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Experimental Verification on Gain
Scheduled H. Robust Control of
a Magnetic Bearing*

Toru NAMERIKAWA** Masayuki FUJITA***
and Fumio MATSUMURA**

This paper deals with the problem of gyroscopic effect and unbalance vibration of
the Magnetic Bearing system. Using a gain scheduled He. control with a free parame-
ter @, we design a control system which attenuates the unbalance vibration, and
guarantees the stability against the gyroscopic effect in specified rotational speed.
Further we implement the controller and evaluate the effectiveness of the proposed
approach by experiments. First, our experimental setup is explained, a mathematical
model of the magnetic bearing is derived. Then, we introduce the gain scheduled He
control with free parameters to a magnetic bearing control, in order to reject the
disturbances caused by unbalance of the rotor, and guarantee the stability against
gyroscopic effect, even if rotational speed of the rotor changes. At last, several
experimental results show the effectiveness of this proposed method.
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1. Introduction

Magnetic bearings are bearings to suspend rotors
by magnetic forces without any contact. Around a
rotor, several pairs of electromagnets are arranged
radially and the rotor can be suspended stably by the
active control of magnetic forces. Magnetic bearings
have excellent advantages over conventional me-
chanical bearings. Recent advances in the magnetic
bearing technology are covered in the two proceedings
of the international symposium on magnetic
bearings™® and a special issue on magnetic bearing
control of the IEEE transactions®.

Both unbalance vibration and gyroscopic effect
are serious problems of rigid rotating machines®.
Unbalance in the rotor mass causes vibration in rotat-
ing machines. Balancing of the rotor is very difficult,
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often there is a residual unbalance. A gyroscopic
effect is caused by a coupling of rotor dynamics. This
effect can lead to resonances, and often makes the
systems unstable.

It is well known that there are two major
methods to solve the above unbalance problem of
magnetic bearings. The first one is to compensate for
the unbalance forces by generating electro-magnetic
forces that cancel these forces. The other one is to
make the rotor rotate around its axis of inertia (auto-
matic balancing), this approach produces no unbal-
ance forces. There are several effective methods in
the literature to achieve automatic balancing in the
magnetic bearings®-®. If the magnetic bearings are
applied to precision machines, however, the rotor
would be expected to rotate around its geometrical
axis, our approach taken here is the first one.

In this paper, we discuss the idea to solve both the
problems of the gyroscopic effect and the unbalance
vibration by using gain scheduled Hw robust control
scheme.

We especially focus on the elimination of the
variable unbalance vibration caused by a rotational
speed. The unbalance vibrations of rigid rotors can be
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modeled as frequency-varying sinusoidal distur-
bances. Hence, our idea is to schedule the peak gain
of the controller according to the rotational frequency
of the rotor to make the system possess high stiffness
at the operation speed.

This gain scheduling algorithm is very simple and
utilizes the free parameter of the H. controller®. The
other gain-scheduling approaches for H. control are
reported in references® " and its application result
has been reported in Ref.(12). The advantage of this
approach is a good performance at the operating point
comparing with the other approaches®-Y but this
approach can not be applied to wide parameter space
which is a disadvantage.

For the problem of gyroscopic effect, we utilize
the small gain theorem to make the stability margin
clear.

This paper is a continuation of the previous
research"®. We have especially improved the interpo-
lation accuracy of the controller and described the
detail of interpolation, implementation and experi-
mental results of the proposed method.

Outline of this paper is as follows. First, we
introduce the magnetic bearing system, and derive the
mathematical model of the system®®(® Next, we
adopt the H. problem with boundary constraints to
the normalized left coprime factor robust stabilization
H., problem®, the conditions for existence of control-
ler are derived with LSDP“®, Third, we design the
controllers that achieve asymptotic disturbance rejec-
tion and robust stability. At last, we present experi-
mental results with the obtained H. controllers, and
indicate the effectiveness of this proposed approach.

