_{2}\right)\right)\right|+s^{-1} 2^{\alpha s}\left|\partial_{t_{k}} \operatorname{det}\left(D_{y_{i}, t_{j}}\left(x_{2}\right)\right)\right| \leqslant C M_{B} \tag{4.5}
\end{array}
$$

for $i, j, k=1,2$, and

$$
\begin{equation*}
\left|\psi_{2^{s} B_{\ell}}\left(x_{\ell^{\prime}}\right)\right|+s^{-1} 2^{\alpha s}\left|\partial_{y_{i}} \psi_{2^{s} B_{\ell}}\left(x_{\ell^{\prime}}\right)\right|+\left|\partial_{t_{j}} \psi_{2^{s} B_{\ell}}\left(x_{\ell^{\prime}}\right)\right| \leqslant C \psi_{2^{s} B_{\ell}}^{+}\left(x_{\ell^{\prime}}\right) \tag{4.6}
\end{equation*}
$$

for $i, j=1,2,0 \leqslant \ell^{\prime} \leqslant \ell, \ell=1,2$.

Proof. We note the following formulae, which hold for general $A_{t}=t^{P}$:

$$
\begin{align*}
\partial_{t_{\ell}} x_{k} & =t_{\ell}^{-1} P A_{t_{\ell} \cdots t_{k}}\left(x_{\ell-1}-d_{B_{\ell}}\left(v_{\ell}\right)\right) \quad \text { if } \quad \ell \leqslant k, \tag{4.7}\\
\partial_{t_{\ell}} x_{k} & =0 \quad \text { if } \ell>k, \tag{4.8}\\
\partial_{t_{1}}^{2} x_{2} & =-t_{1}^{-2} P A_{t_{1} t_{2}}\left(x_{0}-d_{B_{1}}\left(v_{1}\right)\right)+t_{1}^{-2} P^{2} A_{t_{1} t_{2}}\left(x_{0}-d_{B_{1}}\left(v_{1}\right)\right), \tag{4.9}\\
\partial_{t_{1}} \partial_{t_{2}} x_{2} & =\partial_{t_{2}} \partial_{t_{1}} x_{2}=t_{1}^{-1} t_{2}^{-1} P^{2} A_{t_{1} t_{2}}\left(x_{0}-d_{B_{1}}\left(v_{1}\right)\right), \tag{4.10}\\
\partial_{t_{2}}^{2} x_{2} & =-t_{2}^{-2} P A_{t_{2}}\left(x_{1}-d_{B_{2}}\left(v_{2}\right)\right)+t_{2}^{-2} P^{2} A_{t_{2}}\left(x_{1}-d_{B_{2}}\left(v_{2}\right)\right), \tag{4.11}\\
\partial_{y_{i}} x_{\ell} & =-A_{t_{1} \cdots t_{\ell} 2^{k\left(B_{1}\right)}} e_{i}, \quad i, \ell=1,2, \tag{4.12}\\
\partial_{t_{1}} \partial_{y_{i}} x_{1} & =-t_{1}^{-1} P A_{t_{1} 2^{k\left(B_{1}\right)}} e_{i}, \quad \partial_{t_{2}} \partial_{y_{i}} x_{1}=0, \quad i=1,2, \tag{4.13}\\
\partial_{t_{j}} \partial_{y_{i}} x_{2} & =-t_{j}^{-1} P A_{t_{1} t_{2} 2^{k\left(B_{1}\right)}} e_{i}, \quad i, j=1,2, \tag{4.14}
\end{align*}
$$

where $\left\{e_{i}\right\}$ is the standard basis. Let

$$
L=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Then

$$
\begin{equation*}
\operatorname{det}\left(D_{t}\left(x_{2}\right)\right)=\left\langle\partial_{t_{1}} x_{2}, L \partial_{t_{2}} x_{2}\right\rangle=\left\langle X, A_{2^{k\left(B_{1}\right)+s}}^{*} L A_{2^{k\left(B_{2}\right)+s}} Y\right\rangle \tag{4.15}
\end{equation*}
$$

where $X=A_{2^{-k\left(B_{1}\right)-s}} \partial_{t_{1}} x_{2}, Y=A_{2^{-k\left(B_{2}\right)-s}} \partial_{t_{2}} x_{2}$. We note that

$$
A_{2^{h}}^{*} L A_{2^{m}}=2^{h \alpha} 2^{m \alpha}\left(\begin{array}{cc}
(m-h) \log 2 & 1 \tag{4.16}\\
-1 & 0
\end{array}\right)
$$

By the assumptions and (4.7), we have $|X| \leqslant C$ and $|Y| \leqslant C$. Thus, by (4.15) and (4.16), we have

$$
\left|\operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right| \leqslant C M_{B}
$$

Similarly by (4.7), (4.15), (4.16), (4.9)-(4.11) we have

$$
\left|\partial_{t_{j}} \operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right| \leqslant C M_{B}
$$

since $k\left(B_{1}\right) \leqslant k\left(B_{2}\right)$.
Next, by (4.14) we have

$$
\left\langle\partial_{t_{1}} x_{2}, L \partial_{t_{2}} \partial_{y_{i}} x_{2}\right\rangle=-t_{2}^{-1}\left\langle X, A_{2^{k\left(B_{1}\right)+s}}^{*} L A_{2^{k\left(B_{1}\right)}} A_{t_{1} t_{2}} P e_{i}\right\rangle
$$

where X is as above. Thus, by (4.7) and (4.16) we have

$$
\left|\left\langle\partial_{t_{1}} x_{2}, L \partial_{t_{2}} \partial_{y_{i}} x_{2}\right\rangle\right| \leqslant C s 2^{\alpha k\left(B_{1}\right)} 2^{\alpha\left(k\left(B_{1}\right)+s\right)} \leqslant C s 2^{-\alpha s} M_{B}
$$

since $k\left(B_{1}\right) \leqslant k\left(B_{2}\right)$. Also, by (4.14) we have

$$
\left\langle\partial_{t_{1}} \partial_{y_{i}} x_{2}, L \partial_{t_{2}} x_{2}\right\rangle=-t_{1}^{-1}\left\langle P A_{t_{1} t_{2}} e_{i}, A_{2^{k\left(B_{1}\right)}}^{*} L A_{2^{k\left(B_{2}\right)+s}} Y\right\rangle
$$

where Y is as above. Therefore, arguing as above, we have

$$
\begin{aligned}
\left|\left\langle\partial_{t_{1}} \partial_{y_{i}} x_{2}, L \partial_{t_{2}} x_{2}\right\rangle\right| & \leqslant C\left(s+\left|k\left(B_{2}\right)-k\left(B_{1}\right)\right|\right) 2^{\alpha k\left(B_{1}\right)} 2^{\alpha\left(k\left(B_{2}\right)+s\right)} \\
& \leqslant C s 2^{-\alpha s} M_{B}
\end{aligned}
$$

From these estimate it follows that

$$
\left|\partial_{y_{i}} \operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right| \leqslant C s 2^{-\alpha s} M_{B}
$$

Collecting results, we obtain (4.4).
Similarly, by (4.12) and (4.7) we see that

$$
\begin{align*}
\left|\operatorname{det}\left(D_{y_{i}, t_{j}}\left(x_{2}\right)\right)\right| & \leqslant C\left(s+\left|k\left(B_{1}\right)-k\left(B_{j}\right)\right|\right) 2^{\alpha k\left(B_{1}\right)} 2^{\alpha\left(k\left(B_{j}\right)+s\right)} \\
& \leqslant C s 2^{-\alpha s} M_{B} \tag{4.17}
\end{align*}
$$

By (4.14) and (4.7) we have

$$
\begin{align*}
\left|\left\langle\partial_{t_{k}} \partial_{y_{i}} x_{2}, L \partial_{t_{j}} x_{2}\right\rangle\right| & \leqslant C\left(s+\left|k\left(B_{j}\right)-k\left(B_{1}\right)\right|\right) 2^{\alpha\left(k\left(B_{j}\right)+s\right)} 2^{\alpha k\left(B_{1}\right)} \\
& \leqslant C s 2^{-\alpha s} M_{B} \tag{4.18}
\end{align*}
$$

If $m=\min (k, j)$, from (4.9)-(4.12) it follows that

$$
\begin{align*}
\left|\left\langle\partial_{y_{i}} x_{2}, L \partial_{t_{k}} \partial_{t_{j}} x_{2}\right\rangle\right| & \leqslant C\left(s+\left|k\left(B_{m}\right)-k\left(B_{1}\right)\right|\right) 2^{\alpha\left(k\left(B_{m}\right)+s\right)} 2^{\alpha k\left(B_{1}\right)} \\
& \leqslant C s 2^{-\alpha s} M_{B} \tag{4.19}
\end{align*}
$$

The estimates (4.18) and (4.19) imply

$$
\begin{equation*}
\left|\partial_{t_{k}} \operatorname{det}\left(D_{y_{i}, t_{j}}\left(x_{2}\right)\right)\right| \leqslant C s 2^{-\alpha s} M_{B} \tag{4.20}
\end{equation*}
$$

Thus, (4.5) follows from (4.17) and (4.20).
To prove (4.6), we recall that $\psi_{2^{s} B_{\ell}}\left(x_{\ell^{\prime}}\right)=\psi_{0}\left(A_{2^{-k\left(B_{\ell}\right)-s}}\left(x_{\ell^{\prime}}-x_{B_{\ell}}\right)\right)$. By (4.12) we have

$$
\partial_{y_{i}} A_{2^{-k\left(B_{\ell}\right)-s}}\left(x_{\ell^{\prime}}-x_{B_{\ell}}\right)=-A_{2^{-k\left(B_{\ell}\right)-s}} A_{t_{1} \cdots t_{\ell^{\prime}} 2^{k\left(B_{1}\right)}} e_{i}, \quad \ell^{\prime}=1,2
$$

Therefore,

$$
\begin{equation*}
\left|\partial_{y_{i}} A_{2^{-k\left(B_{\ell}\right)-s}}\left(x_{\ell^{\prime}}-x_{B_{\ell}}\right)\right| \leqslant C s 2^{-\alpha s} \tag{4.21}
\end{equation*}
$$

By (4.7) and (4.8) we see that

$$
\partial_{t_{j}} A_{2^{-k\left(B_{\ell}\right)-s}}\left(x_{\ell^{\prime}}-x_{B_{\ell}}\right)= \begin{cases}t_{j}^{-1} A_{2^{-k\left(B_{\ell}\right)-s}} P A_{t_{j} \cdots t_{\ell^{\prime}}}\left(x_{j-1}-d_{B_{j}}\left(v_{j}\right)\right) & \text { if } 1 \leqslant j \leqslant \ell^{\prime} \\ 0 & \text { if } j>\ell^{\prime}\end{cases}
$$

Also, we note that

$$
\left|A_{2^{-k\left(B_{j}\right)-s}}\left(x_{j-1}-d_{B_{j}}\left(v_{j}\right)\right)\right| \leqslant C, \quad j=1,2
$$

by the assumptions. Therefore, we have

$$
\begin{equation*}
\left|\partial_{t_{j}} A_{2^{-k\left(B_{\ell}\right)-s}}\left(x_{\ell^{\prime}}-x_{B_{\ell}}\right)\right| \leqslant C \tag{4.22}
\end{equation*}
$$

since $k\left(B_{j}\right) \leqslant k\left(B_{\ell}\right)$ if $1 \leqslant j \leqslant \ell^{\prime} \leqslant \ell$. From (4.21), (4.22) and the chain rule, we have (4.6).

