
Implementation of large-scale FIR adaptive filters
on nVIDIA GeForce graphics processing unit

言語: eng

出版者:

公開日: 2017-10-03

キーワード (Ja):

キーワード (En):

作成者:

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/2297/27097URL

IMPLEMENTATION OF LARGE-SCALE FIR ADAPTIVE FILTERS

ON NVIDIA GEFORCE GRAPHICS PROCESSING UNIT

Akihiro Hirano and Kenji Nakayama

Kanazawa University

Kakuma-Machi, Kanazawa, 920-1192, Japan

ABSTRACT

This paper presents implementations of an FIR adaptive fil-

ter with a large number of taps on nVIDIA GeForce graph-

ics processing unit (GPU) and CUDA software development

environment. In order to overcome a long access latency

for slow off-chip memory access, reduction of memory ac-

cesses by re-ordering and vector load/store operations and

an increase of the number of threads are introduced. A

tree adder is introduced to reduce the cost for summing

thread outputs up. A simultaneous execution of multiple

filters are also examined. On low-cost platform such as an

Atom/ION nettop, GPU will accelerates the computation by

almost three times. For simultaneous multiple simulations

such as an ensemble averaging, a GPU with a large num-

ber of processing elements outperforms a dual-core CPU;

almost six times faster for 16 runs.

1. INTRODUCTION

Echo cancellers are used to reduce echoes in a wide range of

applications, such as teleconference systems and hands-free

telephones. For acoustic echo cancellers (AEC’s), the num-

ber of taps is very large; from several hundreds to several

thousands. Therefore, efficient implementation of AEC’s

has been studied[1, 2]. In research of AEC’s, optimiza-

tion of adaptation parameters requires multiple simulations.

Thousands of simulations for ensemble averaging might be

necessary in order to confirm a convergence analysis[3].

Parallel simulations might be useful for these cases.

Recent years, PC-based communication systems such

as Skype and Messenger becomes very popular. PC-based

systems are also useful for simulations because they have

powerful CPU’s over giga floating-point operations per sec-

ond (FLOPS) performance. Recent PC’s are also equipped

with powerful graphics processing units (GPU’s). These

GPU’s are also capable of numerical computations by us-

ing C/C++ language[4, 5, 6] and have been used for com-

puter simulations. Latest GPU’s have computation perfor-

mance over tera FLOPS. Even some low-cost chipsets con-

sist of programmable GPU’s. An example is ION platform

by nVIDIA for Intel Atom processor.

In this paper, an implementation of an FIR adaptive filter

on nVIDIA GeForce family GPU and CUDA is discussed.

Section 2 describes the FIR adaptive filter with the normal-

ized least mean squares (NLMS) algorithm[7]. GeForce

family GPU and CUDA is briefly described in Sec. 3. The

proposed implementation is shown by Sec. 4. Section 5

compares the performance.

2. FIR ADAPTIVE FILTER BASED ON NLMS

ALGORITHM

The adaptive FIR filter generates its output signal y(n) from

the input signal x(n) and the filter coefficient wk(n) by

y(n) = w
T (n)x(n) (1)

x(n) = [x(n) x(n − 1) · · · x(n − N + 1)]T (2)

w(n) = [w0(n) w1(n) · · · wN−1(n)]T , (3)

where N is the number of taps, [· · ·]T is a transpose of a

vector [· · ·]. The error signal e(n) between the desired sig-

nal d(n) and the filter output y(n) is calculated by

e(n) = d(n) − y(n). (4)

By using the NLMS algorithm[7], the filter coefficient vec-

tor w(n) is updated by

w(n + 1) = w(n) +
µe(n)x(n)

|x(n)|2
(5)

where a positive constant µ is a step-size parameter.

