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A New Structure for Noise and Echo Cancelers
Based on A Combined Fast Adaptive Filter Algorithm

Youhua WANGT, Kenji NAKAYAMA!" and Zhigiang MA'", Members

SUMMARY  This paper presents a new structure for noise and
echo cancelers based on a combined fast adaptive algorithm. The
main purpose of the new structure is to detect both the double-
talk and the unknown path change. This goal is accomplished
by using two adaptive filters. A main adaptive filter Fi,, adjusted
only in the non-double-talk period by the normalized LMS al-
gorithm, is used for providing the canceler output. An auxiliary
adaptive filter F, adjusted by the fast RLS algorithm, is used
for detecting the double-talk and obtaining a near optimum tap-
weight vector for F, in the initialization period and whenever
the unknown path has a sudden or fast change. The proposed
structure is examined through computer simulation on a noise
cancellation problem. Good cancellation performance and sta-
ble operation are obtained when signal is a speech corrupted by
a white noise, a colored noise and another speech signal. Sim-
ulation results also show that the proposed structure is capable
of distinguishing the near-end signal from the noise path change
and quickly tracking this change.

key words: adaptive filters, fast RLS algorithms, noise canceler,
echo canceler, double-talk detection

1. Introduction

Noise and echo cancellation problems have been very
active research fields in the recent years, due to their
variety of applications in communications, such as tele-
conference system and mobile phone system. The per-
formance of noise and echo cancelers is usually eval-
uated by two important factors — convergence speed
and residual error. In communication applications, the
impulse response of the unknown path, in which noise
or echo is transferred, is usually long and the number
of tap weights for the adaptive filter is therefore large.
Furthermore, the training signal used in these applica-
tions is often narrow-banded like speech signal. These
make the convergence performance of the normalized
LMS (NLMS) algorithm hard to be satisfactory. Seek-
ing for improvement in convergence has been the main
topic of some papers[1],[2].

The residual error is, however, closely related to the
performance of a double-talk detector. It is known that
the adjustment of the tap weights during the double-talk
period will seriously degrade the performance. The con-
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ventional method, which compares the levels between
the near-end and the far-end signals, cannot detect the
double-talk precisely since the path loss, which is sup-
posed to be known, is usually unknown. The use of two
echo path models is an attractive method without using
a double-talk detector[3],[4]. The basic idea of these
methods is to form a foreground model and a back-
ground model. The result of the background model
is transferred to the foreground model when the resid-
val echo produced by the background model is smaller.
One problem of these methods is that if there are some
correlations between the far-end and the near-end sig-
nals during the double-talk period, a smaller residual
echo model does not mean that the error of the tap-
weight vector is also smaller[5]. So the transfer of the
tap weights during this period may cause a wrong re-
sult. Another problem is that when the unknown path
changes, the use of the NLMS algorithm may not be
possible to distinguish this change from the double-talk
due to its slow convergence rate.

We have proposed a method which combines the
fast transversal filter (FTF) and the NLMS algorithms
based on a single adaptive filter structure in order to
achieve a fast convergence and stable performance with
less computation[6]. With periodic reinitialization,
the FTF algorithm can provide fast convergence and
fast tracking when the unknown system changes fast.
The degraded performance caused by the reinitializa-
tion process in the stationary state is compensated by us-
ing the NLMS algorithm. The improved performance in
system identification has been shown in Ref.[6]. How-
ever, the structure of using only one adaptive filter is
not suitable for noise and echo cancellation problems
because it is difficult to distinguish the double-talk from
the unknown path change.

In this paper, a new structure based on the com-
bined algorithm is proposed, which attempts to solve
the above mentioned problems. The main purpose of
the new approach is to detect both the double-talk and
the unknown path change. This goal is accomplished
by using two adaptive filters. A main adaptive filter
F,, adjusted only in the non-double-talk period by the
NLMS algorithm, is used for providing the canceler out-
put. An auxiliary adaptive filter F¢, adjusted by the
FTF algorithm, is used for detecting the double-talk
and obtaining a near optimum tap-weight vector for F,
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in the initialization period and whenever the unknown
path has a sudden or fast change.