5. Proof of Proposition 2.2 for P_{2} : proof of (4.2)

In this section we prove (4.2). It suffices to show that

$$
\begin{align*}
\sum_{B \in \mathcal{B}_{0}} \iiint \prod_{i=1}^{2}\left(\psi_{2^{s} B_{i}}^{+}\left(x_{i-1}\right) a_{B_{i}}^{+}\left(v_{i}\right) a_{B_{i}}^{+}\left(w_{i}\right)\right) \zeta_{1}\left(2^{\delta s} M_{B}^{-1} \operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right) \mathrm{d} x_{0} \mathrm{~d} w \mathrm{~d} v \\
\leqslant C 2^{-\epsilon s} 2^{2 \gamma s} \tag{5.1}
\end{align*}
$$

uniformly in $t_{i} \in\left[C^{-1}, C\right]$ for $i=1,2$. We fix t.
Let

$$
\tilde{\psi}_{B}^{+}(x)=\tilde{\psi}^{+}\left(A_{2^{-k(B)}}\left(x-x_{B}\right)\right),
$$

where $\tilde{\psi}^{+}$is a non-negative function in $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that

$$
\operatorname{supp}\left(\tilde{\psi}^{+}\right) \subset\left\{d_{3}^{-1} \leqslant r(x) \leqslant d_{3}\right\}
$$

$\tilde{\psi}^{+}(x)=1$ if $2 / d_{3} \leqslant r(x) \leqslant d_{3} / 2$. We assume that $d_{3}>2 d_{2}$, where d_{2} is as in the definition of ψ_{B}^{+}. Let $S=B\left(x_{S}, 2^{-\delta_{0} s}\right) \subset B(0, C), 0<\delta_{0}<1$, where the positive integer s is as in (5.1). Let $\psi_{B, S}$ be as in Lemma 2.3. Define

$$
\begin{equation*}
U_{S}(x)=\sum_{B \in \mathcal{B}, x \in \operatorname{supp}} \psi_{B, S}(x) . \tag{5.2}
\end{equation*}
$$

For $x \in \mathbb{R}^{2}$ we consider the condition

$$
\begin{equation*}
U_{S}(x) \leqslant s^{3} 2^{\gamma s}|S| \quad \text { for all balls } S=B\left(x_{S}, 2^{-\delta_{0} s}\right) \subset B(0, C), \tag{5.3}
\end{equation*}
$$

where the positive number δ_{0} and the ball $B(0, C)$ will be specified below. Then we have the following version of [15, Lemma 12.2].
Lemma 5.1. Let $E=\left\{x \in \mathbb{R}^{2}: x\right.$ does not satisfy (5.3) $\}$. Then

$$
|E| \leqslant C 2^{-\epsilon_{0} s^{2}}
$$

for some $\epsilon_{0}>0$.
To prove Lemma 5.1 we use the following covering lemma [1].
Lemma 5.2. Let $\mathcal{G}=\left\{B\left(a_{\lambda}, u_{\lambda}\right): \lambda \in \Lambda\right\}$ be a family of balls such that $\sup _{\lambda \in \Lambda} u_{\lambda}<$ ∞. There is then a subfamily $\mathcal{G}^{\prime}=\left\{B\left(c_{j}, r_{j}\right): j=1,2, \ldots\right\}$ of \mathcal{G} such that \mathcal{G}^{\prime} is at most countable, balls in \mathcal{G}^{\prime} are disjoint and for any $B\left(a_{\lambda}, u_{\lambda}\right) \in \mathcal{G}$ we can find a ball $B\left(c_{j}, r_{j}\right) \in \mathcal{G}^{\prime}$ satisfying $B\left(a_{\lambda}, u_{\lambda}\right) \subset B\left(c_{j}, d r_{j}\right)$ for some positive constant d independent of \mathcal{G}.

Proof of Lemma 5.1. By applying Lemma 5.2 to the family of balls

$$
\mathcal{G}=\left\{S=B\left(x_{S}, 2^{-\delta_{0} s}\right): S \subset B(0, C)\right\},
$$

we have a subfamily of disjoint balls $\left\{S_{i}\right\}_{i=1}^{N}$ in $B(0, C), N \leqslant C 2^{s \delta_{0} \gamma}$, such that if $\tilde{S}_{i}=C_{1} S_{i}$ with a constant $C_{1} \geqslant 2 d$, for any S in \mathcal{G} there exists $i \in\{1,2, \ldots, N\}$ for which it holds that

$$
\begin{equation*}
\psi_{B, S}(x) \leqslant \psi_{B, \tilde{S}_{i}}(x) \text { for all } B \tag{5.4}
\end{equation*}
$$

where $\psi_{B, \tilde{S}_{i}}$ is defined as in (2.13) with \tilde{S}_{i} in place of S. From (5.4) it follows that

$$
\begin{equation*}
U_{S}(x) \leqslant U_{\tilde{S}_{i}}(x) \quad \text { for some } i \in\{1,2, \ldots, N\} \tag{5.5}
\end{equation*}
$$

where $U_{\tilde{S}_{i}}$ is defined as in (5.2) with \tilde{S}_{i} in place of S. We see that (5.5) implies

$$
E \subset \bigcup_{i=1}^{N}\left\{x: U_{\tilde{S}_{i}}(x) \geqslant C s^{3} 2^{\gamma s}\left|\tilde{S}_{i}\right|\right\}
$$

Therefore, the conclusion follows from an application of Lemma 2.3.
Let the set E be as in Lemma 5.1. Writing

$$
1=\left(\chi_{E}\left(x_{0}\right)+\chi_{E^{c}}\left(x_{0}\right)\right)\left(\chi_{E}\left(x_{1}\right)+\chi_{E^{c}}\left(x_{1}\right)\right)
$$

and expanding the right-hand side, by (3.8) we can see that to prove (5.1) it suffices to show the following two estimates:

$$
\begin{equation*}
\sum_{B} \iiint \prod_{i=1}^{2} \psi_{2^{s} B_{i}}^{+}\left(x_{i-1}\right) \chi_{E}\left(x_{\ell}\right) a_{B_{1}}^{+}\left(v_{1}\right) a_{B_{1}}^{+}\left(w_{1}\right) \mathrm{d} x_{0} \mathrm{~d} v_{1} \mathrm{~d} w_{1} \leqslant C 2^{-\epsilon s} 2^{2 \gamma s} \tag{5.6}
\end{equation*}
$$

for $\ell=0,1$, where we note that x_{1} is independent of v_{2} and w_{2}, and

$$
\begin{array}{r}
\sum_{B} \iiint_{\left|\operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right| \leqslant 2^{-\delta s} M_{B}} \prod_{i=1}^{2}\left(\psi_{2^{s} B_{i}}^{+}\left(x_{i-1}\right) \chi_{E^{\mathrm{c}}}\left(x_{i-1}\right) a_{B_{i}}^{+}\left(v_{i}\right) a_{B_{i}}^{+}\left(w_{i}\right)\right) \mathrm{d} x_{0} \mathrm{~d} v \mathrm{~d} w \\
\leqslant C 2^{-\epsilon s} 2^{2 \gamma s} \tag{5.7}
\end{array}
$$

for some $\epsilon>0$, where the balls B range over \mathcal{B}_{0}.
Proof of (5.6). First, let $\ell=0$. Since $C_{1} \geqslant d_{2}$, where C_{1} is as in Proposition 2.2 and d_{2} is as in the definition of ψ_{B}^{+}, by (2.11) and (3.8), the left-hand side of (5.6) is bounded by I, where

$$
\mathrm{I}=C 2^{\gamma s} \sum_{B_{1}} \int \psi_{2^{s} B_{1}}^{+}\left(x_{0}\right) \chi_{E}\left(x_{0}\right) \mathrm{d} x_{0}
$$

By (2.11) and Lemma 5.1, we have

$$
\mathrm{I} \leqslant C 2^{2 \gamma s} \int \chi_{E}\left(x_{0}\right) \mathrm{d} x_{0} \leqslant C 2^{2 \gamma s}|E| \leqslant C 2^{2 \gamma s} 2^{-\epsilon_{0} s^{2}}
$$

Next, let $\ell=1$. As above, by (2.11) the left-hand side of (5.6) is bounded by II, where

$$
\mathrm{II}=C 2^{\gamma s} \sum_{B_{1}} \iiint \psi_{2^{s} B_{1}}^{+}\left(x_{0}\right) \chi_{E}\left(x_{1}\right) a_{B_{1}}^{+}\left(v_{1}\right) a_{B_{1}}^{+}\left(w_{1}\right) \mathrm{d} x_{0} \mathrm{~d} v_{1} \mathrm{~d} w_{1}
$$

By a change of variables, we see that

$$
\int \psi_{2^{s} B_{1}}^{+}\left(x_{0}\right) \chi_{E}\left(x_{1}\right) \mathrm{d} x_{0}=t_{1}^{-\gamma} \int \psi_{2^{s} B_{1}}^{+}\left(\tilde{x}_{0}\right) \chi_{E}\left(x_{0}\right) \mathrm{d} x_{0}
$$

where

$$
\tilde{x}_{0}=A_{t_{1}^{-1}}\left(x_{0}-d_{B_{1}}\left(w_{1}\right)\right)+d_{B_{1}}\left(v_{1}\right) .
$$

