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Abstract. The effects of addition of 0.17wt%Zr, 0.1wt%Mg and 0.1wt%Co on the mechanical 
properties of a Cu-1.2wt%Ni-0.2wt%Be alloy have been investigated. Adding Zr, Co or Mg to 
the Cu-Ni-Be alloy brings about the improvement in strength and stress relaxation property. 
The Zr, Co or Mg addition decreases the inter-precipitate spacing of ” precipitates, resulting in 
the increase in strength. The higher resistance to the stress relaxation of the Zr- or Co-added 
alloy is attributed to the lower density of mobile dislocations. The improvement of stress 
relaxation property by the Mg addition is explained by the viscous glide motion of dislocations 
dragging Mg atoms, in addition to the lower density of mobile dislocations. 

1.  Introduction 
Copper-base alloys are used for electrical parts such as connectors and lead frames because the 
electrical conductivity of the alloys is very high. The high strength of the copper-base alloys is also 
required for small devices used in microelectronics. Most of the alloys are usually of the precipitation-
strengthened types and are dilutely alloyed with elements of very low solubility to preserve high levels 
of conductivity. Cu-Ni-Be alloys containing usually about 2wt%Ni and 0.4wt%Be are one of such 
precipitation-hardenable copper-base alloys. Recently, a Cu-1.27wt%Ni-0.22wt%Be alloy, which 
contains smaller amounts of Ni and Be than the standard Cu-Ni-Be alloys, has been developed. The 
strength and electrical conductivity of the Cu-1.27wt%Ni-0.22wt%Be alloy and a standard Cu-
2.05wt%Ni-0.35wt%Be alloy aged at 360 to 500 °C after cold rolling have been examined [1]. The 
former alloy exhibits a lower strength and a higher electrical conductivity than the latter alloy. Both 
alloys are hardened by disk-shaped coherent precipitates of ” phase. 

In this study, we investigate the strength and stress relaxation property of Cu-1.2wt%Ni-0.2wt%Be 
alloys with and without 0.17wt%Zr, 0.1wt%Mg or 0.1wt%Co aged at 450 ºC. It has been reported that 
the addition of Mg to a Cu-Ni-Si alloy [2] and Zr to a Cu-Cr alloy [3] enhances the strength and 
resistance to stress relaxation of the Cu-base alloys, and the addition of Co to a Cu-Ni-Be alloy 
increases the strength of the alloy [4]. This is the reason why Zr, Mg and Co were selected as added 
elements. 

2.  Experimental  
Cu-1.2%Ni-0.2%Be, Cu-1.2%Ni-0.2%Be-0.17%Zr, Cu-1.2%Ni-0.2%Be-0.1%Co and Cu-1.2%Ni-
0.2%Be-0.1%Mg alloys were prepared by melting in an argon atmosphere. The cast alloys were 
homogenized at 1000 ºC for 24 h in a vacuum, cold-rolled by 50% reduction in thickness and then 
spark-cut into specimen strips. All the specimen strips were solution-treated at 1000 C for 8 h in a 



 
 
 
 
 
 

vacuum, quenched into water, cold-rolled to 40% reduction in thickness and then aged at 450 C for 
various times in an argon atmosphere. The solution-treated specimens had a grain size of 80 m. 

Microhardness tests were carried out using the Vickers method. Tensile tests were performed using 
a static Instron-type testing machine with a constant strain rate of 10-3

 s-1 at room temperature. 
Electrical resistivity measurements were made by a Hocking AutoSigma 3000 electrical conductivity 
tester at 20 C. According to the literature [5], cantilever stress relaxation tests were performed at 
180 C for 24 h in a nitrogen atmosphere. Transmission electron microscopy (TEM) was carried out 
using a HITACHI H-9000NAR microscope at an operation voltage of 300 kV. Thin foils for TEM 
observations were prepared by slicing the aged specimens with a spark cutter and by electropolishing 
using a solution of 67% methanol and 33% nitric acid at -30 C and 6.5 V in a twin-jet electropolisher. 

3.  Results and discussion 

3.1.  Effect of Zr, Mg and Co on strength 
The hardness curves on aging at 450 C for Cu-Ni-Be alloys with and without Zr, Mg and Co showed 
that the peak hardness effect occurred after aging for 2 h. Aging the alloys at 450 C for 2 h after cold 
rolling to 40% reduction produced disk-shaped precipitates in the Cu matrix of  phase. An analysis of 
high-resolution TEM (HRTEM) images of the precipitates revealed that the disk-shaped precipitates 
were a "-NiBe phase, which consisted of a two Be-layer structure separated by a Ni layer parallel to 
the {100}  plane [1]. No other precipitates were observed in Cu-Ni-Be alloys with Zr, Mg and Co. 

