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SUMMARY We can model embedded systems as hybrid systems.
Moreover, they are distributed and real-time systems. Therefore, it is im-
portant to specify and verify randomness and soft real-time properties. For
the purpose of system verification, we formally define probabilistic linear
hybrid automaton and its symbolic reachability analysis method. It can
describe uncertainties and soft real-time characteristics.
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1. Introduction

As ubiquitous computing has progressed, systems are em-
bedded in widespread environments. Then it is important
to guarantee their formal correctness, for instance, safety,
reliability, dependability, randomization, and soft real-time
properties.

In this paper, we propose the formal verification of
probabilistic hybrid systems. Probabilistic hybrid systems
are digital real-time systems that embedded in analog envi-
ronment and exhibit probabilistic characteristics.

There have been several formal verification methods
based on automaton models as follows:

1. Symbolic model-checking procedure and its imple-
mentation HYTecH for linear hybrid automata have
been developed using manipulating and simplifying
R, £, +)-formulae [1].

2. For probabilistic timed automata [5], zone-based sym-
bolic model checking algorithms and tool Prism have
been presented [4].

3. Reachability for probabilistic rectangular automata has
been mentioned in [6], but the verification methods for
general class of probabilistic hybrid automata have not
been developed.

We consider probabilistic linear hybrid automata, an
extension of linear hybrid automata [1] with discrete proba-
bility distributions or probabilistic timed automata [4] with
continuous dynamics. This model contains probabilistic
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rectangular automata [6], moreover, our reachability anal-
ysis method differs from [6] on the point that J. Sproston
[6] generates a finite-state reachability graph, but our ap-
proach uses symbolic computation of logical formulae with-
out graph construction.

To verify probabilistic hybrid systems, we define the
polyhedron labeled by probability as the data structure. And
we collectively compute state transitions by the symbolic
operations.

Probabilistic linear hybrid automata can model uncer-
tain behaviors such as statistical estimates regarding the en-
vironment in which a system is embedded. And its verifi-
cation and performance evaluation allow for soft real-time
quantitative properties.

This paper is organized as follows: In Sect. 2, we define
probabilistic linear hybrid automata and some preliminary
concepts and notations. Section 3 defines the reachability
problem of probabilistic linear hybrid automata. The sym-
bolic reachability analysis method and trial examples are
presented in Sect.4, and case study of industrial applica-
tion is Sect.5 using prototype tool. Finally, in Sect. 6, we
conclude this paper.

2. Probabilistic Linear Hybrid Automata

Probabilistic linear hybrid automata are defined in this sec-
tion as our model for probabilistic-nondeterministic real-
time and hybrid systems. This system description language
is an extended linear hybrid automaton [1] by discrete prob-
ability distributions.

2.1 Preliminaries

In preparation, we define basic concepts as follows:

Linear constraints Let i be a vector of real-valued vari-
ables. A linear term over i is a linear combination of vari-
ables from # with integer coefficients. A linear inequality
over i is an inequality between linear terms over &. A con-
vex linear formula over il is a finite conjunction of linear in-
equalities over il. A linear formula over i is a finite boolean
combination of linear inequalities over #Z. Let c1£(#) and
1£(i) be the set of convex linear formulae over i and the set
of linear formulae over i, respectively.

Distributions A discrete probability distribution over a
finite set Q is a function p 0 - [0,1] such that
2qe0 P(q) = 1. Let support(p) be the subset of Q such that
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support(p) = {g | p(q¢) > 0}. For a possibly uncountable
set O, let Dist(Q’) be the set of distributions over finite

subsets of ('.
2.2 Syntax

First, we define the syntax of probabilistic linear hybrid au-
tomata.

Definition 1: A probabilistic linear hybrid automaton
PLHA = (X, L, init, inv, dif,, prob, (grd)),.; , E) consists of the
following components:

Data variables Let ¥ be the finite vector (xj, xo,...,X,)
called real-valued data variables.

