
2416
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.12 DECEMBER 2009

PAPER

Randomized Online File Allocation on Uniform Cactus Graphs∗

Yasuyuki KAWAMURA†, Nonmember and Akira MATSUBAYASHI†a), Member

SUMMARY We study the online file allocation problem on ring net-
works. In this paper, we present a 7-competitive randomized algorithm
against an adaptive online adversary on uniform cactus graphs. The algo-
rithm is deterministic if the file size is 1. Moreover, we obtain lower bounds
of 4.25 and 3.833 for a deterministic algorithm and a randomized algorithm
against an adaptive online adversary, respectively, on ring networks.
key words: online algorithm, file allocation, data management, cactus
graph

1. Introduction

Parallel and distributed systems, such as multiprocessor
computer systems and the Internet, consist of nodes each
having their own local memory module and communica-
tion links between the nodes. Data objects, such as files on
distributed file servers and pages in a virtual shared mem-
ory system, are distributed among the nodes, and a node
requiring access to a data object issues a request for the
data. Because such requests are served using communica-
tion on the underlying network, it is important to allocate
the data objects so that the communication load for the re-
quests is minimized. In particular, dynamic reallocation of
the data objects is effective in reducing the communication
load in a situation where the requests are issued sequentially.
This problem has been formulated as various types of on-
line data management problems and studied extensively so
far (e.g., [1]–[3]). In this study, we consider one of the vari-
ations, called the file allocation problem [4], in which read
and write requests are served using unicast and multicast
communication, respectively, and we are allowed to repli-
cate copies of the data objects on the network. Serving a
request costs the total distance of communication, and re-
allocating the data objects costs the total distance of repli-
cation multiplied by the data size. The objective of the file
allocation problem is to minimize the total costs of services
and reallocations.

Bartal, Fiat, and Rabani [4] presented a randomized
O(log n)-competitive algorithm against an adaptive online
adversary on n-node general networks. Awerbuch, Bartal,

Manuscript received March 6, 2009.
Manuscript revised August 10, 2009.
†The authors are with the Division of Electrical Engineering

and Computer Science, Kanazawa University, Kanazawa-shi, 920–
1192 Japan.

∗A preliminary version of this paper appeared in Proc. 7th
International Symposium on Parallel and Distributed Computing,
pp.449–453, 2008.

a) E-mail: mbayashi@t.kanazawa-u.ac.jp
DOI: 10.1587/transinf.E92.D.2416

and Fiat [5] improved the result by presenting a determinis-
tic O(min{log n, log(Diam)})-competitive algorithm, where
Diam is the diameter of a network. The algorithms are op-
timal in terms of order, i.e., there exists an n-node network
on which any randomized algorithm against an oblivious ad-
versary is Ω(log n)-competitive [4]. Better algorithms have
been proposed for restricted networks. A randomized 3-
competitive algorithm against an adaptive online adversary
on trees and a deterministic 3-competitive algorithm on uni-
form complete networks were provided in [4]. Lund, Rein-
gold, Westbrook, and Yan [6] improved the algorithm on
trees by presenting a deterministic 3-competitive algorithm
and a randomized (2 + 1

D)-competitive algorithm against
an oblivious adversary, where D is a positive integer rep-
resenting the data size. The algorithms are optimal be-
cause even on a single link, no randomized algorithm has
a competitive ratio less than 3 [4], [7] and 2 + 1

D [6] for
adaptive and oblivious adversaries, respectively. It is men-
tioned that the O(log n)-competitive algorithm on general
networks is 7.464-competitive on ring networks [4]. This
is because the algorithm is actually a (2+

√
3)c-competitive

algorithm against an adaptive online adversary that uses a
c-competitive online Steiner tree algorithm, and because a
greedy Steiner tree algorithm is 2-competitive on ring net-
works.

In this paper, we present a 7-competitive randomized
algorithm against an adaptive online adversary on uniform
cactus graphs. The algorithm is deterministic if D = 1.
Moreover, we obtain lower bounds of 4.254 and 3.833 for a
deterministic algorithm and a randomized algorithm against
an adaptive online adversary, respectively, on ring networks.