We observe that $\psi_{2^{s} B_{1}}^{+}\left(\tilde{x}_{0}\right) \leqslant C \tilde{\psi}_{2^{s} B_{1}}^{+}\left(x_{0}\right)$ if d_{3} and s are sufficiently large, where d_{3} is as in the definition of $\tilde{\psi}_{B}^{+}$. (We may assume that s is sufficiently large.) We assume that $C_{1}>d_{3}$, where C_{1} is as in Proposition 2.2. By (2.11), (3.8) and Lemma 5.1 we then have

$$
\begin{aligned}
\mathrm{II} & \leqslant C 2^{\gamma s} \sum_{B_{1}} \int \tilde{\psi}_{2^{s} B_{1}}^{+}\left(x_{0}\right) \chi_{E}\left(x_{0}\right) \mathrm{d} x_{0} \\
& \leqslant C 2^{2 \gamma s} \int \chi_{E}\left(x_{0}\right) \mathrm{d} x_{0} \\
& \leqslant C 2^{2 \gamma s} 2^{-\epsilon_{0} s^{2}}
\end{aligned}
$$

Combining the results for $\ell=0$ and $\ell=1$, we have (5.6).
Proof of (5.7). We consider the variables x_{0}, v, w in the range where $\left|\operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right| \leqslant$ $2^{-\delta s} M_{B}$ and the integrand in (5.7) does not vanish for each $B \in \mathcal{B}_{0}$. We use results in the proof of Lemma 4.1. By (4.15) we have

$$
\operatorname{det}\left(D_{t}\left(x_{2}\right)\right)=\left\langle A_{2^{k\left(B_{2}\right)+s}}^{*} L^{*} A_{2^{k\left(B_{1}\right)+s}} X, Y\right\rangle
$$

Note that $L^{*}=-L$. Therefore, the condition $\left|\operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right| \leqslant 2^{-\delta s} M_{B}$ and (4.16) imply

$$
\begin{equation*}
|\langle W, Y\rangle| \leqslant C 2^{-\delta s}\left(1+\left|k\left(B_{2}\right)-k\left(B_{1}\right)\right|\right) \tag{5.8}
\end{equation*}
$$

where $W=\left(c\left(k\left(B_{2}\right)-k\left(B_{1}\right)\right) X_{1}-X_{2}, X_{1}\right), X=\left(X_{1}, X_{2}\right), c=\log 2$.
First we assume that $\left|X_{1}\right| \geqslant C_{1} 2^{-\epsilon_{1} s},\left|k\left(B_{2}\right)-k\left(B_{1}\right)\right| \geqslant C_{2} 2^{\epsilon_{2} s}, \epsilon_{2}>\epsilon_{1}>0$. Let $Z=X_{1}-X_{2} /\left(c\left(k\left(B_{2}\right)-k\left(B_{1}\right)\right)\right)$. Then $|Z| \sim\left|X_{1}\right|$, if C_{2} is sufficiently large. Therefore, by (5.8) we see that

$$
\begin{equation*}
\left|\left\langle\left(1, X_{1}\left(c\left(k\left(B_{2}\right)-k\left(B_{1}\right)\right) Z\right)^{-1}\right), Y\right\rangle\right| \leqslant C\left|X_{1}\right|^{-1} 2^{-\delta s} \leqslant C 2^{-\delta s} 2^{\epsilon_{1} s} . \tag{5.9}
\end{equation*}
$$

We note that

$$
\left|X_{1}\left(c\left(k\left(B_{2}\right)-k\left(B_{1}\right)\right) Z\right)^{-1}\right| \leqslant C 2^{-\epsilon_{2} s}
$$

Thus, (5.9) implies

$$
\left|\left\langle e_{1}, Y\right\rangle\right| \leqslant C 2^{-\delta s} 2^{\epsilon_{1} s}+C 2^{-\epsilon_{2} s}
$$

Therefore, recalling the definition of Y, we have

$$
\left|\left\langle A_{t_{2}}^{*} P^{*} e_{1}, A_{2^{-k\left(B_{2}\right)-s}}\left(x_{1}-d_{B_{2}}\left(v_{2}\right)\right)\right\rangle\right| \leqslant C 2^{-\delta s} 2^{\epsilon_{1} s}+C 2^{-\epsilon_{2} s}
$$

and hence

$$
\begin{align*}
\left|\left\langle A_{t_{2}}^{*} P^{*} e_{1}, A_{2^{-k\left(B_{2}\right)-s}}\left(x_{1}-x_{B_{2}}\right)\right\rangle\right| & \leqslant C 2^{-\delta s} 2^{\epsilon_{1} s}+C 2^{-\epsilon_{2} s}+C\left|A_{2^{-s}}\left(v_{2}\right)\right| \\
& \leqslant C 2^{-\delta_{1} s} \tag{5.10}
\end{align*}
$$

for some $\delta_{1}>0$.
Next, we assume that $\left|X_{1}\right| \geqslant C_{1} 2^{-\epsilon_{1} s},\left|k\left(B_{2}\right)-k\left(B_{1}\right)\right|<C_{2} 2^{\epsilon_{2} s}$. By (5.8) we then have

$$
|\langle W, Y\rangle| \leqslant C 2^{-\delta s} 2^{\epsilon_{2} s}
$$

We write $X=S+R$, where

$$
S=t_{1}^{-1} P A_{t_{1} t_{2} 2^{-k\left(B_{1}\right)-s}}\left(x_{0}-x_{B_{1}}\right), \quad R=-t_{1}^{-1} P A_{t_{1} t_{2} 2^{-s}}\left(v_{1}\right)
$$

and decompose W as $W=U+Q$, where

$$
U=\left(c\left(k\left(B_{2}\right)-k\left(B_{1}\right)\right) S_{1}-S_{2}, S_{1}\right), \quad Q=\left(c\left(k\left(B_{2}\right)-k\left(B_{1}\right)\right) R_{1}-R_{2}, R_{1}\right) .
$$

Here $S=\left(S_{1}, S_{2}\right), R=\left(R_{1}, R_{2}\right)$. We note that $|R| \leqslant C 2^{-\alpha^{\prime} s}$ for any $\alpha^{\prime} \in(0, \alpha)$. Therefore,

$$
|\langle U, Y\rangle| \leqslant|\langle W, Y\rangle|+|\langle Q, Y\rangle| \leqslant C 2^{-\delta s} 2^{\epsilon_{2} s}+C 2^{-\alpha^{\prime} s} 2^{\epsilon_{2} s}
$$

Also, if $\left|X_{1}\right| \geqslant C_{1} 2^{-\epsilon_{1} s}, \epsilon_{1} \in(0, \alpha)$ and C_{1} is sufficiently large, we see that $\left|S_{1}\right| \geqslant C 2^{-\epsilon_{1} s}$ and hence $|U| \geqslant C 2^{-\epsilon_{1} s}$. Thus, if $U^{\prime}=U /|U|$, we have

$$
\left|\left\langle U^{\prime}, Y\right\rangle\right| \leqslant C 2^{-\delta s} 2^{\epsilon_{2} s} 2^{\epsilon_{1} s}+C 2^{-\alpha^{\prime} s} 2^{\epsilon_{2} s} 2^{\epsilon_{1} s} .
$$

As above, from this expression it follows that

$$
\begin{equation*}
\left|\left\langle A_{t_{2}}^{*} P^{*} U^{\prime}, A_{2-k\left(B_{2}\right)-s}\left(x_{1}-x_{B_{2}}\right)\right\rangle\right| \leqslant C 2^{-\delta_{2} s} \tag{5.11}
\end{equation*}
$$

for some $\delta_{2}>0$ with $\delta_{2}>\epsilon_{2}$.
Let

$$
\begin{aligned}
V & =\left\{x \in B\left(0, C^{\prime}\right):\left|\left\langle A_{t_{2}}^{*} P^{*} e_{1}, x\right\rangle\right| \leqslant C 2^{-\delta_{1} s}\right\}, \\
V_{k} & =\left\{x \in B\left(0, C^{\prime}\right):\left|\left\langle A_{t_{2}}^{*} P^{*} U_{k}^{\prime}, x\right\rangle\right| \leqslant C 2^{-\delta_{2} s}\right\}
\end{aligned}
$$

for sufficiently large constants $C, C^{\prime}>0$, where $U_{k}=\left(c\left(k-k\left(B_{1}\right)\right) S_{1}-S_{2}, S_{1}\right), U_{k}^{\prime}=$ $U_{k} /\left|U_{k}\right|, k \in \mathbb{Z}$.
By (5.10) and (5.11) we see that if $\left|X_{1}\right| \geqslant C_{1} 2^{-\epsilon_{1} s}$, then

$$
\begin{equation*}
A_{2-k\left(B_{2}\right)-s}\left(x_{1}-x_{B_{2}}\right) \in S\left(B_{1}, x_{0}\right) \tag{5.12}
\end{equation*}
$$

where

$$
S\left(B_{1}, x_{0}\right)=V \cup\left(\bigcup_{\left|k-k\left(B_{1}\right)\right|<C_{2} 2_{2} s} V_{k}\right) .
$$

We may assume that δ_{1} and δ_{2} are sufficiently small. By Lemma 5.2 we have

$$
\left.\begin{array}{rl}
V \subset \bigcup_{j} 2^{-1} S_{j}, & \sum_{j}\left|S_{j}\right| \leqslant C 2^{-\delta_{1} s} \tag{5.13}\\
V_{k} \subset \bigcup_{j} 2^{-1} S_{j}^{k}, & \sum_{j}\left|S_{j}^{k}\right| \leqslant C 2^{-\delta_{2} s}
\end{array}\right\}
$$

for some balls S_{j}, S_{j}^{k} in $B\left(0,2 C^{\prime}\right)$ with radius $2^{-\delta_{0} s}$ for some $\delta_{0} \in(0,1)$. In (5.3) we take this δ_{0} and $C=2 C^{\prime}$. By (5.12) and (5.13) we see that

$$
\psi_{2^{s} B_{2}}^{+}\left(x_{1}\right) \leqslant C \sum_{j} \psi_{B_{2}, S_{j}}\left(x_{1}\right)+C \sum_{\left|k-k\left(B_{1}\right)\right|<C_{2} 2^{\epsilon_{2} s}} \sum_{j} \psi_{B_{2}, S_{j}^{k}}\left(x_{1}\right)
$$