A point § = (s1,...,s,) € R" is referred to as a data state,
or, equivalently, a valuation of data variables. The convex
linear formula f € clf(¥) defines the convex polyhedron
[f1 € R", where [f]] = {§| f[X := §] is true.}. A polyhe-
dron is a finite union of convex polyhedra.

For each data variable x;, we use the dotted variable x; to
denote the first derivative of x;. For data variables ¥, we
use the primed variable ¥ to denote the new value of ¥ after
a transition. Let updated variables X be the subset of ¥,
similarly, X’ C #'.

Control locations L is a finite set of control locations.

A state (1, 5) of the automaton PLHA consists of a control
location /[ € L and a valuation § € R". §, is the set of data
states at location I. A region R = | ;e {({, S )} is a collection
of polyhedron S; C R" with respect to each control location
l € L. A predicate 1 = ;e {(l, f1)} is a collection of linear
formula f; € clf(X). The predicate 7 defines the region

7] = Use A [LAD)-

Initial state init = (ly, 5p) is an initial state of the prob-
abilistic linear hybrid automaton, where [y € L is an initial
node, a single point 5, € R” is an initial value.

Locations invariants  The function inv : L — cl£(%)
assigns invariant condition to each location. The control of
the automaton PLHA may reside in the location / only as long
as the invariant inv(l) is true (5 € [inv(D]).

Continuous flows dif : L — clf()?) is a labeling function
assigning flows to locations. The flows constrain the rates
at which the values of data variables change: while the au-
tomaton control resides in the location /, the values of first
derivatives of all data variables stay within the differential
inclusion § € [dif (D)].

The probabilistic linear hybrid automaton PLHA is time-
nondeterministic if there exists a location / € L such that
[dif (1)] is not a single point.

Discrete probability distributions The function prob :

L — 2;;15“2‘““()“}( D) assigning to each location a finite,
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non-empty set of discrete probability distributions prob(l) =
pl. . pl " € Dist(2¥ x clf(¥ W X') X L).

Enabling conditions  The family of functions (grd,),,,
where for any I € L, grd; : prob(l) — clf() assigns an
enabling condition (or guard) to each p; € prob(l) at [ €
L. Tt may happen that the intersection of multiple guards
is not empty. In such a case, nondeterminism on selecting
probability distributions arises, i.e. there are a number of
possibilities. We solve this by the adversary. We will explain
the concept of the adversary in Sect. 2.3.1.

Probabilistic edges  For each | € L,p| = p €
prob(l),grd,(p) = g, we define the probabilistic edges
e = (I,g, p, X, updt, ') by discrete probability distributions,
where X C X, updt € cL£(Xw X'), I’ € L. Let E be the finite
set of probabilistic edges such that E = {e | p(X, updt,l') >
0}.

An update is a convex linear formula updt over the set 20X,
The action of the update updt is the convex linear formula
over the set X W ¥, act = updt A (\epx(x; = x;)), all
data variables that are not updated remain unchanged. In
other words, the update updt defines a function act : R" —
clf(®) from valuations to convex linear formulae over X'.
For all valuations §, 5 € R", let § € [act(] iff act[X, ¥ :=
5,5 is true.

2.2.1 Examples

We will show some simple example as follows:

We consider probabilistic linear hybrid automaton as
shown in Fig. 1 and its formal description is below. Guard
is assigned to the distribution, and both update formula and
the probability are assigned to the edge.

PLHA = (X, L, init, inv, dif , prob, (grd)),.; , E)

o X={x,yl,

o L={l,h),

e inv(l))=(1 <y<2), invb) =y =0),

o dif(l)) = (1 < x<2A1 <y <2),df(h) =(Kx=

Iny=2),

prob(ly) ={py,}, prob(h) = {py}

e grd(p,)=(x<3),

o prxyh,x’ 2 1Ay =x,01)=06, p,(0,-,1})
=04,
Plz((b, -, 12) =1.