3. NVIDIA GEFORCE GPU AND CUDA

In this implementation, nVIDIA GeForce 8000 family or

later GPU’s are assumed. Though GeForce 8800 GTS and

GeForce 9400M in ION chipset are used as a benchmark

platform, the results could be applied for other GPU’s. Ex-

ceptions might be latest GeForce GT200 family GPU’s; they

are equipped with L1 and L2 data cache memories and there-

fore, different optimization could be applied. Main features

of GeForce 8000 or 9000 family GPU’s are listed below.

2010 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2010) December 6-8, 2010

TA1.2.2

978-1-4244-7370-0/10/$26.00 ©2010 IEEE 269

Constant Memory (64KB)

Multiprocessor #N

Shared Memory (16~32KB)

Shader

Processor

(SP) #8

Shader

Processor

(SP) #1

Registers Registers

Instruction

Unit

Multiprocessor #1

Device Memory (MB~TB) Host CPU

GeForce GPU

Fig. 1. Computation model of GeForce GPU

• Unified shader architecture

• Large number of shader processors (SP’s):

– 16 ∼ 128 SP’s per chip.

– 8 SP’s execute the same instruction.

– The same instruction are executed in four suc-

cessive instruction cycles.

– 32 threads are executed simultaneously by 8-SP

block.

– 8192 data registers per 8 SP’s.

• Floating-Point (FP) support

– 32-bit FP multiply-add.

– Four-clock latency for 32-bit FP multiply-add.

– Some newer GPU’s support 64-bit FP.

• Multiple data memories

– Shared memory: 16KB or 32KB read/write RAM

per 8 SP’s.

Access latency is 4 instruction cycles.

– Constant memory: 64KB read-only RAM per

chip.

– Device memory (off-chip RAM): ∼ 1GB.

Very slow: Latency is 400 ∼ 600 clocks.

• Compiler support

As a programmable processor, GeForce GPU’s can be re-

garded as multiple sets of 8-way SIMD (single-instruction

multiple-data) processor array. In order to cover a four-

cycle latency for most operations, each SP repeats a single

instruction by four times. Therefore, a set of 32 threads

is executed by a set of 8 SP’s. A synchronization mech-

anism is prepared between threads in a SIMD processor

array, while there are no synchronization mechanisms be-

tween different SIMD processor arrays.

There are some classes for data memories on GeForce

GPU’s: shared memory, constant memory, texture memory

and device memory. 8 SP’s in the same group can access

shared memory. Though shared memory is the fastest mem-

ory, special care is required for its lifetime. Shared memory

is prepared at the beginning of thread and is removed at the

end. Users have to save data which will be used after the

end of thread into device memory (off-chip memory).

Device memory is a large off-chip memory. The prob-

lem of device memory is a very long access latency which

is 400 ∼ 600 instruction cycles. To hide this latency, mul-

tiple groups of threads are commonly used; another thread

starts when a thread is interlocked by slow memory access.

Constant memory is an intermediate-speed memory. From

GPU, constant memory is a read-only memory, while host

CPU can read/write this memory.

“CUDA”[4, 5] is a software development tools and drivers

for GeForce family GPU’s, which is an abbreviation of “Com-

pute Unified Device Architecture.” Programs for both CPU

and GPU can be written in a single source file. Some ex-

tensions to C/C++ language support parallel processing and

multiple memory classes.

4. IMPLEMENTATION OF FIR ADAPTIVE

FILTERS BASED ON NLMS ALGORITHM

In this implementation, only one SIMD processor array per

filter is used. An implementation with one SIMD array is

useful for low-cost GPUs with only two SIMD arrays; one

for the adaptive filter and the other for graphics and video.

Another reason is to avoid synchronization and communi-

cation between multiple SIMD arrays.

4.1. Memory assignment

Since the number of taps is assumed to be very large, vec-

tors x(n) and w(n) will be stored in the device memory.

It distinguishes this implementation from that reported in

[2]. The input signals and the desired inputs, which are not

modified, are stored into constant memory.