Therefore, summing up in B_{2} under the condition $A_{2^{-k\left(B_{2}\right)-s}}\left(x_{1}-x_{B_{2}}\right) \in S\left(B_{1}, x_{0}\right)$ and $x_{1} \in E^{\mathrm{c}}$, with the other variables $\left(B_{1}, x_{0} \in \mathbb{R}^{2}, v_{1}, w_{1} \in B(0, C)\right)$ fixed, by (5.3) and (5.13) we have

$$
\begin{align*}
\sum_{B_{2}} \psi_{2^{s} B_{2}}^{+}\left(x_{1}\right) & \leqslant C \sum_{j} U_{S_{j}}\left(x_{1}\right)+C \sum_{\left|k-k\left(B_{1}\right)\right|<C_{2} 2^{\epsilon_{2} s}} \sum_{j} U_{S_{j}^{k}}\left(x_{1}\right) \\
& \leqslant C \sum_{j} s^{3} 2^{\gamma s}\left|S_{j}\right|+C \sum_{\left|k-k\left(B_{1}\right)\right|<C_{2} 2^{\epsilon_{2} s}} \sum_{j} s^{3} 2^{\gamma s}\left|S_{j}^{k}\right| \\
& \leqslant C s^{3} 2^{\gamma s} 2^{-\delta_{1} s}+C 2^{\epsilon_{2} s} s^{3} 2^{\gamma s} 2^{-\delta_{2} s} \\
& \leqslant C 2^{-\epsilon_{3} s} 2^{\gamma s} \tag{5.14}
\end{align*}
$$

for some $\epsilon_{3}>0$.
Let

$$
\begin{aligned}
& R_{B}=\left\{\left(x_{0}, v, w\right):\left|\operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right| \leqslant 2^{-\delta s} M_{B},\left|X_{1}\right| \geqslant C_{1} 2^{-\epsilon_{1} s} ; v, w \in B(0, C)\right\} \\
& R_{B}^{\prime}=\left\{\left(x_{0}, v, w\right):\left|\operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right| \leqslant 2^{-\delta s} M_{B},\left|X_{1}\right|<C_{1} 2^{-\epsilon_{1} s} ; v, w \in B(0, C)\right\}
\end{aligned}
$$

To prove (5.7), we split the integral as follows:

$$
\begin{array}{r}
\iiint_{\left|\operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right| \leqslant 2^{-\delta s} M_{B}} \prod_{i=1}^{2}\left(\psi_{2^{s} B_{i}}^{+}\left(x_{i-1}\right) \chi_{E^{c}}\left(x_{i-1}\right) a_{B_{i}}^{+}\left(v_{i}\right) a_{B_{i}}^{+}\left(w_{i}\right)\right) \mathrm{d} x_{0} \mathrm{~d} v \mathrm{~d} w \\
=\mathrm{I}_{B}+\mathrm{II}_{B}
\end{array}
$$

where

$$
\begin{aligned}
\mathrm{I}_{B} & =\iiint_{R_{B}} \prod_{i=1}^{2}\left(\psi_{2^{s} B_{i}}^{+}\left(x_{i-1}\right) \chi_{E^{\mathrm{c}}}\left(x_{i-1}\right) a_{B_{i}}^{+}\left(v_{i}\right) a_{B_{i}}^{+}\left(w_{i}\right)\right) \mathrm{d} x_{0} \mathrm{~d} v \mathrm{~d} w \\
\mathrm{II}_{B} & =\iiint_{R_{B}^{\prime}} \prod_{i=1}^{2}\left(\psi_{2^{s} B_{i}}^{+}\left(x_{i-1}\right) \chi_{E^{\mathrm{c}}}\left(x_{i-1}\right) a_{B_{i}}^{+}\left(v_{i}\right) a_{B_{i}}^{+}\left(w_{i}\right)\right) \mathrm{d} x_{0} \mathrm{~d} v \mathrm{~d} w
\end{aligned}
$$

From (3.8) and (5.12) it follows that

$$
\begin{aligned}
\mathrm{I}_{B} \leqslant C \iiint_{A_{2^{-k\left(B_{2}\right)-s}}\left(x_{1}-x_{B_{2}}\right) \in S\left(B_{1}, x_{0}\right)} \prod_{i=1}^{2}\left(\psi_{2^{s} B_{i}}^{+}\right. & \left.\left(x_{i-1}\right) \chi_{E^{\mathrm{c}}}\left(x_{i-1}\right)\right) \\
& \times a_{B_{1}}^{+}\left(v_{1}\right) a_{B_{1}}^{+}\left(w_{1}\right) \mathrm{d} x_{0} \mathrm{~d} v_{1} \mathrm{~d} w_{1}
\end{aligned}
$$

Therefore, by (5.14), (3.8) and (2.8) we have

$$
\begin{align*}
\sum_{B \in \mathcal{B}_{0}} \mathrm{I}_{B} & \leqslant C 2^{-\epsilon_{3} s} 2^{\gamma s} \sum_{B_{1} \in \mathcal{B}} \int \psi_{2^{s} B_{1}}^{+}\left(x_{0}\right) \mathrm{d} x_{0} \\
& \leqslant C 2^{-\epsilon_{3} s} 2^{\gamma s} \sum_{B_{1} \in \mathcal{B}} 2^{\gamma s}\left|B_{1}\right| \\
& \leqslant C 2^{-\epsilon_{3} s} 2^{2 \gamma s} \tag{5.15}
\end{align*}
$$

To estimate II_{B}, by (3.8) we first see that

$$
\begin{equation*}
\mathrm{I}_{B} \leqslant C \iiint_{\left|X_{1}\right|<C_{1} 2^{-\epsilon_{1} s}} \psi_{2^{s} B_{1}}^{+}\left(x_{0}\right) \psi_{2^{s} B_{2}}^{+}\left(x_{1}\right) \chi_{E^{c}}\left(x_{1}\right) a_{B_{1}}^{+}\left(v_{1}\right) a_{B_{1}}^{+}\left(w_{1}\right) \mathrm{d} x_{0} \mathrm{~d} v_{1} \mathrm{~d} w_{1} \tag{5.16}
\end{equation*}
$$

A change of variables implies that

$$
\begin{aligned}
& \int_{\left|X_{1}\right|<C_{1} 2^{-\epsilon_{1} s}} \psi_{2^{s} B_{1}}^{+}\left(x_{0}\right) \psi_{2^{s} B_{2}}^{+}\left(x_{1}\right) \chi_{E^{c}}\left(x_{1}\right) \mathrm{d} x_{0} \\
&=t_{1}^{-\gamma} \int_{\left|\tilde{X}_{1}\right|<C_{1} 2^{-\epsilon_{1} s}} \psi_{2^{s} B_{1}}^{+}\left(\tilde{x}_{0}\right) \psi_{2^{s} B_{2}}^{+}\left(x_{0}\right) \chi_{E^{c}}\left(x_{0}\right) \mathrm{d} x_{0}
\end{aligned}
$$

where \tilde{x}_{0} is as in the proof of (5.6) and

$$
\tilde{X}_{1}=\left\langle e_{1}, t_{1}^{-1} A_{2^{-k\left(B_{1}\right)-s}} P A_{t_{1} t_{2}}\left(\tilde{x}_{0}-d_{B_{1}}\left(v_{1}\right)\right)\right\rangle
$$

We have $\psi_{2^{s} B_{1}}^{+}\left(\tilde{x}_{0}\right) \leqslant C \tilde{\psi}_{2^{s} B_{1}}^{+}\left(x_{0}\right)$ if d_{3} and s are sufficiently large as in the proof of (5.6). Also, the condition $\left|\tilde{X}_{1}\right|<C_{1} 2^{-\epsilon_{1} s}$ implies

$$
\begin{equation*}
\left|\left\langle a, A_{2^{-k\left(B_{1}\right)-s}}\left(x_{0}-x_{B_{1}}\right)\right\rangle\right| \leqslant C 2^{-\epsilon_{1} s} \tag{5.17}
\end{equation*}
$$

for $\epsilon_{1} \in(0, \alpha)$, where $a=A_{t_{2}}^{*} P^{*} e_{1}$. Therefore, by (5.16) and (3.8) we have

$$
\begin{equation*}
\mathrm{I}_{B} \leqslant C \int_{\left|\left\langle a, A_{2^{-k\left(B_{1}\right)-s}}\left(x_{0}-x_{B_{1}}\right)\right\rangle\right| \leqslant C 2^{-\epsilon_{1} s}} \tilde{\psi}_{2^{s} B_{1}}^{+}\left(x_{0}\right) \chi_{E^{c}}\left(x_{0}\right) \psi_{2^{s} B_{2}}^{+}\left(x_{0}\right) \mathrm{d} x_{0} \tag{5.18}
\end{equation*}
$$

Arguing as in the proof of (5.14), if $x_{0} \in E^{c}$, we see that

$$
\begin{equation*}
\sum_{B_{1}:\left|\left\langle a, A_{2}-k\left(B_{1}\right)-s\left(x_{0}-x_{B_{1}}\right)\right\rangle\right| \leqslant C 2^{-\epsilon_{1} s}} \tilde{\psi}_{2^{s} B_{1}}^{+}\left(x_{0}\right) \leqslant C 2^{-\epsilon_{4} s 2^{\gamma s}} \tag{5.19}
\end{equation*}
$$

for some $\epsilon_{4}>0$. Thus, from (5.18), (5.19) and (2.8) it follows that

$$
\begin{align*}
\sum_{B \in \mathcal{B}_{0}} \mathrm{II}_{B} & \leqslant C 2^{-\epsilon_{4} s} 2^{\gamma s} \sum_{B_{2} \in \mathcal{B}} \int \psi_{2^{s} B_{2}}^{+}\left(x_{0}\right) \mathrm{d} x_{0} \\
& \leqslant C 2^{-\epsilon_{4} s} 2^{\gamma s} \sum_{B_{2} \in \mathcal{B}} 2^{\gamma s}\left|B_{2}\right| \\
& \leqslant C 2^{-\epsilon_{4} s} 2^{2 \gamma s} \tag{5.20}
\end{align*}
$$

By (5.15) and (5.20) we have (5.7).