In Fig.1, the initial state init is (1, x = 0 Ay = 1)
First, time passes in location 1 or the location changes. If
time passes, the values of data variables change at the rate
(1 <X <2A1 <y <2). Location might change if the
guard (x < 3) of the distribution is satisfied. If the location
changes, the variables are updated according to the action
formula of the edge. For example, the transition to location
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Fig.1  Probabilistic linear hybrid automaton.

2 with the probability 0.6 updates the values of data vari-
ables according to (x” > 1 Ay’ = x).

We verify whether the automaton reaches the target
from the initial state or not by tracing transitions. For exam-
ple, if the targetis (/, 1 < x < 2A2 < y < 3), it is possible to
reach the target from the initial state init = (I;,x = 0Ay = 1)
with probability 0.6 as follows:

(I, x=0Ay=1)

passage of one time unit under (x =2 Ay =2)
>, x=2Ay=2)

transition to L, under (x' =2 Ay’ =2)

with probability 0.6
>, x=2Ay=2)

We can specify probabilistic hybrid systems, which are
reactive systems that intermix discrete and continues com-
ponents with randomization, using probabilistic linear hy-
brid automata. Typical examples are digital controllers that
interact with continuously changing physical environments,
the steam boiler shown in Sect. 5 is the one. Because prob-
abilistic linear hybrid automata can describe the probability,
statistical information such as the reliability of the switch
can be described, too. Moreover, reset of the values can be
described by update formula.

2.3 Semantics
2.3.1 Concurrent Probabilistic Systems

Next, we define concurrent probabilistic systems as a se-
mantic model.

Definition 2: A concurrent probabilistic system is a tuple
CPS = (Q, %, Steps) where:

e (is a set of states;

e X is aset of events;

o Steps : Q — 221t g 4 function which assigns to
each state a non-empty set Steps(q) of pairs (o, u) €
2~ x Dist(Q) comprising an event and a distribution on

0.

A probabilistic transition q 4 ¢’ is made from a state g
by nondeterministically selecting an event-distribution pair
(o, w) € Steps(q), and then making a probabilistic choice of
target state ¢’ according to y, such that u(g’) > 0.
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An execution of a concurrent probabilistic system is
represented by a path w, that is, a non-empty sequence of

.. T0.Ho 01,41 02,42

transitions w = gop — ¢ — ¢q» — ---. We denote
by w(i) the ith state of a path w, step(w, i) the ith transition
of w, |w| the length of w and if w is finite, the last state by
last(w). We say that a finite path w® of length k (< |w)|)
is a prefix of w if W®(@) = w(@) forall 0 < i < k, and
step(w®, i) = step(w, ) forall 0 < i < k—1. Pathg, is the
set of all finite paths.

Event-distribution pair (o,u) € Steps(q), is nonde-
terministically chosen. According to the general technique
[9]-[11], we represent concurrency by the nondeterministic
choice.

We now introduce adversaries of concurrent probabilistic
system as functions which resolve all of the nondetermin-
istic choices of the model.

Definition 3: (Adversaries) A deterministic adversary
(or scheduler) of concurrent probabilistic system is a func-
tion A : Pathg, — X xDist(Q) which assigns to each finite
path w € Pathg, an event-distribution pair (o, u) determin-
istically such that A(w) € Steps(last(w)).

For an adversary (A, we define Path]ff.'(l to be the set of finite

paths such that step(w,k) = Aw®) for all 0 < k < |wl.
Pathgfl means the one (deterministic) computation tree la-
beled by probabilities. Let Adv be the set of adversaries.

An adversary decides the nondeterministically select-
ing performed event-distribution pairs in concurrent proba-
bilistic system. Therefore, given an adversary, the nonde-
terministic model under the adversary can be described by a
deterministic model.

With each adversary, we associate a sequential markov
chain, which can be regarded as a set of paths in concur-
rent probabilistic system. Formally, if A is an adversary,
then MC? is a markov chain.

Definition 4: (Markov Chains) An infinite-state Markov
chain which corresponds to A is MC? = (Path;: P,
where:

e A set of states of MC? is Pathj“,?f1 )
e PR PathﬁxPatth;: — [0, 11is a transition probability
matrix, such that:

PA(w, ) = { K@ I Alw) =(oyp) and o' = w o
’ 0 otherwise.