4.2. Reduction of memory access

The number of memory access can be reduced by similar

manner as in[1, 2]. The data load can be reduced by chang-

2010 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2010) December 6-8, 2010

270

ing the order of (1) and (5). Calculating

wk(n) = wk(n − 1)

+ δ(n − 1)x(n − k − 1) (6)

and

sum(n) = sum(n) + wk(n)x(n − k) (7)

in the descending order of the tap index k could reduce the

number of load operation for both wk(n) and x(n − k). In

(6) , δ(n − 1) is defined by

δ(n − 1) =
µe(n − 1)

|x(n)|2
. (8)

The load operation for wk(n) is reduced because wk(n) cal-

culated in (6) is also used for convolution (7) just after (6).

The number of load operation for x(n − k) can be reduced

because x(n − k) in (7) can be re-used in (6) for the next

k = k − 1.

The number of memory access can further be reduced by

introducing a vector data type “float4”, which is 4-dimensional

(4D) vector. By using this data type, the number of access

from/to slow device memory can be reduced by factor of

1/4. Please note that the vector operation can be applied

only to memory access. This is because the SP is a scalar

processor.

The misalignment problem[8] also appears in this im-

plementation. Thanks to the scalar-processor architecture,

the influence of the misalignment is very limited. By using

two 4D vectors for x(n) and selecting four samples from

the eight, this problem can easily solved.

4.3. Multi-thread implementation of adaptive FIR filter

In this implementation, each adaptive filter is divided sim-

ply into short sub filters, which is almost same implementa-

tion as in [2]. Figure 2 shows the implementation of adap-

tive FIR filters. Each thread processes small segments from

all of four adaptive filters. This is because the memory ac-

cess reduction shown in 4.2 requires successive processing

of adjacent filter taps. This division also simplifies thread

division.

A problem specific to GPU computing is the computa-

tional cost for summing all sub filter outputs up. An im-

plementation of an SAEC in [2] has introduced a tree adder

in Fig. 2 in order to reduce the summing-up cost. For a

4096-tap FIR filter case, a tree adder is more effective than

a single-thread adder if the number of threads is more than

64.

4.4. Multiple Simulations on Multiple SIMD array

Execution of multiple simulations with independent x(n),
d(n) and µ have also been examined. Applications of such

Adaptive Filter w(n)

x(n)

y(n)

Tree Adder

1st

sub

filter

2nd

sub

filter

3rd

sub

filter

4th

sub

filter

last

sub

filter

1st

thread

2nd

thread

last

thread

3rd

thread

4th

thread

Fig. 2. Multi-thread implementation of adaptive FIR filter

a parallel processing are parameter optimization and ensem-

ble averaging.

In this configuration, one SIMD array per filter is used.

Multiple SIMD array are assigned for parallel processing.

Handling of multiple x(n), d(n) and µ are main difference

between the single-filter case and the multiple-filter case.

5. PERFORMANCE COMPARISON

The FIR adaptive filter with NLMS algorithm has been im-

plemented and tested on two different platforms. Table 1 de-

picts the specifications of the platforms. For both CPUs and

GPUs, programs in C language is used. The CPU program

has been optimized by the compiler. For the GPU programs,

the tunable parameters such as the number of thread and the

adder type have been manually optimized for the speed. An

4096-tap FIR adaptive filter and a 16kHz sampling are as-

sumed, which is applicable 250msec reverberation time.

Figure 3 demonstrates the influence of the number of

threads, the adder type, and the load/store type The pro-

cessing time by the Core 2 CPU programs and GeForce

8800 GPU programs for 10-second data have been com-

pared. The GPU program with the vector load/store is twice

faster than that with the scalar load/store. If the number of

threads is larger than 64, the tree adder is faster.

Table 2 compares processing time for different platforms.