6. Proof of Proposition 2.2 for P_{2} : proof of (4.3)

In this section we prove (4.3). By (3.10) it suffices to show that

$$
\begin{aligned}
& \sum_{B \in \mathcal{B}_{0}} \mid \iiint \int G_{B}\left(x_{0}\right) F_{B}\left(x_{2}\right) H_{B} \zeta_{2}\left(2^{\delta s} M_{B}^{-1} \operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right) \mathrm{d} x_{0} \mathrm{~d} w \mathrm{~d} t \mathrm{~d} v \mid \\
& \leqslant C 2^{-\epsilon s}\left\langle\left(2^{\gamma s} T^{+}\right)^{2} 1,1\right\rangle
\end{aligned}
$$

Recalling the definition of T^{+}in (3.9) and expanding $\left(T^{+}\right)^{2}$, we can see that this follows from

$$
\begin{align*}
& \mid \iiint \int G_{B}\left(x_{0}\right) F_{B}\left(x_{2}\right) H_{B} \zeta_{2}\left(2^{\delta s} M_{B}^{-1} \operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right) \mathrm{d} x_{0} \mathrm{~d} w \mathrm{~d} t \mathrm{~d} v \mid \\
& \leqslant C 2^{-\epsilon s} \iiint \int H_{B}^{+}\left(x_{0}, x_{1}, x_{2}, t, v, w\right) \mathrm{d} x_{0} \mathrm{~d} w \mathrm{~d} t \mathrm{~d} v \tag{6.1}
\end{align*}
$$

for all $B \in \mathcal{B}_{0}$, where

$$
H_{B}^{+}\left(x_{0}, x_{1}, x_{2}, t, v, w\right)=\prod_{i=1}^{2}\left(\psi_{2^{s} B_{i}}^{+}\left(x_{i-1}\right) a_{B_{i}}^{+}\left(v_{i}\right) \varphi^{+}\left(t_{i}\right) a_{B_{i}}^{+}\left(w_{i}\right) \psi_{2^{s} B_{i}}^{+}\left(x_{i}\right)\right)
$$

If we fix all the variables but y, t, then (6.1) follows from the estimate

$$
\begin{equation*}
\left|\iint F_{B}\left(x_{2}\right) a_{B_{1}}(y) L(y, t) \mathrm{d} y \mathrm{~d} t\right| \leqslant C 2^{-\epsilon s} \iint a_{B_{1}}^{+}(y) L^{+}(y, t) \mathrm{d} y \mathrm{~d} t \tag{6.2}
\end{equation*}
$$

which is uniform in the fixed variables, where

$$
\begin{align*}
L(y, t) & =\prod_{i=1}^{2}\left(\psi_{2^{s} B_{i}}\left(x_{i-1}\right) \psi_{2^{s} B_{i}}\left(x_{i}\right) \tilde{\varphi}\left(t_{i}\right)\right) \zeta_{2}\left(2^{\delta s} M_{B}^{-1} \operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right) \tag{6.3}\\
L^{+}(y, t) & =\prod_{i=1}^{2}\left(\psi_{2^{s} B_{i}}^{+}\left(x_{i-1}\right) \psi_{2^{s} B_{i}}^{+}\left(x_{i}\right) \varphi^{+}\left(t_{i}\right)\right) \tag{6.4}
\end{align*}
$$

To prove (6.2), by (3.7) it suffices to show

$$
\begin{equation*}
\left|\iint F_{B}\left(x_{2}\right) L(y, t) \partial_{y_{i}} a_{B_{1}}^{i}(y) \mathrm{d} y \mathrm{~d} t\right| \leqslant C 2^{-\epsilon s} \iint a_{B_{1}}^{+}(y) L^{+}(y, t) \mathrm{d} y \mathrm{~d} t \tag{6.5}
\end{equation*}
$$

for $i=1,2$. Fix i. Applying integration by parts, we can see that the left-hand side of (6.5) is majorized by

$$
\begin{equation*}
\left|\iint F_{B}\left(x_{2}\right) a_{B_{1}}^{i}(y) \partial_{y_{i}} L(y, t) \mathrm{d} y \mathrm{~d} t\right|+\left|\iint a_{B_{1}}^{i}(y) L(y, t) \partial_{y_{i}} F_{B}\left(x_{2}\right) \mathrm{d} y \mathrm{~d} t\right| \tag{6.6}
\end{equation*}
$$

To estimate this, we need the following.
Lemma 6.1. Let L and L^{+}be as in (6.3) and (6.4), respectively. Then we have

$$
|L(y, t)|+s^{-1} 2^{\alpha s}\left|\partial_{y_{j}} L(y, t)\right|+\left|\partial_{t_{k}} L(y, t)\right| \leqslant C 2^{\delta s} L^{+}(y, t)
$$

for all y, t and $j, k=1,2$.
Proof. We note that

$$
\begin{equation*}
s^{-1} 2^{\alpha s}\left|\partial_{y_{j}} \zeta_{2}\left(2^{\delta s} M_{B}^{-1} \operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right)\right|+\left|\partial_{t_{k}} \zeta_{2}\left(2^{\delta s} M_{B}^{-1} \operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right)\right| \leqslant C 2^{\delta s} \tag{6.7}
\end{equation*}
$$

on the support of L. This follows from (4.4) and the chain rule. The estimates (4.6) and (6.7) imply the conclusion of Lemma 6.1.

By Lemma 6.1, we can estimate the first term of (6.6) as follows:

$$
\begin{equation*}
\left|\iint F_{B}\left(x_{2}\right) a_{B_{1}}^{i}(y) \partial_{y_{i}} L(y, t) \mathrm{d} y \mathrm{~d} t\right| \leqslant C s 2^{(\delta-\alpha) s} \iint a_{B_{1}}^{+}(y) L^{+}(y, t) \mathrm{d} y \mathrm{~d} t \tag{6.8}
\end{equation*}
$$

An estimate needed for the second term of (6.6) follows if we prove that

$$
\begin{equation*}
\left|\int L(y, t) \partial_{y_{i}} F_{B}\left(x_{2}\right) \mathrm{d} t\right| \leqslant C 2^{-\epsilon s} \int L^{+}(y, t) \mathrm{d} t \tag{6.9}
\end{equation*}
$$

uniformly in y. To prove (6.9), we use the following [15].
Lemma 6.2. Suppose that $\operatorname{det} D_{t}\left(x_{2}\right) \neq 0$. We then have the equality

$$
\partial_{y_{i}} F_{B}\left(x_{2}\right)=\left\langle\nabla_{t}\left(F_{B}\left(x_{2}\right)(1,1)\right), D_{t}\left(x_{2}\right)^{-1}\left(\partial_{y_{i}} x_{2}\right)\right\rangle
$$

where $\nabla_{t}\left(g_{1}, g_{2}\right)=\left(\partial_{t_{1}} g_{1}, \partial_{t_{2}} g_{2}\right)$ and $F_{B}\left(x_{2}\right)(1,1)=\left(F_{B}\left(x_{2}\right), F_{B}\left(x_{2}\right)\right)$.
Fix y. By Lemma 6.2, we can write the left-hand side of (6.9) as

$$
\left|\int L(y, t)\left\langle\nabla_{t}\left(F_{B}\left(x_{2}\right)(1,1)\right), D_{t}\left(x_{2}\right)^{-1}\left(\partial_{y_{i}} x_{2}\right)\right\rangle \mathrm{d} t\right| .
$$

Integration by parts implies that this is equal to

$$
\left|\int F_{B}\left(x_{2}\right)\left\langle(1,1), \nabla_{t}\left(L(y, t) D_{t}\left(x_{2}\right)^{-1}\left(\partial_{y_{i}} x_{2}\right)\right)\right\rangle \mathrm{d} t\right| .
$$

Therefore, by Lemma 6.1, to prove (6.9) it suffices to show that

$$
\begin{equation*}
\left|D_{t}\left(x_{2}\right)^{-1}\left(\partial_{y_{i}} x_{2}\right)\right|+\left|\nabla_{t}\left(D_{t}\left(x_{2}\right)^{-1}\left(\partial_{y_{i}} x_{2}\right)\right)\right| \leqslant C 2^{-\epsilon s} 2^{-\delta s} \tag{6.10}
\end{equation*}
$$

on the support of $L(y, t)$. By Cramer's rule, (6.10) is a consequence of the estimates

$$
\left|\frac{\operatorname{det}\left(D_{y_{i}, t_{j}}\left(x_{2}\right)\right)}{\operatorname{det} D_{t}\left(x_{2}\right)}\right|+\left|\partial_{t_{k}} \frac{\operatorname{det}\left(D_{y_{i}, t_{j}}\left(x_{2}\right)\right)}{\operatorname{det} D_{t}\left(x_{2}\right)}\right| \leqslant C s 2^{-\alpha s} 2^{2 \delta s}, \quad j, k=1,2
$$

which follows from (4.4), (4.5) and the estimate $\left|\operatorname{det} D_{t}\left(x_{2}\right)\right| \geqslant C 2^{-\delta s} M_{B}$ on the support of L. This proves (6.10) with $\epsilon=\alpha^{\prime}-3 \delta$ for any $\alpha^{\prime} \in(0, \alpha)$. Thus, we have (6.9) with $\epsilon=\alpha^{\prime}-3 \delta$. Combining this with (6.8), we have (6.5) with $\epsilon=\alpha^{\prime}-3 \delta$, choosing δ to be sufficiently small. This completes the proof of (4.3).

7. Proof of Proposition 2.2 for $P_{\mathbf{3}}$

In this section we consider the case $P=P_{3}$, where P_{3} is as in (1.2). Then $A_{t}=t^{\alpha} U_{t}$, where

$$
U_{t}=\left(\begin{array}{cc}
\cos (\beta \log t) & \sin (\beta \log t) \\
-\sin (\beta \log t) & \cos (\beta \log t)
\end{array}\right)
$$

Let

$$
\begin{equation*}
M_{B}=2^{\alpha\left(k\left(B_{1}\right)+s\right)} 2^{\alpha\left(k\left(B_{2}\right)+s\right)} \tag{7.1}
\end{equation*}
$$

for $B=\left(B_{1}, B_{2}\right) \in \mathcal{B}^{2}$. Let $D_{t}\left(x_{2}\right), D_{y_{i}, t_{j}}\left(x_{2}\right)$, for $i, j=1,2$, be as in $\S 4$ with $P=P_{3}$. The following lemma can then be proved in the same way as Lemma 4.1 by noting $U_{t} \in \mathrm{SO}(2)$.