2. Modeling

2.1 Magnetic bearing system
The magnetic bearing system employed in this
research is a 4-axis controlled horizontal shaft mag-
netic bearing with symmetrical structure. The axial
motion is not controlled actively. The diagram of the
experimental machine is shown in Fig. 1. The diame-
ter of the rotor is 96 mm, its span is 660 mm, and its
mass is 13.9kg. A threephase induction motor
(1kW, four poles) is located at the center of the rotor.
Around the rotor, four pairs of electromagnets are
arranged radially. All physical parameters are listed
in Tablel. Four pairs of eddy-current type gap
sensors are located on outside of the electromagnets.
A tachometer is arranged on the side of the rotor to
measure the rotational speed.
2.2 Mathematical model of the magnetic bear-
ing
In order to derive the state equation of a magnetic
bearing, the following assumptions are made.
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Table 1 Parameters of experimental machine

Parameter Symbol Value Unit
Mass of the Rotor m 1.39 x 10! kg
Moment of Inertia about X e 1.348 x 1072 | kg - m?
Moment of Inertia about YV’ Jy 2.326 x 107 | kg - m?
Distance between Center of I 1.30 x 107! m
Mass and Left Electromagnet
Distance between Center of I 1.30 x 107! m
Mass and Right Electromagnet
Distance between Center of I 0 m
Mass and Motor
Steady Attractive Force Fiy 9.09 x 10 N
Franig 2.20 x 10 N
Fromra 2.20 x 10 N
Steady Current Inm 6.3 x 1071 A
Tpas | 3.1 x 1071 A
Liomra 3.1x 107! A
Steady Gap w 5.5 x 1074 m
Resistance R 1.07 x 10 Q
Inductance L 2.85 x 107! H

rl

Tachometer

sensor

magnetic
magnetic bearing

bearing

Fig. 1 Diagram of experimental machine

1. The rotor is rigid and has no unbalance.

2. All electromagnets are identical.

3. Attractive force of an electromagnet is in pro-
portion to(electric current/gap length)Z

4. The resistance and the inductance of the elec-
tromagnet coil are constant and independent of the
gap length.

5. Small deviations from the equilibrium point are
treated.

Based on the above assumptions, a mathematical

model of a magnetic bearing has been derived in Ref.
(15), and the result obtained is as follows.

S

T B —pAwn An Xn

Bo 0 [us], [ Es
“{0 BJ{MJH’ [Eh]w (1)

s ] o)

where the subscripts ‘v’ and ‘%’ in the vectors and the
matrices stand for the vertical motion and the hori-
zontal motion respectively of the magnetic bearing.
In addition, the subscript ‘0%’ stands for the coupling
term between the vertical motion and the horizontal
motion, and p denotes the rotational speed of the
rotor. InEq.(1), terms {pAvs, —pAws} are gyroscopic
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effects and {p?E», p*E»} are unbalance terms, which
are functions of 2.
Each vector in Egs.(1) and (2) is defined as

xv"_—[gn gri Ga . gn in irl]T,

JTh:[gza grs G Grs i irg]T,

Mv:[eu 8‘71]T, uh=[ezs €r3]T,
esin(pt+x)

e r cos(pt+A) (3)
ecos(pt+x)
r sin(pt +A)

where

g; . deviations from the steady gap lengths
between the electromagnets and the rotor
i; - deviations from the steady currents of the
electromagnets
¢; . deviations from the steady voltages of the
electromagnets
& 7,%,4 - unbalance parameters?®(7"
(=11, 1, I3, 3.)
The subscripts ‘7" and ‘>’ denote the left-hand side and
the right-hand side of the rotor respectively, and the
subscripts ‘1’ and ‘3’ denote one of the vertical dir-
ections and one the horizontal directions of the rotor
respectively. Each elemental matrix in Egs.(1) and
(2) is defined in Appendix A.

3. H.. Gain Scheduling

In order to attenuate the unbalance vibration and
guarantee the stability against gyroscopic effect, we
utilize the H. controller and its free parameter.