The fastest parameters have been manually selected. The

tree adder and the vector load/store are used for GPU pro-

grams. The number of threads is 128 for both GPU’s. Core

2 CPU and GeForce 8800 and ION GPUs can be used for

real-time processing. In both platforms, GPU’s are faster

than the corresponding CPU’s. The acceleration by GPU is

2010 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2010) December 6-8, 2010

271

Table 1. Specifications of Platforms

Platform Server Nettop

CPU Core 2 Duo E8200 Atom N330

Physical cores 2 2

Logical cores 2 4

CPU clock 2.66GHz 1.6GHz

GPU GeForce 8800 GTS GeForce 9400M

(ION chipset)

SPs 8 × 16 8 × 2
SP clock 1.62GHz 1.1GHz

OS Linux Linux

(bits) (64bit) (64bit)

 1

 10

 100

 1000

 1 10 100 1000

T
im

e
 [
s
e
c
]

Number of Threads

Core 2

: GeForce, Vector, Tree Adder

: GeForce, Scalar, Simple Adder

: GeForce, Scalar, Tree Adder

: GeForce, Vector, Simple Adder

Warp Size=32# of SP=8

Hard Limit=512

Fig. 3. Influence of number of threads

larger for Atom/ION platform.

The elapsed times for 16 independent simulations for

a 4096-tap filter, 16kHz sampling and 10-second data case

are compared by Fig. 4. The tree adder and 256 threads

have been chosen for GPU programs. GeForce 8800 GPU

program with the vector load/store outperforms the other

programs. The computation time is well reduced until eight

SIMD arrays are used. Almost no performance improve-

ments has been achieved by using sixteen SIMD arrays,

possibly because of the limitation on the memory band-

widths.

6. CONCLUSION

Efficient implementations of a large-scale FIR adaptive fil-

ter on nVIDIA GeForce GPU’s have been discussed. Re-

duction of memory accesses including vector load/store and

multi-thread code help to overcome the influence of slow

off-chip memory access. A tree adder is introduced to re-

duce the cost for summing thread outputs up. Two or three

times acceleration for a single-filter case and six times ac-

Table 2. Computation time for 4096-tap, 10 seconds data

Type Core 2 GeForce 8800 Atom ION

Time [sec] 4.75 2.32 19.60 6.51

 1

 10

 100

 1000

 1 16

T
o
ta

l
T

im
e
 f
o
r

1
6
 R

u
n
s
[s

e
c
]

Number of Simultaneous Runs

 2 4 8

ION, Scalar

ION, Vector

Atom

Core 2

GeForce, Scalar

GeForce, Vector

Fig. 4. Performance for multiple simulations

celeration for a 16-filter case have been achieved by GPU

computing.

7. REFERENCES

[1] A. Hirano and K. Nakayama, “Implementation of

stereophonic acoustic echo canceller on intel IA-32 pro-

cessors with SIMD capability,” Proc. of 22nd SIP sym-

posium, Nov. 2007.

[2] A. Hirano and K. Nakayama, “Implementation of

stereophonic acoustic echo canceller on nvidia geforce

graphics processing unit,” Proc. of ISPACS 2009, pp.

303–306, Dec. 2009.

[3] S. Koike, “Performance analysis of least mean

modulus-newton algorithm,” Proc. of ISPACS 2009, pp.

413–414, Doc. 2009.

[4] “NVIDIA CUDA compute unified device architecture

reference manual,” Nov. 2008.

[5] “NVIDIA CUDA programming guide,” Dec. 2008.

[6] “ATI stream computing user guide,” Mar 2009.

[7] J. Nagumo and A. Noda, “A learning method for system

identification,” IEEE Trans. AC, vol. 12, no. 3, pp. 282–

287, Mar. 1967.

[8] B. Juurlink A. Shahbahrami and S. Vassiliadis, “Per-

formance impact of misaligned accesses in SIMD ex-

tensions,” Proc. of ProRISC 2006, pp. 334–342, 2006.

2010 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2010) December 6-8, 2010

272