Lemma 7.1. Let M_{B} be as in (7.1) and let $B \in \mathcal{B}_{0}$, where \mathcal{B}_{0} is as in (3.14). Let $t_{\ell} \in\left[C^{-1}, C\right], v_{\ell} \in B(0, C), x_{\ell-1} \in \operatorname{supp}\left(\psi_{2^{s} B_{\ell}}^{+}\right), \ell=1,2$. Then the following estimates hold:

$$
\begin{array}{r}
\left|\operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right|+2^{\alpha s}\left|\partial_{y_{i}} \operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right|+\left|\partial_{t_{j}} \operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right| \leqslant C M_{B} \\
2^{\alpha s}\left|\operatorname{det}\left(D_{y_{i}, t_{j}}\left(x_{2}\right)\right)\right|+2^{\alpha s}\left|\partial_{t_{k}} \operatorname{det}\left(D_{y_{i}, t_{j}}\left(x_{2}\right)\right)\right| \leqslant C M_{B} \tag{7.3}
\end{array}
$$

for $i, j, k=1,2$, and

$$
\begin{equation*}
\left|\psi_{2^{s} B_{\ell}}\left(x_{\ell^{\prime}}\right)\right|+2^{\alpha s}\left|\partial_{y_{i}} \psi_{2^{s} B_{\ell}}\left(x_{\ell^{\prime}}\right)\right|+\left|\partial_{t_{j}} \psi_{2^{s} B_{\ell}}\left(x_{\ell^{\prime}}\right)\right| \leqslant C \psi_{2^{s} B_{\ell}}^{+}\left(x_{\ell^{\prime}}\right) \tag{7.4}
\end{equation*}
$$

for $i, j=1,2,0 \leqslant \ell^{\prime} \leqslant \ell, \ell=1,2$.
To prove Theorem 1.2 for P_{3}, it suffices to prove Proposition 2.2 for P_{3}. So, we have to prove estimates analogous to (4.2) and (4.3) in the case of P_{3} with M_{B} in (7.1). To prove an analogue of (4.2), we show analogues of (5.6) and (5.7). An analogue of (5.6) can be shown in the same way as in the case of P_{2}. To prove an analogue of (5.7), by (4.15) for P_{3} we note that

$$
\begin{aligned}
\operatorname{det}\left(D_{t}\left(x_{2}\right)\right) & =\left\langle A_{2^{k\left(B_{2}\right)+s}}^{*} L^{*} A_{2^{k\left(B_{1}\right)+s}} X, Y\right\rangle \\
& =2^{\left(k\left(B_{1}\right)+s\right) \alpha} 2^{\left(k\left(B_{2}\right)+s\right) \alpha}\left\langle U_{2^{-k\left(B_{2}\right)-s}} L^{*} U_{2^{k\left(B_{1}\right)+s}} X, Y\right\rangle
\end{aligned}
$$

where X and Y are as in (4.15) with $P=P_{3}$. Suppose that $\beta=2 \pi k / \log 2$ for some $k \in \mathbb{Z}$. Then $U_{2^{j}}$ is the identity matrix for all $j \in \mathbb{Z}$. So we have

$$
\operatorname{det}\left(D_{t}\left(x_{2}\right)\right)=2^{\left(k\left(B_{1}\right)+s\right) \alpha} 2^{\left(k\left(B_{2}\right)+s\right) \alpha}\left\langle L^{*} X, Y\right\rangle
$$

Therefore, if $\left|\operatorname{det}\left(D_{t}\left(x_{2}\right)\right)\right| \leqslant 2^{-\delta s} M_{B}$ and the integrand in (5.7) does not vanish, noting that $L^{*}=-L$, we see that $|\langle L X, Y\rangle| \leqslant C 2^{-\delta s}$. If

$$
S=t_{1}^{-1} P A_{t_{1} t_{2} 2^{-k\left(B_{1}\right)-s}}\left(x_{0}-x_{B_{1}}\right)
$$

as in the proof of (5.7), this implies $|\langle L S, Y\rangle| \leqslant C 2^{-\delta s}$ for $\delta \in(0, \alpha)$. Also, from the inequality $\left|X_{1}\right| \geqslant C_{1} 2^{-\epsilon_{1} s}, \epsilon_{1} \in(0, \alpha)$, it follows that $\left|S_{1}\right| \geqslant C 2^{-\epsilon_{1} s}$ if C_{1} is sufficiently large. It follows that

$$
|\langle L S /| L S|, Y\rangle \mid \leqslant C 2^{-\delta s} 2^{\epsilon_{1} s}
$$

This estimate along with the definition of Y implies

$$
\left|\left\langle A_{t_{2}}^{*} P^{*}(L S /|L S|), A_{2^{-k\left(B_{2}\right)-s}}\left(x_{1}-d_{B_{2}}\left(v_{2}\right)\right)\right\rangle\right| \leqslant C 2^{-\delta s} 2^{\epsilon_{1} s}
$$

It follows that

$$
\begin{align*}
\left|\left\langle A_{t_{2}}^{*} P^{*}(L S /|L S|), A_{2^{-k\left(B_{2}\right)-s}}\left(x_{1}-x_{B_{2}}\right)\right\rangle\right| & \leqslant C 2^{-\delta s} 2^{\epsilon_{1} s}+C\left|A_{2-s}\left(v_{2}\right)\right| \\
& \leqslant C 2^{-\delta_{1} s} \tag{7.5}
\end{align*}
$$

for some $\delta_{1}>0$, if $\left|X_{1}\right| \geqslant C_{1} 2^{-\epsilon_{1} s}$. Therefore, if we fix the variables except for B_{2}, then $A_{2^{-k\left(B_{2}\right)-s}}\left(x_{1}-x_{B_{2}}\right)$ lies in a $C 2^{-\delta_{1} s}$ neighbourhood of a line. Also, if $\left|X_{1}\right|<C_{1} 2^{-\epsilon_{1} s}$, results similar to those in $\S 5$ hold (see, for example, (5.17)). Thus, an analogue of (5.7) in the case of P_{3} can be proved as in $\S 5$ (see (5.15), (5.20)).

To prove an analogue of (4.3) we first note the following.
Lemma 7.2. Let L and L^{+}be defined as in (6.3) and (6.4), respectively, with everything adapted for the present case. Then we have the pointwise estimates

$$
|L(y, t)|+2^{\alpha s}\left|\partial_{y_{j}} L(y, t)\right|+\left|\partial_{t_{k}} L(y, t)\right| \leqslant C 2^{\delta s} L^{+}(y, t)
$$

for $j, k=1,2$.
We can prove this by using Lemma 7.1, in the same way as we proved Lemma 6.1 by applying Lemma 4.1.

By Lemmas 7.1 and 7.2 we can prove an analogue of the estimate (6.5) for the present situation, which will prove an analogue of (4.3) as in $\S 6$.

We have just proved Theorem 1.2 for P_{3} assuming $\beta=2 \pi k / \log 2$ for some $k \in \mathbb{Z}$. Now we remove the restriction on β. Let $D_{t}=A_{t^{\lambda}}, \lambda>0$, and $r_{D}(x)=r(x)^{1 / \lambda}$. Then, $D_{t}=\exp \left((\lambda \log t) P_{3}\right)$ and $r_{D}\left(D_{t} x\right)=\operatorname{tr}_{D}(x), K\left(D_{t} x\right)=t^{-\lambda \gamma} K(x)$ for $x \in \mathbb{R}^{2} \backslash\{0\}$, $t>0$. Also, we can easily see that D_{t}, r_{D} and K satisfy all the conditions in Theorem 1.2 assumed for A_{t}, r and K. Furthermore, if we choose λ such that $\lambda \beta=2 \pi k / \log 2$ for some $k \in \mathbb{Z}$, then the proof of Theorem 1.2 given above under the restriction of β applies to the proof of Theorem 1.2 for D_{t}, r_{D} and K. This proves Theorem 1.2 for a general P_{3}.

8. Reduction to the Jordan canonical forms

We choose a non-singular real matrix Q such that $Q^{-1} P Q$ is one of the three matrices in (1.2). Let $R=Q^{-1} P Q$. Then $Q^{-1} A_{t} Q=t^{R}$. Put $D_{t}=t^{R}$. Set $K_{1}(x)=(\operatorname{det} Q) K(Q x)$. Then $K_{1}\left(D_{t} x\right)=t^{-\gamma} K_{1}(x)$ for $x \in \mathbb{R}^{2} \backslash\{0\}, t>0$. Put $r_{1}(x)=r(Q x)$. Then $r_{1}\left(D_{t} x\right)=$ $\operatorname{tr}_{1}(x)$ and $r_{1}(x)=1$ if and only if $\left\langle Q^{*} B Q x, x\right\rangle=1$, where B is as in statement (iii) of $\S 1$. We note that $Q^{*} B Q$ is positive and symmetric. Also, we have

$$
\int_{a<r_{1}(x)<b} K_{1}(x) \mathrm{d} x=\int_{a<r(x)<b} K(x) \mathrm{d} x=0 \quad \text { for all } a, b \text { with } 0<a<b
$$

Furthermore, if $E_{0}=\left\{x \in \mathbb{R}^{2}: 1 \leqslant r_{1}(x) \leqslant 2\right\}$, then $K_{1}(x) \chi_{E_{0}}(x) \in L \log L\left(\mathbb{R}^{2}\right)$.
Define

$$
T_{1} f(x)=\text { p.v. } \int f(y) K_{1}(x-y) \mathrm{d} y
$$

Theorem B, Remark 1.1 and what we have already proved then imply the weak-type $(1,1)$ estimate for T_{1} :

$$
\begin{equation*}
\left|\left\{x \in \mathbb{R}^{2}:\left|T_{1} f(x)\right|>\lambda\right\}\right| \leqslant C \lambda^{-1}\|f\|_{1} \tag{8.1}
\end{equation*}
$$

since K_{1}, D_{t} and r_{1} satisfy all the requirements needed in the proof. We note that $T_{1} f(x)=T f_{Q}(Q x)$, where $f_{Q}(x)=f\left(Q^{-1} x\right)$. Using this and changing variables in (8.1), we can see that T is of weak-type $(1,1)$.