The unbalance vibrations can be modeled as fre-
quency-varying sinusoidal force disturbances. Hence,
the idea here is to schedule the controller’s peak gain
according to the rotational frequency to possess the
system high stiffness at the operation speed. As is
well known, if a controller has imaginary poles at a
certain frequency, it possess high gain/stiffness at
corresponding frequency.. Hence we measure the
rotational speed p and change the poles of a free
parameter of the H. control, we can make the He
controller to have high gain®.

For the problem of gyroscopic effect, we utilize
the small gain theorem to make the stability margin
clear.

We therefore show the condition for existing of
free parameter, by adopting the control problem with
boundary constraints® to the normalized left coprime
factorization robust stabilization problem, and we
design a robust controller which satisfies the derived
specifications by LSDP¢®,

3.1 Loop shaping based H. synthesis

Let (N, M) represent a normalized left coprime

factorization of a plant G. Let these coprime factors
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be assumed to have uncertainties Ay, dx and let G
represent the plant with these uncertainties.

Gs=Mi"'Ny

=(M+ du) (N + 4n) (4)

where Ns and M, represent a left coprime factoriza-
tion of Ga, and

A={[4dv, du)ERHx; ||[dx, dulll=<e}. (5)
Gs can be written in the form of an upper linear
fractional transformation(ULFT)as follows.

Gs=Fu(P, 4)
= Pp+ P (I — Pud) " P, (6)
where
0 I
P=[?l ?2}: M7 G (7)
21 22 aalE

The robust stabilization problem for the perturbed
plant Gs can be treated as the next H. control prob-
lem:

It is well known that the solution of this problem and
the largest number of & (=émax: =7mn) can be
obtained by solving two Riccati equations without

<l =y (8)

B{ ](1— GK)" M~

)

iteration. All controllers K satisfying Eq.(8) are
given by
K:FL(Ka, @): =K11+K12@([4Kzz@)_1[{21,
(9)
where
KII KIZ
K—[K K} lo].<1. 10)

For the calculation of Ks and emasx, see Ref.(16).
3.2 Elimination of unbalance vibration

Unbalance vibration can be modeled as sinusoidal
disturbance®, the robust controller should be
designed to reject this disturbance.

As is well known, if the controller would have the
imaginary poles at the frequencies corresponding to
the rotational speed, it has a peak gain at this point.
Hence, K(s) is required to satisfy

K (= jwo)=00&{I — G(=£ jwo) K(+ jwo)} =0,

(11)
where wo is frequency of rotation.
3.3 H. controller with free parameter

Adopting the H. problem with boundary
constraints® (in Appendix B) to this problem, we
derive the condition that a controller satisfying both
Eqs.(8) and (11) exists.

The boundary constraint {L, II, ¥} corresponding
to Eq.(11) is given by

L=[0 I], I=M(Zxjwe), ¥=0. (12)
The basic constraint {Ls, ¥s} in Eq.(34) (Appendix
B) is described by

Ls=Pi(£jwo)=[—G(Ljwo) 1], (13)
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WB:Pfi(ijwo)P11(ifCUo)=M_l(i]'a)o). (14)
It is obvious that {L, I1, ¥} is satisfying condition
(b) in Theorem A, and the extended boundary con-
straint {L, ¥} in Eq.(35) (Appendix B) is given by

= - G( ij(l)o) 1 - I

L—{ 0 [J, élf—[()]. (15)
After some straightforward calculation, we have

75 (N(*jwo)) >1, (16)
where

s . s

T o) =15 adys)

7(®): the maximum singular value,
from the condition (c¢) of Theorem A.

If we choose free parameter @(s) such that

(= jwo)=Kz'(% jao) (17)
under the conditions Eqs.(10) and (16), it can be seen
that we obtain the controller with the imaginary poles
at Tjwo from Eq.(9). Based on it, we design the
control system using the loop shaping design
procedure®®. This is briefly outlined in Appendix C.
Thus, we can design the robust controllers achieving
sinusoidal disturbance rejection.
parameter of H. controller, the controller’s gain is
scheduled by the rotational speed.