Definition 5: (Probabilities over Paths) Let P be the
mapping inductively defined on the length of paths in Parh};‘1

as follows. If |w| = 0, then PN w’) = 1. If |w| > 0 and o’ =
T

w — q for some w € Pathj?}l, then we let:

P W) = PN w) - PN w, o).

NI | -El ectronic Library Service



Institute of Electronics, Infornmation, and Conmunication Engi neers

MUTSUDA et al.: SYMBOLIC REACHABILITY ANALYSIS OF PROBABILISTIC LINEAR HYBRID AUTOMATA

2.3.2 Semantics of Probabilistic Linear Hybrid Automata

The following notation ([6]) is used to reason about the next
states of the probabilistic edges of PLHA. For the distribution
p, if support(p) = {(X',updt',l'"), (X2, upd®,I'*),...,
(X", updf™, ')}, then we let the tuple of actions
extract(p) = (act',act?,...,act™) and generate the tuple
of valuations (v) = (@, %, ..., 0" in the following way: for
each 1 < j < m, we choose a valuation # € R” such that
¥ € [act(5)']. Observe that, for any 1 < i,j < m such
that i # j, it may be the case that [act(5)'] and [act(5)’]
have non-empty intersection, and therefore it is possible
that ¥ = &, where # € [act(5)'] and & € [act(5)']. Let
Combinations(s, extract(p)) be the set of all such tuples
(v) for a given state (/, §) and the distribution p.

Definition 6: The concurrent probabilistic system
CPSprua = (QOprua, ZpPLHA, StepsPLHA) ofpr()babilistic linear
hybrid automaton PLHA is defined as following infinite-state
transition system:

e Opaa C© L x R" is the set of states, defined such that
(1,5) € Qe If §€ [inv(D];

e Yo = Ry is the set of events. CPSppy, is not event-
driven system using the alphabet but a time-driven sys-
tem that uses time as a trigger. Therefore, time be-
comes an event;

e For each state (1,5) € Qpim, let Stepspua((,5)) =
Cont(l, 5) U Disc(l,5) be the smallest set of event-
distribution pairs such that:

— Time transition for each duration 6 € Ry,
there exists (6,uqp) € Cont(l,5) such that
Ha){, &) = 1if and only if either

1.6=0and § =5, or
2. 6> 0and &£ € [dif D]);

— Discrete transition
Disc(l, s) = U peproby Disc(l, 5, p), where for each
distribution p € prob(l), if § € [grd,(p)], then,
for each (v) € Combinations(s, extract(p)),
there exists the pair (0, 4, ) € Disc(l, 8, p) such

that
ups§) = Y, p(Xupdd, ). )
il nt=|§upport(p)\}
&I'=1&3S =0

Expression (1) resolves the case of probabilities summation
as the same way [4], [6].

An adversary chooses the event-distribution pair
(0, 1) € Stepsp (L, ) = Cont(l, §) U Disc(l, 5) that can be
performed in CPSprys. In other words, it chooses one from
various possibilities as follows. At any time, if the system is
in a location, then the system can either remain in its current
location and let time advance, or make a discrete transition if
there exists a distribution. Discrete transitions are instanta-
neous and consist of the two steps performed in succession:
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firstly, the system makes a nondeterministic choice between
the set of distributions. Secondly, supposing that the dis-

tribution is chosen, the system then makes a probabilistic
transition according to the distribution. In this nondetermin-
istic choice between the set of event-distribution pairs, if we
define an adversary, the nondeterministic model under the
adversary can be described by a deterministic model.

3. Reachability Problem

We now formally define our reachability problem.