2. Preliminaries

A network can be represented by a graph G with edge
weights. Let V(G) and E(G) denote the node set and edge
set, respectively, of G. G is said to be uniform if every edge
has a weight of 1. A ring is a graph consisting of a single
cycle. A cactus graph is a connected graph in which any
two cycles have at most one node in common. An example
of a cactus graph is shown in Fig. 1.

The distance between two nodes u and v, denoted by
dist(u, v), is the minimum sum of weights of edges of a
path connecting u and v. For U ⊆ V(G), let dist(u,U) =
minv∈U dist(u, v). Let T (U) denote a minimum Steiner tree
containing U. Let w(U) be the sum of weights of edges in
T (U). For S ,U ⊆ V(G), let w(S ,U) be the minimum sum

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

KAWAMURA and MATSUBAYASHI: RANDOMIZED ONLINE FILE ALLOCATION ON UNIFORM CACTUS GRAPHS
2417

of weights of edges of a forest that connects every node of
U \ S to a node of S .

The file allocation problem is as follows: given a graph
G with edge weights, a positive integer D, S 0 ⊆ V(G),
and a sequence R1, . . . ,Rk ∈ V(G) × {read,write}, to com-
pute S 1, . . . , S k ⊆ V(G) so that

∑
Ri=(u,read)

1≤i≤k
dist(u, S i−1) +∑

Ri=(u,write)
1≤i≤k

w({u}∪S i−1) + D
∑k

i=1 w(S i−1, S i) is minimized.

The file allocation problem is a formulation of the following
scenario: Initially, each node of S 0 ⊆ V(G) holds a copy of
data, which is also called a file. A file allocation algorithm
receives a sequence of requests generated at nodes in V(G).
Each request is either a read request or a write request. Af-
ter each request is served, the algorithm can reallocate the
copies by replicating and/or deleting copies. The algorithm
serves a read request at node u using unicast communication
between u and the closest node p in the set S of the nodes
holding a copy at that time. The cost to serve this read re-
quest is dist(u, p). If a write request is generated at u, then
all the copies of the file on the nodes in S must be updated.
The algorithm serves this write request by multicast com-
munication from u to all the nodes in S , and it pays a cost
equal to w({u}∪S). The algorithm can delete a copy unless it
is the last copy in the network, at no cost. The copies on the
nodes in S can also be replicated to another set S ′ ⊆ V(G).
The cost of this replication is D · w(S , S ′), where D denotes
the size of the file.

The following is a basic notion of online algorithms.
See, e.g., [8] for further details. An algorithm to compute
S i after having known the entire sequence of requests is
called an offline algorithm. By contrast, an online algorithm
computes S i using only information of R1, . . . ,Ri. An al-
gorithm that provides an input to an online file allocation
algorithm and also computes its own output is called an ad-
versary. The adversary has the knowledge of the online al-
gorithm and constructs the worst possible input. There are
three types of adversaries. The oblivious adversary must
construct the request sequence in advance and serves it op-
timally. By contrast, the adaptive adversary constructs the
request one by one from the information of the current out-
put of the online algorithm. There are two types of adaptive
adversaries. The adaptive online adversary serves the cur-
rent request online, and then chooses the next request based
on the online algorithm’s action thus far. The adaptive off-
line adversary chooses the next request based on the online
algorithm’s action thus far, but pays the optimal cost to the
resulting request sequence. Let Alg(σ) be the cost of a file
allocation algorithm ALG for an input σ. For any adversary
type ADV and any σ, if E[Alg(σ)] + α ≤ E[c · Adv(σ)],

Fig. 1 An example of a cactus graph.