4. Controller Design

In this section, we design the feedback controllers
by LSDP. At first, we assume rotational speed »=0 in
the nominal plant G. In this case, there is no coupling
between the vertical motion and horizontal motion in
Eq.(1). Finally, the coupling between the vertical
and the horizontal motion has been included in the
design.

The plant model can be separated into the verti-
cal plant Go(s): =Cu(sI — A») "' By and the horizontal
plant Gx(s): = Cu(sI — Ax)"' By, respectively.

_ GD O
% ] "

Thus, two controllers are designed for each plant

(v) Design for vertical motion

Utilizing the free

10
©n g Horizontal
%10 L e NG et r e ]
j Vertical
e 1
210 ¢
-l
-]
9
10 F
2]
-3
10 : . :
-1 0 2 3 4
10 10 0 10 10

10 1
FREQUENCY [Hz]
(a) Magnitude of 7o(Ns)

10" 10° 10" 10° 10° 10°
FREQUENCY [Hz]

(b) Open loop transfer functions GK[——]
and the shaped plant Gs[——]

Fig. 2 Characteristics of the H. controller K(s)

respectively. The final controller K for the entire
plant G is constructed with the combination of these
two controllers.
K, 0
K _[ 0 K}
where Ky and K denote the controller for the vertical
plant and the horizontal plant respectively.
4.1 LSDP design parameter
After some experimental trial and error, final
results of the design iterations are as follows.

(19)

Whals) = 1300(1+5s/(2x+5))(1+s/(27+35)(1+s/(27+50)) [1 0 (20)
T (1 +s/Qa+0.00)(1+s/(27-700)(1+ s/ (271 200)) |0 1

Wauls) =10 oooB ﬂ (1)

€v_max=0.199 44, 651:'}%:5.25 (22)

(h) Design for horizontal motion

Wan(s)=—A2000L+5/ (27 -5) (14 5/ (27+25))(1 + 5/(27+40)) [1 0 23)
1k (1+s/(27+0.01))(A+s/(27-700))(1+s/(27+1 200)) 0 1 ‘

Wan(5)=100 oo[(l) (1’] (24)

En_max=0.274 32, 8;1:7h:3.75. (25)

The problem of LSDP is that the order of the controller becomes high. Hence we employed a model
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Table 2 Parameters aq, ba of free parameters

[Rotational speed (tpm) | ay | by | an [ bs |
1000 ~ 1600 8 8
1600 ~ 2200 2800 5 2800 45
9200 ~ 2600 % 77
2600 ~ 2900 2500 [ 2500 | 36
2960 ~ 3100 0

reduction technique®®. The order of the each shaped
plant is reduced from 12 states to 8, then, the final
controller has 36 states.

Characteristics of the obtained He controller K
are shown in Fig. 2. From Fig. 2(a), it can be seen
that the @ in Eq.(17) exists below wo=324.63 [rad/s]
($=3100 [rpm]) by the condition in Eq.(16). Hence
we design a controller within the above limit. In order
to, satisfy the conditions Egs. (10) and (16), the free
parameters are selected as

@d(s) = Cmd(sl _Aq)d)—IB@d, (26)
where
- I
A¢d={ OCld —Ob ], qud:[]jl, C¢d=[C@1d Cmd],
d
2 2
Cmd:% {CUo%(Kz_zb(]'wo))
+ b3 Kai(wo))},
2 2
Coram Bt 00 (Kb
+ a3 Kanx(jwo))}. ‘
(d=v, r)

Furthermore, in order to Satisfy the condition in Eq.
(10), the parameters aa, ba of Aga and Ceq are adjust-
ed as in Table 2.

We show the gain-scheduled H. controller at
wo=136.14 [rad/s] (p=1300 [rpm]) as a design exam-
ple. The singular values of the shaped plants and the
open loop transfer functions are shown in Fig. 2(b).
We can see that the controller has the peak gain at
wo=136.14 [rad/s].

4.2 Validity of the performance and stability

Figure 3 shows the singular values of the closed-
loop characteristics.