Definition 7: (Probabilistic Reachability Problem)
Given a probabilistic linear hybrid automaton PLHA =
(%, L, init, inv, dif, prob, (grd)),.;, E), let T be a predicate
called the target, let Je{>, >}, and let A € [0, 1] be the tar-
get probability. Then probabilistic reachability problem for
PLHA can be defined as the tuple (T, 3, 1), the answer to this
problem is “YEs, reachable” if and only if there exists an
adversary A € Adv of CPSpry, (or, equivalently, a series of
nondeterministic choices) and a path w € Path;; starting in
an initial state of PLHA init = (ly, §p) such that last(w) in
(LA € [T] with probability (over path) 3 A, and “No”
otherwise.

We now review two subclasses of reachability properties:
time bounded reachability and invariance which are partic-
ularly relevant for the verification and the performance eval-
uation of probabilistic real-time and hybrid systems [5], [6].

About the former, PLHA has certain time deadlines. On
the other hand, about the latter, PLHA is required that does
not leave an invariant region [Z]] € QOpiua, o1, equivalently,
always satisfies some properties. (e.g. [Z] as desirable or
expected region for safety property).

4. Verification: Symbolic Reachability Analysis

The following extended expression is used to express the
probabilities of the transitions of CPSppya.

Definition 8: (Polyhedra labeled by Probabilities)

For a linear formula f € 1£(X) and a corresponding poly-
hedron [ f1], we define the probabilistic polyhedron (1 f], P)
to be the pair comprising a polyhedron [f] € R" and its
probability P € (0, 1].

The function plf : L — 2% aqgioning to each
location a set of probabilistic linear formulae, where a
probabilistic linear formula is the pair of a linear formula
f and its probability P such as (f,P) € 1£(¥) x (0,1].
Let [plf(D] < 2% x (0,1] be the finite set of proba-
bilistic polyhedra in the location / such that [plf())] =
{(LAL, P) | for some [fil,P > 0}. Note that, for any
(LA“D. P*). (LD, P*) € [p1£(D] such that [£A°1 = [£°],
it is the case that P4 # PP,

In the sequel, we use R = e {(Z, [P1£(D])} as a re-
gion, and a predicate m corresponding to the region R is
7t = U AL, p1E(D)}, where [[7]] = U {(, Tp1£(DT}.
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We introduce extra edge relations to deal with summing
up probabilities with respect to the same next state (cf.
Sect. 2.3.2 and expression (1)).

Definition 9: (Extra edge relations) For a set E, let &
be the set of extra probabilistic edges such that:

e U

leL,peprob(),
Acte2extract(p)

{e =, g, pr,act,l')| condition};

condition = Yact' € Act such that |Act] > 2,
V=1 and () lact@'D) # 0, where

actieAct
pr= Z p(X7, updd, 1),
actieAct

act = /\ actj.

acti€Act

All the cases of duplication of act or all the nondetermin-
istic combination in addition of probability is treated by

t t 1
2extract(p) \where notation ne means non-empty set.

We define the following precondition operators to calculate
the state transition relation in probabilistic linear hybrid au-
tomata symbolically and collectively.

4.1 Precondition Operators

We define the time-precondition operator and the discrete-
precondition operator based on the non-probabilistic prece-
dent of [1].

Non-probabilistic hybrid automata case was showed in
[1]. So, emphasis is placed on probabilities and the defi-
nition of precondition operators follows from probabilistic
transition of CPSpi s, we can define the following precondi-
tion operators according to Definition 6. Because we use the
backward algorithm later, the operations are inverse image
computations defined as follows.

Definition 10: (Time Precondition)

We write tpre(plf(l)) for the probabilistic linear for-
mula such that from any state in the corresponding region
(I, [tpre(pl£(D]) a state in (/, [p1£(D]) can be reached in
a single time transition.

tpre(plf())) = {(inv() A (36 = 0.32.
' (fi.P)eplf(l)

((S-dif D)Z := A A (fi A inu(D)[R := £+ &), P-1)).

Definition 11: (Discrete Precondition)

We write dpre(l,plf(/')) and expre(l’,plf(l')) for the
predicate, the corresponding region of states from which
a state in (/, [p1£(/')]) can be reached in a single discrete
transition according to probabilistic edges E and extra edges
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&, respectively.

dpre(/, pLE() = (@ [ J am@a

e=(Lg,p.X,updt,l')eE P
eplf(l)

A (g Aact A (fy Aino(UD[X:= X]),
P - p(X, updt, )})}.
expre(l,plf) = | ] (¢
e=(lg,pract )€€ (fy P)pLE()
{inv(D A X (g Aact A (fy A inv(ID)[R = 7)),

P-prhl.