then ALG is c-competitive against ADV, where α is a value
independent of the number of requests. The competitive-
ness is typically analyzed by using a potential function. Let
e1, e2, . . . , em be any event sequence, i.e., a sequence of frag-
ments of operations of ALG and ADV for σ. Suppose
Φ : S ALG × S ADV → R, where S ALG and S ADV are the sets
of nodes on which ALG and ADV hold copies, respectively.
LetΦi be the value ofΦ just after the ith event andΦ0 be the
value of Φ before e1. To prove that ALG is c-competitive
against ADV, it is sufficient to find Φ that satisfies Φi −
Φi−1 ≤ c ·E[(cost of ADV for ei)] −E[(cost of ALG for ei)]
for 1 ≤ i ≤ m. This is because by summing up this inequal-
ity, we can obtain E[Alg(σ)]+Φm−Φ0 ≤ E[c ·Adv(σ)], and
because Φm − Φ0 is independent of the number of requests.

3. Randomized Algorithm on Uniform Cactus Graphs

In this section we present a randomized file allocation algo-
rithm on uniform cactus graphs, called RUCG.

Let G be a uniform cactus graph. Let C = {C0, . . . ,Cn}
be the set of cycles and 2-node paths consisting of edges
not contained in a cycle of G. By the definition of a cactus
graph, any elements Ci and C j (i � j) of C share at most one
node, and there is a unique sequence of elements of C such
that any path from a node of Ci to a node of C j contains an
edge of each element in the order of the sequence. Suppose
that C ∈ C and that S ⊆ V(C) is the set of nodes of a path on
C. For u ∈ V(C) \ S , let s be a closest node in S to u. Since
S = V(T (S)), s is an end-node of T (S). Let s be the other
end-node of T (S) if |S | ≥ 2 and s otherwise. Let P(S , u) be
a shortest path connecting s and u, and P(S , u) be the path
of length dist(s, u) that starts from s and passes along nodes
in V(C) \ ((S ∪ V(P(S , u))) \ {s, u}) (Fig. 2).

3.1 Definition

Initially, RUCG replicates a copy to each node of V(T (S 0))
before R1 is generated. By this operation, we denote
V(T (S 0)) by S 0 for simplicity. RUCG keeps the property
that S i = V(T (S i)) for each i > 0. Suppose that Ri is gener-
ated at ui (1 ≤ i ≤ k) and that si is a closest node in S i−1 to
ui. For convenience, we denote the unique sequence of ele-
ments of C along a path from si to ui by C0, . . . , Ct so that
si ∈ C0 and ui ∈ Ct. For 1 ≤ j ≤ t, we denote the unique
node shared by C j−1 and C j by v j. Let v0 = si and vt+1 = ui.
After serving Ri, RUCG reallocates the copies as follows:

Fig. 2 P(S , u) and P(S , u).

2418
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.12 DECEMBER 2009

Fig. 3 Replication of RUCG for (ui, read) with ui � S i−1.

1. If Ri = (ui, read), then:

a. If ui ∈ S i−1, then S i = S i−1.
b. Otherwise,

i. P0 = P(S i−1 ∩ V(C0), v1) and P0 = P(S i−1 ∩
V(C0), v1),

ii. Pj = P({v j}, v j+1) and Pj = P({v j}, v j+1) for
1 ≤ j ≤ t,

iii. S i = S i−1 ∪⋃t
j=0(V(Pj)∪V(Pj)) with proba-

bility 1
D (Fig. 3) and S i = S i−1 with probabil-

ity 1 − 1
D .

2. If Ri = (ui,write), then set S i = {ui} with probability 1
D

and S i = S i−1 with probability 1 − 1
D .

It should be noted that S i = V(T (S i)) inductively.
Moreover, for every C j (0 ≤ j ≤ t), the average cost
for 1b is at most 2dist(v j, v j+1) − 1 if Pj contains v j+1 and
2dist(v j, v j+1) otherwise. This is because if both Pj and
Pj contain v j+1, then it is sufficient for RUCG to replicate
copies along V(Pj) and V(Pj) \ {v j+1}.

3.2 Competitiveness

We present the following theorem:

Theorem 1: RUCG is 7-competitive on uniform cactus
graphs against an adaptive online adversary.