The sensitivity functions o((/ — GK)™") are plotted in
Fig.3(a), and we can see that the sensitivity
approaches zero at the frequency wo(=136.14) from
this figure. This result shows the good property to
eliminate unbalance vibration.

In this design process, we ignored the interference
terms, which express the gyroscopic effect, as p=0.
We therefore verify the robust stability of the closed-
loop system against changes in the rotational speed.
Let the perturbed plant (#70) be denoted by G» and
the additive perturbation 4, of G is as follows.

Ao=Gp— G (27)
Then the robust stability is guaranteed within the
following inequality Eq.(28).
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Fig. 3 Validity of the closed-loop system

7 (09 < S RT=CRT (28)
In Fig.3(b), the singular values 1/o6(K(I—GK)™)
and o(ds) at we=1675.5 [rad/s] (p=16000 [rpm])
are plotted. From this analyzed results, the closed-

loop system is confirmed to be stable below
wo<1675.5 [rad/s].

5. Experimental Results

In this section, we validate the obtained controller
by experiments.
5.1 Digital control system
The experimental machine is controlled by a
digital control system that consists of a 32-bit floating
point Digital Signal Processor (DSP)DSP 32 C(AT &
T), 12-bit A/D converters and 12-bit D/A converters.
Using these components, the final discrete-time con-
trollers including a free parameter are computed on
the DSP.
5.2 Implementation of the gain scheduled H.
controller
The obtained controller has 36 orders and is a
continuous system. We discretized them via the well
known Tustin transform.
The discrete-time controller Ku(z) is shown as
follows.
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Ara APrd(D) | BPra(p)

Kd(z)‘[ckd CPus(p) l’ DPkd(i))]’ 29
where ApsE RS APkd(p)ERIBXIZ, BPkd(ﬁ)ERlsxz,
deERZX‘S, CPkd(p)szlz’ DPkd(p)Eszz.

Here Ara and Cia are constant matrices, on the
other hand, APr4, BPra, CPra, and DPsq are functions
of the rotational speed 2.

The above four matrices with p are so compli-
cated, that we implement the each element of them by
using polynomial approximation in real-time calcula-
tion.

In order to shorten the sampling period, we em-
ployed the 2nd order polynomial approximation by the
least-square method, which is as follows.

APua(p)=1"Aazt pAn+ Aus, (30)
BP..(p) = ?Baz+ pBai+ Bao, (3D
CPra(p)=1*Caz+ pCar + Cao, (32)
DPua(p)=1"Daz+ pDar + D, (33)

where {A, B, C, D}, {A, B, C, D}s1 and {4, B, C,
D}ao are constant matrices of 2nd-order, lst-order,
and constant, respectively.

We show an example of this approximation in
Fig. 4. This figure shows the A Pran(p), whichisa1—1
element of APu(p). The horizontal axis is the
rotational speed from 1000 to 1 600 rpm, the vertical
axis shows the magnitude, and the symbols * X’ mean
the real values calculated with every 25 rpm, and the
solid line shows the 2nd order approximated inter-
polated function of “X’s.

These approximations are done for the all (18 X12
+18X2+2X12+2X2) elements of { AP, BPra, CPha,
DPya}.

Very often the gain-scheduling of the controller is
realized via convex parametrization of the two con-
troller at the end points. In Ref.(13), this method was
also employed. This is very simple but the interpola-
tion is not so precise. In this paper, the polynomial

0.1167, T T T T T

0.1167,

0.1166}

0.1166

APkd11

0.1166

0.1166

0.1166

0.1 1‘%5000 1100 1200

300 1400 1500 1600
Rotational Speed [rpm]

Fig. 4 Polynomial approximation of AP (p)
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approximation was employed and it improved the
precision of interpolation of the gain scheduled con-
troller.
5.3 Experimental condition

We have carried out experiments using the exper-
imental machine shown in Fig. 1. In order to evaluate
the practical effect of this proposed approach, the
experimental tests were run within the limits of the
rotational speed from 1 000 to 1 600 rpm (see Table 2).