Appendix A

A.1. Proof of (2.7) from Proposition 2.1

First, by dilation invariance we may assume that $c \leqslant \sum|B| \leqslant 1$ in (2.7) for some constant $c>0$. For $s>C$, we decompose K_{0} as $K_{0}=H^{(s)}+L^{(s)}$ with $L^{(s)}=K_{0} \chi_{\left\{\left|K_{0}\right| \leqslant 2^{\epsilon s / 2}\right\}}$, where ϵ is as in Proposition 2.1. Then we have to prove

$$
\begin{align*}
& \left|\left\{\sum_{s>C}\left|\sum_{B} \psi_{2^{s} B}\left(b_{B} * S_{k(B)+s} H^{(s)}\right)\right|>\frac{1}{6}\right\}\right| \leqslant C_{1}, \tag{A1}\\
& \left|\left\{\sum_{s>C}\left|\sum_{B} \psi_{2^{s} B}\left(b_{B} * S_{k(B)+s} L^{(s)}\right)\right|>\frac{1}{6}\right\}\right| \leqslant C_{1} \tag{A2}
\end{align*}
$$

for some positive constant C_{1}. The estimates (A 1) and (A 2) imply (2.7). The estimate (A 1) follows from

$$
\begin{equation*}
\left\|\sum_{s>C}\left|\sum_{B} \psi_{2^{s} B}\left(b_{B} * S_{k(B)+s} H^{(s)}\right)\right|\right\|_{1} \leqslant C \tag{A3}
\end{equation*}
$$

by Chebyshev's inequality. To see this, we note that the estimates (2.1) and (2.5) imply

$$
\begin{equation*}
\left\|\psi_{2^{s} B}\left(b_{B} * S_{k(B)+s} H^{(s)}\right)\right\|_{1} \leqslant C|B|\left\|H^{(s)}\right\|_{1} \tag{A4}
\end{equation*}
$$

Since

$$
\sum_{s>C}\left\|H^{(s)}\right\|_{1} \leqslant C\left\|K_{0}\right\|_{L \log L}=C
$$

(2.8) and (A 4) imply (A 3).

To prove (A 2) we note that $\left|\bigcup_{s>C} E_{s}\right| \leqslant C$. Thus, by Chebyshev's inequality it suffices to show that

$$
\begin{equation*}
\left\|\sum_{s>C}\left|\sum_{B} \psi_{2^{s} B}\left(b_{B} * S_{k(B)+s} L^{(s)}\right)\right|\right\|_{L^{p}\left(F^{\mathrm{c}}\right)} \leqslant C \tag{A5}
\end{equation*}
$$

where $F=\bigcup_{s>C} E_{s}$. The estimate (A 5) follows from

$$
\begin{equation*}
\left\|\sum_{B} \psi_{2^{s} B}\left(b_{B} * S_{k(B)+s} L^{(s)}\right)\right\|_{L^{p}\left(E_{s}^{c}\right)} \leqslant C 2^{-\epsilon s / 2} \tag{A6}
\end{equation*}
$$

by the triangle inequality. We can prove (A 6) by Proposition 2.1 with $f_{B}=L^{(s)}$ for all B, since

$$
\left(\sum_{B}|B|\left\|L^{(s)}\right\|_{2}^{2}\right)^{1 / 2} \leqslant C\left\|L^{(s)}\right\|_{2} \leqslant C 2^{\epsilon s / 2}
$$

A.2. Proof of Lemma 2.3

We prove

$$
\begin{align*}
\left\|\sum_{B \in \mathcal{B}} \psi_{B, S}\right\|_{1} & \leqslant C 2^{\gamma s}|S| \tag{A7}\\
\left\|\sum_{B \in \mathcal{B}} \psi_{B, S}\right\|_{\mathrm{BMO}} & \leqslant C s 2^{\gamma s}|S| \tag{A8}
\end{align*}
$$

where BMO is the space defined by using the balls with respect to the function r. The estimates (A 7) and (A 8) imply the conclusion of Lemma 2.3, since we have

$$
|\{|f|>\lambda\}| \leqslant C \exp \left(-A \lambda /\|f\|_{\mathrm{BMO}}\right)\|f\|_{1} / \lambda
$$

for some $A>0$, which follows from the John-Nirenberg inequality [8].
Proof of (A 7) is straightforward:

$$
\left\|\sum_{B \in \mathcal{B}} \psi_{B, S}\right\|_{1} \leqslant \sum_{B \in \mathcal{B}}\left\|\psi_{B, S}\right\|_{1} \leqslant C \sum_{B \in \mathcal{B}} 2^{\gamma s}|S||B| \leqslant C 2^{\gamma s}|S|
$$

where the last inequality follows from (2.8).
To prove (A 8), it suffices to show that

$$
\sup _{R} \sum_{B} \mathcal{O}_{R}\left(\psi_{B, S}\right) \leqslant C s 2^{\gamma s}|S|
$$

where

$$
\mathcal{O}_{R}(f)=|R|^{-1} \int_{R}\left|f-f_{R}\right|, \quad f_{R}=|R|^{-1} \int_{R} f
$$

Fix a ball $R=B\left(x_{R}, u\right)$. Take $i \in \mathbb{Z}$ such that $2^{i} \leqslant u<2^{i+1}$.

Case $1(\boldsymbol{i} \geqslant \boldsymbol{k}(\boldsymbol{B})+\boldsymbol{s})$. If $\mathcal{O}_{R}\left(\psi_{B, S}\right) \neq 0$, then $R \cap C 2^{s} B \neq \emptyset$ for some $C>0$, and hence

$$
r\left(x_{B}-x_{R}\right) \leqslant C\left(u+2^{k(B)+s}\right) \leqslant C u
$$

which implies $B \subset C R$. Therefore, since $\mathcal{O}_{R}\left(\psi_{B, S}\right) \leqslant C|R|^{-1} 2^{\gamma s}|B||S|$, we have

$$
\sum_{B: i \geqslant k(B)+s} \mathcal{O}_{R}\left(\psi_{B, S}\right) \leqslant C \sum_{B \subset C R}|R|^{-1} 2^{\gamma s}|S||B| \leqslant C 2^{\gamma s}|S|
$$

Case $2(\boldsymbol{k}(\boldsymbol{B})+\boldsymbol{s}-\boldsymbol{\delta} s<\boldsymbol{i}<\boldsymbol{k}(\boldsymbol{B})+\boldsymbol{s})$. If $\mathcal{O}_{R}\left(\psi_{B, S}\right) \neq 0$, there exists x such that $r\left(x-x_{R}\right)<u$ and $r\left(A_{2^{-k(B)-s}}\left(x-x_{B}\right)-x_{S}\right) \leqslant C 2^{-\delta s}$. Thus,

$$
\begin{aligned}
r\left(x_{B}+A_{2^{k(B)+s}} x_{S}-x_{R}\right) & \leqslant C_{0} r\left(x-x_{R}\right)+C_{0} r\left(x_{B}+A_{2^{k(B)+s}} x_{S}-x\right) \\
& \leqslant C\left(u+2^{k(B)+s-\delta s}\right) \\
& \leqslant C u
\end{aligned}
$$

where C_{0} is as in statement (ii) of $\S 1$. It follows that $B+A_{2^{k(B)+s}} x_{S} \subset C R$, where $B+a=\{x+a: x \in B\}, a \in \mathbb{R}^{n}$. For $j \in \mathbb{Z}$, define a family of disjoint balls

$$
\mathcal{I}_{j}=\left\{B \in \mathcal{B}: \mathcal{O}_{R}\left(\psi_{B, S}\right) \neq 0, k(B)=j\right\}
$$

Then

$$
\begin{aligned}
\sum_{B: k(B)+s-\delta s<i<k(B)+s} \mathcal{O}_{R}\left(\psi_{B, S}\right) & \leqslant C \sum_{i-s<j<i-s+\delta s} \sum_{B \in \mathcal{I}_{j}}|R|^{-1} 2^{\gamma s}|B||S| \\
& \leqslant C \sum_{i-s<j<i-s+\delta s}|R|^{-1} 2^{\gamma s}\left|C R-A_{2^{j+s}} x_{S}\right||S| \\
& \leqslant C \delta s 2^{\gamma s}|S|
\end{aligned}
$$

Case $\mathbf{3}(\boldsymbol{k}(\boldsymbol{B}) \leqslant \boldsymbol{i} \leqslant \boldsymbol{k}(\boldsymbol{B})+\boldsymbol{s}-\boldsymbol{\delta} \boldsymbol{s})$. As in Case 2 we have

$$
r\left(x_{B}+A_{2^{k(B)+s}} x_{S}-x_{R}\right) \leqslant C 2^{k(B)+s-\delta s}
$$

if $\mathcal{O}_{R}\left(\psi_{B, S}\right) \neq 0$. This implies

$$
B+A_{2^{k(B)+s}} x_{S} \subset B\left(x_{R}, C 2^{k(B)+s-\delta s}\right)
$$

Thus, we have

$$
\operatorname{card}\left(\mathcal{I}_{j}\right) 2^{\gamma j} \leqslant C 2^{\gamma(j+s-\delta s)}
$$

if $j \leqslant i \leqslant j+s-\delta s$, where \mathcal{I}_{j} is as above. Since $\mathcal{O}_{R}\left(\psi_{B, S}\right) \leqslant C$, it follows that

$$
\begin{aligned}
\sum_{B: k(B) \leqslant i \leqslant k(B)+s-\delta s} \mathcal{O}_{R}\left(\psi_{B, S}\right) & \leqslant \sum_{i-s+\delta s \leqslant j \leqslant i} \sum_{B \in \mathcal{I}_{j}} \mathcal{O}_{R}\left(\psi_{B, S}\right) \\
& \leqslant C \sum_{i-s+\delta s \leqslant j \leqslant i} \operatorname{card}\left(\mathcal{I}_{j}\right) \\
& \leqslant C s 2^{\gamma s}|S|
\end{aligned}
$$

Case $4(i<k(B))$. As in Case 3 we have $\operatorname{card}\left(\mathcal{I}_{j}\right) \leqslant C 2^{\gamma s}|S|$ for $j>i$. Now we have

$$
\mathcal{O}_{R}\left(\psi_{B, S}\right) \leqslant|R|^{-2} \iint_{R \times R}\left|\psi_{B, S}(x)-\psi_{B, S}(y)\right| \mathrm{d} x \mathrm{~d} y
$$

Note that

$$
\left|\psi_{B, S}(x)-\psi_{B, S}(y)\right| \leqslant C\left|A_{u_{S}^{-1} 2^{-k(B)-s}}(x-y)\right| \leqslant C 2^{(\delta s-k(B)-s+i) / \beta_{1}}
$$

for $x, y \in R$, where β_{1} is as in statement (v) of $\S 1$. Therefore,

$$
\begin{aligned}
\sum_{B: k(B)>i} \mathcal{O}_{R}\left(\psi_{B, S}\right) & \leqslant \sum_{j>i} \sum_{B \in \mathcal{I}_{j}} \mathcal{O}_{R}\left(\psi_{B, S}\right) \\
& \leqslant C \sum_{j>i} \operatorname{card}\left(\mathcal{I}_{j}\right) 2^{(\delta s-j-s+i) / \beta_{1}} \\
& \leqslant C 2^{\gamma s}|S|
\end{aligned}
$$

Combining results in Cases 1-4, we have (A 8).