Proof We prove the theorem using a potential function. Let
ADON be an adaptive online adversary. The potential func-
tion for RUCG just before Ri is generated is defined as Φ =
D·(5w(Ai−1∪S i−1)−4w(S i−1)), where Ai−1 is the set of nodes
on which ADON holds the copies just before Ri is generated.
For each request, we show E[ΔΦ] ≤ 7ΔAdon−E[ΔRucg] in
each event of (i) ADON’s reallocation, (ii) RUCG’s service
and reallocation, and ADON’s service for a read request,
and (iii) RUCG’s service and reallocation, and ADON’s ser-
vice for a write request, where ΔΦ is the increased amount
of Φ due to the event, and ΔAdon and ΔRucg are costs paid
by ADON and RUCG, respectively, in the event.

Lemma 1: In an event of ADON’s replication and dele-
tion, ΔΦ ≤ 5ΔAdon − E[ΔRucg].

Proof Clearly, if ADON replicates or deletes copies, then
w(S i−1) does not change, and hence, the term of Φ that
changes is only 5D · w(Ai−1 ∪ S i−1). A deletion made by

ADON only decreases the term. If ADON replicates a copy
resulting with Ai,

ΔΦ = D · {5(w(Ai ∪ S i−1) − w(Ai−1 ∪ S i−1))}
≤ 5D · w(Ai−1, Ai)

= 5ΔAdon.

The inequality holds because w(Ai−1 ∪ S i−1) +w(Ai−1, Ai) is
the sum of weights of edges of a connected subgraph con-
taining Ai−1, S i−1, and Ai, and because this sum of weights
is at least w(Ai ∪ S i−1). Because ΔRucg = 0 in the event, the
lemma holds. �

We present claims to prove the subsequent lemma. Let
ai be a closest node in Ai−1 to ui and bi be the closest node
in

⋃t
j=0 V(C j) to ai. Suppose that ai ∈ Cx and bi ∈ Cq

(0 ≤ q ≤ t).

Claim 1: dist(ai, ui) ≥ dist(bi, ui).

Proof By the definition of a cactus graph, there exists a
unique sequence of elements of C between Cx and Cq such
that any path connecting ai to a node of

⋃t
j=0 V(C j) passes

along the sequence and that two consecutive elements in the
sequence share exactly one node. If ai ∈ ⋃t

j=0 V(C j), then
bi = ai. Otherwise, bi is the node shared by Cq and another
element in the sequence. Therefore, any shortest path con-
necting ai and ui contains bi, which proves the claim. �

Claim 2: If Ri = (ui, read) with ui � S i−1, then for 0 ≤ j <
q, at least one of Pj or Pj is a subgraph of T (Ai−1 ∪ S i−1).

Proof Because T (Ai−1 ∪ S i−1) contains a node of C0, it
follows from a similar argument of the proof of Claim 1
that T (Ai−1 ∪ S i−1) contains bi. Therefore, T (Ai−1 ∪ S i−1)
passes through C0, . . . ,Cq, and hence, contains v j and v j+1

for 0 ≤ j < q. Because any path connecting v j and v j+1 in
C j contains Pj or Pj as a subgraph by definition, at least one
of Pj or Pj is a subgraph of T (Ai−1 ∪ S i−1). �

Claim 3: If Ri = (ui, read) with ui � S i−1 and dist(si, ui) >
dist(bi, ui), then at least one of Pq and Pq contains bi or is a
subgraph of T (Ai−1 ∪ S i−1).

Proof Suppose that neither Pq nor Pq contains bi. It should
be noted that the nodes of Cq contained in neither Pq nor Pq

induces at most two paths.
If q > 0, then Pq and Pq share vq by definition, and

hence, there exists exactly one such induced path. If q = 0,
then one of the induced paths is T (S i−1 ∩ V(C0)). It fol-
lows that bi � S i−1 ∩ V(C0), for otherwise, dist(si, ui) ≤
dist(bi, ui), contradicting the assumption of the claim.