The designed continuous-time controllers, Kison
and Gain Scheduled H. Controller are discretized via
the well known Tustin transform at the sampling
rates of 252 us and 415 us, respectively.

4 4
|x10 Jx10
E 5
o5 0.5
5 g
g g
E 0 E 0
k4 g 2
=] a
3 3
E,-o.s 5os

._11

-0.5 0 0.5 1 -0.5 0 0.5 1
Horizontal Displacement gl3[m]lo.4 Horizontal Displacement gl3[x)1(1]l 0-4
X

(al) Fixed H- controller (a?2)
Kisoo : rotational
speed 1100 [rpm]

Gain scheduled He.
controller : rotational
speed 1100 [rpm]
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X 104 x 10

¢
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o4
178
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o
n
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»n
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(b1) Tixed Hw controller (b2)
Kisoo : rotational
speed 1300 [rpm]

Gain scheduled Hw
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speed 1300 [rpm]
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> >

.}1
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X

(c2) Gain scheduled H.
controller : rotational
speed 1500 [rpm]

(c1) Fixed Hw controller
Kisoo @ rotational
speed 1500 [rpm]

Fig. 5 Orbits of the physical center of the rotor
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Fig. 6 Unbalance responses against the rotational
frequency

The controller Ko is linear time-invariant
dynamical controller, hence the computing burden for
real-time calculation of control input is only matrix
multiplication and addition. On the other hand, for the
implementation of the gain scheduled H. controller
K(®), however, we have to renew K(®) from Egs.
(30), (31), (32) and (33) by every sampling period.
After it has been obtained, the control input # is
calculated. It takes longer time to implement K(®).

All through the experiments, a small weight
(20[g]) is attached at the side of the rotor of the
opposite side of the tachometer in Fig. 1. This weight
is introduced to increase the residual unbalance.

We have measured the orbits of the physical
center of the rotor on the perpendicular plane for a
period of 0.5s under several rotational conditions.
Figures 5(a 1), 5(b 1)and 5(c 1)show the results with
Kz, and Fig. 5(a 2), 5(b 2)and 5(c 2) show the results
with the gain scheduled controller K(®) at 1100, 1 300
and 1500 rpm, respectively.

Further the unbalance responses against the
rotational frequency are given in Fig. 6. The vertical
axis shows the maximum displacement from the
physical center in radial plane, where the solid line
shows the result with gain scheduled controller, and
the dashed line shows the fixed controller.

5.4 Evaluation and consideration

Compared the gain scheduled He controller K(®)
with the fixed H~ controller Kise, the results with
K(®) indicate better performance than the one with
Kiso in the elimination of the unbalance vibration
except at 1300 rpm.

These results in Fig.5 and Fig.6 show the
effectiveness of the gain schedule method for changing
rotational speed.

However, it is well known that direct switching
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and interpolation between the controllers does not
capture the dynamic effects and may lead to instabil-
ity, even if the controllers can stabilize the closed-
loop system for each frozen value in the parameter
space. This is especially true if the scheduled parame-
ter changes rapidly. By the numerical simulation, we
have confirmed that the closed-loop system is stable
when the rotational speed changes below the rate of
10 rpm/s. We found a example that if the rotational
speed changes more than 10rpm/s the system
becomes unstable. ‘

While the rotor speed should be able to vary, for
many applications it does not need to vary quickly.
For this rotor, limited power and the safety of the
induction motor dictate that the rotational speed can
not be changed rapidly.

From a theoretical point of view, gain scheduled
H.. controller should completely attenuate the unbal-
ance vibration even if the rotational speed varies.
However, this level of performance has not been
achieved experimentally. This performance deteriora-
tion may be due to the measurement precision of the
rotating speed. Gain scheduled H.. controller strongly
relies on the accuracy of the rotational speed. Since
the notch in the sensitivity function is very narrow,
error in the measurement of rotational speed may
significantly deteriorate performance.

Further investigation and experiments examining
the effects of rotational speed and the scheduled
parameter’s changing rate, will be made in the future.