The remainder of this paper is organized as follows:
The following section describes the proposed structure
and its adaptive process. In Sect. 3, a theoretical anal-
ysis of the performance is presented. Section 4 con-
tains several simulations on a noise cancellation prob-
lem. The results reveal the good performances and also
validate the performance analysis. Comparison of the
proposed method with the Sugaya’s method proposed
in Ref.[4] is also discussed.

2. A New Structure for Noise and Echo Cancella-
tion

2.1 Structure Using Double Adaptive Filters

Figure 1 shows the proposed echo and noise canceler,
which consists of two kinds of adaptive filters. One
of them is a main adaptive filter F,,, whose tap-weight
vector wy, is adjusted by the NLMS algorithm, and the
other is an auxiliary adaptive filter F¢, whose tap-weight
vector wy is adjusted by the FTF algorithm. The output
on(n) from F, is used as the canceler output. F} is used
in order to obtain fast convergence in the cases of the
initial training, unknown path change and so on. The
double-talk and the unknown path change are detected
by using the mean square error (MSE) of F denoted

e3(n). Either F, or Fy is adjusted by their own algo-
rithm. This means they are not simultaneously adjusted.

The tap-weight vectors w,, and wy can be transferred to
each other. The MSE of F,, denoted €2 (n) is compared
with €% (n) in order to select w,, or wy that should be

used.

New structure for noise and echo cancelers.

2.2 Switching Method Between NLMS and FTF Al-
gorithms

Two adaptation algorithms are switched based on the
situations, that is the double-talk, the unknown path

change and so on. These situations are detected using

e%(n). The switching scheme is summarized as follows:
(1) If e3(n) > ©, then the FTF algorithm is se-
lected.

(2) If €3(n) < ©, then the NLMS algorithm is se-
lected.

© is a prescribed threshold, which is mainly deter-
mined by experience. In Sect.4, how to determine ©
will be further discussed. Efficiency of this switching
scheme is further discussed for typical situations in the
next section.

Following the above switching method, either F,,
or Fy is adjusted. Thus, the tap-weight vectors are trans-
ferred to each other as follows:

(a) wy is transferred to w,, as the initial guess only
when the FTF algorithm is switched to the NLMS al-
gorithm and e%(n) is smaller than e2(n).

(b) w,, is transferred to w; whenever the NLMS
algorithm is implemented.

2.3 Adaptation Process

In this section, the proposed switching method is fur-
ther discussed in typical situations under which the echo
and noise cancelers are used.

(A) Initial training period:

Since wy starts from zero, e}(n) is larger than ©,
then the FTF algorithm is selected. After convergence,
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€4(n) < © can be satisfied. So the FTF algorithm is
switched to the NLMS algorithm, and wy is transferred
to w, as the initial guess. Since F, is not adjusted,

e (n) is larger than e%(n).

(B) No double-talk and slow unknown path change:

After convergence and there is no double-talk, the
NLMS algorithm is used, and w,, is always transferred
to ws. Furthermore, even though the unknown path
changes its characteristics, if the NLMS algorithm can
track, then e2(n), produced by w in F, can be smaller
than ©. Thus, the NLMS algorithm is used. In this
period, Fy is equivalently adjusted by the NLMS algo-
rithm,

(C) Double-talk period:

When double-talk appears, e?c(n) exceeds ©. In other

word, © is determined so as to satisfy e(n) > © in
the periods of the double-talk and the unknown path
change. Therefore, the FTF algorithm is selected. Dur-
ing the double-talk period, e7(n) can not be decreased
under © even though the FTF algorithm is used. Thus,
the FTF algorithm is continuously used in this period.
In the main filter F,,, the tap-weight vector is fixed to
the values just before the FTF is selected. Like this, F},
is not affected by the double-talk.

After the double-talk finishes, the FTF algorithm

can converge quickly, and e%(n) becomes smaller than

O, then the FTF algorithm is switched to the NLMS

algorithm. In this case, however, e%(n) is not always

smaller than e2(n) because F is affected by the double-

talk. If €2 (n) < e%(n), then wy is not transferred to wy,,
and the previous w,,, which is fixed in the double-talk
period, is used as the initial guess.

In this case, the auxiliary adaptive filter Fy is
required to converge very quickly, because the non-
double-talk period is not always guaranteed to be long
enough for adaptation.