Therefore, because neither Pq nor Pq contains bi, each
path connecting vq and bi contains Pq or Pq as a subgraph.
Because T (Ai−1 ∪ S i−1) contains vq and bi as shown in the
proof of Claim 2, the claim holds. �

Lemma 2: In the event of (ii) for Ri = (ui, read), E[ΔΦ] ≤
5ΔAdon − E[ΔRucg].

KAWAMURA and MATSUBAYASHI: RANDOMIZED ONLINE FILE ALLOCATION ON UNIFORM CACTUS GRAPHS
2419

Proof If ui ∈ S i−1, then ΔΦ = 0 and ΔRucg = 0,
which proves the lemma. Therefore, we assume ui � S i−1.
ADON’s cost to serve Ri is at least dist(ai, ui) ≥ dist(bi, ui)
by Claim 1. RUCG’s cost to serve Ri is dist(si, ui). If RUCG
replicates, then the replication cost is D · (2dist(si, ui) −∑t

j=0 λ j), where λ j is 1 if Pj contains v j+1 and 0 otherwise.
Thus,

E[ΔRucg] = dist(si, ui) +
1
D
· D ·

⎛⎜⎜⎜⎜⎜⎜⎝2dist(si, ui)

−
t∑

j=0

λ j

⎞⎟⎟⎟⎟⎟⎟⎠ +
(
1 − 1

D

)
· 0

= 3dist(si, ui) −
t∑

j=0

λ j,

Φ changes with probability 1
D , only when RUCG reallocates

the copies. Moreover, if RUCG reallocates the copies on
S i−1 to S i, then w(S i) = w(S i−1) + 2dist(si, ui) − ∑t

j=0 λ j.
Therefore, it follows that

E[ΔΦ] =
1
D
· D · {5w(Ai−1 ∪ S i) − 4w(S i)

− (5w(Ai−1 ∪ S i−1) − 4w(S i−1))}
= 5(w(Ai−1 ∪ S i) − w(Ai−1 ∪ S i−1))

− 4 ·
⎛⎜⎜⎜⎜⎜⎜⎝2dist(si, ui) −

t∑
j=0

λ j

⎞⎟⎟⎟⎟⎟⎟⎠ .

We first consider the case that dist(si, ui) ≤ dist(bi, ui).
RUCG’s replication increases w(Ai−1 ∪ S i−1) by at most
2dist(si, ui) −∑t

j=0 λ j. Therefore,

E[ΔΦ] ≤ 5

⎛⎜⎜⎜⎜⎜⎜⎝2dist(si, ui) −
t∑

j=0

λ j

⎞⎟⎟⎟⎟⎟⎟⎠

−4 ·
⎛⎜⎜⎜⎜⎜⎜⎝2dist(si, ui) −

t∑
j=0

λ j

⎞⎟⎟⎟⎟⎟⎟⎠

≤ 5

⎛⎜⎜⎜⎜⎜⎜⎝dist(bi, ui) + dist(si, ui) −
t∑

j=0

λ j

⎞⎟⎟⎟⎟⎟⎟⎠

−4 ·
⎛⎜⎜⎜⎜⎜⎜⎝2dist(si, ui) −

t∑
j=0

λ j

⎞⎟⎟⎟⎟⎟⎟⎠

= 5dist(bi, ui) − 3dist(si, ui) −
t∑

j=0

λ j

≤ 5ΔAdon − E[ΔRucg].

We then consider the other case that dist(si, ui) >
dist(bi, ui). If RUCG reallocates the copies to S i, then it
replicates the copies along both Pj and Pj for 0 ≤ j ≤ t.
By Claim 2, for 0 ≤ j < q, T (Aj−1 ∪ S j−1) contains at least
one path Qj of Pj and Pj. Therefore, the replication along
Qj never increases w(Ai−1 ∪ S i−1). By Claim 3, for j = q, at

least one path Qq of Pq and Pq contains bi or is a subgraph of
T (Ai−1 ∪ S i−1). If Qq contains bi, then the replication along
Qq increases w(Ai−1 ∪ S i−1) by at most dist(bi, vq+1). If Qq

is a subgraph of T (Ai−1 ∪ S i−1), then the replication along
Qq never increases w(Ai−1 ∪ S i−1). For j > q, because Pj

is a shortest path connecting v j and v j+1, any shortest path
connecting bi and ui contains a path in C j of the same length
as that of Pj. Thus,

w(Ai−1 ∪ S i) − w(Ai−1 ∪ S i−1)