Definition 11 enables us to calculate the state transitions that
follows the same probability distribution symbolically and
collectively. By one calculation, the length of path increases
by one, (refer to Definition 5). Since calculation of proba-
bility is multiplication, we can calculate it reversely.

Finally, we define precondition operator pre consisting of
time and discrete precondition operator. For a predicate x,
any state in the corresponding region [pre(r)] can reach
to some states in the region [n]] with single probabilistic
transitions.

Definition 12: (Precondition Operators)

pre(n) = Tpre(rm) U Dpre(rn), where
Tpre(n) = |_J{(, tpre(pl£()))),

leL

Dpre(rn) = U(dpre(l’,plf(l’)) U expre(l’,pl£())).
reL

It is well known [1]-[3] that we can solve the reacha-
bility problem by repeating inverse image computations and
calculating all the states where it can follow from the tar-
get. We use the backward algorithm, because it is said that
the backward algorithm is more efficient than the forward
algorithm. We can trace all the operation of probabilistic
linear hybrid automaton by using precondition operator pre
previously defined when we perform inverse image compu-
tations.

4.2 Symbolic Backward Reachability Analysis Procedure

We propose the symbolic backward reachability analysis
procedure as below:

Procedure SraA:
Input: a probabilistic linear hybrid automaton PLHA;
an initial state init = (I, 5p);
a target predicate
and a probabilistic requirement (T, 3, 2).
Output: YES, reachable | NO;
(aregion [Q;] which can reach [T]].)

/* Qo */

N <
1l

-~ 3
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repeat

/* computation of a region [Q;]] which can reach [T]. */
Z:=pre(Z)\Y [+ pre'\ Qi */
Y:=YU Z [* Q; */

/* judgment of reachability every time i, z is the form of
Unee (¢, p1ED)} = Uit Ui prepr e | (i PIDL */
for each z = (/,plf())ezwrtie L

if ==
for each (f;, P) € p1£(])
if 5 € [£]
ifP3A
return YES, reachable.
halt Sra
end if
end if
end for each
end if
end for each

until Z ==
Y==YUZ)

return NO.

In general, the convergence of the least fixed point, and
thus the termination of this reachability analysis procedure
is not guaranteed, as already the reachability problem for
constant-slope hybrid systems is undecidable [1], [2].

Afterwards, we transform predicates into logical for-
mulae with the aim of implementing the above procedure
by symbolic computation of logical formulae. Let [, and
P, be control variables that ranges over the set of locations
L and the set of real numbers R, respectively. The pred-

icate 7 = U {(, PLED)} = Uil U, pepre (i PID}
defines the logical formula ¢ in the following manner:

¢ = \/U =1 ApLED)

lel

:\/(1C=1/\(

leL (f1,P)epl£(l)

(finPe=P))

In precondition operators, union operators | and U are re-
placed by disjunctions \/ and Vv, respectively.

4.3 Examples
We will show some simple example as follows:

We consider probabilistic linear hybrid automaton as
shown in Fig. 1.

Probabilistic reachability problem (T, >, 0.35).

e Probabilistic linear hybrid automaton Fig. 1,
e init=U.=LAnx=0Ay=1),
e T=(U=L Al <x<2A2<Ly<3AP.=1).