(D) Unknown path change:

When the unknown path changes, e3(n) also exceeds ©,
and the FTF algorithm is selected. In this case, how-
ever, the FTF algorithm can converge. After efc(n) is
decreased under ©, the FTF algorithm is switched to
the NLMS algorithm. At the same time, since w,, is

not adjusted, e(n) can be smaller than e2(n), and wy
is transferred to w,, as the initial guess. When the un-
known path changes and the FTF algorithm is selected,
the tap-weight vector of F, is fixed, and its error is in-
creased. Therefore, the fast convergence algorithm is
required in the auxiliary adaptive filter.

(E) Double-talk and unknown path change:

The FTF algorithm is also selected when both the
double-talk and the unknown path change occur. This
situation is a combination of (C) and (D). e?(n) can
not decrease under © like in (C). However, the FTF
algorithm can quickly track the unknown path change
after the double-talk finishes. In this situation, the fast
convergence is also very important. The following op-
erations are the same as in (C) and (D).

Figure 2 shows the timing chart for some adapta-
tion cases. From the figure, we can see that in order to
overcome the instability problem that produced by the
accumulation of round-off errors as well as the double-
talk, the FTF algorithm is reinitialized at every 3M
implementations, where M denotes the number of tap
weights and 3M is the number of iterations for obtain-
ing the convergence. The reason for choosing 3M will
be explained in the following section.

We note that the use of the FTF algorithm in the
auxiliary filter F'y makes it possible to provide a near-
optimum tap-weight vector for the main filter F,, when-
ever there is a non-double-talk period. Thus the pro-
posed structure is capable of detecting the double-talk
precisely and distinguishing between the double-talk
and the path change. This feature is, however, diffi-
cult to be realized by using only the NLMS algorithm
because it may not be possible to converge during the
non-double-talk period due to its slow convergence rate.
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This problem becomes more serious if the unknown
_path changes continuously.

3. Properties of Proposed Method
3.1 Convergence Performance

The convergence performance of the RLS algorithm in
the non-double-talk period can be shown as[8]

2
Moz,

§(n) = Elé*(n)] ~ o7, + D
where £(n) denotes the mean square value of the resid-
ual error €(n) and o2, denotes the variance of the mea-
surement noise.

We note from Eq. (1) that the RLS algorithm con-
verges in the mean square in about 2M iterations. In
the case of using the FTF algorithm, reinitialization is
needed to avoid the instability problem, this produces a
transient period that needs additional M iterations[6].
So the FTF algorithm converges in about 3M iterations.
The bias b(n) of the estimated tap-weight vector pro-
duced by a finite implementation of the FTF algorithm
can be written as (see Appendix for the derivation)

b(n) = wep: — E[W(n)]
= A" Y (n)wopr (n 2 1) @

where w,p,; and w(n) denote the optimum and the esti-
mated tap-weight vectors, respectively. ®~1(n) denotes
the inverse of the input correlation matrix. § denotes the
initial parameter and A denotes the forgetting factor.
In practical applications, § and A should be chosen
in order to achieve a stable performance for 3M itera-
tions of the FTF algorithm. Experiment shows that the
choice of § that equals the power of the input can effec-
tively prevent the instability in the initialization period
(large-order effects)[7]. Then, under the condition of
a 32-bit floating point arithmetic, the 3M iterations of
the FTF algorithm is stable by using A = 0.9,0.98,0.99
for M = 50,300,500, respectively. In the case of the
white noise input, 6®~!(n) becomes an identity matrix.
So by using A and M described above and after 3M im-
plementation of the FTF algorithm, the bias becomes

b(3M) m MM w oy & (1076 ~ 1077 )Wy 3)

This estimation is also valid for the speech signal input.
So we can say that the FTF algorithm converges within
3M implementation.

3.2 Residual Error

In stationary state, the relation between the step size [
and the residual MSE ¢ in the NLMS algorithm can be
written as[6],[9] ‘ ‘

£ = Ble*(o0)] = 0%y + 5 (07 + 02,

ﬂ S0+ 2) @)
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where o2 is the variance of the near-end signal.

Since o2 is usually much greater than o2,, the ad-
justment of the adaptive filter in the double-talk period
will cause a large £. In the proposed structure, how-
ever, the NLMS algorithm is implemented only in the
non-double-talk period so that o2 a2 0. Therefore, ¢
becomes very small.