≤
q−1∑
j=0

dist(v j, v j+1) + dist(vq, vq+1) + dist(bi, vq+1)

+ 2
t∑

j=q+1

dist(v j, v j+1) −
t∑

j=0

λ j

=

t∑
j=0

dist(v j, v j+1) + dist(bi, vq+1)

+

t∑
j=q+1

dist(v j, v j+1) −
t∑

j=0

λ j

= dist(v0, vt+1) + dist(bi, vt+1) −
t∑

j=0

λ j

= dist(si, ui) + dist(bi, ui) −
t∑

j=0

λ j.

Therefore,

E[ΔΦ] ≤ 5dist(bi, ui) − 3dist(si, ui) −
t∑

j=0

λ j

≤ 5ΔAdon − E[ΔRucg].

�

Lemma 3: In the event of (iii) for Ri = (ui,write), ΔΦ ≤
7ΔAdon − E[ΔRucg].

Proof Because ADON pays cost only for serving a write
request in this event, ΔAdon = w(Ai−1 ∪ {ui}) ≥ dist(ai, ui).
RUCG pays cost for serving the write request, and with
probability 1

D , for moving a copy to ui. Thus,

E[ΔRucg] = w(S i−1 ∪ {ui}) + 1
D
· D · dist(si, ui)

≤ w(S i−1) + 2dist(si, ui).

RUCG’s reallocation makes S i = {ui} and w(S i) = 0. Thus,

E[ΔΦ] =
1
D
· D · {5w(Ai−1 ∪ {ui}) − 5w(Ai−1 ∪ S i−1)

− 4(0 − w(S i−1))}
= 5ΔAdon − 5(w(Ai−1 ∪ S i−1) − w(S i−1))

−w(S i−1)

= 5ΔAdon + 2dist(ai, ui) − 2dist(ai, ui)

− 5(w(Ai−1 ∪ S i−1) − w(S i−1)) − w(S i−1)

≤ 7ΔAdon − 2dist(ai, ui)

− 5(w(Ai−1 ∪ S i−1) − w(S i−1)) − w(S i−1).

2420
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.12 DECEMBER 2009

By the definition of si and the triangle inequality,

dist(si, ui) ≤ dist(ai, ui) + dist(ai, S i−1)

≤ dist(ai, ui) + w(Ai−1 ∪ S i−1) − w(S i−1)

≤ − y
2
,

where y = −2dist(ai, ui)−5(w(Ai−1∪S i−1)−w(S i−1)). Since
y ≤ −2dist(si, ui),

E[ΔΦ] ≤ 7ΔAdon + y − w(S i−1)

≤ 7ΔAdon − 2dist(si, ui) − w(S i−1)

≤ 7ΔAdon − E[ΔRucg].

�

The cost for RUCG’s initial replication is independent
of the number of requests. Therefore, the proof of Theo-
rem 1 is completed from Lemmas 1-3. �
We can obtain the following corollary from Theorem 1 and
the definition of RUCG.

Corollary 1: RUCG is a 7-competitive deterministic algo-
rithm if D = 1.

4. Lower Bound on Rings

In this section, we present the following theorem:

Theorem 2: There is no randomized c-competitive file al-
location algorithm against an adaptive online adversary on
rings if c < 3.833.

Proof We prove the theorem by presenting an adaptive on-
line adversary ADV defined as follows: Let n ≥ 4 be an even
integer, G be an n-node uniform ring, D = 1, and S 0 = {s1}.
Let (u, read)+ denote a sequence of read requests generated
by ADV at a node u until a file allocation algorithm ALG
replicates a copy to u. Let (u,write)+ denote a sequence of
write requests generated by ADV at a node u until ALG has
a single copy only on u.