2977

Predecessor calculation using quantifier elimination [1],
[12].
tpre(l1 < x<2A2<y<3AP.=1)
=(y20A (26203c,,¢cy(ci=0Acy=2:6
Al <x+c, 2A2<Zy+c, <3 Ay+c,20))
AP.=1-1)
=W=20ANE620.(1<x+d<2A2<y+26<3))
AP.=1)
=(x<2A0<y<3A-2<y-2x<1AP.=1).
see Fig.2
dpre(/. =L A1 <x<2A2Ly<3AP.=1)
==L A
(I<y<2A XY (x<3AX21Ay =x
Al<X <2A2<y <3AY 20))
AP, =1-0.6)
= (.=l An(1<yg2
AdX(x<3A1LX<2A2<x<3) A P, =0.6)
==L A2<x<3A1<y<2AP.=0.6) = ¢.
seeFig.3
pre(T) = Tpre(T) v Dpre(T)
= (=L Ax<L2AN0<Yy<3A-2<y—-2x<1AP.=1)
Vo vT
=g Ve VT

Reachability determination.

For pre? = pre(pre(T) \ T) = pre(¢, V ¢p) =
pre(¢:) V pre(¢y), cpre(¢) = (. =L Ax<3A1<
Yy<2A2x—-y<5A2y-x<2A P, =0.6)and init have
a non-empty intersection. Then probabilistic requirement is
satisfied (P, = 0.6 > 0.35), and therefore we conclude this
reachability problem with “YEs.”

The example of operation shown in Sect.2.2.1 is correctly
calculated in Figs. 2 and 3 that uses the procedure described
in Sect. 4.2. This calculation is symbolically performed.

We have implemented a prototype of verifier based on
MATHEMATICA.

a

Fig.2  Time precondition.
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Fig.3  Discrete precondition.

5. Case Study
5.1 Probabilistic Steam Boiler

We now consider the problem of modelling an industrial ap-
plication [13], [14], namely that of a steam boiler (Fig. 4),
using probabilistic linear hybrid automata. The system con-
sists of a number of physical units, namely a vessel contain-
ing an amount of water, a water pump, a series of sensors,
and a message transmission system. The vessel is continu-
ously heated in order to produce steam. The constant L de-
notes the minimal limit level of water, with U denoting the
corresponding maximal limit level. When the water level re-
mains within the normal operating interval of [Ny, N,], the
controller need not intervene. However, if the water level
falls below Ny, then the pump is switched on, and if the wa-
ter level rises above Nj, the pump is switched off.

There is the possibility of a failure in the water level
sensor [6],[15]. Given the occurrence of such a failure,
the controller uses an approximate guess of the actual wa-
ter level when deciding whether to switch the pump on or
off. Periodically, there is the possibility of the water level
sensor being repaired.

5.2 Modelling

Probabilistic linear hybrid automaton to model the steam
boiler system described above is given in Fig.5. We ease
the graphical notation by enclosing the locations in the dot-
ted boxes, and draw a single edge from each box to the lo-
cation. The variable w denotes the water level, ¢ and ¢l are
clocks, g; represents the lower bound on the current guess
on the water level, g, represents the corresponding upper
bound.

Location Off and On. When control resides in these two
locations, the value of the water level is affected by the
steam. We express the rate of change of the steam emis-
sion volume as 0 < s < e for some positive integer constant
e. In the location On the pump being on. The pump water
the vessel at any rate between 0 and p litres per time units.
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water A
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L1 | pump

Fig.4  Steam boiler.

T | sensor

U_

controller

Both location have the invariant condition ¢ < A; there-
fore, control must leave either of these locations if the value
of the clock ¢ is equal to A.

Location Urgent off and Urgent on. The purpose of the
two locations is to ease the graphical notation of probabilis-
tic linear hybrid automaton. In these locations no time is
permitted to elapse. They correspond to the controller mak-
ing estimates of the water level.

All of the distributions available in these locations reset
the guess variables, g; and g,,.

Location Off/failure and On/failure. Naturally, these
two locations correspond to the case in which the water
level sensor has failed. As the controller is now maintain-
ing an estimate of the water level, the flow conditions of the
variables representing the bounds on the guess of the water
level, g; and g, are altered to take into account the fact that
the real water level may change as time elapses.

Location Emergency stop and Shutdown. If the real wa-
ter level falls below the lower limit L or exceed the up-
per limit U, then control can pass to the terminal location
Emergency stop.