A.3. Proof of Proposition 2.1 from Proposition 2.2 and Lemma 2.3

For $B \in \mathcal{B}$ and a constant $D>0$, let

$$
h(B)=\operatorname{card}\left(\left\{B^{\prime} \in \mathcal{B}: C_{0} D 2^{s} B \subset C_{0} D 2^{s} B^{\prime}\right\}\right)
$$

where \mathcal{B} is as in Proposition 2.1 and C_{0} is as in statement (ii) of $\S 1$. Note that

$$
\left|\bigcup_{h(B) \geqslant s^{3} 2^{\gamma s}} D 2^{s} B\right| \leqslant\left|\left\{\sum_{B \in \mathcal{B}} \chi_{C_{0} D 2^{s} B} \geqslant s^{3} 2^{\gamma s}\right\}\right| \leqslant C 2^{-\epsilon s^{2}}
$$

for some $\epsilon>0$, where the last inequality follows from Lemma 2.3 with $S=B\left(0,2 C_{0} D\right)$. We can put $E_{s}=\bigcup_{h(B) \geqslant s^{3} 2^{\gamma s}} D 2^{s} B$ in Proposition 2.1.

Let

$$
\mathcal{B}_{\ell}=\left\{B \in \mathcal{B}: \ell 2^{\gamma s} \leqslant h(B)<(\ell+1) 2^{\gamma s}\right\}
$$

for $\ell=0,1, \ldots, s^{3}-1$. We show that \mathcal{B}_{ℓ} satisfies (2.11) in place of \mathcal{B} if D is large enough. Then, if we also take D satisfying $D>d_{1}$, where d_{1} is as in the definition of ψ_{B}, by the definition of E_{s} the estimate (2.10) follows from s^{3} applications of (2.12) and the triangle inequality.

Let

$$
\mathcal{B}^{x}=\left\{B \in \mathcal{B}_{\ell}: x \in D 2^{s-1} B\right\}
$$

for an arbitrary x and the constant D satisfying $D / 2 \geqslant C_{1}$, where C_{1} is as in Proposition 2.2. We show that $\operatorname{card}\left(\mathcal{B}^{x}\right) \leqslant C 2^{\gamma s}$. We may assume that $\mathcal{B}^{x} \neq \emptyset$. Let B_{0} have the minimal radius $2^{j_{0}}$ in \mathcal{B}^{x} and let B_{1} have the maximal radius $2^{j_{1}}$ in \mathcal{B}^{x}. For $j_{0} \leqslant j \leqslant j_{1}$, we note that

$$
\begin{equation*}
\operatorname{card}\left(\left\{B \in \mathcal{B}^{x}: k(B)=j\right\}\right) \leqslant C 2^{\gamma s} \tag{A9}
\end{equation*}
$$

Take $m \in \mathbb{Z}$ such that $2^{m-1}<C_{0}^{2} \leqslant 2^{m}$. Suppose that $j_{1}>j_{0}+2+m$. Then we have

$$
\begin{equation*}
h\left(B_{0}\right) \geqslant h\left(B_{1}\right)+\operatorname{card}\left(\left\{B \in \mathcal{B}^{x}: j_{0}+2+m \leqslant k(B)<j_{1}\right\}\right) \tag{A10}
\end{equation*}
$$

To show this, let $x \in D 2^{s-1} B_{0} \cap D 2^{s-1} B, B=B\left(z, 2^{j}\right), j_{0}+2+m \leqslant j<j_{1}, B_{0}=$ $B\left(w, 2^{j_{0}}\right)$. If $y \in C_{0} D 2^{s} B_{0}$, then

$$
\begin{aligned}
r(y-z) & \leqslant C_{0}^{2} r(y-w)+C_{0}^{2} r(w-x)+C_{0} r(x-z) \\
& \leqslant C_{0}^{3} D 2^{j_{0}+s}+C_{0}^{2} D 2^{j_{0}+s-1}+C_{0} D 2^{j+s-1} \\
& \leqslant C_{0}^{3} D 2^{j_{0}+s+1}+C_{0} D 2^{j+s-1} \\
& \leqslant C_{0} D 2^{j+s}
\end{aligned}
$$

which implies $C_{0} D 2^{s} B_{0} \subset C_{0} D 2^{s} B$. Similarly, this argument implies $C_{0} D 2^{s} B_{0} \subset$ $C_{0} D 2^{s} B_{1}$. Thus, if $C_{0} D 2^{s} B_{1} \subset C_{0} D 2^{s} B^{\prime}$, then

$$
C_{0} D 2^{s} B_{0} \subset C_{0} D 2^{s} B_{1} \subset C_{0} D 2^{s} B^{\prime}
$$

From these results (A 10) follows. By (A 10) we have

$$
\operatorname{card}\left(\left\{B \in \mathcal{B}^{x}: j_{0}+2+m \leqslant k(B)<j_{1}\right\}\right) \leqslant h\left(B_{0}\right)-h\left(B_{1}\right) \leqslant 2^{\gamma s}
$$

Combining this with (A 9), we have $\operatorname{card}\left(\mathcal{B}^{x}\right) \leqslant C 2^{\gamma s}$ as claimed.

A.4. Proof of (3.10)

By interpolation and duality, to prove (3.10) it suffices to show the claim with $q=\infty$. To achieve this, by the positivity of the operator we may assume that F is identically equal to 1 . Therefore, we must show that

$$
\left\|2^{-\gamma s} \sum_{B \in \mathcal{B}} \psi_{2^{s} B}^{+} T_{B}^{+} \psi_{2^{s} B}^{+}\right\|_{p} \leqslant C
$$

Since we are assuming $C_{1} \geqslant d_{2}$, where C_{1} is as in (2.11) and d_{2} is as in the definition of ψ_{B}^{+}, by (2.11) and Hölder's inequality we have

$$
\begin{equation*}
2^{-\gamma s} \sum_{B \in \mathcal{B}} \psi_{2^{s} B}^{+} T_{B}^{+} \psi_{2^{s} B}^{+} \leqslant C 2^{-\gamma s / p}\left(\sum_{B \in \mathcal{B}}\left(T_{B}^{+} \psi_{2^{s} B}^{+}\right)^{p}\right)^{1 / p} \tag{A11}
\end{equation*}
$$

Since $\left\|T_{B}^{+} F\right\|_{p} \leqslant C\|F\|_{p}$ uniformly in B by (3.8) and Minkowski's inequality, using the pointwise estimate (A 11), we see that

$$
\begin{aligned}
\left\|2^{-\gamma s} \sum_{B \in \mathcal{B}} \psi_{2^{s} B}^{+} T_{B}^{+} \psi_{2^{s} B}^{+}\right\|_{p} & \leqslant C 2^{-\gamma s / p}\left(\sum_{B \in \mathcal{B}}\left\|T_{B}^{+} \psi_{2^{s} B}^{+}\right\|_{p}^{p}\right)^{1 / p} \\
& \leqslant C 2^{-\gamma s / p}\left(\sum_{B \in \mathcal{B}}\left\|\psi_{2^{s} B}^{+}\right\|_{p}^{p}\right)^{1 / p} \\
& \leqslant C 2^{-\gamma s / p}\left(\sum_{B \in \mathcal{B}} 2^{s \gamma}|B|\right)^{1 / p} \\
& \leqslant C
\end{aligned}
$$

where the last inequality follows from (2.8). This completes the proof of (3.10).

References

1. A. P. Calderón, Inequalities for the maximal function relative to a metric, Studia Math. 57 (1976), 297-306.
2. A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Adv. Math. 16 (1975), 1-64.
3. M. Christ, Weak-type (1,1) bounds for rough operators, Annals Math. 128 (1988), 1942.
4. M. Christ and J. L. Rubio de Francia, Weak-type (1,1) bounds for rough operators, II, Invent. Math. 93 (1988), 225-237.
5. D. FAN and S. Sato, Weighted weak-type $(1,1)$ estimates for singular integrals and Littlewood-Paley functions, Studia Math. 163 (2004), 119-136.
6. S. Hofmann, Weak $(1,1)$ boundedness of singular integrals with nonsmooth kernel, Proc. Am. Math. Soc. 103 (1988), 260-264.
7. S. Hofmann, Weighted weak-type $(1,1)$ inequalities for rough operators, Proc. Am. Math. Soc. 107 (1989), 423-435.
8. R. Long, Z. Shen and Y. Yang, Weighted inequalities concerning maximal operator and \#-operator on spaces of homogeneous type, Approx. Theory Applicat. 1 (1985), 53-72.
9. N. Rivière, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243-278.
10. S. SATO, Some weighted weak type estimates for rough operators, Math. Nachr. 87 (1997), 211-240.
11. S. Sato, Estimates for singular integrals along surfaces of revolution, J. Austral. Math. Soc. 86 (2009), 413-430.
12. A. SEEGER, Singular integral operators with rough convolution kernels, J. Am. Math. Soc. 9 (1996), 95-105.
13. A. Seeger and T. Tao, Sharp Lorentz space estimates for rough operators, Math. Annalen 320 (2001), 381-415.
14. E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Am. Math. Soc. 84 (1978), 1239-1295.
15. T. TaO, The weak-type $(1,1)$ of $L \log L$ homogeneous convolution operator, Indiana Univ. Math. J. 48 (1999), 1547-1584.
16. A. Vargas, Weighted weak-type $(1,1)$ bounds for rough operators, J. Lond. Math. Soc. (2) 54 (1996), 297-310.