ADV generates a sequence of requests consisting of
l phases, each of which forces ALG to reallocate a single
copy only on a node si at the beginning of the ith phase. Let
si be the node at distance n

2 from si on G. Let P1 and P2 be
the two paths connecting si and si. ADV generates requests
in the ith phase as follows:

Step 1: Until ALG holds copies at both si and si, ADV gen-
erates (si, read)+ and (si, read)+. Let Q1 and Q2 denote
the sets of nodes of the longest subpaths of P1 and P2,
respectively, such that ALG holds no copy on each in-
ternal node of the subpaths. Assume without loss of
generality that the probability �i for w(Q1) ≤ w(Q2)
obeys 1

2 ≤ �i ≤ 1. Let ρ = n�i

2+2�i
. Let si+1 be the

middle-node of T (Q2) (i.e., a node in Q2 at distance
w(Q2)

2 � from an end-node of T (Q2)). Figure 4 shows
T (Q1) and T (Q2) for an allocation of ALG.

Fig. 4 T (Q1) and T (Q2) for an allocation of ALG.

Step 2: If w(Q2) ≤ ρ, then ADV generates (si+1,write)+

and proceeds to the next phase.
Step 3: If w(Q2) > ρ, then ADV generates (si+1, read).

Then, until ALG holds copies on V(P2), ADV gener-
ates (u, read)+ at each node u on which ALG does not
hold a copy.

Step 4: ADV generates (si+1,write)+ and proceeds to the
next phase.

ADV replicates the copies to V(P2) before Step 1, and
deletes all the copies on nodes except si+1 before ADV gen-
erates (si+1,write)+.

Let ΔAlg and ΔAdv denote the total costs paid by ALG
and ADV, respectively, in the ith phase. Let ΔAlg j denote
the cost paid by ALG in Step j of the ith phase. ADV pays
only the cost for a replication in the ith phase. Thus,

ΔAdv =
n
2
.

In Step 1, ALG pays at least the cost for serving
(si, read), for the replication to si, for the replication to the
nodes in P2 with probability �i, and for the replication to the
nodes in P1 with probability 1 − �i. Thus,

E[ΔAlg1] ≥ 2 · n
2
+ �i

(n
2
− w(Q2)

)

+ (1 − �i)
(n
2
− w(Q1)

)

= 3 · n
2
− (1 − �i)w(Q1) − �iw(Q2).

In Step 2, ALG pays at least the cost for serving
(si+1,write) and for moving the copy to si+1. Thus,

E[ΔAlg2] ≥ �i

(
n − w(Q2) +

⌊
w(Q2)

2

⌋)

+ (1 − �i)

(
n − w(Q1) +

⌊
w(Q2)

2

⌋)

= n − w(Q1) +

⌊
w(Q2)

2

⌋

+ �iw(Q1) − �iw(Q2).

In Steps 3 and 4, ALG pays at least the cost for

KAWAMURA and MATSUBAYASHI: RANDOMIZED ONLINE FILE ALLOCATION ON UNIFORM CACTUS GRAPHS
2421

(si+1, read), for the replication to V(P2), and for serving
(si+1,write). Thus,

E[ΔAlg3 + ΔAlg4] ≥
⌊
w(Q2)

2

⌋
+ w(Q2)

− 1 + n − w(Q1)

= n − w(Q1) +

⌊
3w(Q2)

2

⌋
− 1.

If the ith phase ends via Step 2, then w(Q2) ≤ ρ. Thus,

E[ΔAlg] ≥ 3 · n
2
− (1 − �i)w(Q1) − �iw(Q2) + n

− w(Q1) +

⌊
w(Q2)

2

⌋
+ �iw(Q1) − �iw(Q2)

≥ 5 · n
2
− 2(1 − �i)w(Q1)

−
(
2�i − 1

2

)
w(Q2) − 1

≥ 5 · n
2
− 2(1 − �i)

n
2
−

(
2�i − 1

2

)
ρ − 1

= 3 · n
2
+ �in −

(
2�i − 1

2

)
n�i

2 + 2�i
− 1

=
n
2

(
3 +

5�i

2 + 2�i

)
− 1.