Table 1 summarizes the tensile properties and electrical conductivity of the present alloys aged at 
450 C for 2 h. The addition of Zr, Mg and Co causes an increase in 0.2% proof stress and tensile 
strength.  
 
Table 1. 0.2% proof stress, tensile stress, elongation and electrical conductivity, and volume fraction, 
radius, thickness, number density and average inter-tip spacing of disk-shaped '' precipitates for Cu-
Ni-Be system alloys aged at 450 °C for 2 h after 40% cold-rolling. 
   

Specimen  
(wt%) 

0.2% 
proof 
stress 
(MPa) 

Tensile 
stress 
(MPa) 

Elongation  
(%) 

Electrical 
conductivity 

(%IACS) 

Volume 
fraction 

Radius 
(nm) 

Thickness 
(nm) 

Number 
density 

(×1023/m3) 

Inter- 
tip 

spacing 
(nm) 

Cu-1.2Ni-0.2Be 490 570 7 65 0.013 5.6 0.5 2.7 15 

Cu-1.2Ni-0.2Be-0.17Zr 560 640 7 60 0.016 4.0 0.5 6.3 11 

Cu-1.2Ni-0.2Be-0.1Co 510 600 6 60 0.014 5.0 0.5 3.7 13 

Cu-1.2Ni-0.2Be-0.1Mg 530 620 6 62 0.014 4.6 0.5 4.6 12 

 
It has been reported that the yield stress of Cu-Ni-Be alloys containing ” precipitates at room 

temperature is controlled by the Orowan mechanism at peak-age and over-age conditions [1]. The 
Orowan stress is inversely proportional to the inter-precipitate spacing . The increase in strength due 
to the addition of Zr, Mg and Co can then be discussed by estimating . Nie and Muddle considered 
the statistical evaluation of the average spacing ave between plate tips assuming that the precipitates 
form as circular disks and arrived at the following expression [6]: 

                                          
sin2

3
4sin2

1
2
3

ave
hr

rN・・
.                                    (1) 

Here N is the number density of precipitates per unit volume, r is the rdius of precipitates, h is their 
thickness and  is the dihedral angle between the plate and the {111}  slip plane. For {001}  
precipitate plates, =54.74°. The diameter and thickness of ” precipitates were measured from 
HRTEM images. To obtain statistically reliable data, more than 100 precipitates were analyzed for 



 
 
 
 
 
 

each alloy. The volume fraction f for the Cu-Ni-Be alloy was determined by applying the values of 
electrical resistivity, before and after aging at 450 C for 2 h, to the experimental data regarding the 
dependence of electrical resistivity on Ni or Be concentration [7]. For the Cu-Ni-Be alloys with 
0.17%Zr, 0.1%Mg and 0.1%Co, all of the trace atoms were assumed to be dissolved in the matrix. 
Then f was calculated after the resistivity increment caused by 0.17%Zr, 0.1%Mg or 0.1%Co addition 
was removed. Table 1 lists the values of r and f for the present alloys. The number density N of ” 
precipitates was obtained from r, h and f using the equation of N=f /( r2h). The estimated values of N 
and  ave also are listed in table 1. The values of N for the Zr, Mg and Co-added alloys are larger than 
that for the Cu-Ni-Be alloy, indicating that the Zr, Mg and Co solutes promote the formation rate of ” 
precipitates. Moreover, it is stated that the increase in N or decrease in  ave by adding Zr, Mg and Co 
results in an increase in 0.2 due to the Orowan looping mechanism. 

3.2.  Effect of Zr, Mg and Co on stress relaxation property 
Table 2 lists the stress relaxation rate for the present alloys tested at 180 C for 24 h. The stress 
relaxation rate is defined as the ratio of the deflection upon unloading to the deflection upon loading 
on a cantilever [5]. A lower stress relaxation rate means a higher resistance to stress relaxation. The 
addition of Zr, Mg and Co to the Cu-Ni-Be alloy enhances the stress relaxation resistance, and the 
effect is pronounced for the alloys with Zr and Mg. 
 
Table 2. Stress relaxation rate for Cu-Ni-Be 
system alloys aged at 450 ºC for 2 h. Stress 
relaxation tests were performed at 180 ºC for 
24 h. 
    