In the noise cancellation problem, we recall that
uncorrelation between signal and noise sources is one
of the basic assumptions. Based on this assumption,
MSE of the canceler output e, in Fig. 1 can be written
as

Ele] =02+ E[s?|-2E[s(v — 0,)]+ E[(v — 0,,)?]

i3

~02 + E[s*] + E[(v — on)?] (5)

Since o2, + E[s?] is a constant, minimizing the total
power E[e2] is equivalent to minimizing the output
noise power F[(v — o0,)?]. However, when signal is cor-
related with noise, the term 2E[s(v —o0,,)] in Eq. (5) will
not be zero, which results in a degraded performance.
In the new method, the coming of the near-end signal is
detected and the adjustment of the main adaptive filter
F,, in the double-talk period is avoided. So the mini-
mization of the MSE process satisfies

Bler] ~ og, + El(v — 0n)°] (6)

k£%

This means that the minimum MSE solution is always
achievable.

3.3 Computational Requirement

Computational cost increase by using the new method is
an additional M computations per iteration for parallel
implementation of the two adaptive filters. So for every
iteration, 8 M computations are required when the FTF
algorithm is selected and 3M computations are required
when the NLMS algorithm is selected.

4. Computer Simulations

The new structure can be applied to both noise and
echo cancellation problems. In this section, we will do
some simulations on a noise cancellation problem. The
results of applying the new structure to an echo cancel-
lation problem has been shown in Ref.[10].

The simulations are divided into two cases. In the
first case, we suppose a speech signal corrupted by (1)
white noise (2) colored noise (3) another speech. In the
second case, we discuss the change of the noise path.

4.1 Conditions of Simulation

The speech signal used for the simulation consists of a
segment of a male voice, sampled at 10 KHz as shown
in Fig.3. The variance of the speech signal o2 is nor-
malized to unity. The noise is mixed with the signal
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Fig. 3  Speech signal used for simulation.

after passing through a noise path, which is assumed to
be a second-order all pole filter. The transfer function
can be written as

1
H(z) = 7
) 1 —2rycos(0)z=t +r2z2 @
In the simulation, r, = 0.5 and 6 = 7 are used. The

number of tap weights used for both the main and the
auxiliary filters is 20.

4.2 Choice of Threshold

Since the main filter F;,, which is adjusted by the NLMS
algorithm, is adapted only when efc (n) £ O, from
Eq. (4), the residual MSE £ can be written as

§ = Bl (00)) = bmin + ba T+ 5720 (®)
where &, = 02, is the minimum residual MSE and
e 1s the extra residual MSE shown by

oo 5 =0 ©
—fi

Equation (9) gives the relations among &, the step size

[ and the threshold ©.

In practical applications, £,; can be chosen be-
tween 0.102, and o2,, which represents a misadjustment
from 10% to 100%. Then by choosing an appropriate
step size fi, we can determine the threshold ©, and vice
versa. Experiments show that a choice of [, that makes
© in the range from 1002, to 10002, can provide sat-
isfactory results. For example, in the simulations that
follows, suppose o2, = 0.001 and &, = 0.102, = 1074
If we choose a threshold ® = 0.01 (or © = 0.1), then
from Eq. (9), the step size can be chosen as i = 0.02
(or G = 0.002). Satisfactory results are obtained for
both selections of the threshold, which will be shown
in Sect. 4.3.1. ‘

The other parameters are chosen as: i = 0.02 for
the NLMS algorithm, A = 0.95 and é = 1 for the FTF
algorithm. From Egq. (3), the bias after 3M/ implemen-
tation is about 4.6%w .

4.3 Simulation Results and Discussions
43.1 Change of Noise Source

Three properties are investigated in this simulation,
those are improved SNR after cancellation, sensitivity
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to the eigenvalue spread of the noise source and the
correlation between signal and noise sources.

A workstation noise is used as a colored noise. The
eigenvalue spread of this noise is about 100. When the
noise is assumed to be another speech signal, the vari-
ance of both signal and noise sources are normalized to
unity.

The simulation results are shown in Figs. 4 through.
6, which include the results of using the two replica
method proposed in Ref.[4] (Step size in model 1:
1 = 0.02; Step size in model 2: iy = 1 — iy = 0.98.
The other conditions are the same as in Ref.[4]). The
SNR before and after cancellation is shown in Table 1.