If the ith phase ends via Step 3, then w(Q2) > ρ. Thus,

E[ΔAlg] ≥ 3 · n
2
− (1 − �i)w(Q1) − �iw(Q2)

+ n − w(Q1) +

⌊
3w(Q2)

2

⌋
− 1

≥ 5 · n
2
− (2 − �i)w(Q1) +

(
3
2
− �i

)
w(Q2) − 2

≥ 5 · n
2
− (2 − �i)

n
2
+

(
3
2
− �i

)
ρ − 2

= 3 · n
2
+

n
2
�i +

(
3
2
− �i

)
n�i

2 + 2�i
− 2

=
n
2

(
3 +

5�i

2 + 2�i

)
− 2.

Therefore, it follows that

E[
∑l

i=1 ΔAlg]∑l
i=1 ΔAdv

≥
∑l

i=1

{
n
2

(
3 + 5�i

2+2�i

)
− 2

}
n
2 · l

−→
n→∞

∑l
i=1

(
3 + 5�i

2+2�i

)
l

≥
23
6 · l

l

=
23
6
� 3.833,

which completes the proof of Theorem 2. �

We can obtain the following theorem from the proof of The-
orem 2 by setting �1 = �2 = · · · = �l = 1.

Theorem 3: There is no deterministic c-competitive file al-
location algorithm on rings if c < 4.25.

References

[1] Y. Bartal, M. Charikar, and P. Indyk, “On page migration and other
relaxed task systems,” Theor. Comput. Sci., vol.268, no.1, pp.43–66,
2001.

[2] R. Fleischer, W. Głazek, and S. Seiden, “New results for online page
replication,” Theor. Comput. Sci., vol.324, no.2-3, pp.219–251, 2004.

[3] B.M. Maggs, F.M. auf der Heide, B. Vöcking, and M. Westermann,
“Exploiting locality for data management in systems of limited band-
width,” Proc. IEEE Symposium on Foundations of Computer Science,
pp.284–293, 1997.

[4] Y. Bartal, A. Fiat, and Y. Rabani, “Competitive algorithms for dis-
tributed data management,” J. Comput. Syst. Sci., vol.51, no.3,
pp.341–358, 1995.

[5] B. Awerbuch, Y. Bartal, and A. Fiat, “Competitive distributed file al-
location,” Inf. Comput., vol.185, no.1, pp.1–40, 2003.

[6] C. Lund, N. Reingold, J. Westbrook, and D. Yan, “Competitive on-
line algorithms for distributed data management,” SIAM J. Comput.,
vol.28, no.3, pp.1086–1111, 1999.

[7] D.L. Black and D.D. Sleator, “Competitive algorithms for replication
and migration problems,” Technical Report CMU-CS-89-201, Depart-
ment of Computer Science, Carnegie Mellon University, 1989.

[8] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis, Cambridge Univ. Press, 1998.

Yasuyuki Kawamura received the B.E.
degree in information engineering in 2007 and
M.E. degree in electrical engineering and com-
puter science in 2009 both from Kanazawa Uni-
versity, Kanazawa, Japan. Currently, he is with
INTEC Inc.

Akira Matsubayashi received the B.E.
degree in electrical and electronic engineering
in 1991, M.E. degree in intelligence science in
1993, and D.E. degree in electrical and elec-
tronic engineering in 1996 all from Tokyo In-
stitute of Technology, Tokyo, Japan. From 1996
to 2000, he was a research associate in the De-
partment of Information Science at Utsunomiya
University, Utsunomiya, Japan. Currently, he
is an assistant professor in the Department of
Information and Systems Engineering at Kana-

zawa University, Kanazawa, Japan. His research interests are in parallel
and VLSI computation. He is a member of the ACM, SIAM, and the Infor-
mation Processing Society of Japan.