Specimen 
(wt%) 

Stress  
relaxation 

rate 

Cu-1.2Ni-0.2Be 0.15±0.02 
Cu-1.2Ni-0.2Be-0.17Zr 0.10±0.02 
Cu-1.2Ni-0.2Be-0.1Co 0.13±0.02 
Cu-1.2Ni-0.2Be-0.1Mg 0.10±0.02 

 

 
 

Figure 1. TEM image of disk-shaped '' 
precipitates in a Cu-1.2%Ni-0.2%Be alloy 
aged at 450 ºC for 2 h after 40% cold-rolling. 
The zone axis is [110]  

 
Since stress relaxation tests were performed at a relatively low temperature of 180 C in the present 

study, the stress relaxation is likely to occur by logarithmic creep caused by the relatively short range 
motion of dislocations [8]. Thus, the stress relaxation depends on the mobility and density of mobile 
dislocations. 

It is well known that the mobility of dislocations decreases when they are dragging their 
atmospheres of solute atoms behind them. Then the improvement of the stress relaxation property of 
the Cu-Ni-Be alloy by the addition of Zr, Mg or Co in table 2 might be expected to be attributable to 
the drag of atmosphere of Zr, Mg or Co atoms. However, we found that the addition of 0.17%Zr and 
0.1%Co to pure Cu did not change the stress relaxation rate, although the addition of 0.1%Mg 
decreased it. There existed no precipitates in the Cu-Zr, Cu-Mg and Cu-Co alloys examined. Thus, it is 
necessary to discuss another factor responsible for the decrease in stress relaxation rate by the addition 
of Zr, Mg and Co. 

In a previous paper [9], we have found that the present Cu-1.2%Ni-0.2%Be alloy exhibits better 
stress relaxation property than Cu-1.2%Ni and Cu-0.2%Be alloys. It has been concluded that this 
result is probably because atoms caused by pairs of Ni and Be chemical bonding are dragged by 
moving dislocations. Thus, the amounts of Ni and Be atoms dissolved in the Cu matrix affect the 



 
 
 
 
 
 

stress relaxation property. It may thus be inferred that the development of the stress relaxation 
property by the addition of Zr, Mg and Co is caused by the increase in amounts of Ni and Be in the Cu 
matrix. However, it is seen from table 1 that the addition of each element increases the value of f: that 
is, it decreases the amounts of Ni and Be atoms in the Cu matrix. 

As mentioned before, the stress relaxation should be affected by the density of mobile dislocations. 
In order to examine this, stress relaxation tests were carried out at 180 °C for 24 h, using pure Cu with 
and without 20% cold-rolling after annealing. The stress relaxation rates of Cu with and without 20% 
cold-rolling were 0.5 and 0.42, respectively. It is said that a higher density of mobile dislocations 
brings about a lower resistance to stress relaxation. Therefore, it may be expected that the addition of 
Zr, Mg or Co lowers the density of mobile dislocations and, as a result, the stress relaxation rate 
decreases. TEM observations of the present alloys aged at 450 ºC for 2 h after 40% cold-rolling 
revealed that ” precipitates formed preferentially on dislocations, as exemplified in figure 1. As 
shown in table 1, the number density of the precipitates increases by the element addition. This 
increase in number density should cause an increase in the number density of the ” precipitates 
preferentially formed on dislocations, resulting in a decrease in the density of mobile dislocations. 
This explains the development of the stress relaxation property due to the addition of each element. 

As mentioned before, the addition of 0.1%Mg to pure Cu improved the stress relaxation property. 
In the previous paper [2], we have reported that the increase of stress relaxation resistance by the 
addition of 0.1%Mg to a Cu-2.0%Ni-0.5%Si alloy is caused by the Mg-atom-drag effect on 
dislocation motion. Therefore, the decrease in stress relaxation rate by adding Mg to the Cu-Ni-Be 
alloy is attributable to the drag effect of Mg atoms on dislocation motion, in addition to the decrease in 
the density of mobile dislocations due to the increase in the number density of the ” precipitates 
preferentially formed on dislocations. 

4.  Conclusions 
We have found that 0.17wt%Zr, 0.1wt%Co or 0.1wt%Mg added to a Cu-1.2wt%Ni-0.2wt%Be alloy 
enhances the strength and stress relaxation property of the Cu-Ni-Be alloy. The increase in strength by 
the addition of each element is ascribed to the decrease in inter-tip spacing of ” precipitates. The 
improvement of stress relaxation property by the addition of Zr and Co is explained by the decrease in 
the density of mobile dislocations due to the increase in the number density of ” precipitates 
preferentially formed on dislocations. The increase in stress relaxation resistance by the Mg addition is 
attributed to the viscous glide motion of dislocations dragging Mg atoms, in addition to the decrease in 
the density of mobile dislocations. 
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