From these results, we make the following observa-
tions

o Fast convergence rates are obtained for the white
noise, the colored noise and the speech signal in-
puts. The proposed method is insensitive to the
eigenvalue spread of the noise source due to the
property of the RLS algorithm. The two replica
method is sensitive to the eigenvalue spread of the
noise source since only the NLMS algorithm is
used.
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e Whenever the speech signal appears, the FTF al-
gorithm is selected and the adjustment of the tap
weights in the NLMS algorithm is stopped (see
Fig.4(c)). So there is almost no degradation of the
performance during the double-talk period. The
result of using the two replica method is not satis-
factory due to the fail in detecting the double-talk.
This problem will be further discussed in Sect. 4.4.

e Figure 4(d) also shows that satisfactory results
are achieved for both selections of the threshold
(& = 0.01 and 0.1), which confirms the analysis
described in Sect. 4.2.

e The new structure is readily applicable to an adap-
tive echo canceler. The echo cancellation can be
considered as an example of noise cancellation, in
which the noise is an echo that is, in fact, another
speech signal.

4.3.2 Change of Noise Path

The change of the noise path is realized by changing the
phase of pole 6 in Eq.(7) as shown in Fig.7. The noise
path has a sudden change at 5,000 and 25,000 iterations,
a slow change from 10,000 to 15,000 and a fast change
from 15,000 to 20,000 iterations.

The simulation results are shown in Fig.8. From
these results, we make the following observations:

e When the noise path changes slowly, the NLMS al-
gorithm can track this change. When the noise path
changes suddenly in the non-double-talk period, a

Magnitude
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Magnitude

Magnitude (dB)
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Table 1 SNR before and after cancellation.

. . Before After
Signal source | - Noise source | o iation | cancellation

Speech#1 | Whitenoise | -10dB 29dB

Speech #1 | Colored noise -10dB 29dB

Speech #1 Speech #2 0dB 26dB
65
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45+ ~
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Fig. 7 Change of the pole phase in the noise path.

very fast convergence rate is achieved. When the
speech signal appears, the convergence is delayed
until the next non-speech period (see Figs. 8 (¢) and
(d)). This is because w; adjusted by the FTF algo-
rithm will not be transferred to w,, in the double-
talk period.
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e When the noise path changes fast, fast tracking is
achieved by reciprocally adjusting Fy and F,. The
tap-weight vector of Fy is transferred to F,, when-
ever the transfer conditions described in Sect.2.2
are satisfied.

The simulation results shown in Fig. 8 demonstrate
that the proposed method is capable of distinguishing
the noise path change from the near-end signal and
quickly tracking this change.

4.4 Comparison with Conventional Method

The use of the double adaptive filters adjusted by the
NLMS algorithm for echo cancellation problem has
been proposed [3],/4]. One problem of these methods is
that it is difficult to give the condition for detecting the
double-talk. Another problem is the slow convergence
rate especially when the training signal is the speech
signal. In this section, we will discuss the two replica
method proposed in Ref.[4].
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Fig. 10 Simulation results on double-talk detection, (a) Far-

end signal (speech), (b) Near-end signal (speech), (c) e3(n) (solid
line) and eZ(n) (dashed line) when the far-end signal is white

noise, (d) e?(n) (solid line) and e2(n) (dashed line) when the
far-end signal is the speech signal shown in (a).

4.4.1 Double-Talk Detection

Figure 9 shows the structure of the echo canceler pro-
posed in Ref.[4]. The condition used for detecting the
double-talk and stopping the adaptation of the echo
model 1 (main filter) is given by

) ,
2(n) > 10dB (continuous over 10 times) (10)

]

0]
V]

N

(n

Simulation shows, however, that this condition is
not always valid. Figure 10 gives the simulation re-
sults that uses the unknown path and the number of tap
weights as shown in Sect.4.1. The step sizes used for
the echo model 1 and 2 (auxiliary filter) are 0.1 and
0.9, respectively. Since we want to investigate the oper-
ation of this method after convergence, both models are
assumed to have converged at the beginning of the iter-
ations. As shown in Fig. 10(c), when the white noise is
used for the far-end (not shown in the figure) and the
speech is used for the near-end signals, e2(n) is greater

than e?(n). However, when the speech is used for both

the far-end and the near-end signals, e3(n) is smaller
than e?(n).