If the lower bound on the estimate of the water level is
below the lower normal water level at the same time as the
upper bound on the estimate is above the upper normal level,
then control can pass to a terminal location Shutdown.

An example run of the probabilistic steam boiler con-
trol is shown in Fig. 6. We assume that the system constants
are such that L < N;y < G; < G, < N < U, and that
the initial water level of the boiler, denoted by wy, is some
point in the interval (G, G2). When the system commences
operation, the pump is switched off.

5.3 Analysis
5.3.1 Property Description
In this paper, the property that we wish to check is

whether or not the system can reach the terminal loca-
tion (Emergency stop, Shutdown) in 10 time units have
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Shutdown

Probabilistic linear hybrid automaton for probabilistic steam boiler.

elapsed.
However,

it is possible to ignore the location

Emergency stop by doing a little arithmetic as follows; if
the amount of the steam emission volume s during A time
units is not more than N, minus L at the same time as the
amount of water absorption a during A time units is not more
than U minus N-, then the system never reaches the location
Emergency stop. Therefore, we consider only the location

Shutdown the terminal location. We note states T for which

it is possible to make a single transition in order to reach
Shutdown; we omit the actual target states (Shutdown) for

simplicity.

Finally, the probabilistic reachability property that re-
quires that the system reach the location Shutdown within
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10 time units, with the probability strictly greater than 0, can
be expressed as the tuple (T, >, 0).

Our first task is to specify the probabilities of the dis-
crete transitions of the steam boiler control. For conve-
nience, we select very simple distributions. We decide that
the possibility of a failure in the water level sensor is 0.1,
otherwise 0.9.

5.3.2 Implementation and Results

The results are as follows. “The system can reach the states
for which it is possible to make a single transition in order to
reach Shutdown within 10 time units, with probability 0.1
at 4th transition.”

This automatic analysis took about 14 minutes and up
to 100 MB memory. (Intel Pentium 4 CPU 3.00 GHz with
2.00 GB RAM under MS Windows XP OS on MATHEMATICA
5.0). MATHEMATICA can execute the commands such as quan-
tifier elimination,QE [12]. We can transform the formula
into another formula that is equivalent to the former, and
does not contain 3 by using QE. We use this QE when we
compute the tpre(), dpre(), and expre(). This is fully au-
tomated in analysis.

Here, we refer to the symbolic run (set of paths) that
has reached Shutdown, as follows.
(U, =0ffAN0<cl<1IAD<t<5A0<w<35-3¢
VI<cl<b6A-l+cl<t<5A0<w<35-31)
> . =0ffA0<w<20A0<cl<b6ALt=D5)
— (I, =UrgentonA 0<w<30A0<cl<6At=0)
— (I, =On/failure A 0 <t <5A
O<cl<5+tNg,>25+5tNg <35-3¢
V5+t<cl<10A g, > 5clAg <50-3cl)
— (I, = On/failure A
g<NIANg, >N, ANO<LSt<A=5A0<cl<10)
The probability of these paths is 0.1. Note that the
first region contains the system commences operation
init=, =0ff A w=0Ar=0Acl=0), and the last re-
gion is contained the target T.

In this paper, we regarded the states for which it is pos-
sible to make a single transition in order to reach Shutdown
as the target region. Generally, it is undesirable that the sys-
tem can enter Shutdown. So, we should remodel the de-
sign parameter of the steam boiler control to avoid the above
case.

Now, we change the parameter (initial water level wy
and guard G;) and analyze again. Then the system do not
enter the undesirable target within 10 time units in four
times transition.

6. Conclusions

In this paper, we have defined the probabilistic linear hy-
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brid automata as system modelling language, and presented
its symbolic reachability analysis method. By our method,
we will be able to handle many systems such as distributed
control systems, timed randomized protocols and so on. We
have implemented an experimental verification system us-
ing MATHEMATICA, and demonstrated that our method can
help the system designer to choose critical system param-
eters, via case study. We are now working for an abstrac-
tion/approximation method of probabilistic linear hybrid au-
tomata to handle complicated realistic problems.
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