6. Conclusion

In this paper, we proposed a gain scheduled Hw
robust control scheme with free parameters for the
elimination of unbalance vibration in a magnetic
bearing supported rotor. We treated the changing
unbalance vibration caused by varying rotational
speed as a known frequency-varying disturbance, and
adjusted the controller gain according to the
rotational speed of the rotor using the free parameter
@ of the Ha controller. The obtained controller K(®)
has high gain at the operating frequency.

First, the dynamics of the AMB system was
considered and a nominal mathematical model for the
system was derived. Next, the conditions for the
existence of controllers were derived, and, we
designed the gain scheduled H. robust controllers
using LSDP. It rejected the sinusoidal disturbance of
the varying rotor speed.

Finally experimental results showed the
effectiveness of this proposed method.

Appendix A
Matrices in Egs.(1) and (2) are defined as
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0 I 0
Av: = A1+A2A4u 0 AzAsu s
] 0 0 —(R/L)I
0 I 0
Ahi = A1+A2A4h 0 AZA5h ,
L 0 0 —(R/IL)I
0 0 0 0
Apn: =0 As 0 , B,=B,: = 0 y
00 0 (/D1
0 0
Cu:Chi :[[ 0 0], E,: = Ey , E, .= Ex ,
0 0
A
1 /llm 1 lllm
i) =)

41
Pl oot

1z Ll
Ay = m ]y m ]y ’
_._|_ lllr _L_ﬁ
) J= =Ll
Aoz = - Tt 1) [ L =)
Aww: =—-2diag Fu+ Fu, Fa+tFl,
Auw: =—-Ldiag{Fa+ Fu, Frst Fra],
R : Fll Flz F‘rl Frzjl
Asy ~2dlag[ +== In oI,
o F Fu Frs Fr4]
ASh ’ ‘Zdlag[ + [l4 ’ ]r3 174
4 zl(l—%) 00
Eip: =
1w 7. ,
-1 —(1==) 0 0
00 1 11(1 /f)
o Jy
Eu: = ]
_0 0 ]. _lr< ]y)

For the notations, as well as the parameter val-
ues, see Table 1. In the above equations, @ denotes the
coefficient of the force which occurs when the rotor
eccentrically deviates, and hence we set a=0. The
numerical values of these matrices can be easily
obtained with Table 1, and the result is written in Ref.
(14).

Appendix B

® Definition A.
straints”

Find the K(s) satisfying

(s1) K(s) stabilizes Fu(P, 0),

(s2) [Pwle<e™: =7, where Pow=
($3) LPu(o)II=T1.

® Definition B. “Basic constraints”

“H. problem with boundary con-

Fi(P, K),
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Lg: ZPé(jw), Uy =P1J§(]'a))P11(].a)),
Pi(s)Pis(s)=o. (34)
® Definition C. “Extended constraints”
~ Lp| - Uell
L:—[LJ’W:_{ gr] (35)
where L and ¥ are row full rank.
Theorem A.
H. problem with boundary constraints {L, II, ¥}
is solvable, iff the following three conditions hold :
(a) The H. problem is solvable.
(b) rank[[; w;”}=rank{lf}
(¢) LL*>p»?@(r+m)— o+,

Appendix €

Loop Shaping Design Procedure (LSDP)
<Step 1>Loop Shaping

Selecting shaping function Wi and W, the singu-
lar values of the nominal plant G are shaped to have
a desired open loop shape. Let Gs represent this
shaped plant

Gs= WLGW (36)
Wy and W should be selected such that Gs has no
hidden unstable ‘modes.
<Step 2> Robust Stabilization

The maximum stability margin emax is calculated.

If emax<1, return to Step 1, then Wi and W should be

selected again. Otherwise, y is appropriately selected
as 7= Ymin= &max and K is calculated. The free param-
eter @ is selected such as Eq.(17). The H. controller :
K.(s) is synthesized for Gs from Eq.(9).
<Step 3>Final Controller

The final controller K can be obtained by the
combination of Wi, W, and K

K=WK.W. (37)
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