The reason for this phenomenon can be explained
as follows. Since convergence is assumed and a small
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step size is chosen for the echo model 1, when the
double-talk comes, we have e1(n) ~ s(n) and ez(n) =
s(n) — f2(n). The MSE of these errors can be written
as :

e2(n) ~ s%(n) (11)
e3(n) = (s(n) — f2(n))?
= s2(n) — 2s(n) f2(n) + fZ(n) (12)

In the former case, the white noise is considered as un-
correlated with the speech. From Eq.(12), we have

2s(n) fa(n) =~ 0. So e3(n) will be greater than e%(n).
In the latter case, the speech signals have some corre-

lations. As described in Sect. 3.1, the term 2s(n) f2(n)
will not be zero. Furthermore, the sign of this term

is indefinite. So we can not say that e3(n) is always

greater than e?(n) during the double-talk period. Thus,
it is rather difficult to detect the double-talk by using
Eq.(10). This fact has been demonstrated by the simu-
lation results shown in Figs.4—6. In these simulations,
we found that it was difficult to select a unified thresh-
old for detecting the double-talk. In fact, the residual
error produced in the stationary state is mainly due to
the fail in detecting the double-talk.

4.4.2 Convergence Performance

The simulation results on convergence performance
without the near-end signal are shown in Fig. 11. In the
case of the white noise input, both the proposed and the
two replica methods give a fast convergence rate and a
small residual error. However, in the case of the speech
signal input, the deterioration of the convergence rate
by using the two replica method is significant. This is

Residual square error

Residual square error

Two replica method [4]

Magnitude (dB)

Magnitude (dB)
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Fig. 11  Comparison of convergence performance. Far-end sig-
nal: White noise and speech signal (shown in Fig. 10 (a)); Near-
end signal: None; Number of tap weights: M = 50; The two
replica method: fi1 = 0.1, iz = 0.9; Proposed: § =1, A = 0.95
(FTF), i = 0.1 (NLMS), (a) The two replica method (white noise
input), (b) Proposed (white noise input), (¢) The two replica
method (speech input), (d) Proposed (speech input).
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because the NLMS algorithm is essentially sensitive to
the eigenvalue spread of the input signal. No big dete-
rioration occurs by using the proposed method.

5. Conclusion

A new structure for noise and echo cancelers based
on the combined fast adaptive algorithm has been pro-
posed. The main adaptive filter adjusted by the NLMS
algorithm and the auxiliary adaptive filter adjusted by
the FTF algorithm are combined. These algorithms
are switched based on the mean square errors of both
adaptive filters. Through computer simulation on the
noise cancellation problem, the following features have
been confirmed. Performance of the adaptive filter is
not affected by the eigenvalue spread and the correla-
tion between the signal and noise sources. The near-end
signal is precisely detected and distinguished from the
noise path change. Thus, the proposed method can pro-
vide a good and stable performance for noise and echo
canceler applications.
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Appendix: Derivation of Eq. (2)
From the RLS algorithm, we know that[8]
e(n) = d(n) — wT(n — 1)u(n)
= (wfpt —wT(n— 1))u(n) + em
Ww(n) = w(n—1)+ & *(n)u(n)e(n)

(A-1)
(A-2)
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where e(n) is the estimation error. ey, is assumed to be
the measurement error and Ele,,] = 0.
Replacing Eq. (A- 1) into Eq. (A-2), we get

w(n) = w(n— 1) + <I>_1(n)u(n) (d(n)
—u?(n)W(n —1))
= w(n— 1)+<I> (n)u(n)( T(n )wopt+em>
~@ 7 (npu(pju (m)w(n—1)  (A-3)
The bias b(n) is defined as
b(n) = Wop: — E[W(n)]

(1 - @—l(n)u(n)uT(n))
(A-4)

(A-5)
So
I—® Hn)u(n)ul'(n)
=1-&*(n)(®(n) — A\®(n— 1))
=2 (n)®(n—1) (A- 6)
Replacing these results into Eq. (A-4), yields
b(n) = wept — E[%(n)]
= A® M (n)®(n — 1)(Wep — E[W(n —1)]
=227 H(n)®(n— 1) (A2 (n — 1)®(n — 2))
-(wopt — E[w(n — 2)})
=A@ (n) 2 (0) (Wops — E[W(0)]) (A7)

Setting ®(0) = 61 and w(0) = 0, we get the final result
of Eq.(2).
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